

Riverstone East Stage 3 Precinct Transport Assessment

Prepared for: Department of Planning and Environment

15 September 2023

The Transport Planning Partnership

Riverstone East Stage 3 Precinct Transport Assessment

Client: Department of Planning and Environment

Version: V02

Date: 15 September 2023

TTPP Reference: 23009

Quality Record

Version	Date	Prepared by	Reviewed by	Approved by	Signature
V01	9/08/23	S. Read / C. Cheung	J. Rudd	J. Rudd	
V02	15/09/23	S. Read / C. Cheung	J. Rudd	J. Rudd	Jam Russ

Table of Contents

1	Intro	oduction	, 1
	1.1	Overview	, 1
	1.2	Study Objectives	, 1
	1.3	Report Structure	.3
	1.4	Assumptions and Limitations	.3
2	Exis	ting Conditions	.4
	2.1	Planning Context	.4
		2.1.1 Overview	.4
		2.1.2 Riverstone East Transport Study, Arup (2015)	.4
	2.2	North West Priority Growth Area, Land Use and Infrastructure Implementation Pla Planning and Environment (2017)	
	2.3	Central City District Plan, Greater Sydney Commission (2018)	.9
	2.4	Sydney's Bus Future, NSW Government (2013)1	0
	2.5	Active Transport Strategy, Transport for NSW (2022)1	1
	2.6	North West Priority Growth Area – Structure Plan Review, Jacobs (2016)1	2
	2.7	Blacktown City Council, Local Strategic Planning Statement 20201	2
	2.8	Demographics1	3
		2.8.1 Age1	4
		2.8.2 Education	4
		2.8.3 Private Vehicle Ownership1	4
		2.8.4 People per Household1	5
		2.8.5 Conclusions1	5
	2.9	Existing Road Network1	6
	2.10) Road Network Upgrades1	9
		2.10.1 Garfield Road East	21
		2.10.2Hambledon Road Extension	21
	2.11	Crash History2	22
	2.12	2 Public Transport	26
		2.12.1 Rail	26
		2.12.2Bus Transport	60
	2.13	3 Active Transport	52
3	Rive	erstone East Stage 3 - Draft Indicative Layout Plan	54
	3.1	Overview	;4
	3.2	Road Network	5

4	Trar	nsport Planning Objectives
	4.1	Overview
	4.2	30-Minute City
	4.3	15-Minute Neighbourhood
5	Traf	fic Modelling43
	5.1	Traffic Modelling Scope
	5.2	Traffic Modelling Assumptions
		5.2.1 STFM Forecasts
		5.2.2 Traffic Generation Rates
		5.2.3 Estimated Additional Trips
		5.2.4 Traffic Generation and Distribution
	5.3	Model Coding
	5.4	Modelled Scenarios
	5.5	Road Network Upgrades
	5.6	Level of Service Criteria60
	5.7	Modelling Results
	5.8	Conclusions
		5.8.1 Access to the State Road Network
6	Pub	lic Transport Strategy67
	6.1	Overview
	6.2	Buses
	6.3	Rail
7	Act	ive Transport
	7.1	Pedestrian and Cycleway Links70
	7.2	Cycling70
	7.3	Pedestrians
8	Со	nclusions75

Tables

Table 3.1: Road Types	37
Table 4.1: Estimated Travel Times	39
Table 5.1: Riverstone East - Estimated Dwelling Numbers Compared to TZP22 Projections	47
Table 5.2: Net Additional Dwellings by Travel Zone	48
Table 5.3: Traffic Generation Rates (vehicle trips per hour) 2031	49

Table 5.4: Traffic Generation Rates (vehicle trips per hour) 2041	. 50
Table 5.5: Estimated Additional Traffic Generation 2031 Peak Hours	50
Table 5.6: Estimated Additional Traffic Generation 2041 Peak Hours	51
Table 5.7: Estimated Traffic Generation	51
Table 5.8: Level of Service Criteria	60
Table 5.9: Morning Peak Intersection Operation (Modelled)	62
Table 5.10: Evening Peak Intersection Operation (Modelled)	63
Table 7.1: Path Widths for Cyclists	. 71

Figures

Figure 1.1:	Riverstone East Stage 3 Precinct
Figure 2.1:	Future Road Network (Arup 2015)
Figure 2.2:	Proposed Intersection Upgrades (Arup 2015)
Figure 2.3:	North West Priority Growth Area (2017)
Figure 2.4:	Central City District Plan (2018)
Figure 2.5:	Sydney's Bus Future (2013)
Figure 2.6:	Strategic Planning, Blacktown City Council
Figure 2.7:	Population by Age14
Figure 2.8:	Car Ownership
Figure 2.9:	Study Area
Figure 2.10:	Road Upgrades
Figure 2.11:	Garfield Road East Upgrade Windsor Road to Hambledon Road Extension 21
Figure 2.12:	Hambledon Road
Figure 2.13:	Crashes by Type
Figure 2.14:	Crashes by Type at Garfield Road East and Windsor Road
Figure 2.15:	Crash Severity
Figure 2.16:	Pedestrian and Cyclist Crashes
Figure 2.17:	Location of Rail Stations
Figure 2.18:	Walking Catchment from Tallawong Station
Figure 2.19:	Existing Bus Routes and Catchments
Figure 2.20:	Strava Cycling Heat Map
Figure 3.1:	Draft Riverstone East Stage 3 Precinct ILP
Figure 3.2:	Movement and Place Framework
Figure 4.1:	Walking Catchment from Local Centres (15 Minute Neighbourhood)

Figure 4.2:	Schools 15 minute Walking	12
Figure 5.1:	Modelling Methodology	13
Figure 5.2:	Modelled Intersections	14
Figure 5.3:	STFM Travel Zones	46
Figure 5.4:	Assumed Traffic Distribution5	52
Figure 5.5:	2031 Modelling Scenario	54
Figure 5.6:	2041 Modelling Scenario	56
Figure 5.7:	Garfield Road East – Edmund Street (Intersection 3)	57
Figure 5.8:	Windsor Road – Mt Carmel Drive (Intersection 5)	57
Figure 5.9:	Windsor Road – Guntawong Road (Intersection 7)	58
Figure 5.10:	Schofields Road – Hambledon Road (Intersection 13)	58
Figure 5.11:	Garfield Road East – Hambledon Road (Intersection 20)	59
Figure 5.12:	Garfield Road East – Access Road 3 (Intersection 21)	50
Figure 5.13:	Outer Sydney Orbital	56
Figure 6.1:	Recommended Bus Routes	58
Figure 7.1:	Recommended Cycle Routes Recommendation7	7]
Figure 7.2:	Road Corridor Shared Use Path	/2
Figure 7.3:	Green Space Shared Use Path7	/2
Figure 7.4:	Quietway7	73
Figure 7.5:	Pedestrian Crossings	74

APPENDICES

- A. TYPICAL ROAD CROSS SECTIONS
- B. MODEL DEVELOPMENT
- C. SIDRA MODELLING RESULTS
- D. ESTIMATED TRAFFIC VOLUMES
- E.

1 Introduction

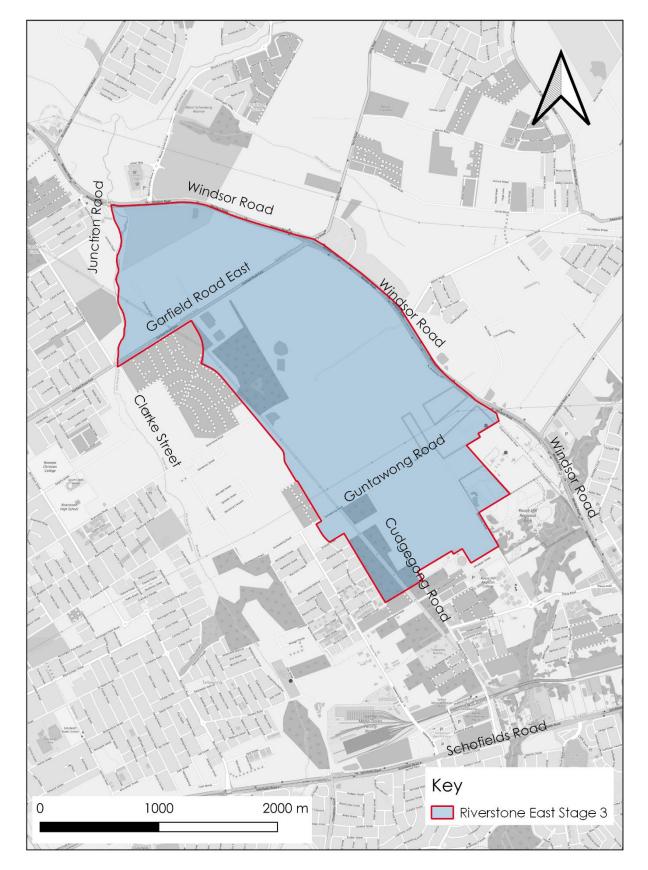
1.1 Overview

The Transport Planning Partnership (TTPP) has been commissioned to undertake a transport assessment for the proposed Riverstone East Stage 3 precinct (the Precinct) for the Department of Planning and Environment (DPE).

The Riverstone East Stage 3 precinct lies within the North West Growth Area and is the final stage of planning following Riversone East Stages 1 and 2.

Riverstone East Stage 3 will provide some 3147 additional dwellings of mostly low density but will also include schools, community facilities and playing fields. The precinct is located immediately west of Windsor Road and north of Tallawong Station (See Figure 1.1). A substantial portion of the Precinct includes the Rouse Hill Regional Park currently under the management of NSW National Parks and Wildlife Service.

1.2 Study Objectives


The objective of this study is to provide an assessment of the Riverstone East Stage 3 precinct by all modes of transport and identify suitable infrastructure to support a safe and efficient transport network.

The study is guided by the principles of the Movement and Place Framework, 15-minute neighbourhoods and the 30-minute city to provide a Precinct that has equitable access to transport and reduces the demand for private vehicle trips.

The specific objectives of the study to:

- Identify how the Precinct connects with the broader transport network for the North West Growth Area
- Test the impacts of the Indicative Layout Plan (ILP) on the road network
- Provide recommendations on road infrastructure and road hierarchy
- Provide equitable access to public transport
- Reduce the demand for private vehicles by providing safe and efficient alternatives.

Figure 1.1: Riverstone East Stage 3 Precinct

1.3 Report Structure

This report is structured as follows:

- Section 2 Existing Conditions provides background information about the transport context for the Precinct
- Section 3 Draft Indicative Layout Plan (ILP) outlines the proposed Precinct
- Section 4 Transport Planning Objectives, outlines how the Precinct responds to the Movement and Place Framework, 30-minute city and 15-minute neighbourhood
- Section 5 Traffic Modelling, outlines the modelling methodology and the modelling results
- Section 6 Public Transport Strategy to support the development
- Section 7 Active Transport Plan
- Section 8 Conclusions

1.4 Assumptions and Limitations

This study has relied on information provided by others, including:

- Draft ILP and yields provided by Hatch Roberts Day and developed under consultation through the Enquiry by Design (EBD) process
- Transport for NSW, Strategic Transport Forecast Model (STFM) traffic models to provide forecast traffic volumes and forecast yields by travel zones
- Intersection layouts at selected intersections based on draft Traffic Control Site (TCS) plans and the Garfield Road upgrade project
- Traffic generation rates published by Transport for NSW in the Guide to Traffic Generating Developments Technical Direction, Trip Generation Surveys High-Density Residential (Car Based) Analysis Report.

2 Existing Conditions

The following section provides an overview of the planning context of the Precinct and the existing traffic and transport conditions including background studies provided for the project.

2.1 Planning Context

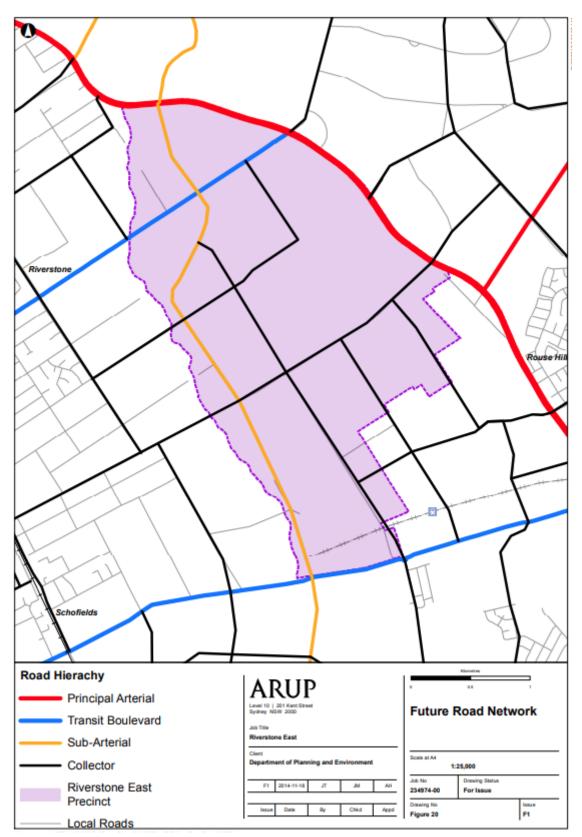
2.1.1 Overview

The key traffic and transport planning documents for Riverstone East include:

- Riverstone East Precinct Transport Study, Arup 2015
- North West Priority Growth Area Land Use and Infrastructure Implementation Plan, Planning and Environment (2017)
- Central City District Plan, Greater Sydney Commission (2018)
- Sydney Bus Future, Transport for NSW (2013)
- Active Transport Strategies, Transport for NSW (2022)
- Blacktown Local Strategic Planning Statement (2020)

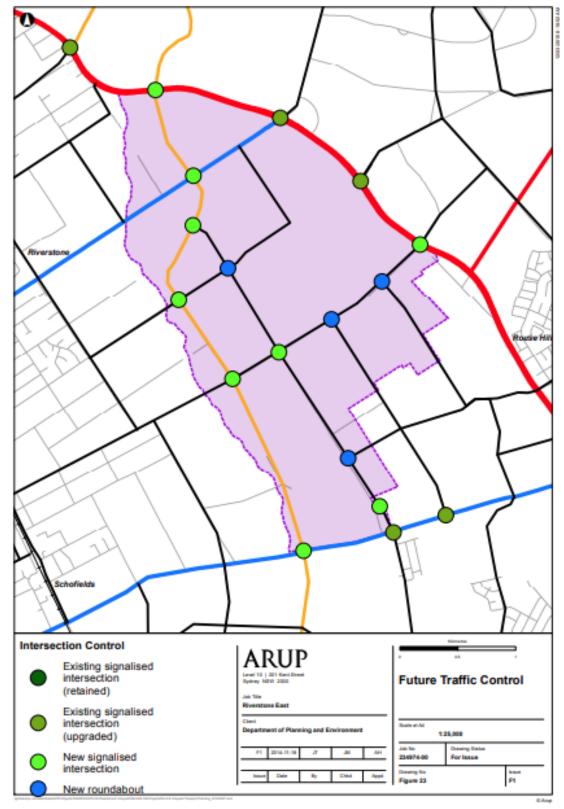
2.1.2 Riverstone East Transport Study, Arup (2015)

The Riverstone East Transport Study was prepared by Arup (2015) to identify the key infrastructure requirements that were required to support the development potential for Riverstone East. This is the key document that has been reviewed as part of the Gap Analysis. The study included an assessment of all modes and recommendations for infrastructure requirements. The study included traffic modelling using a strategic model and Sidra Intersection model.


Key recommendations from the study:

- New Arterial Road connecting Hambledon Road at Schofields Road to Mount Carmel Drive at Windsor Road. This infrastructure would significantly change travel behaviour providing a new access route through the precinct and drawing some traffic away from Windsor Road
- Upgrade of signalised intersections
- Provision of a cycleway network through the precinct
- Future bus routes
- Forecast Number of dwellings = 5,784 dwellings

TTPP note that the report shows the old proposed alignment of the North West Rail Link alignment that continues along Windsor Road to Vineyard Station. Sydney Metro NorthWest now terminates on Schofields Road at Tallawong Station.



Source: Arup 2015

Figure 2.2: Proposed Intersection Upgrades (Arup 2015)

Source: Arup 2015

2.2 North West Priority Growth Area, Land Use and Infrastructure Implementation Plan, Planning and Environment (2017)

This document provides the overarching plan for the North West Growth Area. The key map from the infrastructure plan is shown in Figure 2.3. Note the alignment of the Sydney Metro NorthWest has changed.

Figure 2.3: North West Priority Growth Area (2017)

Key aspects of the plan are:

- North West Priority Growth Area rezoned to support 53,150 dwellings
- Riverstone East Stage 3 Precinct, 2,300 dwellings (Stages 1 and 2 3,500 dwellings)¹

¹ Note the current estimates exceed these number of dwellings.

- Mixed-use employment corridors along Schofields Road and Garfield Road East
- Rouse Hill is identified as the nearest regional centre
- Shows the previously planned alignment for the North West Rail Link (Now Sydney Metro NorthWest). The built alignment is along Schofields Road terminating at Tallawong Stations.

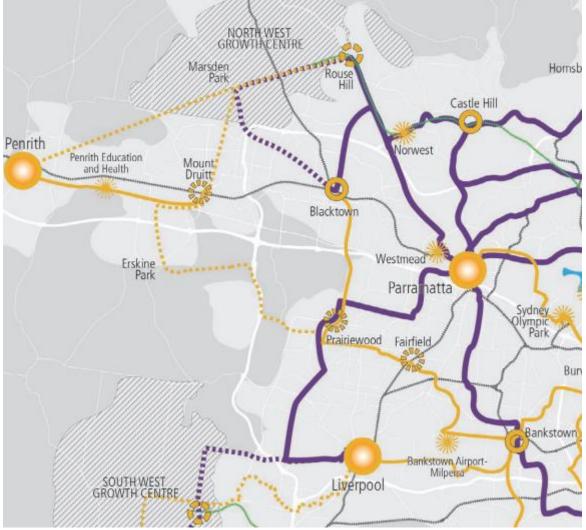
2.3 Central City District Plan, Greater Sydney Commission (2018)

The Central City District plan covers the Blacktown, Cumberland, Parramatta and The Hills Local government areas. The district plan is to inform the local strategic planning statements as part of the NSW Governments Future Transport Strategy 2056

Key aspects of the plan include:

- Extension of the Sydney Metro NorthWest to St Mary's and connection to the Aerotropilis Metro
- Reinforces the concept of the 30-minute city
- Provision of employment in Rouse Hill and industrial on Schofields Road

Figure 2.4: Central City District Plan (2018)


Source: Central City District Plan (2018)

2.4 Sydney's Bus Future, NSW Government (2013)

Sydney's Bus Future was the planning document for the future Sydney Bus network. The document includes aspects such as integrated bus services. Bus services are categorised into three levels, rapid bus, suburban (turn up and go) and local services. With regard to Riverstone East the key aspects from the document are:

- Rapid bus service between Blacktown and Rouse Hill via Marden Park
- Suburban bus connection between Rouse Hill and Penrith.

Figure 2.5: Sydney's Bus Future (2013)

Source: Sydney's Bus Future (2013)

2.5 Active Transport Strategy, Transport for NSW (2022)

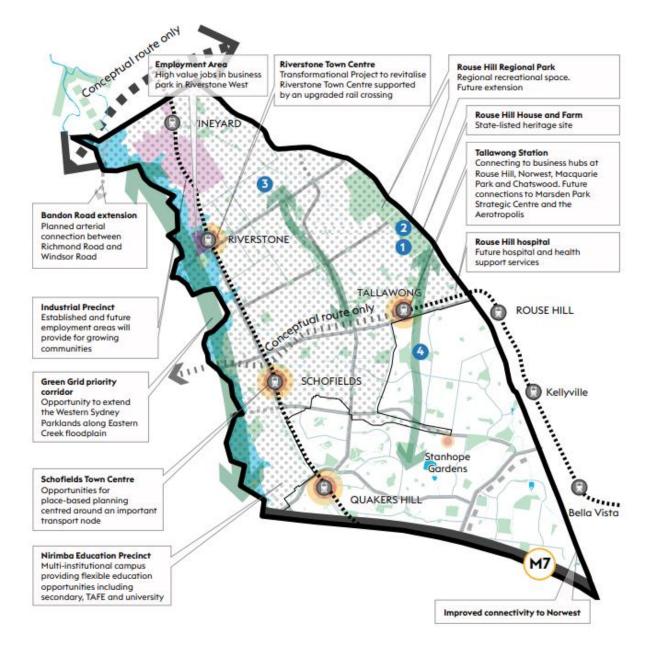
The Active Transport Strategy sets out the NSW Government's plans and policy for active transport. The key priorities of the strategy are:

- 15 Minute Neighbourhoods
- Increasing the length of connected cycleways
- Reducing the number of fatalities
- Double the number of children participating in active transport modes of travel.

2.6 North West Priority Growth Area – Structure Plan Review, Jacobs (2016)

The structure plan review identified infrastructure upgrades related to the Riverstone Precinct. Key related upgrades include:

- Garfield Road East and Schofields Road are identified as bus-priority corridors providing physical priority and traffic signal priority for buses
- Providing cycling routes
- Land use provides more intensive mixed-use development around transport nodes
- Providing cycling facilities
- Upgrade of transport interchanges at Schofields Station and Marden Park.


2.7 Blacktown City Council, Local Strategic Planning Statement 2020

The Local Strategic Planning Statement sets out Councils. Key recommendations for the Riverstone Precinct include:

- Extending the Sydney Metro from Tallawong Station to Schofields, Marsden Park and The Western Sydney Airport
- Richmond Train Line Duplication
- Upgrades to Garfield Road East.

A plan of the recommendations is shown in Figure 2.6.

Figure 2.6: Strategic Planning, Blacktown City Council

Source: Local Strategic Planning Statement 2020, Blacktown City Council (2020)

2.8 Demographics

To analyse the demographics of the study area, TTPP compared the census data of the North Blacktown Area, which comprises a significant part of the North West Growth Area, with the statistics of the rest of NSW. TTPP reviewed various demographic features that could impact transport planning such as age distribution, education, car ownership, and household size.

2.8.1 Age

The age demographic of North Blacktown is significantly younger than the rest of NSW with a higher proportion of 30 - 45 years of age and in the under-14 age group. This indicates that the area has a higher proportion of families with children than the NSW average.

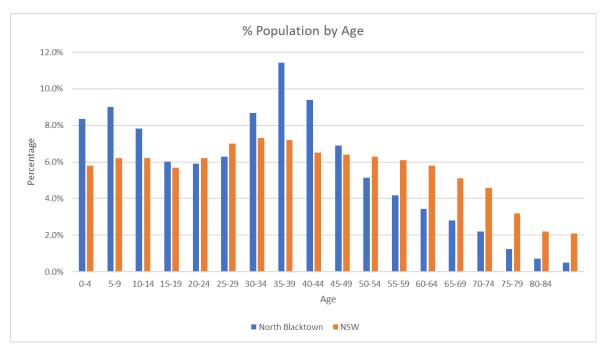


Figure 2.7: Population by Age

Source: Census Data 2021

2.8.2 Education

The area has a higher proportion of people who have completed a tertiary education or higher with a percentage of 42% compared to the NSW average of 29%. Higher education could lend itself to more work from opportunities as well as flexible work hours. Futher, jobs for higher educated populations are more likely to be located in strategic centres with access to public transport.

2.8.3 Private Vehicle Ownership

In North Blacktown, the number of cars owned per dwelling is high when compared to the average in NSW. Specifically, there are 1.8 cars per dwelling in North Blacktown while the average in NSW is 1.65 cars per dwelling. Moreover, a significantly higher proportion of dwellings in North Blacktown have 2 vehicles compared to the average in NSW. Additionally, the percentage of dwellings with no cars is only 3% in North Blacktown, considerably lower than the 9% average in NSW.

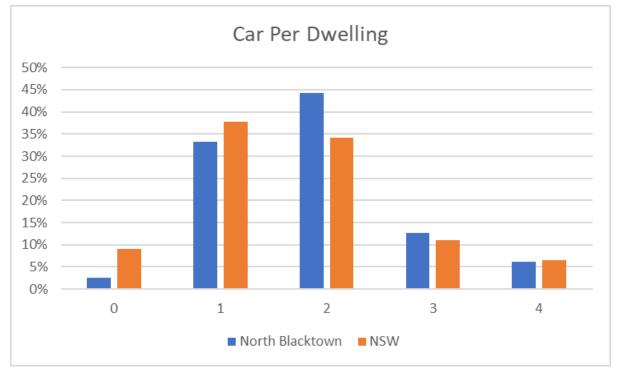


Figure 2.8: Car Ownership

Census data 2021

2.8.4 People per Household

The number of people per household is also higher than the NSW average with 3.2 people per household in North Blacktown compared to 2.5 people per household in NSW.

2.8.5 Conclusions

The demographics for the North West Growth Area indicate that:

- The population has a higher proportion of working age people in the 30 50 age bracket. There are also people likely to have young children
- The education levels are generally higher than the rest of NSW indicating more whitecollar type workers with opportunities to work from home
- Household sizes are higher than the majority of NSW
- Car ownership per household is also higher with more two car households.

Overall, the household sizes, working age people and car ownership is likely to increase the trip demand by private vehicle (car). However, the population's higher education could indicate more opportunities to support working from home, and public transport connections to strategic centres. and flexible working hours or working hubs could reduce trip demands.

2.9 Existing Mode Share

Mode share for the Blacktown North area is dominated by private vehicle use. The mode share pre-Covid is shown in Figure 2.9.



Figure 2.9: Blacktown North Mode Share

Source: Open Data, Household Travel Survey (HTS) 2019/20

Private vehicle trips as driver make up over 50% of the total trips, While bus and train journeys account for less than 10 % of the total trips.

2.10 Existing Road Network

The study area is shown in Figure 2.10. The key roads in the study area include Windsor Road, Garfield Road East and Schofields Road.

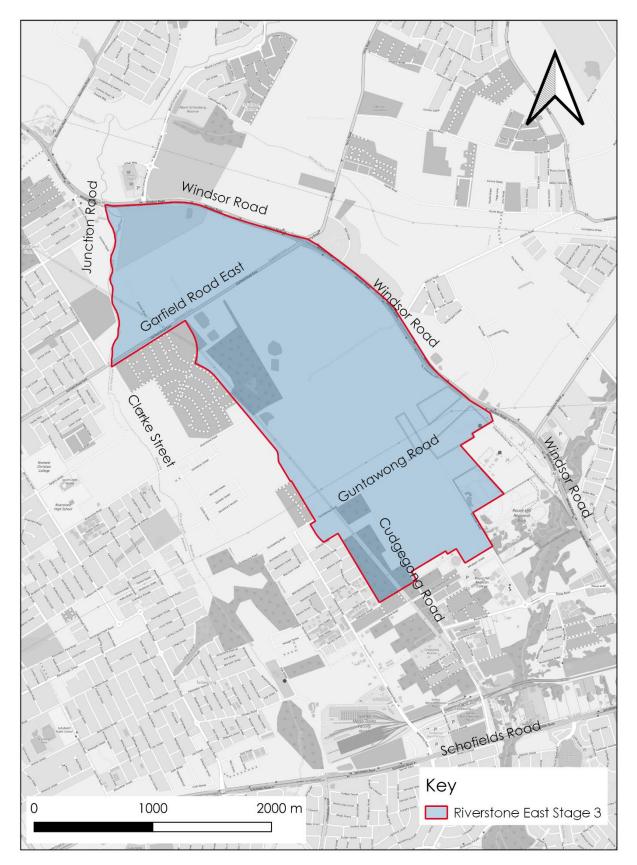
A description of the key roads in the network is provided below.

Windsor Road – Windsor Road is an arterial road that connects Windsor to Parramatta. Windsor Road is a State Road that is managed by Transport for NSW. The road is two lanes in each direction on a divided carriageway.

Schofields Road – Schofields Road is also a State Road that connects Windsor Road the Richmond Road in an east-west direction. It is a four-lane road on a divided carriageway with two lanes in each direction.

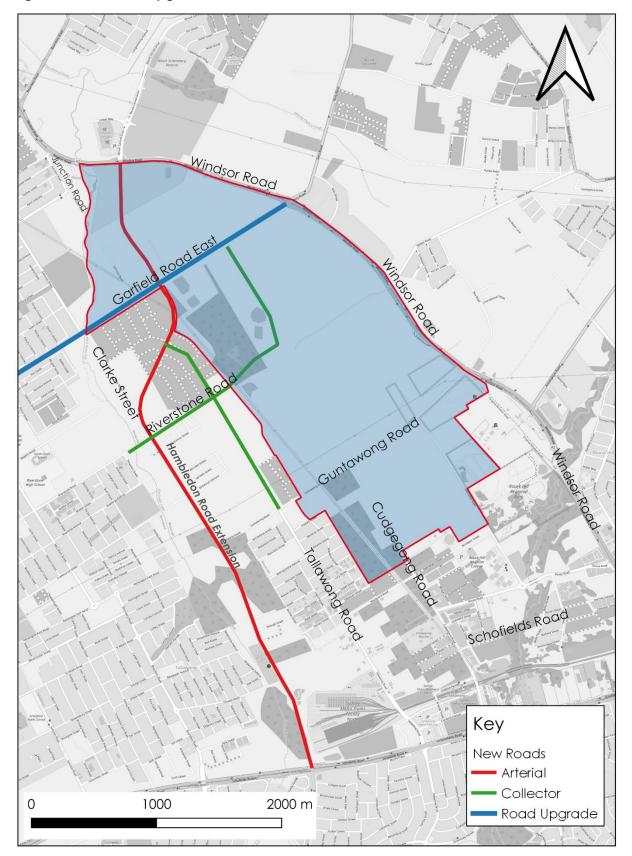
Garfield Road East - Garfield Road East is a State Road that connects Windsor Road to Richmond Road. The road is currently configured as a two-lane two-way road with edge lines, shoulders and swale drains. The speed limit is 60km/h. This road is planned to be upgraded to 4 lanes on a divided carriageway.

Hambledon Road – Hambledon Road is a regional road that is jointly funded by Transport for NSW and Blacktown City Council. It has two lanes in each direction on a divided road. This road has been identified to be extended north from Schofields Road where it currently ends.


Tallawong Road – Tallawong Road local road that connects Schofields Road to Riverstone East Stages 1 and 2. It has been constructed as a collector road with a carriageway width of 11m.

Guntawong Road – Guntawong Road is currently a two-way two-lane road with unsealed shoulders and swale drains. It has a speed limit of 60km/h. Line marking is only provided for the first 500m from Windsor Road.

Cudgegong Road - Cudgegong Road local road that connects Schofields Road to Riverstone East Stages 1 and 2. It has been constructed as a collector road with a carriageway width of 11m.



2.11 Road Network Upgrades

Garfield Road East and the Hambledon Road extension are proposed and will create additional arterial and sub arterial road connections. The location of theroad upgrades are shown in Figure 2.11.

2.11.1 Garfield Road East

3.4 km of Garfield Road East between Piccadilly Street to Windsor Road is to be upgraded to a 4 lane road with two lanes in each direction. A Review of Environmental Factors (REF) has been prepared for this and the designs have been updated. It is understood that funding for the upgrade has not been committed yet.

Figure 2.12: Garfield Road East Upgrade Windsor Road to Hambledon Road Extension

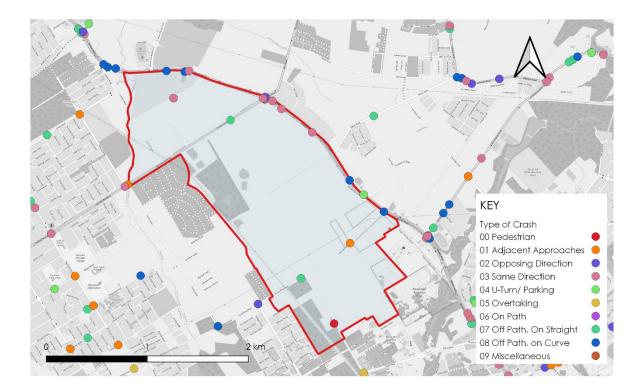
Source: Transport for NSW (2023)

2.11.2 Hambledon Road Extension

It has been identified that Hambledon Road will be extended from Schofields Road through to Garfield Road East. This road will be two lanes in each direction and form a sub-arterial road function. Future intersections at Garfield Road East and Windsor Road will be upgraded to accommodate the future road. The typical configuration of the existing Hambledon Road is shown in Figure 2.13.

Figure 2.13: Hambledon Road

Source: Google Streetview (2022)


2.12 Crash History

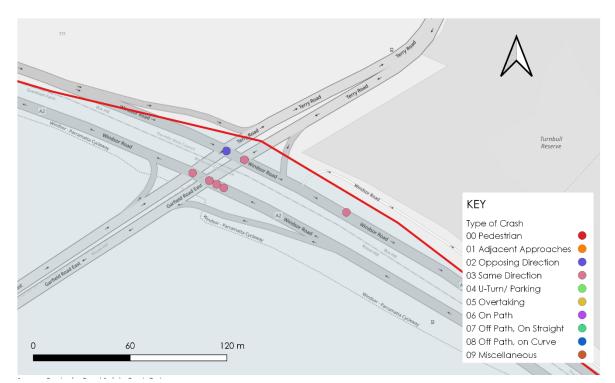
Crash data has assessed using the 5 year crash history recorded by the Centre for Road Safety 2017 - 2021. Crash data is collected based on police reports for incidents where there has been injury, vehicle towed. It should be noted that minor incidents or near misses are not reported.

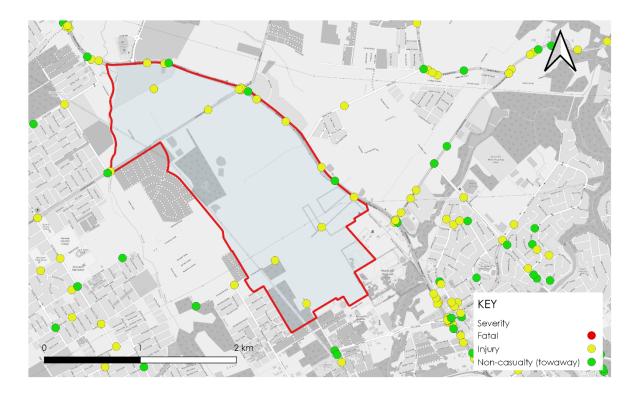
The location and type of crashes have been plotted in Figure 2.12.

Figure 2.14: Crashes by Type

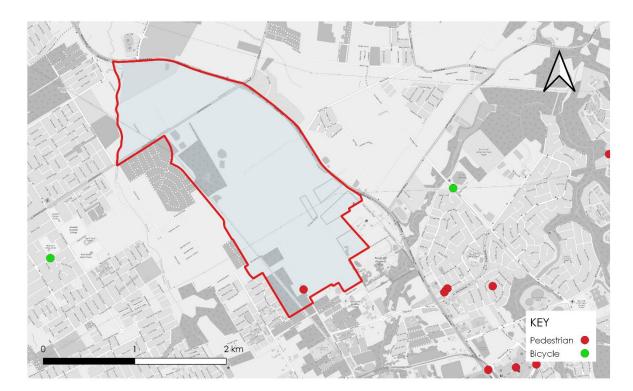
The data shows that there were few crashes within the study area reflecting the current low traffic volumes on the internal roads. Most of the crashes were recorded along Windsor Road with a crash cluster around the intersection of Garfield Road East and Windsor Road.

The crashes at the intersection of Windsor Road and Garfield Road East is shown in Figure 2.15.



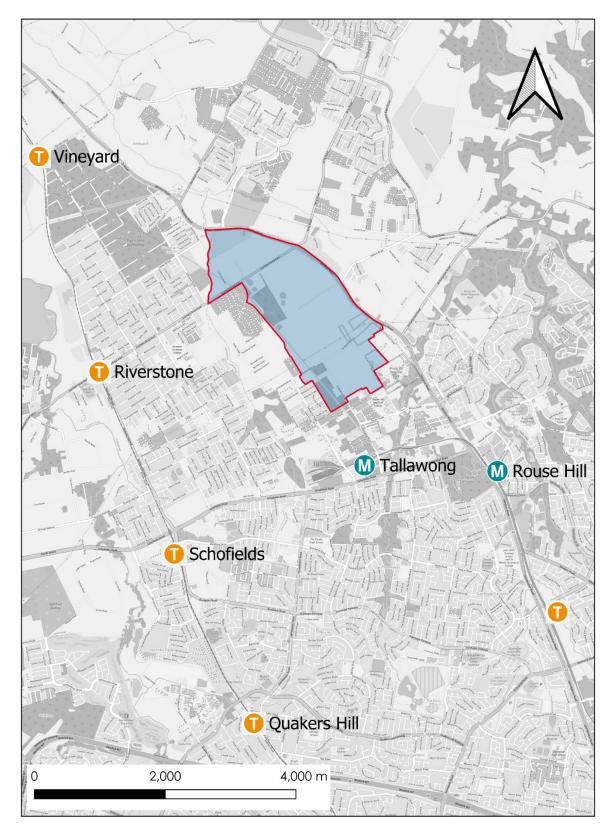

Figure 2.15: Crashes by Type at Garfield Road East and Windsor Road

The data shows that there were seven (7) crashes associated with this intersection. The majority of crashes at this location involved vehicles travelling in the same direction. That is rear end type crashes and side swipe type crashes. One crash involved vehicles from opposite directions (that is head on or a through movement hitting a right turning vehicle type crashes).


The severity of crashes is shown in Figure 2.16.

There were no fatal crashes in the study area with most crashes involve some injury. Crashes involving volnerable road users, pedestrians and cyclists is shown on Figure 2.16.

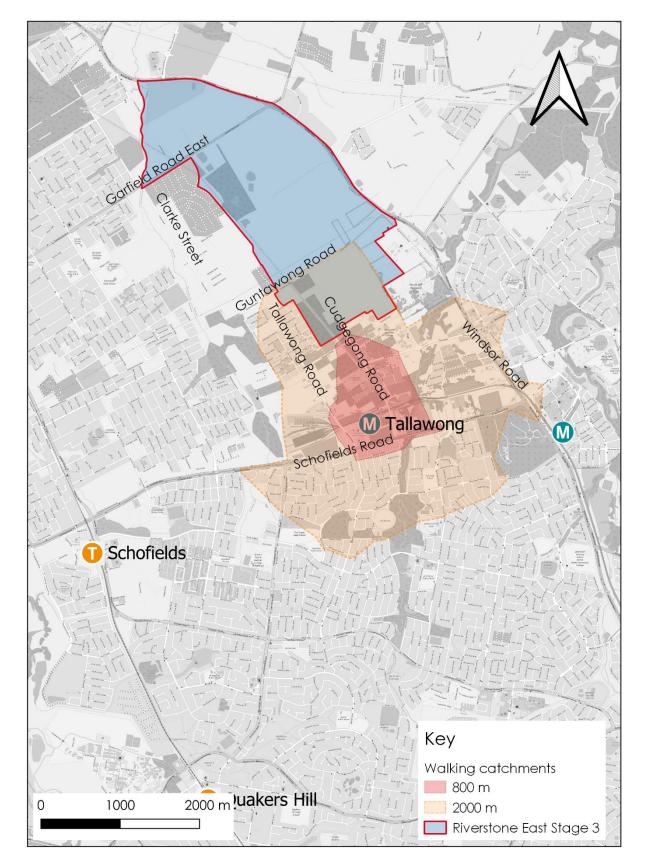
Figure 2.17: Pedestrian and Cyclist Crashes


There was only one incident reported involving a pedestrian within the study area which resulted in an injury. There were no cyclist crashes reported.

2.13 Public Transport

2.13.1 Rail

The nearest railway stations are shown in Figure 2.18. Tallawong Station and Rouse Hill are part of the Sydney Metro North West while Riverstone, Vineyard and Schofields Stations are located on the T1 and T5 Richmond Line.



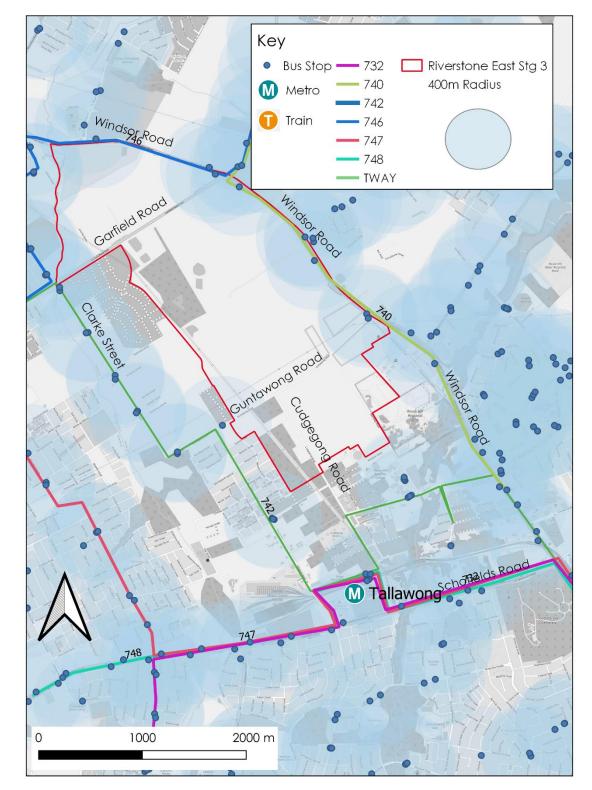
Walking catchments are an important consideration when planning public transportation routes. A walking catchment is a distance that someone is willing or able to walk to access public transportation, such as a bus stop or train station. The size of the walking catchment can vary depending on factors such as the age and physical ability of the population, the availability of parking, and the quality of the pedestrian environment.

The traditional walking catchment for rail services is 800m however it has been shown that some people are willing to walk longer distances to high-quality public transport services.

The walking catchments of 800m and 2000 m from Tallawong Station are shown in Figure 2.19. It shows that most of the Riverstone East study area is outside the 800m walking distance but some portions are within 2km. Riverstone, Schofields and Vinyard Station to the west are outside typical walking distance for a rail station.

Figure 2.19: Walking Catchment from Tallawong Station

Car parking is provided at Tallawong Station with parking for 1000 vehicles. However, observations on-site indicate that this parking spills onto the local roads.


2.13.2 Bus Transport

Bus services should be focused on providing access to the suburban rail network and metro lines and T-Way interchanges through feeders services as well as access to the regional centres such as Rouse Hill.

Providing feeder bus routes to rail stations can greatly improve access to public transport and encourage more people to use it. Feeder buses are designed to transport passengers from areas that are not directly served by rail stations to the station itself. This can include suburban areas that are not within easy walking distance of a rail station. By providing a feeder bus service, people who might not have access to a car or who live too far away from the station can still benefit from the speed and convenience of rail transportation. In addition, feeder buses can reduce the need for parking at rail stations, which can be limited and expensive. By providing this service, communities can increase the use of public transportation, reduce traffic congestion, and promote sustainable modes of transportation.

The existing bus routes are shown in Figure 2.20 with shaded areas around the bus stops showing the typical 400m walking catchment for a bus route. The map shows that there would be a need for more bus routes in the future to provide a well-connected bus network that would provide access to key centres and rail stations.

Figure 2.20: Existing Bus Routes and Catchments

2.14 Active Transport

The study area currently has a limited pedestrian network with most of the roads having no pedestrian footpaths.

Riverstone East Stages 1 and 2 will provide new footpaths however, local streets in Stages 1 and 2 will only provide footpaths along one side of the road.

Garfield Road East and Windsor Road create barriers to pedestrians that will require future pedestrian crossings to allow connections to Box Hill and the western side of Windsor Road

Data from the Stava fitness app shows that Windsor Road and Schofields Road are heavily used by cyclists. These are roads that feature high-quality regional cycle paths. The Strava heat map is shown in Figure 2.21.

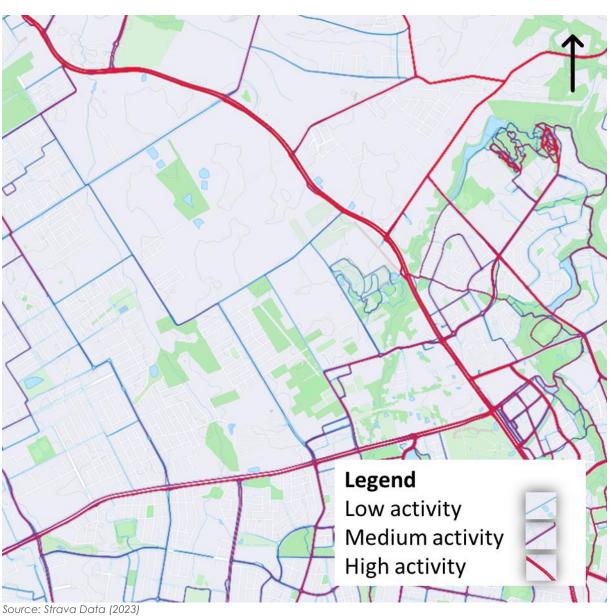
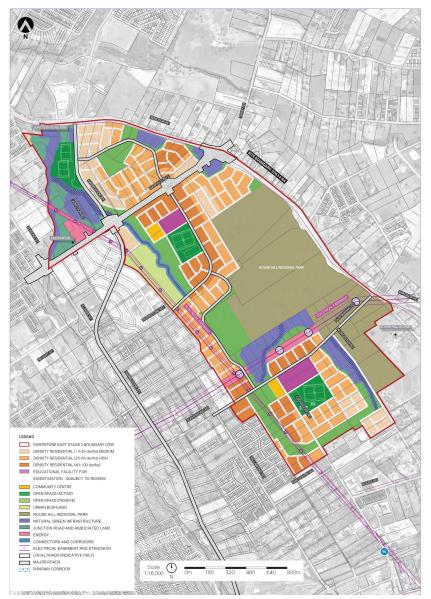


Figure 2.21: Strava Cycling Heat Map


3 Riverstone East Stage 3 - Draft Indicative Layout Plan (ILP)

3.1 Overview

A draft ILP for the Riverstone East Stage 3 precinct has been prepared and the proposed layout is shown in Figure 3.1. The proposed land uses are primarily for residential dwellings with community facilities such as schools, playing fields and community centres.

The proposed residential yields would be approximately 3,147 dwellings of which 443 dwellings would be apartments, 1106 medium density and 1447 low-density dwellings.

Figure 3.1: Draft Riverstone East Stage 3 Precinct ILP

Source: Hatch Roberts Day

Key features of the ILP include:

- Playing fields located north of Guntawong Road
- Community centres located near the Riverstone Road extension and south of Guntawong Road
- High school south of Guntawong Road
- Primary school.

3.2 Road Network

The principle of the road network hierarchy is guided by the movement and place framework as shown in Figure 3.2.

Figure 3.2: Movement and Place Framework

Source: Transport for NSW

The draft ILP features minimal retail and community centres, therefore the road network will be focused on providing main roads along Garfield Road East and Hambledon Road Extension and a network of local streets with the provision of public transport to support the development.

The road network will provide movement corridors along Hambledon Road Extension and Garfield Road East. A network of collector roads with higher amenity will provide cycling routes through shared path as well as being capable of carrying buses within 10 minute of Tallawong Station.

The proposed road hierarchy and road types have also been developed based on consistency with the North West Growth Area DCP and lessons learnt from the Riverstone Stages 1 and 2. The key differences are:

- Widening collector roads by 2m to make them capable of carrying buses
- Providing footpaths on both sides of the local streets.

The draft road types and features are shown in Table 3.1 and typical cross sections are shown in Appendix A.

Table 3.1: Road Types

Road Type	Description	Speed Limit (km/h)	Carriageway	Parking Lane Width	Road Reserve	Paths	Notes	Movement and Place Classifiecation
Access Street	One-way with on- street parking	40	5.6m	2.3m	13.1m	1.5m footpath on one side	One-way	Local Street
Local Street	Two-way road with on-street parking (low- density residential streets)	50	9m	2.3m	16m	1.5m footpaths on both sides		Local Street
Collector Road	Two-way road with on-street parking. Suitable for buses	50	13m	2.3m	22m	1.5m footpath, 3.0m shared use path.	Bus capable road	Main Road
Sub-Arterial	2 lanes in each direction of the divided carriageway.	60	7m and 7m on a dual carriageway	-	26m	1.5m footpath and 3.0m shared use path	Hambledon Road Extension	Main Road

4 Precinct Transport Planning Objectives

4.1 Overview

The following section outlines how the draft ILP development for the Precinct fits into the Greater Sydney Commission objectives of creating a '30 Minute City' and '15 Minute Neighbourhoods'.

4.2 30-Minute City

One of the objectives of the Greater Sydney Commission is to create a city where most residents live within 30 minutes of their jobs education, health facilities, and services. The Central City District plan that encompasses the study area sets the objective of having more dwellings within 30 minutes by public transport to a metropolitan centre or strategic centre.

The closest metropolitan centres are:

- Blacktown
- Parramatta.

The closest strategic centres to the site are:

- Rouse Hill
- Norwest
- Castle Hill.

The estimated travel times between the Precinct and the nearby metropolitan and strategic centres are set out in Table 4.1

Destination	Description	Time*
Blacktown	Bus to Riverstone Station, Train to Blacktown	55 – 65 minutes
Parramatta	Bus to Riverstone Station, Train to Parramatta	65 – 75 minutes
Sydney CBD	Bus to Tallawong Station, Metro to Chatswood Station, Train to Town Hall	70 – 80 minutes
Rouse Hill	Bus to Tallawong Station, Metro to Rouse Hill	25 – 30 minutes
Norwest	Bus to Tallawong Station, Metro to Rouse Hill	35 – 40 minutes
Castle Hill	Bus to Tallawong Station, Castle Hill	35 - 40 minutes

Table 4.1: Estimated Travel Times (By Public Transport Modes)

*Trip times based on Transport for NSW, Trip Planner during morning and evening peak periods to and from Guntawong Road.

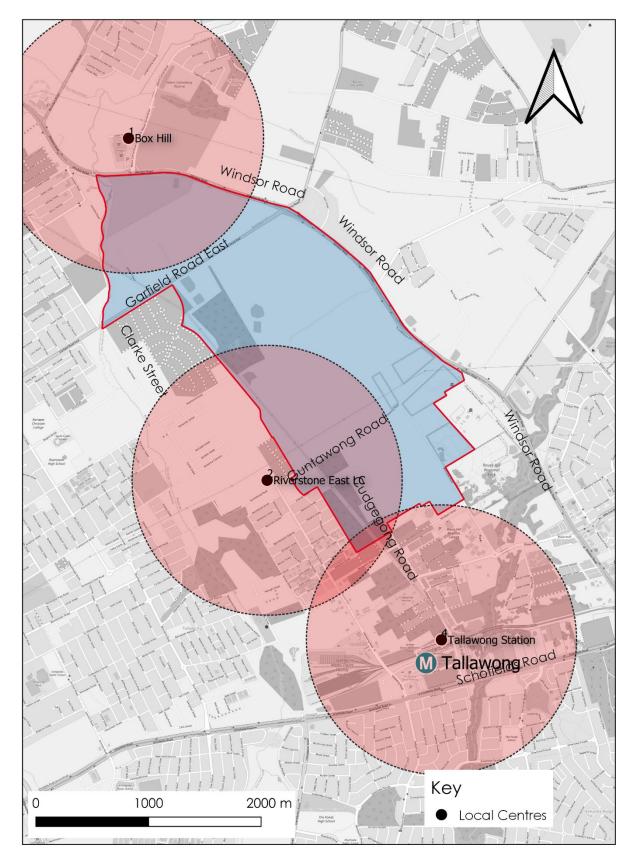
The draft ILP for the Precinct meets one of the objectives by being within 30 minutes of a strategic centre however, currently, the site is more than 30 minutes from a Metropolitan centre with the time to Parramatta greater than 60 minutes.

Future infrastructure upgrades with the Chatswood to Sydney CBD metro would reduce travel times to Sydney CBD. Additional bus services to Riverstone Station would be needed to reduce the time to Blacktown and Parramatta.

A future extension of the Sydney Metro from Tallawong Station to the Aerotropolis and Western Sydney Airport would be significant in providing public transport to major employment centres.

4.3 15-Minute Neighbourhood

The 15 Minute neighbourhood seeks to provide local services within 15 minutes walk or ride of people's homes.

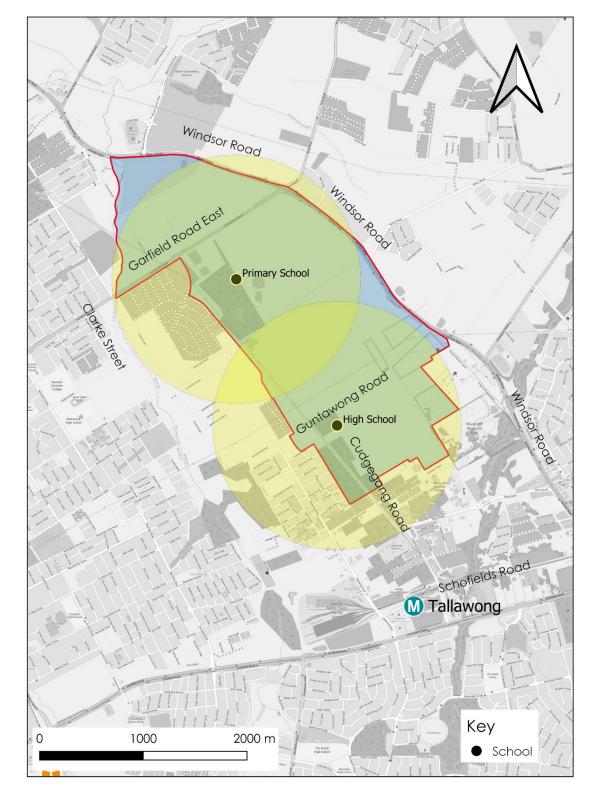

This includes local shops, schools, transport nodes and health facilities. Preferably this would be 15 minutes walking distance.

The key local retail centres will be:

- Box Hill Shopping Centre
- Riverstone East Stage 1 and 2 local centre (Future)
- Tallawong Station (Transport hub)
- Rouse Hill Hospital.

The 15-minute walking catchments for these centres are shown in Figure 4.1.

Figure 4.1: Walking Catchment from Local Centres (15 Minute Neighbourhood)

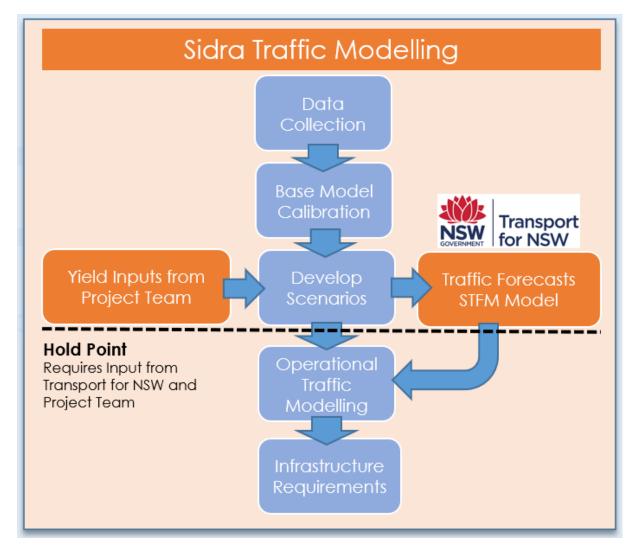


The 15-minute walking catchment indicates that there will be an area south of Garfield Road East in the precinct that will be more than a 15minutes walk from a small retail centre.

Schools are another service within the precinct that should be supported by network of safe pedestrian paths. The primary school will be centrally located within the precinct and a high school located in the southern section of the precinct. The 15-minute walking catchments are shown in Figure 4.2.

Section 7 of this report address the provision of active transport corridors through the precinct. The 15 minute neighbourhood is supported by a network of quality cycle routes and pedestrian footpaths to make walking and cycling pleasant and encourage their use.

Figure 4.2: Schools 15 minute Walking



5 Precinct Traffic Modelling

5.1 Traffic Modelling Scope

The Precinct is located within the broader context of the North West Growth Area which is being planned for by Transport for NSW. This study is focused on the local access immediately surrounding the study area.

The scope of the traffic modelling for the Precinct as presented in this report is to use Sidra Intersection to build an operational model of the future road network within the area to assess the impacts of the precinct and identify infrastructure upgrades that would be required to accommodate planed development in the draft ILP. Traffic forecasts were provided by Transport for NSW through the Sydney Strategic Forecast Model (STFM). An overview of the proposed modelling methodology is shown in Figure 5.1.

Figure 5.1: Traffic Modelling Methodology

The modelling assessed two future year scenarios, namely 2031 and 2041. The extent of the base models is shown in Figure 5.2.

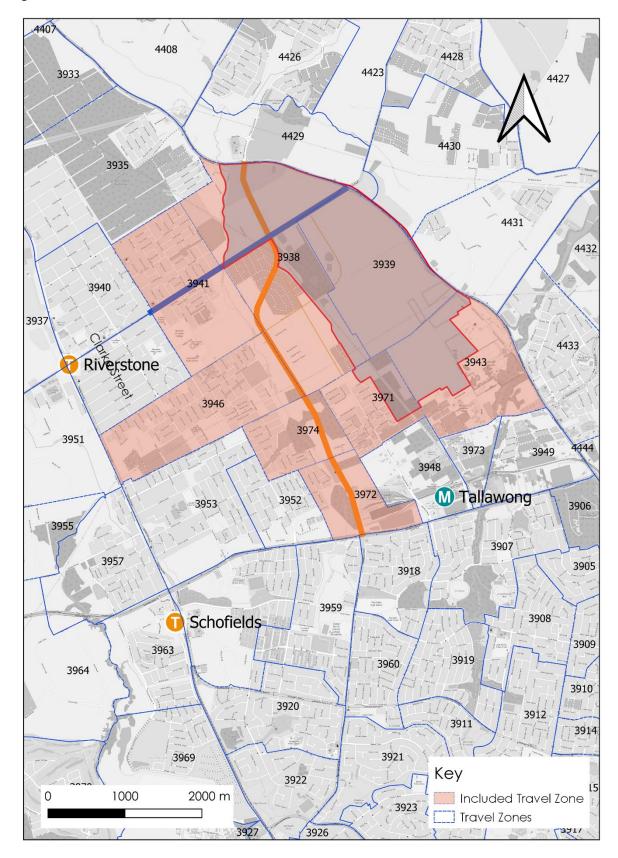
Windsor Road 121 20 08 016 015 OIZ)18 010 011 **1**2**1**4)13 Key New Intersection 2000 4000 m 0 O Priority O Signal

Figure 5.2: Modelled Intersections

5.2 Traffic Modelling Assumptions

The following outlines the modelling assumptions used for the traffic modelling assessment.

5.2.1 STFM Forecasts


The traffic modelling has relied on traffic forecasts provided by Transport for NSW.

The population and dwelling forecasts for the study area were compared to the draft ILP and the dwelling forecasts for Riverstone Stages 1 and 2 provided by the Department of Planning and Environment. It was found that the STFM dwelling forecasts were lower than what is expected by the Departement of Planning and Environment. Therefore, additional traffic generation was estimated based on traditional traffic generation rates to make up for the difference.

The total number of dwellings that are forecast for Riverstone East Stage 3 Precinct is 2,849 dwellings. Riverstone Stages 1 and 2 were planned for 3500 dwellings however it is understood that this number may have been exceeded in the actual rollout of the precinct is likely to be some 4,000 dwellings.

The STFM travel zones are shown in Figure 5.3.

Travel zones related to Riverstone East are assumed to be:

- 3938
- 3939
- **3**971
- **3**974
- **3**943
- **3**972
- 3946 (half)
- **3**941

The estimated dwelling numbers compared to the TZP22 projections are shown in Table 5.1. The TZP22 projections are forecasts that are used in Tranpsort for NSW's STFM model.

Table 5.1: Riverstone East	- Estimated Dwelling Numbers	Compared to TZP22 Projections
----------------------------	------------------------------	-------------------------------

	No. of Residential Dwellings 2031 (70%)	No. of Residential Dwellings 2041
Stages 1 and 2	2800	4000
Stage 3	2170	3147
Total	4970	7147
STFM Assumption	2907	5294
Difference	+1903	+1853

The assumptions in transport for NSW's model are that there will be fewer dwellings than what is expected according to the Department of Planning and Environment.

The estimated net increase in dwellings by travel zone is shown in Table 5.2.

Travel Zone	No. of Residential Dwellings 2031 (70%)	No. of Residential Dwellings 2041
3938	413	269
3971	296	175
3943	296	175
3939	90	94
3941	198	206
3946 (Half)	198	206
3972	198	206
3974	216	225
Total	1903	1853

Table 5.2: Net Additional Dwellings by Travel Zone

5.2.2 Traffic Generation Rates

Assumed traffic generation rates are based on published rates from:

- Guide to Traffic Generating Developments, RTA, 2002
- Guide to Traffic Generating Developments Technical Direction (TDT 2013/04)
- Trip Generation Surveys High-Density Residential (Car Based) Analysis Report, Bitzios Consulting (2017)

The rates have been adjusted based on the likely establishment of schools and the assumption of future trip containment. The following are the assumed traffic generation rates for 2031 and 2041.

5.2.2.1 2031 Trip Generation Assumptions

Assumed rates for low density have been increased by 5% to account for school trips going outside the area in the initial years of the development.

Column 1	Morning Rate	Evening Rate	Source
Low Density	1.0 trips per dwelling	1.05 trips per dwelling	TDT 2013/04a
Medium Density	0.65 trips per dwelling	0.65 trips per dwelling	RTA GTTGD (2002)
High Density	0.28 trips per dwelling*	0.34 trips per dwelling*	Bitzios Consulting, Trip Generation Surveys High- Density Residential (Car Based) Analysis Report (2017) * Sub Metropolitan

Table 5.3: Traffic Generation Rates (vehicle trips per hour) 2031

5.2.2.2 2041 Trip Generation Assumptions

The ultimate trip rates will be based on the rates shown in Table 5.4.

Туре	Morning Rate	Evening Rate	Source
Low Density	0.95 trips per dwelling	0.99 trips per dwelling	TDT 2013/04a
Medium Density	0.65 trips per dwelling	0.65 trips per dwelling	RTA GTTGD (2002)
High Density	0.28 trips per dwelling*	0.34 trips per dwelling*	Bitzios Consulting, Trip Generation Surveys High- Density Residential (Car Based) Analysis Report (2017) * Sub Metropolitan

For our traffic generation calculations, we have assumed that 'High-Density Yield' equates to medium density in terms of traffic generation rates on the basis that 'high-density yield has an average lot size of some 250 m² and that there would be very little actual high-density residential dwellings.

5.2.3 Estimated Additional Trips

Using a combination of the STFM forecasts and trip generation rates means it is difficult to accurately estimate the traffic generation for the Riverstone East Stage 3. The STFM travel zones do not evenly fit within the precinct outline. A methodology (developed in consultation with Transport for NSW and DPE) was used to account for a wider area encompassing Riverstone Stages 1 and 2. Based on the short fall in the STFM assumptions the additional traffic generation for the broader area is shown in

Table 5.5 and Table 5.6 for 2031 and 2041 respectively.

Туре	Morning Rate	Evening Rate	Dwellings	Morning Trips (veh. / hr)	Evening Trips (veh. / hr)
Low Density	1.0 trips per dwelling	1.05 trips per dwelling	1522	1522	1599
Medium Density	0.65 trips per dwelling	0.65 trips per dwelling	285	186	186
High Density	0.28 trips per dwelling*	0.34 trips per dwelling*	95	27	32
			1903	1735	1816

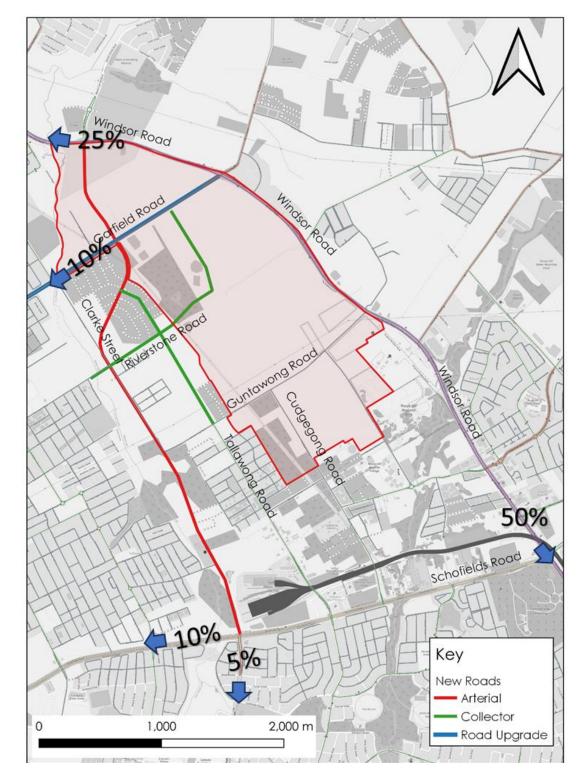
Table 5.5: Estimated Additional Traffic Generation 2031 Peak Hours

Туре	Morning Rate	Evening Rate	Dwellings	Morning Trips (veh. / hr)	Evening Trips (veh. / hr)
Low Density	0.95 trips per dwelling	0.99 trips per dwelling	1482	1482	1557
Medium Density	0.65 trips per dwelling	0.65 trips per dwelling	278	181	181
High Density	0.28 trips per dwelling*	0.34 trips per dwelling*	93	26	32
			1853	1689	1769

Table 5.6: Estimated Additional Traffic Generation 2041 Peak Hours

The total traffic generation for the Precinct shown in Figure 5.3 is presented in Table 5.7.

Scenario	STFM (Veh. / hr)	Additional Trips (Veh. / hr)	Total (Veh. / hr)
2031 Morning	1937	1969	3906
2031 Evening	2213	1816	4029
2041 Morning	3130	1969	5099
2041 Evening	3597	1816	5413


Table 5.7: Estimated Traffic Generation

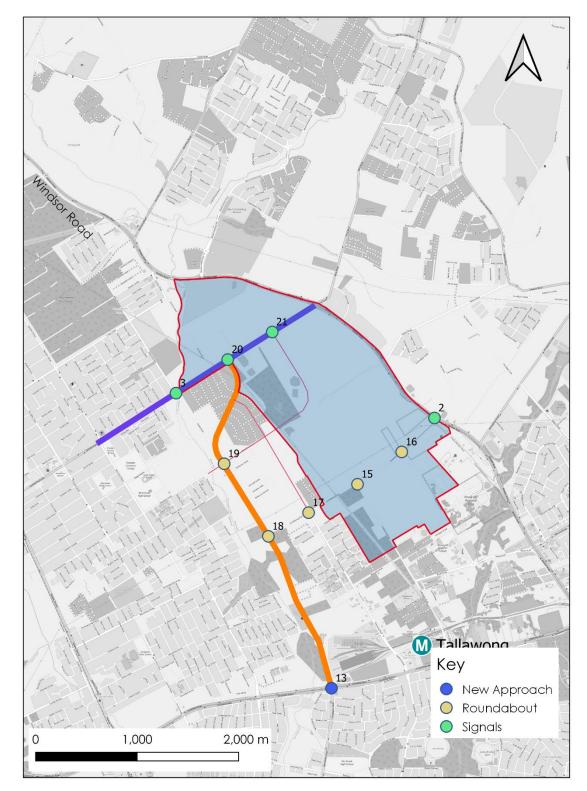
For context 1000 vehicles per hour is the nominal capacity of traffic lane in an urban road.

5.2.4 Traffic Generation and Distribution

The additional traffic generation was distributed on the network as shown in Figure 5.4. The distribution is based on a select link plot provided for Travel Zone 3938. This traffic was added to the traffic forecasts from the STFM models.

Figure 5.4: Assumed Traffic Distribution

5.3 Model Coding

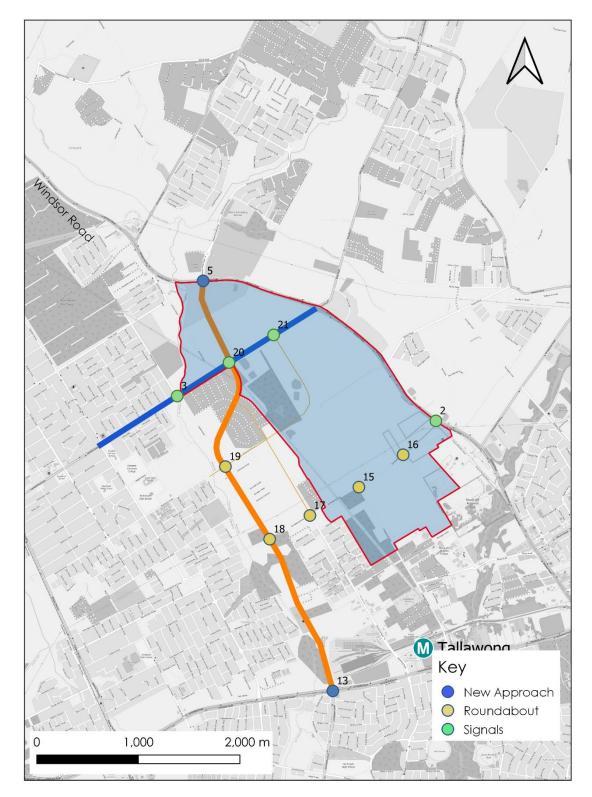

See Appendix B fore details of the model coding.

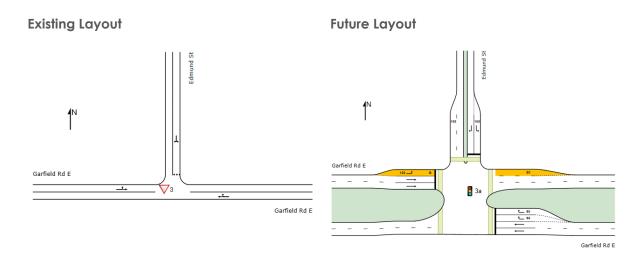
5.4 Modelled Scenarios

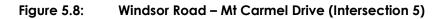
The following scenarios have been modelled in Sidra 9.1:

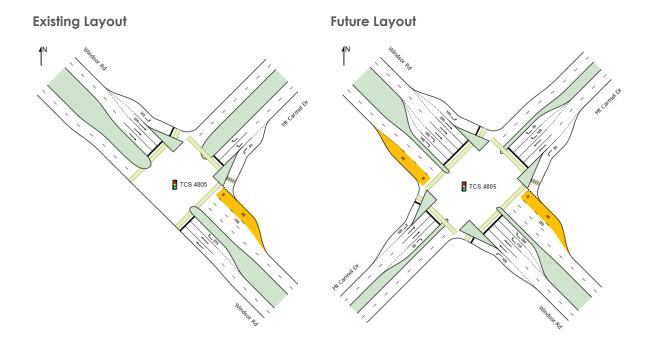
- 2023 Base model existing conditions based on 2023 survey data.
- 10-Year Future Conditions 10-Year future conditions (including Riverstone development calculated from 2021-2031 STFM volume growth plots). This scenario includes:
 - Permanent closure of Intersection 2 (Garfield Rd East-Clarke St)
 - Upgrade of Intersection 3 (Garfield Rd East-Edmund St) from a priority intersection to a signalised intersection
 - Upgrade of Intersection 7 (Windsor Rd-Guntawong Rd) from a left-in/left-out priority intersection to a three-legged signalised intersection
 - Upgrade of Intersection 13 (Schofields Rd-Hambledon Rd) from three-legged signals to four-legged signalised intersections.
 - Upgrade Intersection 15 (Guntawong Rd-Cudgegong Rd) and Intersection 16 (Guntawong Rd-Worcester Rd) from three-legged priority intersection to roundabout
 - Upgrade Intersection 17 (Guntawong Rd-Tallawong Rd) from T-junction priority to roundabout.
 - Upgrade Intersection 18 (Guntawong Rd-Clarke St) to roundabout.
 - Upgrade Intersection 19 (Riverstone Rd-Clarke St) from four-way priority to roundabout.
 - New signalised intersection 20 (Hambledon Rd extension) and 21 (Access Road 3).
 Note: Hambledon Rd extension does not yet provide connectivity to Windsor Rd-Mt Carmel.

- 20-Year Future Conditions 10-Year future conditions (including Riverstone development calculated from 2021-2041 STFM volume growth plots). This scenario includes:
 - Extension of Hambledon Rd (Intersection 20) to Windsor Rd-Mt Carmel Dr
 - Upgrade Intersection 5 (Windsor Rd-Mt Carmel Dr) from a three-legged to a fourlegged signalised intersection.

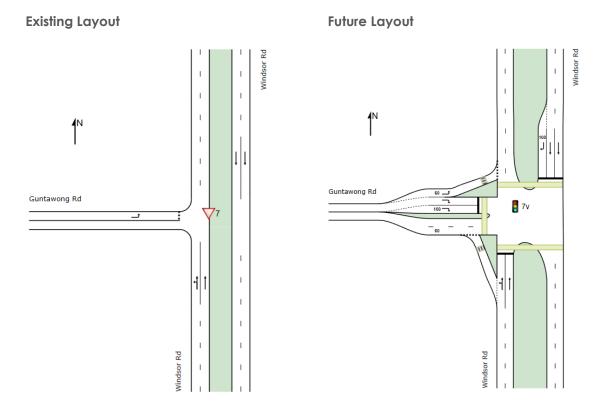


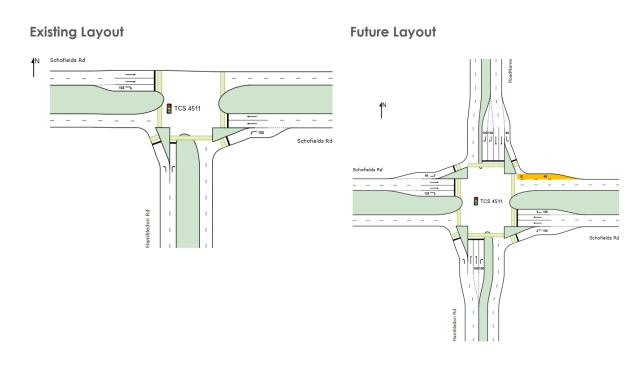

Figure 5.6: 2041 Intersection Assumptions

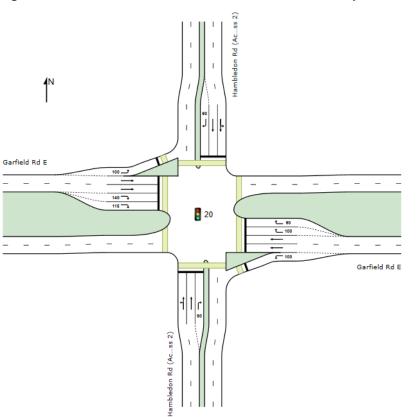



5.5 Planned Road Network Upgrades

Road network upgrades for key intersections on Windsor Road, Schofields Road and Garfield Road East are shown below in Figure 5.7 to Figure 5.12. These layouts are based on the TfNSW future plans for Garfield Road, Future TCS plans provided for Mt Carmel Drive / Windsor Road and Hambledon Road / Schofields Road and assumptions from the Arup 2015 report.


Figure 5.7: Garfield Road East – Edmund Street (Intersection 3)




Figure 5.9: Windsor Road – Guntawong Road (Intersection 7)

Guntawong Road signalising has been proposed by Transport for NSW. The traffic forecasts indicate that it would meet the warrants with more than 600 vehicles per hour in each direction on the main road and 200 vehicles per hour on the side road.

Figure 5.10: Schofields Road – Hambledon Road (Intersection 13)

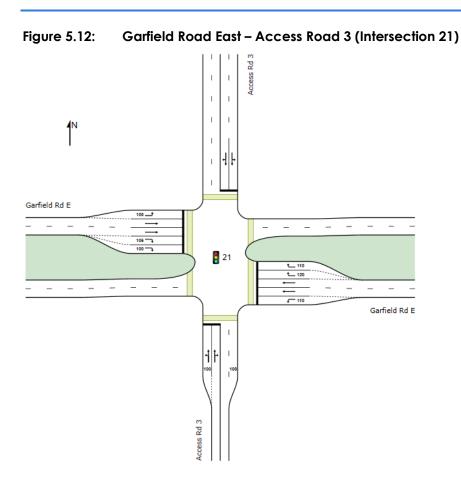


Figure 5.11: Garfield Road East – Hambledon Road (Intersection 20)

5.6 Level of Service Criteria

Transport for NSW uses the performance measure level of service to define how efficiently an intersection is operating under given prevailing traffic conditions.

Level of service (LoS) is directly related to the delays experienced by traffic travelling the intersection. Level of service ranges from LoS A to LoS F. LoS A indicates the intersection is operating with spare capacity, while LoS F indicates the intersection is operating above capacity. LoS D is the long-term desirable level of service.

At signalised intersections, the average delay is the volume-weighted average of all movements. For roundabouts and priority (give way and stop sign) controlled intersections, the average delay relates to the worst movement.

Table 5.8 shows the criteria that Sidra Intersection adopts in assessing the level of service.

Level of Service (LoS) Average Delay per vehicle (secs/veh)		Traffic Signals, Roundabout	Give Way & Stop Sign
А	Less than 14	Good operation	Good operation

Table 5.8: Level of Service Criteria

В	15 to 28	Good with acceptable delays and spare capacity	Acceptable delays and spare capacity		
С	29 to 42	Satisfactory	Satisfactory, but accident study required		
D	43 to 56	Near capacity	Near capacity, accident study required		
E	57 to 70	At capacity; at signals incidents will cause excessive delays. Roundabouts require other control mode	At capacity, requires other control mode.		
F	Greater than 70	Unsatisfactory, requires additional capacity	Unsatisfactory, requires other control mode or major treatment		

5.7 Modelling Results

Based on the above, the intersection operation for the existing conditions, 10-year future and 20-year future conditions is presented in Table 5.9 (Morning Peak) and Table 5.10 (Evening Peak). Detailed model outputs are provided in Appendix B.

Table 5.9: Morning Peak Intersection Operation (Modelled)

Travel Corridor	Intersection	2023 Base Conditions			10-Year Future Conditions			20-Year Future Conditions		
		Control / Upgrade	Ave. Delay (s)	LoS	Control / Upgrade	Ave. Dela y (s)	LoS	Control / Upgrade	Ave. Delay (s)	LoS
Windsor Rd	1. Garfield Rd East - Windsor Rd - Terry Rd	Signal	49	D	Signal	116	F	Signal	85	F
	4. Windsor Rd - Junction Rd	Priority	50	D	Priority	989	F	Priority	1,245	F
	5. Windsor Rd - Mt Carmel Dr	Signal	15	В	Signal	37	С	Signal	44	D
	6. Windsor Rd - Nelson Rd	Signal	40	С	Signal	114	F	Signal	141	F
	7. Windsor Rd - Guntawong Rd	Priority	11	А	Signal	22	В	Signal	25	В
	8. Windsor Rd - Annangrove Rd	Signal	40	С	Signal	83	F	Signal	150	F
	9. Windsor Rd - Rouse Rd - Mile End Rd	Signal	96	F	Signal	186	F	Signal	201	F
	10. Windsor Rd - Commercial Rd	Signal	46	D	Signal	52	D	Signal	50	D
	11. Windsor Rd - Schofields Rd - Rouse Hill Dr	Signal	75	F	Signal	213	F	Signal	185	F
Schofields Rd	12. Schofields Rd - Tallawong Rd - Ridgeline Dr	Signal	44	D	Signal	83	F	Signal	121	F
	13. Schofields Rd - Hambledon Rd	Signal	30	С	Signal	65	E	Signal	120	F
	14. Schofields Rd - Cudgegong Rd	Signal	44	D	Signal	68	E	Signal	63	E
Garfield Rd E	2. Garfield Rd E - Clarke St	Priority	28	В						
	3. Garfield Rd E - Edmund St	Priority	24	В	Signal	15	В	Signal	12	А
	20. Garfield Rd E - Hambledon Rd (Access 2)				Signal	33	С	Signal	40	С
	21. Garfield Rd E - Access 3				Signal	34	С	Signal	30	С
Internal Intersections	15. Guntawong Rd - Cudgegong Rd	Priority	8	Α	Roundabout	10	А	Roundabout	11	А
	16. Guntawong Rd - Worecster Rd	Priority	8	Α	Roundabout	10	А	Roundabout	10	А
	17. Guntawong Rd - Tallawong Rd	Priority	11	А	Roundabout	16	В	Roundabout	16	В
	18. Guntawong Rd - Clarke St	Priority	6	Α	Roundabout	11	А	Roundabout	11	А
	19. Clarke St - Riverstone Rd	Priority	12	А	Roundabout	13	А	Roundabout	15	В

Table 5.10: Evening Peak Intersection Operation (Modelled)

Travel Corridor	Intersection	2023 Base Conditions			10-Year Future Conditions			20-Year Future Conditions		
		Control / Upgrade	Ave. Delay (s)	LoS	Control / Upgrade	Ave. Dela y (s)	LoS	Control / Upgrade	Ave. Delay (s)	LoS
Windsor Rd	1. Garfield Rd E - Windsor Rd - Terry Rd	Signal	60	E	Signal	93	F	Signal	86	F
	4. Windsor Rd - Junction Rd	Priority	68	E	Priority	845	F	Priority	592	F
	5. Windsor Rd - Mt Carmel Dr	Signal	12	А	Signal	18	В	Signal	50	D
	6. Windsor Rd - Nelson Rd	Signal	52	D	Signal	85	F	Signal	159	F
	7. Windsor Rd - Guntawong Rd	Priority	15	В	Signal	24	В	Signal	53	D
	8. Windsor Rd - Annangrove Rd	Signal	66	E	Signal	112	F	Signal	131	F
	9. Windsor Rd - Rouse Rd - Mile End Rd	Signal	68	E	Signal	85	F	Signal	121	F
	10. Windsor Rd - Commercial Rd	Signal	38	С	Signal	47	D	Signal	63	E
	11. Windsor Rd - Schofields Rd - Rouse Hill Dr	Signal	62	E	Signal	295	F	Signal	316	F
Schofields Rd	12. Schofields Rd - Tallawong Rd - Ridgeline Dr	Signal	37	С	Signal	57	E	Signal	145	F
	13. Schofields Rd - Hambledon Rd	Signal	57	E	Signal	191	F	Signal	214	F
	14. Schofields Rd - Cudgegong Rd	Signal	35	С	Signal	44	D	Signal	75	F
Garfield Rd E	2. Garfield Rd E - Clarke St	Priority	19	В						
	3. Garfield Rd E - Edmund St	Priority	31	С	Signal	19	В	Signal	14	А
	20. Garfield Rd E - Hambledon Rd (Access 2)				Signal	29	С	Signal	37	С
	21. Garfield Rd E - Access 3				Signal	33	С	Signal	33	С
Internal Intersections	15. Guntawong Rd - Cudgegong Rd	Priority	7	Α	Roundabout	13	А	Roundabout	14	А
	16. Guntawong Rd - Worecster Rd	Priority	7	А	Roundabout	10	А	Roundabout	10	А
	17. Guntawong Rd - Tallawong Rd	Priority	9	А	Roundabout	13	А	Roundabout	14	А
	18. Guntawong Rd - Clarke St	Priority	6	А	Roundabout	12	А	Roundabout	12	А
	19. Clarke St - Riverstone Rd	Priority	15	В	Roundabout	12	А	Roundabout	14	А

Existing

Table 5.9 indicates the existing intersection of Windsor Road-Mile End Road (Int. 9) and Windsor Road-Schofields Road-Rouse Hill Drive (Int. 11) is currently operating at capacity (LoS F) under existing conditions in the morning peak period, while Intersections 1, 4, 10, 12 and 14 are operating near capacity (LoS D). The remaining intersections operate well at LoS C or better.

Table 5.10 indicates several intersections on Windsor Road (Int. 1, 4, 8, 9 and 11) currently operating at capacity (LoS F) under existing conditions in the evening peak period. Windsor Road-Nelson Road (Int. 6) operates near capacity at LoS D while the remaining intersections operate well at LoS C or better.

10-Year Future Conditions

The forecasted 10-Year traffic growth would result in several intersections deteriorating to LoS F in the future year in both morning and evening peak periods. It is noted that based on the 2021-2031 STFM volume growth plots, traffic volumes along Windsor Road are expected to increase by some 200-500vph in each direction.

Additionally, Windsor Road-Junction Road (Int. 4) currently operates as a seagull intersection with the worst movement results relating to the right-turn out from Junction Road to Windsor Road, as this movement must give way to right-turn in movements, adjacent westbound through movement and the eastbound through movement at the seagull merge point. Future traffic growth would exacerbate the existing poor performance at this intersection due to increased traffic on Windsor Road. Notwithstanding, in reality, motorists would unlikely wait to turn right with delays up to 800-900 seconds and would likely either accept smaller gap acceptances to make the right turn out or alternatively motorists would find alternative routes to connect to Windsor Road.

The upgraded and new intersections along Garfield Road East (Int. 3, 20 and 21) and the upgraded internal intersections (Int. 15-19) would all operate satisfactorily at LOS C or better.

The upgraded intersection of Windsor Road-Guntawong Road (Int. 7) to signals would also continue to operate satisfactorily in the 10-year future.

20-Year Future Conditions

The Hambledon Road extension at Windsor Road-Hambledon Road (Int. 20) would be provided to connect with Windsor Road-Mt Carmel Drive (Int. 5). This new link will provide motorists with an additional connection to Windsor Road. This would result in some traffic being diverted away from the Windsor Road-Garfield Road E-Terry Road intersection (Int 1). Therefore, there is a reduction in delay at Intersection 1 in the 20-Year future condition as a result of the new connection. Notwithstanding, Intersection 1 would continue to operate at

LoS F while Intersection 5 would operate near capacity at LoS D with the additional traffic now utilising this intersection.

The remaining intersections along Windsor Road and Schofields Road would continue to operate at LoS E/F while the intersections along Garfield Road (Int. 3, 20 and 21) and the internal intersections (Int. 15-19) would all continue to operate satisfactorily at LoS C or better.

5.8 Conclusions

The traffic modelling indicates that with the proposed development of Riverstone East Stage 3 Precinct the local intersections within the precinct along Garfield Road would operate acceptably. However, intersections along Windsor Road are currently at capacity and would experience an increase in average vehicle delay in the future.

Intersections on Schofields Road are also predicted to be at capacity in 2023 and will continue to experience increased average vehicle delay. However, very few of the forecast volumes for the Riverstone Stone East Stage 3 precinct are expected to use Schofields Road.

It is understood that Transport for NSW is currently undertaking its own modelling for the Norther West Growth Area and this will inform upgrades on Windsor Road and Schofields Road. It is beyond the scope of this study to recommend regional or state significant infrastructure.

For example, upgrades to Windsor Road may not fully address capacity issues, therefore there is a need for significant infrastructure to enhance transportation in the area. This could involve:

- Developing efficient public transportation with connections to make better use of existing heavy rail.
- Extending the existing Sydney Metro to the aerotropolis.
- Building the Outer Sydney Orbital to increase road capacity beyond what the current roads can offer.

The indicative alignment for the Outer Sydney Orbital (OSO) is shown in Figure 5.13. Corridors for Stage 1 and Stage 2 of the OSO have been identified and are being preserved. However, the alignment planning only extends to Richmond Road.

It should be noted that Transport for NSW traffic forecasts has not included the OSO in this area.

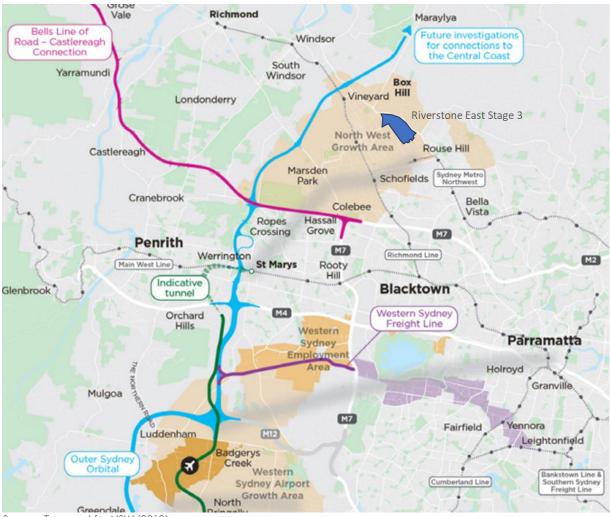


Figure 5.13: Outer Sydney Orbital

Source: Transport for NSW (2018)

5.8.1 Access to the State Road Network

The development will have four direct access to the State Road Network which will be:

- Garfield Road East at Hambledon Road Extension
- Garfield Road East at Access Road 3
- Windsor Road at Guntawong Road
- Windsor Road at Hambledon Road Extension

The new intersections on Garfield Road East are to be signalised as part of the Garfield Road East Upgrade.

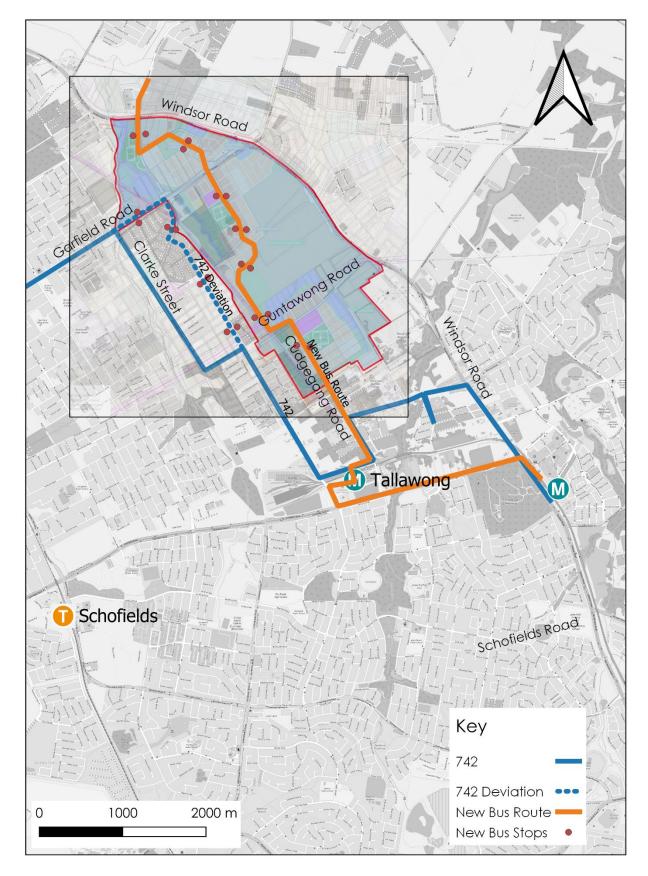
It is recommended that the upgrade of Guntawong Road and Windsor Road is prioritised to provide an additional access option to Windsor. Hambledon Road Extension would eventually connect through to Windsor Road providing another connection through to Windsor Road north.

6 Public Transport Strategy

6.1 Overview

To support the 30-minute city requires a public transport network to support these objectives. The review of existing conditions shows that there should be a new bus route through the precinct to support connections to Riverstone.

6.2 Buses


It is recommended to provide a bus route through the 'spine' of Riverstone East Stage 3 precinct that would connect Box Hill Shopping Centre to Tallawong Station Interchange and then on to Rouse Hill Station.

The catchment for this route would service all of Riverstone Stage 3 precinct and provide nearby connections for the future public school and high school.

For access to Riverstone Station bus Route 742 would need to be redirected once the Hambledon Road extension is completed and Clarke Street is closed. This would provide connections to Riverstone Station and then Blacktown and Parramatta.

Indicatively the travel time between northern portion and of the site and Tallawong Station would be 10 minutes based on a travel speed of 30 km/h.

Figure 6.1: Recommended Bus Routes

6.3 Rail

Metro rail would provide the main rail connections to the Sydney CBD. The Chatswood to Sydenham component of the Sydney Metro City and Southwest will be completed by 2024.

Riverstone Station will continue to provide connections to Parramatta and Blacktown supported by 'feeder' bus routes to provide last-mile connections.

The Greater Sydney Commission plans for this region include an extension of the Sydney Metro to the Aerotropolis via St Mary's. There is currently no commitment to provide this infrastructure however, this infrastructure is strongly recommended to support the transport needs of the growing North West Growth Area.

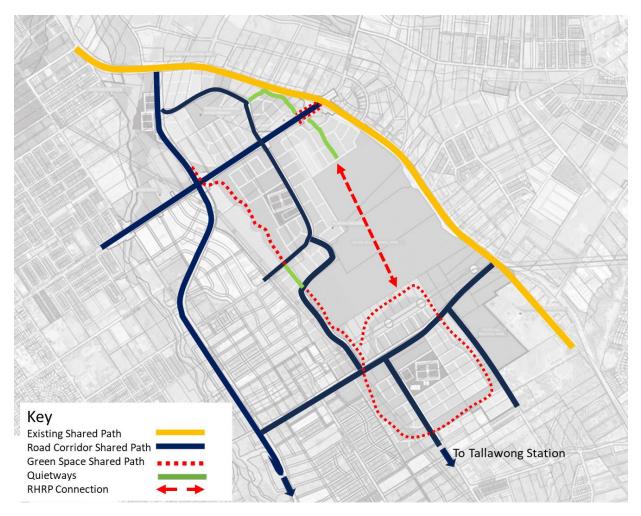
7 Active Transport

7.1 Pedestrian and Cycleway Links

The goal is to create a pedestrian and cyclist-friendly environment that encourages people to walk, bike or use other forms of active transportation instead of relying solely on cars.

A well-designed active transport network can increase physical activity levels, reduce traffic congestion, improve air quality, and create a sense of community by providing opportunities for people to interact with one another.

The first step in creating an active transport network is to identify key destinations in the suburb, such as schools, parks, shopping centres, and public transportation hubs. Once these destinations have been identified, the network can be designed to connect them through a variety of active transportation options, such as walking and biking paths, shared roadways, and bike lanes. The network should also take into account factors such as safety, accessibility, and convenience, ensuring that residents can easily and safely navigate through the suburb on foot or by bike.


To encourage people to use active transportation, it's important to create a culture of walking and biking in the suburb. This can be achieved by providing amenities such as bike racks, benches, and shade structures along the network, as well as promoting the use of active transportation through community events, education programs, and social media campaigns.

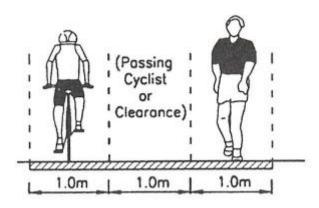
7.2 Cycling

In addition to the shared paths provided along the road corridors, there are opportunities to provide off-road shared paths through the green spaces within the precinct. This would provide for both recreational and commuter cyclists with the potential for a loop within the precinct to link with the Rouse Hill Regional Park (RHRP).

The recommended cycle routes including green space cycle routes are shown in Figure 7.1. The loop includes a short 'Quietway' section to link the green spaces along the riparian corridor across the local street. Quietways local roads with a 30km/h speed limit and pavement markings to indicate mixed road space.

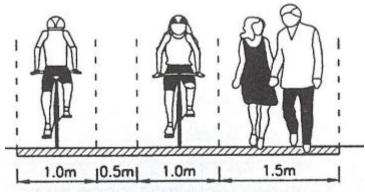
Figure 7.1: Recommended Cycle Routes Recommendation

The paths will need to integrate with the interpretive walk and urban design requirements. The typical path widths and types are shown in Table 7.1. The shared path along Cudgegong Road will link into the existing bike paths.


Table 7.1: Path Widths for Cyclists

Path Type	Description	Width	Note
Road Corridor Shared Use Path	Shared use path	3.0m	Mixed pedestrians and cyclists
Green Space Shared Use Path	Paths in parklands shared use path	4.0m	Separated 1.5m footpath, 2.5m cycle path
QuietWay	On Street mixed traffic	-	30 km/h speed limit with traffic calming elements to support the lower speed limit and on-street

The shared paths along the collector roads are shown in Figure 7.2.



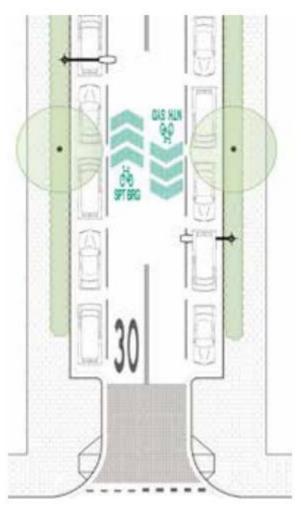
Source: Austroads

The green space shared-use path would have 1.5m bicycle lanes and a 1.5m pedestrian path side by side as shown in Figure 7.3.

Source: Austroads

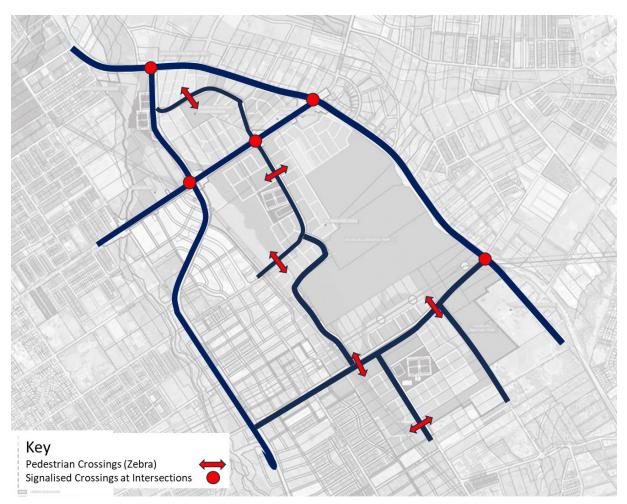
The quietways provide a safe environment for mixed-traffic cycling on local streets. They are characterised by 30 km/h speed limits and pavement markings. They are suitable for road environments where there are no trucks or buses and low vehicle volumes. Visual cues are provided to drivers to define low speed environments.

Transport for NSW's Cycleway Design Toolbox (2020) recommends the following features:


- Differing pavement texture and colour designed to increase awareness and adjust behaviour of all road users, with consideration given to green pavement to indicate priority to people cycling
- Inclusion of a median strip, where appropriate, making it difficult for motor vehicles to overtake.
- Narrow traffic lanes designed to reduce speed and discourage overtaking
- Bicycle insignias painted on the roadway to indicate priority for people cycling, ideally accompanied by sharrow markings

- Traffic calming features, such as flat top speed humps, raised road platforms with gentle ramp gradients, and kerb blisters / kerb extensions to narrow the roadway
- Priority over side streets and driveways, using raised threshold and continuous footpath treatments at entry and exit points to the quietway.

A typical road section for the quiet way is shown in Figure 7.4.


Source: TfNSW Cycleway Design Toolkit (2020)

7.3 Pedestrians

To support the network of pedestrian footpaths locations for pedestrian crossings have been identified. Pedestrian crossing locations are shown in Figure 7.5. This includes a pedestrian crossing to connect the high school with playing fields opposite and a school crossing at the location of the primary school in the centre of the precinct. Guidelines for implemented pedestrian crossings are provided in the "Pedestrian Crossings, A Best Practice Guideline for Local Governments" Transport for NSW (April 2022).

Transport for NSW uses a warrant system to determine if a pedestrian crossing is warranted. However, this is not mandatory for roads operated by local government. Therefore, it is for the discretion of Council to implement pedestrian crossings.

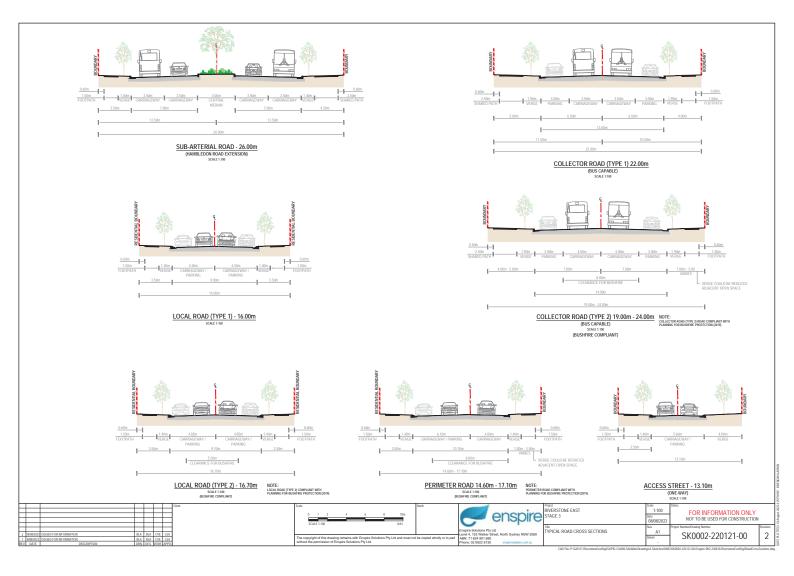
8 Conclusions

TTPP has prepared a traffic and transport assessment for the Riverstone Stage 3 Precinct as part of the Department of Planning and Environment (DPE) Special Activation Precincts (SAP) program. The purpose of the study was to identify the transport infrastructure requirements for the development of the Precinct.

The Precinct will provide an additional 3,147 dwellings along with schools, community centres, parklands and playing fields.

The key findings of the study were:

- Traffic modelling for the future of 2031 and 2041 has identified that the local road network will operate acceptably, however, Windsor Road and Schofields Road which are currently close to capacity will have high delays.
- To support development adequate access to public transport will be required. It is recommended to provide a new bus route through the 'spine' road of the Precinct. Route 742 would also be rerouted due to the Hambledon Road Extension.
- Providing a mix of in-road corridor cycleways connected to the regional cycle network and a network of greenspace off-road cycle paths to allow for recreational and commuter cycling.


The study has identified that there are capacity constraints on Windsor Road and therefore it is recommended that the Precinct provide feeder bus services to make use of the higher capacity heavy rail and metro rail infrastructure.

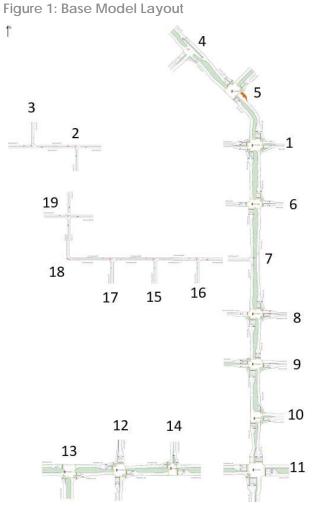
Additionally, the study also identifies opportunities to extend the existing Sydney Metro to the Western Sydney Airport via St Marys Station. Longer term the construction of the Outer Sydney Orbital Road (M9) would provide some relief to the congestion on Windsor Road.

Appendix A

Typical Road Cross Sections

Appendix B

Model Development



Model Development

Coding of the Network

The geometric coding of the sites/network was based on nearmap aerial photography and Traffic Control Sites (TCS) plans of the key intersections. The modelled area is shown in **Error! Reference source not found.**Figure 1.

It is noted that a limitation of Sidra Network models is that they only allow coordination to one set of traffic signals. Therefore, the intersections along Windsor Road and Schofields Road have been modelled as two separate network corridors. The remaining intersections have been modelled as isolated intersections.

Site ID	CCG ID	Site Name
TCS 1280	NA	1. Garfield Rd E - Windsor Rd - Terry Rd
√2	NA	2. Garfield Rd E - Clarke St
∀3	NA	3. Garfield Rd E - Edmund St
∀4	NA	4. Windsor Rd - Junction Rd
TCS 4805	NA	5. Windsor Rd - Mt Carmel Dr
TCS 3986	NA	6. Windsor Rd - Nelson Rd
∇7	NA	7. Windsor Rd - Guntawong Rd
TCS 3985	NA	8. Windsor Rd - Annangrove Rd
TCS 3789	NA	9. Windsor Rd - Rouse Rd - Mile End Rd
TCS 3788	NA	10. Windsor Rd - Commercial Rd
TCS 3557	NA	11. Windsor Rd - Schofields Rd - Rouse Hill Dr
TCS 4463	NA	12. Schofields Rd - Tallawong Rd - Ridgeline Dr
TCS 4511	NA	13. Schofields Rd - Hambledon Rd
TCS 4474	NA	14. Schofields Rd - Cudgegong Rd
√15	NA	15. Guntawong Rd - Cudgegong Rd
√16	NA	16. Guntawong Rd - Worcester Rd
√17	NA	17. Guntawong Rd - Tallawong Rd
√18	NA	18. Guntawong Rd - Clarke St
√19	NA	19. Clarke St - Riverstone Rd

SCATS History Files

The SCATS history files provide data recorded on the phase times and cycle times that were taken from the same day that the intersection counts were recorded. The hourly averages were used to calibrate the fixed user-given phase times in the existing base model.

LX files and Offsets

LX files provide Subsystem (SS) and Link Plan (LP) data which were used to determine the signal coordination and offsets between coordinated traffic control sites. It is noted that not all intersections in the modelled area are coordinated. For example, along the Windsor Road corridor, only Intersections 9 and 10 are coordinated with Intersection 11. Intersections 1, 4-8 exist on separate Subsystems and are not coordinated with Intersection 11 on Windsor Road. Meanwhile, Intersection 12 and 14 are coordinated with Intersection 13 on Schofields Road.

TCS Signal Plans

These plans provide the geometric details of the intersection including the gradients, layout for lanes and lane widths. They also provide details on the phasing arrangements and additional information about how the intersection operates.

Notably, a number of the TCS plans state the following note (or similarly worded):

- "V9, V10, P5 and P6 displays associated with the slip lanes are to operate independently to the site. V9 and V10 are to rest in the "Off State" and P5 and P6 are to rest displaying "Don't Walk". Push buttons P5 and P6 demand will display V9 and V10 yellow then red and remain red until "walk" and clearance has expired followed by "Off" state. P5 and P6 are to have delay timer". Additionally, the V9 and V10 signposts state: "STOP HERE ON RED ARROW. OTHERWISE TURN LEFT WITH CARE".
- P5/V9 and P6/V10 are the pedestrian/ vehicle signal lanterns for the respective approach left turn slip lanes. Based on the above, this indicates that the left-turn vehicles would function as give-way movements i.e. left turn vehicles give priority to pedestrians when the pedestrian call button is activated and oncoming vehicles from the right-hand side at all times. Furthermore, the phasing arrangement as shown in the TCS plans indicates that the left turn slip lane and its pedestrian crossing "operates" in every phase, noting that they operate independently as per the above note.

Based on the above points, for modelling purposes, the relevant left turn slip lane and its pedestrian crossing have been ticked to 'operate' in every phase and with the vehicle priorities set to give way to the opposing pedestrian movement and oncoming vehicles from the right-hand side.

Travel Time Surveys

Travel time surveys were undertaken on the same day as the traffic surveys were undertaken. The travel time surveys were undertaken for the northbound and southbound route along Windsor Road. Model calibration was based on the travel time surveys.

Base Model Calibration and Validation

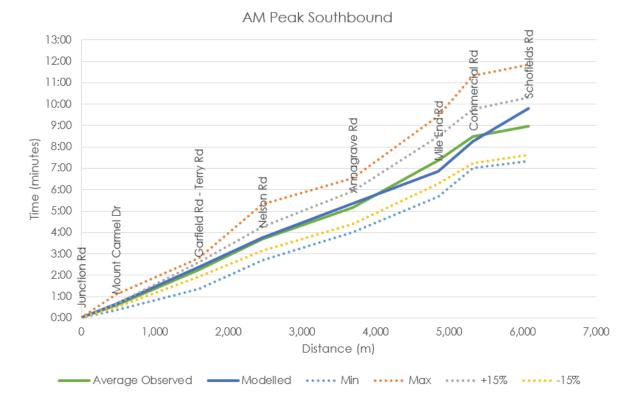
The 2023 existing conditions model has been developed for the morning peak hour (8 am-9 am) and evening peak hour (5 pm-6 pm).

In the absence of queue length survey data, the Sidra model has been calibrated to travel time surveys that were recorded during the intersection surveys. The observed and modelled Sidra route travel times for the weekday morning peak hour and evening peak hour are summarised in Table 1 and Table 2.

Check Deint clong Windoor Dd	Distance (m)	Morning Pea	k (8am-9am)	Evening Peak	(5 pm-6 pm)	
Check Point along Windsor Rd	Distance (m)	Observed	Modelled	Observed	Modelled	
Schofields Rd	0	0:00	0:00	0:00	0:00	
Commercial Rd	355.5	0:31	0:33	0:40	0:33	
Mile End Rd	829.6	1:31	1:34	2:18	2:19	
Annangrove Rd	1,992.4	2:32	2:40	3:22	3:28	
Nelson Rd	3,215.5	3:48	4:05	4:55	5:06	
Garfield Rd - Terry Rd	4,088.8	5:04	5:22	6:54	7:18	
Mount Carmel Dr	5,219.6	6:11	6:24	7:58	8:14	
Junction Rd	6,037.6	6:36	7:01	8:25	8:51	


Table 1: Travel Time Northbound

		Morning Peal	k (8am-9am)	Evening Peak	c (5 pm-6 pm)
Check Point along Windsor Rd	Distance (m)	Observed	Modelled	Observed	Modelled
Junction Rd	0	0:00	0:00	0:00	0:00
Mount Carmel Dr	470.8	0:35	0:38	0:40	0:39
Garfield Rd - Terry Rd	1,594.1	2:16	2:22	2:19	1:57
Nelson Rd	2,461.6	3:42	3:45	3:40	3:26
Annangrove Rd	3,689.4	5:09	5:21	5:04	5:18
Mile End Rd	4,853.5	7:22	6:51	7:01	6:58
Commercial Rd	5,328.8	8:30	8:16	8:01	8:02
Schofields Rd	6,079.9	8:57	9:47	9:03	9:24


Table 2: Travel Time Southbound

A comparison of the observed and modelled travel time routes of the modelled networks is shown in Figure 2 to Figure 5. The results indicate the validity of the model calibration to the existing conditions.

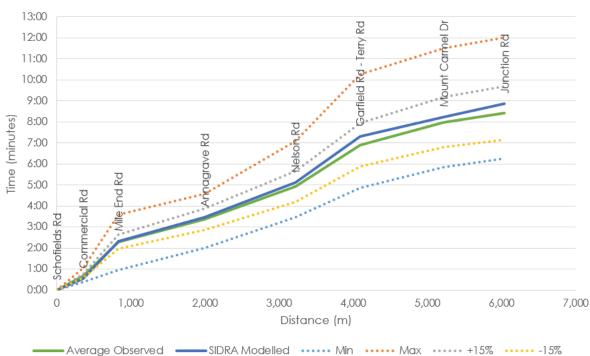


Figure 3: Morning Peak Travel Time Southbound (8:00 am – 9:00 am) along Windsor Road

Figure 4: Evening Peak Travel Time Northbound (5:00 pm - 6:00 pm) along Windsor Road

PM Peak Northbound

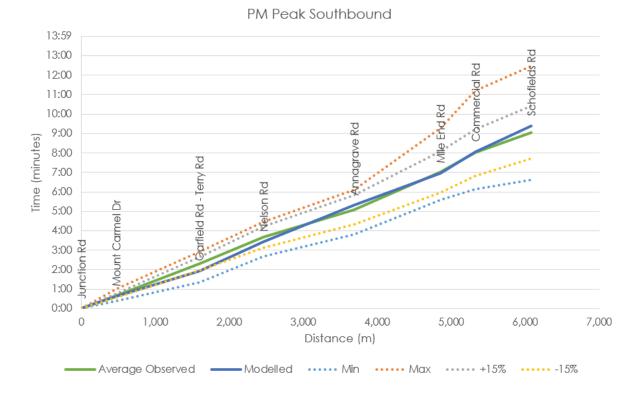


Figure 5: Evening Peak Travel Time Southbound (5:00 pm - 6:00 pm) along Windsor Road

The model has been calibrated to observed signal data and traffic volumes. Travel time comparisons along Windsor Road indicate that the models are reflective of the current levels of delay and the models are considered to be calibrated and validated.

Appendix B

Sidra Modelling Results

USER REPORT FOR NETWORK SITE

Project: 23009-Riverstone Sid v9.1 - 230728 Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site: TCS 1280 [1. Garfield Rd E - Windsor Rd - Terry Rd (Site Folder: Existing AM)]

Network: 5 [EX AM - Windsor Corridor (Network Folder: Base Conditions)]

Template: Movement Summary

8am-9am

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehi	cle M	ovemer	nt Performa	ance									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Win	dsor Rd											
4	L2	All MCs	322 9.5	322 9.5	0.281	14.4	LOS A	3.7	27.9	0.41	0.71	0.41	69.2
5	T1	All MCs	1206 6.9	<mark>1205</mark> 6.9	0.920	46.7	LOS D	23.3	172.7	0.98	1.00	1.16	37.9
6	R2	All MCs	205 8.7	205 8.7	*0.771	57.3	LOS E	5.2	39.2	1.00	0.89	1.12	41.7
Appro	ach		1734 7.6	<mark>1732</mark> 7.6	0.920	41.9	LOS C	23.3	172.7	0.88	0.93	1.02	46.1
East:	Terry	Rd											
7	L2	All MCs	108 11.7	108 11.7	0.826	33.0	LOS C	10.2	76.7	1.00	1.09	1.13	22.3
8	T1	All MCs	233 6.8	233 6.8	*0.826	64.2	LOS E	10.2	76.7	1.00	1.09	1.13	47.5
9	R2	All MCs	84 30.0	84 30.0	0.248	36.8	LOS C	2.1	18.9	0.85	0.74	0.85	28.2
Appro	ach		425 12.6	425 12.6	0.826	50.8	LOS D	10.2	76.7	0.97	1.02	1.08	40.7
North		dsor Rd											
10	L2	All MCs	66 33.3	66 33.3	0.065	15.8	LOS B	0.5	4.7	0.33	0.66	0.33	60.9
11	T1	All MCs	1249 7.2	1249 7.2	*0.964	58.0	LOS E	27.5	204.6	1.00	1.11	1.29	39.0
12	R2	All MCs	239 9.7	239 9.7	0.788	69.5	LOS E	5.8	44.2	0.99	0.86	1.11	50.0
Appro				1555 8.7	0.964	58.0	LOS E	27.5	204.6	0.97	1.05	1.22	42.5
West:	Garfi	eld Rd E											
1	L2	All MCs	5921.4	59 21.4	0.078	17.3	LOS B	0.9	7.6	0.51	0.66	0.51	50.5
2	T1	All MCs	131 11.3	131 11.3	0.484	51.6	LOS D	4.4	33.8	0.96	0.77	0.96	42.2
3	R2	All MCs	244 10.8	244 10.8	*0.733	42.4	LOS C	7.2	54.7	0.99	0.86	1.05	41.1
Appro	bach		434 12.4	434 12.4	0.733	41.7	LOS C	7.2	54.7	0.92	0.81	0.95	42.5
All Ve	hicles	;	4147 9.0	<mark>4146</mark> 9.0	0.964	48.8	LOS D	27.5	204.6	0.93	0.97	1.09	43.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: 4 [4. Windsor Rd - Junction Rd (Site Folder: Existing AM)]

Network: 5 [EX AM - Windsor Corridor (Network Folder: Base Conditions)]

8am-9am Site Category: Existing Design Give-Way (Two-Way)

Vehi	Vehicle Movement Performance Mov Turn Mov Demand Arrival Deg. Aver. Level of Aver. Back Of Queue Prop. Eff. Aver. Aver.													
Mov ID	Turn	Mov Class	Demand Flows	Arrival Flows	Deg. Satn	Aver. Delay	Level of Service	Aver. Back	Of Queue	e Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed	
			[Total HV] veh/h %	[Total HV] veh/h %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h	
South	nEast:	Windso	r Rd											
3	L2	All MCs	62 13.6	62 13.6	0.054	8.7	LOS A	0.1	0.6	0.30	0.62	0.30	55.5	
4	T1	All MCs	1178 10.3	<mark>1177</mark> 10.3	0.322	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	79.8	
Appro	bach		1240 10.4	<mark>1239</mark> 10.4	0.322	0.5	LOS A	0.1	0.6	0.01	0.03	0.01	77.8	
North	West:	Windso	r Rd											
5	T1	All MCs	1213 7.6	1213 7.6	0.326	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	79.8	
6	R2	All MCs	283 7.1	283 7.1	0.824	35.9	LOS C	2.6	19.4	0.94	1.34	2.54	37.3	
Appro	bach		1496 7.5	1496 7.5	0.824	6.8	NA	2.6	19.4	0.18	0.25	0.48	56.9	
South	West:	Junctio	n Rd - S											
1	L2	All MCs	234 11.7	234 11.7	0.367	11.4	LOS A	0.8	5.9	0.63	0.87	0.81	48.5	
2	R2	All MCs	68 10.8	68 10.8	0.564	49.8	LOS D	0.8	5.8	0.94	1.07	1.35	23.9	
Appro	bach		302 11.5	302 11.5	0.564	20.1	LOS B	0.8	5.9	0.70	0.92	0.93	42.0	
All Ve	hicles		3038 9.1	<mark>3037</mark> 9.1	0.824	5.6	NA	2.6	19.4	0.16	0.23	0.34	62.9	

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 4805 [5. Windsor Rd - Mt Carmel Dr (Site Folder: Existing AM)]

Network: 5 [EX AM - Windsor Corridor (Network Folder: Base Conditions)]

8am-9am Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 75 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ABC Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C Reference Phase: Phase A

Vehi	cle M	ovemei	nt Performa	ance									
Mov ID	Turn	Mov Class		Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	East:	Windso	r Rd										
5	T1	All MCs	1157 8.3	<mark>1156</mark> 8.3	0.429	11.4	LOS A	10.3	77.4	0.87	0.41	0.87	65.4
6	R2	All MCs	182 15.6	182 15.6	*0.407	21.2	LOS B	2.9	22.8	0.82	0.80	0.82	55.1
Appro	bach		1339 9.3	<mark>1338</mark> 9.3	0.429	12.7	LOS A	10.3	77.4	0.86	0.46	0.86	63.5
North	East:	Mt Carm	nel Dr										
7	L2	All MCs	289 10.9	289 10.9	0.353	9.3	LOS A	2.1	15.9	0.45	0.69	0.45	37.0
9	R2	All MCs	20 15.8	20 15.8	*0.050	38.3	LOS C	0.2	1.6	0.91	0.67	0.91	17.2
Appro	bach		309 11.2	309 11.2	0.353	11.1	LOS A	2.1	15.9	0.48	0.69	0.48	34.4
North	West:	Windso	r Rd										
10	L2	All MCs	24 4.3	24 4.3	0.014	8.1	LOS A	0.1	0.5	0.20	0.64	0.20	54.7
11	T1	All MCs	1246 8.4	1246 8.4	*0.524	17.5	LOS B	6.9	52.0	0.79	0.69	0.79	44.1
Appro	bach		1271 8.3	1271 8.3	0.524	17.3	LOS B	6.9	52.0	0.78	0.69	0.78	44.4
All Ve	hicles		2919 9.1	<mark>2918</mark> 9.1	0.524	14.6	LOS B	10.3	77.4	0.78	0.58	0.78	55.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3986 [6. Windsor Rd - Nelson Rd (Site Folder: Existing AM)]

Network: 5 [EX AM - Windsor Corridor (Network Folder: Base Conditions)]

8am-9am Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 110 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehic	cle M	ovemer	nt Performa	ince									
Mov	Turn	Mov	Demand	Arrival	Deg.	Aver.		Aver. Back	Of Queue		Eff.	Aver.	Aver.
ID		Class	Flows [Total HV]	Flows [Total HV]	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	No. of Cycles	Speed
				veh/h %	v/c	sec		veh	m				km/h
South	: Wine	dsor Rd											
4	L2	MCs	540.0	5 40.0	0.006	21.5	LOS B	0.1	0.6	0.37	0.65	0.37	41.4
5	T1	All MCs	1513 7.0	<mark>1511</mark> 7.0	0.910	34.9	LOS C	25.3	187.5	0.91	0.93	1.05	42.7
6	R2	All MCs	163 1.3	163 1.3	*0.791	52.9	LOS D	3.4	24.0	1.00	0.87	1.19	41.0
Appro	ach		1681 6.5	<mark>1679</mark> 6.5	0.910	36.6	LOS C	25.3	187.5	0.92	0.92	1.06	42.4
East:	Nelso	n Rd											
7	L2	All MCs	243 3.9	243 3.9	0.651	49.2	LOS D	7.5	54.2	0.97	0.83	0.97	23.2
8	T1	All MCs	1 0.0	1 0.0	*0.651	60.2	LOS E	7.5	54.2	0.97	0.83	0.97	26.1
9	R2	All MCs	221 11.0	221 11.0	* 0.588	41.1	LOS C	6.1	47.0	0.94	0.81	0.94	26.2
Appro	ach		465 7.2	465 7.2	0.651	45.4	LOS D	7.5	54.2	0.95	0.82	0.95	24.6
North:	Wind	lsor Rd											
10	L2	All MCs	197 8.0	197 8.0	0.148	9.6	LOS A	0.9	6.8	0.25	0.67	0.25	61.2
11	T1	All MCs	1657 7.1	1657 7.1	* 1.008	45.5	LOS D	38.3	284.0	1.00	1.26	1.37	37.9
12	R2	All MCs	2 50.0	2 50.0	0.013	37.6	LOS C	0.0	0.3	0.85	0.63	0.85	38.5
Appro	ach		1856 7.2	1856 7.2	1.008	41.7	LOS C	38.3	284.0	0.92	1.20	1.25	40.3
West:	Nelso	on Rd											
1	L2	All MCs	4 25.0	4 25.0	0.020	40.7	LOS C	0.1	1.2	0.85	0.61	0.85	17.9
2	T1	All MCs	1 0.0	1 0.0	0.020	49.1	LOS D	0.1	1.2	0.85	0.61	0.85	27.0
3	R2	All MCs	1 0.0	1 0.0	0.004	31.4	LOS C	0.0	0.2	0.87	0.54	0.87	20.1
Appro	ach		6 16.7	6 16.7	0.020	40.6	LOS C	0.1	1.2	0.86	0.60	0.86	20.1
All Ve	hicles		4008 6.9	<mark>4007</mark> 6.9	1.008	40.0	LOS C	38.3	284.0	0.92	1.04	1.14	39.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: 7 [7. Windsor Rd - Guntawong Rd (Site Folder: Existing AM)]

Network: 5 [EX AM - Windsor Corridor (Network Folder: Base Conditions)]

8am-9am Site Category: Existing Design Give-Way (Two-Way)

Vehio	/ehicle Movement Performance <i>M</i> ov Turn Mov Demand Arrival Deg. Aver. Level of Aver. Back Of Queue Prop. Eff. Aver. Aver.														
Mov ID	Turn	Mov Class		ows HV]	F	ows	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Wine	dsor Rd													
4	L2	All MCs	187	0.0	187	0.0	0.436	7.0	LOS A	0.0	0.0	0.00	0.15	0.00	70.2
5	T1	All MCs	1436	7.4	<mark>1434</mark>	7.4	0.436	0.1	LOS A	0.0	0.0	0.00	0.07	0.00	77.0
Appro	bach		1623	6.5	<mark>1621</mark>	6.6	0.436	0.9	NA	0.0	0.0	0.00	0.08	0.00	75.5
North	: Winc	lsor Rd													
11	T1	All MCs	1923	6.7	<mark>1910</mark>	6.7	0.511	0.2	LOS A	0.0	0.0	0.00	0.00	0.00	79.5
Appro	bach		1923	6.7	<mark>1910</mark>	6.7	0.511	0.2	NA	0.0	0.0	0.00	0.00	0.00	79.5
West:	Gunt	awong F	Rd												
1	L2	All MCs	231	1.8	231	1.8	0.349	10.8	LOS A	0.7	4.9	0.62	0.87	0.78	43.3
Appro	bach		231	1.8	231	1.8	0.349	10.8	LOS A	0.7	4.9	0.62	0.87	0.78	43.3
All Ve	hicles		3777	6.3	<mark>3762</mark>	6.4	0.511	1.2	NA	0.7	4.9	0.04	0.09	0.05	75.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3985 [8. Windsor Rd - Annangrove Rd (Site Folder: Existing AM)]

Network: 5 [EX AM - Windsor Corridor (Network Folder: Base Conditions)]

8am-9am Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 105 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ABDEG Input Phase Sequence: A, B, D, E, G Output Phase Sequence: A, B, D, E, G Reference Phase: Phase A

Vehic	le M	ovemer	nt Perfo	orma	ince										
Mov ID		Mov Class	Dem	and lows	Ar Fl	rival lows HV 1	Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h		veh/h	%	v/c	sec		veh	m				km/h
South	: Win	dsor Rd													
4	L2	All MCs	1	0.0	1	0.0	0.001	8.1	LOS A	0.0	0.0	0.18	0.61	0.18	64.5
5	T1	All MCs	1187	8.7	1187	8.7	0.637	13.5	LOS A	11.1	83.1	0.64	0.58	0.64	63.6
6	R2	All MCs	389	6.5	389	6.5	* 1.120	114.2	LOS F	13.2	97.5	1.00	1.19	1.84	29.1
Appro	ach		1578	8.1	1578	8.1	1.120	38.3	LOS C	13.2	97.5	0.73	0.73	0.94	45.2
East: /	Annai	ngrove R	d												
7	L2	All MCs	166	10.8	166	10.8	0.197	16.3	LOS B	2.3	17.8	0.56	0.71	0.56	43.7
8	T1	All MCs	1	0.0	1	0.0	0.028	59.6	LOS E	0.0	0.2	1.00	0.57	1.00	33.2
9	R2	All MCs	395	1.3	395	1.3	* 1.005	86.0	LOS F	16.5	116.6	1.00	1.26	1.64	18.8
Appro	ach		562	4.1	562	4.1	1.005	65.3	LOS E	16.5	116.6	0.87	1.09	1.32	22.5
North:	Wind	lsor Rd													
10	L2	All MCs	584	4.5	<mark>580</mark>	4.5	0.498	11.6	LOS A	5.8	42.4	0.47	0.74	0.47	54.8
11	T1	All MCs	1276	8.2	<mark>1267</mark>	8.2	*0.880	43.7	LOS D	21.3	159.9	1.00	1.00	1.15	27.8
12	R2	All MCs	6	0.0	6	0.0	0.021	32.6	LOS C	0.1	0.6	0.72	0.66	0.72	46.6
Appro	ach		1866	7.0	<mark>1854</mark>	7.0	0.880	33.6	LOS C	21.3	159.9	0.83	0.92	0.94	37.6
West:	Rous	e Hill Es	tate Acc	ess											
1	L2	All MCs	6	0.0	6	0.0	0.051	53.1	LOS D	0.2	1.5	0.94	0.66	0.94	22.0
2	T1	All MCs	1	0.0	1	0.0	0.051	58.8	LOS E	0.2	1.5	0.94	0.66	0.94	34.5
3	R2	All MCs	1	0.0	1	0.0	0.003	35.2	LOS C	0.0	0.2	0.82	0.58	0.82	28.6
Appro	ach		8	0.0	8	0.0	0.051	51.5	LOS D	0.2	1.5	0.93	0.65	0.93	24.9
All Ve	hicles		4015	7.0	<mark>4002</mark>	7.0	1.120	40.0	LOS C	21.3	159.9	0.80	0.87	0.99	38.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3789 [9. Windsor Rd - Rouse Rd -Mile End Rd (Site Folder: Existing AM)]

Network: 5 [EX AM - Windsor Corridor (Network Folder: Base Conditions)]

8am-9am

Site Category: Existing Design Signals - EQUISAT (Fixed-Time/

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehi	cle M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	Dem Fl [Total] veh/h	ows HV]	Fl [Total]		Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Win	dsor Rd	VCH/H	70	VGH/H	70		300		VCII		_			IXI11/11
1	L2	All MCs	253	5.0	253	5.0	0.197	25.9	LOS B	1.6	11.8	0.29	0.68	0.29	55.7
2	T1	All MCs	1243	9.2	1243	9.2	0.763	43.0	LOS D	22.0	166.5	0.91	0.81	0.91	31.4
3	R2	All MCs	358	7.1	358	7.1	* 1.181	259.8	LOS F	13.9	103.5	1.00	1.30	2.20	7.3
Appro			1854	8.2	1854	8.2	1.181	82.5	LOS F	22.0	166.5	0.85	0.89	1.08	20.6
East:	Mile E	End Rd													
4	L2	All MCs	366	5.2	366	5.2	1.003	74.9	LOS F	17.5	127.8	1.00	1.22	1.50	3.6
5	T1	All MCs	248	1.3	248	1.3	0.534	60.3	LOS E	5.8	41.2	0.97	0.77	0.97	25.3
6	R2	All MCs	189	2.2	189	2.2	0.839	59.3	LOS E	7.1	50.9	1.00	0.90	1.20	6.8
Appro			804	3.3	804	3.3	1.003	66.7	LOS E	17.5	127.8	0.99	1.01	1.26	10.8
North		lsor Rd													
7	L2	All MCs	41	10.3	41	10.3	0.037	17.0	LOS B	0.6	4.7	0.39	0.69	0.39	58.1
8	T1	All MCs	1342	8.9	<mark>1334</mark>	8.9	* 1.083	97.8	LOS F	52.2	393.5	1.00	1.45	1.63	27.9
9	R2	All MCs	63	11.7	63	11.7	0.266	31.4	LOS C	1.2	9.4	0.84	0.76	0.84	51.9
Appro			1446	9.1	<mark>1438</mark>	9.1	1.083	92.6	LOS F	52.2	393.5	0.98	1.40	1.56	29.2
West:	Rous														
10	L2	All MCs	132	1.6	132	1.6	0.271	49.3	LOS D	4.3	30.8	0.84	0.77	0.84	25.9
11	T1	All MCs	307	0.3	307	0.3	* 1.106	185.6	LOS F	21.1	148.1	1.00	1.46	1.90	11.8
12	R2	All MCs	188	7.3	188	7.3	* 1.204	259.1	LOS F	13.3	98.5	1.00	1.51	2.35	7.3
Appro	bach		627	2.7	627	2.7	1.204	179.1	LOS F	21.1	148.1	0.97	1.33	1.81	11.0
All Ve	hicles		4732	6.9	<mark>4723</mark>	6.9	1.204	95.7	LOS F	52.2	393.5	0.93	1.12	1.35	20.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3788 [10. Windsor Rd - Commercial Rd (Site Folder: Existing AM)]

Network: 5 [EX AM - Windsor Corridor (Network Folder: Base Conditions)]

8am-9am Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ABCD Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D Reference Phase: Phase A

Vehic	Vehicle Movement Performance Mov Turn Mov Demand Arrival Deg. Aver. Level of Aver. Back Of Queue Prop. Eff. Aver. Aver.														
Mov ID	Turn	Mov Class	FI [Total]	ows HV]	FI [Total]	ows HV]	Deg. Satn	Aver. Delay	Level of Service	[Veh.	Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
Cauth	. \\/;	dsor Rd	veh/h	%	veh/h	%	v/c	sec	_	veh	m	_	_	_	km/h
South															
2	T1	All MCs	1561	8.4	1561	8.4	0.560	16.9	LOS B	22.3	167.1	0.74	0.38	0.74	43.5
3	R2	All MCs	337	2.8	337	2.8	*0.696	59.1	LOS E	5.5	39.7	1.00	0.82	1.04	23.6
Appro	ach	WOS	1898	7.4	1898	7.4	0.696	24.4	LOS B	22.3	167.1	0.79	0.46	0.80	36.1
East:	Comn	nercial R	Rd												
4	L2	All MCs	381	3.6	381	3.6	0.714	57.1	LOS E	11.9	86.2	0.91	0.91	0.91	12.6
6	R2	All MCs	292	6.9	292	6.9	*0.671	78.3	LOS F	6.2	46.0	1.00	0.83	1.04	8.6
Appro	ach		673	5.0	673	5.0	0.714	66.3	LOS E	11.9	86.2	0.95	0.88	0.97	10.5
North	Wind	lsor Rd													
7	L2	All MCs	168	3.1	<mark>156</mark>	3.1	1.023	70.8	LOS F	42.0	313.2	1.00	1.21	1.43	21.1
8	T1	All MCs	1703	8.7	<mark>1575</mark>	8.7	* 1.023	61.3	LOS E	55.2	415.1	1.00	1.24	1.36	20.2
Appro	ach		1872	8.2	<mark>1731</mark>	8.2	1.023	62.2	LOS E	55.2	415.1	1.00	1.23	1.36	20.3
All Ve	hicles		4442	7.4	<mark>4302</mark>	7.6	1.023	46.1	LOS D	55.2	415.1	0.90	0.84	1.05	22.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3557 [11. Windsor Rd - Schofields Rd - Rouse Hill Dr (Site Folder: Existing AM)]

8am-9am

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehicle Movement Performance															
Mov ID	Turn	Mov Class		lows HV]	FI Total		Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Win	dsor Rd													
1	L2	All MCs	489	2.6	489	2.6	0.269	28.7	LOS C	5.8	41.8	0.62	0.76	0.62	53.0
2	T1	All MCs	1246	9.5	1246	9.5	0.791	47.2	LOS D	18.1	136.9	0.95	0.85	0.97	23.2
3	R2	All MCs	54	43.1	54	43.1	0.122	64.0	LOS E	1.0	9.4	0.89	0.72	0.89	23.3
Appro			1789	8.6	1789	8.6	0.791	42.6	LOS D	18.1	136.9	0.86	0.82	0.87	35.3
East:	Rous	e Hill Dr													
4	L2	All MCs	106	25.7	106	25.7	0.184	35.6	LOS C	2.9	25.1	0.71	0.73	0.71	28.3
5	T1	All MCs	189	6.7	189	6.7	0.303	55.0	LOS D	3.5	25.9	0.92	0.73	0.92	40.4
6	R2	All MCs	80	1.3	80	1.3	0.137	64.9	LOS E	1.1	8.0	0.93	0.71	0.93	11.2
Appro	bach		376	10.9	376	10.9	0.303	51.6	LOS D	3.5	25.9	0.86	0.72	0.86	33.5
North		lsor Rd													
7	L2	All MCs	68	0.0	<mark>63</mark>	0.0	0.277	88.5	LOS F	2.4	17.1	0.95	0.76	0.95	20.3
8	T1	All MCs	1613	8.7	<mark>1487</mark>	8.6	*0.932	70.0	LOS E	24.5	184.0	0.99	1.03	1.19	29.7
9	R2	All MCs	416	5.3	<mark>384</mark>	5.2	0.691	79.6	LOS F	8.2	59.9	1.00	0.87	1.02	36.8
Appro	bach		2097	7.8	<mark>1934</mark>	7.7	0.932	72.5	LOS F	24.5	184.0	0.99	0.99	1.15	31.6
West:	Scho	fields Ro	ł												
10	L2	All MCs	576	3.7	576	3.7	*0.995	121.4	LOS F	33.0	238.2	1.00	1.11	1.40	29.2
11	T1	All MCs	416	1.0	416	1.0	0.629	72.2	LOS F	8.2	57.8	0.98	0.82	0.98	39.1
12	R2	All MCs	476	4.4	476	4.4	* 1.091	176.4	LOS F	15.9	115.8	1.00	1.28	1.88	23.8
Appro	Approach		1467	3.2	1467	3.2	1.091	125.3	LOS F	33.0	238.2	1.00	1.08	1.44	29.0
All Ve	hicles		5729	7.1	<mark>5567</mark>	7.3	1.091	75.4	LOS F	33.0	238.2	0.94	0.94	1.12	31.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Created: Wednesday, 9 August 2023 12:13:22 PM

Project: X:\23009 Riverstone East SAP\07 Modelling Files\Model\23009-Riverstone Sid v9.1 - 230728.sip9

USER REPORT FOR NETWORK SITE

Project: 23009-Riverstone Sid v9.1 - 230728 Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site: TCS 1280 [1. Garfield Rd E - Windsor Rd - Terry Rd (Site Folder: Existing PM)]

Network: 6 [EX PM - Windsor Corridor (Network Folder: Base Conditions)]

Template: Movement Summary

5pm-6pm

Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G

Reference Phase: Phase A

Vehicle Movement Performance															
Mov ID	Turn	Mov Class	Fl [Total				Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Wine	dsor Rd													
4	L2	All MCs	308	6.5	<mark>298</mark>	6.5	0.257	22.6	LOS B	3.2	23.4	0.38	0.70	0.38	69.4
5	T1	All MCs	1673	3.5	<mark>1619</mark>	3.5	* 1.075	95.9	LOS F	48.4	349.0	1.00	1.47	1.67	23.8
6	R2	All MCs	373	0.8	<mark>361</mark>	0.8	*0.967	84.0	LOS F	14.3	101.0	1.00	1.11	1.47	31.9
Appro	ach		2354	3.4	<mark>2278</mark>	3.4	1.075	84.4	LOS F	48.4	349.0	0.92	1.31	1.47	30.8
East:															
7	L2	All MCs	208	5.1	208	5.1	0.708	17.8	LOS B	9.4	67.6	0.92	0.91	0.92	30.0
8	T1	All MCs	175	1.8	175	1.8	*0.708	48.5	LOS D	9.4	67.6	0.92	0.91	0.92	55.5
9	R2	All MCs	89	15.3	89 1	15.3	0.444	47.8	LOS D	2.7	21.3	0.98	0.77	0.98	24.2
Appro	ach		473	5.8	473	5.8	0.708	34.8	LOS C	9.4	67.6	0.93	0.88	0.93	42.6
North		lsor Rd													
10	L2	MCs	69	10.6	69 1	10.6	0.079	16.6	LOS B	0.8	6.0	0.55	0.70	0.55	58.5
11	T1	All MCs	1284	2.4	1284	2.4	0.783	29.4	LOS C	19.0	135.5	0.89	0.80	0.89	51.9
12	R2	All MCs	122	10.3	122 1	10.3	0.314	58.7	LOS E	2.6	19.6	0.93	0.76	0.93	52.6
Appro				3.4	1476	3.4	0.783	31.2	LOS C	19.0	135.5	0.87	0.79	0.88	52.4
West:	Garfi	eld Rd E													
1	L2	All MCs	49	8.5	49	8.5	0.077	26.7	LOS B	1.0	7.8	0.65	0.68	0.65	46.4
2	T1	All MCs	164	4.5	164	4.5	0.808	62.6	LOS E	6.3	45.7	1.00	0.94	1.20	39.7
3	R2	All MCs	229	6.0	229	6.0	*0.870	63.4	LOS E	8.2	60.5	1.00	1.04	1.27	35.6
Appro	ach		443	5.7	443	5.7	0.870	59.0	LOS E	8.2	60.5	0.96	0.96	1.17	38.2
All Ve	hicles		4745	3.9	<mark>4669</mark>	3.9	1.075	60.2	LOS E	48.4	349.0	0.91	1.07	1.20	37.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: 4 [4. Windsor Rd - Junction Rd (Site Folder: Existing PM)]

Network: 6 [EX PM - Windsor Corridor (Network Folder: Base Conditions)]

5pm-6pm Site Category: Existing Design Give-Way (Two-Way)

Vehicle Movement Performance															
Mov ID	Turn	Mov Class		ows	F	rival ows	Deg. Satn	Aver. Delay	Level of Service	Aver. Back		e Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			[Total l veh/h		[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	SouthEast: Windsor Rd														
3	L2	All MCs	92	4.6	<mark>83</mark>	4.7	0.065	8.2	LOS A	0.1	0.7	0.31	0.61	0.31	55.9
4	T1	All MCs	1394	4.3	<mark>1268</mark>	4.4	0.334	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	79.8
Appro	bach		1485	4.3	<mark>1351</mark>	4.4	0.334	0.6	LOS A	0.1	0.7	0.02	0.04	0.02	77.4
NorthWest: Windsor Rd															
5	T1	All MCs	1183	2.6	1183	2.6	0.308	0.0	LOS A	0.0	0.0	0.00	0.00	0.00	79.8
6	R2	All MCs	240	7.0	240	7.0	0.940	63.6	LOS E	3.6	26.6	0.99	1.58	3.74	28.2
Appro	bach		1423	3.3	1423	3.3	0.940	10.8	NA	3.6	26.6	0.17	0.27	0.63	50.2
South	West:	Junctio	n Rd												
1	L2	All MCs	261	2.8	261	2.8	0.415	11.6	LOS A	0.9	6.1	0.65	0.93	0.89	49.7
2	R2	All MCs	75	4.2	75	4.2	0.717	67.8	LOS E	1.1	7.7	0.97	1.14	1.62	19.5
Appro	bach		336	3.1	336	3.1	0.717	24.1	LOS B	1.1	7.7	0.72	0.98	1.05	40.4
All Ve	hicles		3244	3.8	<mark>3110</mark>	3.9	0.940	7.8	NA	3.6	26.6	0.16	0.24	0.41	59.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 4805 [5. Windsor Rd - Mt Carmel Dr (Site Folder: Existing PM)]

Network: 6 [EX PM - Windsor Corridor (Network Folder: Base Conditions)]

5pm-6pm Site Category: Existing Design Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ABC Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C Reference Phase: Phase A

Vehi	cle M	ovemei	nt Perfo	orma	ance										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	nEast:	Windsor	r Rd												
5	T1	All MCs	1513	4.2	<mark>1374</mark>	4.3	0.502	4.8	LOS A	6.4	46.2	0.48	0.43	0.48	73.2
6	R2	All MCs	220	3.3	<mark>200</mark>	3.4	*0.392	19.8	LOS B	2.8	20.4	0.80	0.80	0.80	56.6
Appro	bach		1733	4.1	<mark>1573</mark>	4.2	0.502	6.7	LOS A	6.4	46.2	0.52	0.48	0.52	70.1
North	East:	Mt Carm	nel Dr												
7	L2	All MCs	224	5.2	224	5.2	0.257	8.7	LOS A	1.4	9.9	0.42	0.67	0.42	37.7
9	R2	All MCs	29	7.1	29	7.1	*0.073	36.8	LOS C	0.3	2.1	0.92	0.68	0.92	17.7
Appro	bach		254	5.4	254	5.4	0.257	12.0	LOS A	1.4	9.9	0.48	0.67	0.48	33.2
North	West:	Windso	r Rd												
10	L2	All MCs	15	0.0	15	0.0	0.009	8.1	LOS A	0.0	0.3	0.21	0.63	0.21	55.2
11	T1	All MCs	1235	3.3	1235	3.3	* 0.536	17.6	LOS B	6.7	47.9	0.82	0.71	0.82	43.9
Appro	bach		1249	3.3	1249	3.3	0.536	17.5	LOS B	6.7	47.9	0.81	0.71	0.81	44.0
All Ve	hicles		3236	3.9	<mark>3076</mark>	4.1	0.536	11.5	LOS A	6.7	47.9	0.63	0.59	0.63	59.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3986 [6. Windsor Rd - Nelson Rd (Site Folder: Existing PM)]

Network: 6 [EX PM - Windsor Corridor (Network Folder: Base Conditions)]

5pm-6pm Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ABDEG Input Phase Sequence: A, B, D, E, G Output Phase Sequence: A, B, D, E, G Reference Phase: Phase A

Vehic	cle M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	[Total	lows HV]			Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Wine	dsor Rd													
4	L2	All MCs	6	50.0	64	49.9	0.006	20.3	LOS B	0.1	0.6	0.28	0.65	0.28	42.5
5	T1	All MCs	2088	3.3	<mark>2016</mark>	3.3	* 1.002	48.7	LOS D	49.1	353.5	1.00	1.23	1.29	34.9
6	R2	All MCs	189	3.9	<mark>183</mark>	3.9	*0.687	40.8	LOS C	3.9	28.0	0.99	0.83	1.03	44.1
Appro	ach		2284	3.5	<mark>2205</mark>	3.4	1.002	47.9	LOS D	49.1	353.5	1.00	1.19	1.26	35.9
East:	Nelso														
7	L2	All MCs	161	2.6	161	2.6	0.449	33.6	LOS C	3.9	27.7	0.92	0.79	0.92	28.7
8	T1	All MCs	1	0.0	1	0.0	*0.449	69.0	LOS E	3.9	27.7	0.92	0.79	0.92	29.3
9	R2	All MCs	295	3.9	295	3.9	*0.873	61.4	LOS E	10.7	77.4	1.00	1.02	1.23	20.5
Appro	ach		457	3.5	457	3.5	0.873	51.6	LOS D	10.7	77.4	0.97	0.94	1.12	22.8
North:	Wind	lsor Rd													
10	L2	All MCs	204	2.1	204	2.1	0.255	36.9	LOS C	4.0	28.5	0.63	0.77	0.63	50.7
11	T1	All MCs	1626	2.8	1626	2.8	0.997	59.7	LOS E	38.0	272.7	1.00	1.17	1.29	35.1
12	R2	All MCs	4	0.0	4	0.0	0.029	64.9	LOS E	0.1	0.5	0.96	0.63	0.96	36.2
Appro	ach		1835	2.8	1835	2.8	0.997	57.1	LOS E	38.0	272.7	0.96	1.13	1.22	37.0
West:															
1	L2	All MCs	7	0.0	7	0.0	0.037	51.0	LOS D	0.3	1.9	0.90	0.64	0.90	16.4
2	T1	All MCs	1	0.0	1	0.0	0.037	57.0	LOS E	0.3	1.9	0.90	0.64	0.90	25.2
3	R2	All MCs	4	25.0	4 2	25.0	0.015	37.6	LOS C	0.1	1.0	0.85	0.58	0.85	18.9
Appro	ach		13	8.3	13	8.3	0.037	47.0	LOS D	0.3	1.9	0.89	0.62	0.89	18.1
All Ve	hicles		4588	3.2	<mark>4510</mark>	3.2	1.002	52.0	LOS D	49.1	353.5	0.98	1.14	1.23	35.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: 7 [7. Windsor Rd - Guntawong Rd (Site Folder: Existing PM)]

Network: 6 [EX PM - Windsor Corridor (Network Folder: Base Conditions)]

5pm-6pm Site Category: Existing Design Give-Way (Two-Way)

Vehio	cle M	oveme	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	Dem Fl [Total I veh/h	ows HV]	FI	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Wine	dsor Rd													
4	L2	All MCs	124	1.7	<mark>119</mark>	1.7	0.510	7.1	LOS A	0.0	0.0	0.00	0.08	0.00	70.6
5	T1	All MCs	1895	4.0	<mark>1816</mark>	4.0	0.510	0.1	LOS A	0.0	0.0	0.00	0.04	0.00	78.0
Appro	bach		2019	3.9	<mark>1935</mark>	3.9	0.510	0.6	NA	0.0	0.0	0.00	0.04	0.00	77.1
North	: Winc	lsor Rd													
11	T1	All MCs	1862	3.1	1862	3.1	0.487	0.2	LOS A	0.0	0.0	0.00	0.00	0.00	79.5
Appro	bach		1862	3.1	1862	3.1	0.487	0.2	NA	0.0	0.0	0.00	0.00	0.00	79.5
West:	Gunt	awong F	۲d												
1	L2	All MCs	214	1.0	214	1.0	0.433	14.8	LOS B	0.9	6.3	0.75	0.99	1.06	39.2
Appro	bach		214	1.0	214	1.0	0.433	14.8	LOS B	0.9	6.3	0.75	0.99	1.06	39.2
All Ve	hicles		4095	3.3	<mark>4011</mark>	3.4	0.510	1.2	NA	0.9	6.3	0.04	0.07	0.06	75.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: TCS 3985 [8. Windsor Rd - Annangrove Rd (Site Folder: Existing PM)]

Network: 6 [EX PM - Windsor Corridor (Network Folder: Base Conditions)]

5pm-6pm Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 105 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ABDEG Input Phase Sequence: A, B, D, E, G Output Phase Sequence: A, B, D, E, G Reference Phase: Phase A

Vehi	cle M	ovemen	nt Perfo	orma	ince										
Mov ID	Turn	Mov	Dem			rival	Deg. Satn	Aver.		Aver. Back	Of Queue	e Prop. Que	Eff.	Aver.	Aver.
טו		Class		ows HV]	ا Total]	lows HV]	Saur	Delay	Service	[Veh.	Dist]	Que	Stop Rate	No. of Cycles	Speed
0 11			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
		dsor Rd													
4	L2	MCs	2	0.0	2	0.0	0.002	12.8	LOS A	0.0	0.0	0.16	0.62	0.16	64.6
5	T1	All MCs	1557	3.9	<mark>1521</mark>	3.8	0.880	18.1	LOS B	19.3	139.6	0.79	0.76	0.86	60.9
6	R2	All MCs	331	5.4	<mark>323</mark>	5.4	*0.922	45.0	LOS D	4.8	35.1	0.99	0.89	1.28	47.6
Appro	bach		1889	4.1	<mark>1845</mark>	4.1	0.922	22.8	LOS B	19.3	139.6	0.82	0.79	0.93	56.9
East:	Annai	ngrove R	d												
7	L2	All MCs	277	3.4	277	3.4	0.324	17.1	LOS B	4.2	30.6	0.61	0.74	0.61	43.0
8	T1	All MCs	2	0.0	2	0.0	0.011	46.7	LOS D	0.1	0.4	0.92	0.57	0.92	36.7
9	R2	All MCs	454	3.2	454	3.2	* 1.117	156.4	LOS F	22.7	163.7	1.00	1.58	2.20	12.0
Appro	bach	moo	733	3.3	733	3.3	1.117	103.5	LOS F	22.7	163.7	0.85	1.26	1.59	16.5
North	: Wind	lsor Rd													
10	L2	All MCs	451	1.2	451	1.2	0.379	20.4	LOS B	5.7	40.4	0.53	0.75	0.53	52.7
11	T1	All MCs	1333	3.5	1333	3.5	* 1.107	121.0	LOS F	36.7	264.8	1.00	1.52	1.91	12.6
12	R2	All MCs	3	0.0	3	0.0	0.016	42.9	LOS D	0.1	0.4	0.93	0.62	0.93	41.2
Appro	bach	mee	1786	2.9	1786	2.9	1.107	95.5	LOS F	36.7	264.8	0.88	1.33	1.56	19.3
West	Rous	e Hill Es	tate Acc	ess											
1	L2	All MCs	4	0.0	4	0.0	0.020	44.5	LOS D	0.1	1.0	0.87	0.64	0.87	24.5
2	T1	All MCs	1	0.0	1	0.0	*0.020	48.8	LOS D	0.1	1.0	0.87	0.64	0.87	37.0
3	R2	All MCs	1	0.0	1	0.0	0.003	33.2	LOS C	0.0	0.2	0.79	0.58	0.79	29.5
Appro	bach		6	0.0	6	0.0	0.020	43.3	LOS D	0.1	1.0	0.86	0.63	0.86	28.2
All Ve	hicles		4415	3.5	<mark>4371</mark>	3.5	1.117	66.1	LOS E	36.7	264.8	0.85	1.09	1.30	30.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3789 [9. Windsor Rd - Rouse Rd -Mile End Rd (Site Folder: Existing PM)]

Network: 6 [EX PM - Windsor Corridor (Network Folder: Base Conditions)]

5pm-6pm

Site Category: Existing Design Signals - EQUISAT (Fixed-Time/

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehi	cle M	ovemer	nt Perfo	orma	nce										
Mov ID	Turn	Mov Class		ows HV]	FI Total	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Win	dsor Rd													
1	L2	All MCs	229	0.9	229	0.9	0.169	30.9	LOS C	1.8	12.4	0.28	0.68	0.28	55.7
2	T1	All MCs	1500	4.8	1500	4.8	* 1.030	98.9	LOS F	45.0	328.1	1.00	1.32	1.44	16.1
3	R2	All MCs	314	4.0	314	4.0	*0.936	102.1	LOS F	7.4	53.6	1.00	0.95	1.28	16.8
Appro			2043	4.3	2043	4.3	1.030	91.7	LOS F	45.0	328.1	0.92	1.19	1.28	19.2
East:		End Rd													
4	L2	All MCs	343	2.8	343	2.8	0.679	46.2	LOS D	10.1	72.6	0.90	0.97	0.90	8.3
5	T1	All MCs	288	0.4	288	0.4	0.513	56.6	LOS E	6.6	46.2	0.95	0.77	0.95	26.2
6	R2	All MCs	217	1.0	217	1.0	0.821	53.5	LOS D	7.6	53.7	1.00	0.89	1.15	7.5
Appro			848	1.5	848	1.5	0.821	51.6	LOS D	10.1	72.6	0.94	0.88	0.98	16.7
North		lsor Rd													
7	L2	MCs	69	7.6	<mark>64</mark>	7.7	0.061	19.2	LOS B	1.1	8.0	0.44	0.70	0.44	56.5
8	T1	All MCs	1357	4.3	<mark>1249</mark>	4.3	1.023	47.3	LOS D	37.6	272.6	1.00	1.20	1.30	42.0
9	R2	All MCs	126	1.7	<mark>116</mark>	1.7	0.513	41.3	LOS C	2.6	18.7	0.98	0.77	0.98	48.1
Appro			1553	4.2	<mark>1429</mark>	4.3	1.023	45.6	LOS D	37.6	272.6	0.97	1.14	1.24	43.2
West:	Rous														
10	L2	All MCs	154	1.4	154	1.4	0.272	44.7	LOS D	4.8	34.1	0.80	0.77	0.80	27.3
11	T1	All MCs	303	0.3	303	0.3	*0.909	75.7	LOS F	14.3	100.7	1.00	1.06	1.26	22.0
12	R2	All MCs	164	2.6	164	2.6	*0.744	52.3	LOS D	6.0	42.6	0.98	0.87	1.08	25.2
Appro	bach		621	1.2	621	1.2	0.909	61.8	LOS E	14.3	100.7	0.94	0.94	1.10	23.8
All Ve	hicles		5065	3.4	<mark>4942</mark>	3.5	1.030	67.7	LOS E	45.0	328.1	0.94	1.09	1.19	26.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3788 [10. Windsor Rd - Commercial Rd (Site Folder: Existing PM)]

Network: 6 [EX PM - Windsor Corridor (Network Folder: Base Conditions)]

5pm-6pm Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ABCD Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D Reference Phase: Phase D

Vehic	cle M	ovemei	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class		ows		rival ows HV]	Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m			,	km/h
South	: Win	dsor Rd													
2	T1	All MCs	1777	3.7	1777	3.7	0.781	19.1	LOS B	28.4	205.1	0.83	0.58	0.83	39.4
3	R2	All MCs	401	0.5	401	0.5	*0.775	56.1	LOS D	6.4	44.9	1.00	0.86	1.08	24.1
Appro	ach		2178	3.1	2178	3.1	0.781	25.9	LOS B	28.4	205.1	0.86	0.63	0.88	34.0
East:	Comr	nercial F	Rd												
4	L2	All MCs	327	2.6	327	2.6	0.582	41.5	LOS C	9.9	71.1	0.83	0.82	0.83	14.6
6	R2	All MCs	323	6.5	323	6.5	*0.863	84.4	LOS F	7.8	58.0	1.00	0.99	1.27	7.7
Appro	ach		651	4.5	651	4.5	0.863	62.8	LOS E	9.9	71.1	0.92	0.90	1.05	10.0
North	: Wind	lsor Rd													
7	L2	All MCs	234	1.4	<mark>217</mark>	1.4	0.995	53.6	LOS D	39.0	281.0	1.00	1.18	1.32	25.9
8	T1	All MCs	1623	4.1	<mark>1505</mark>	4.1	*0.995	43.3	LOS D	48.4	350.9	1.00	1.16	1.25	26.4
Appro	ach		1857	3.7	<mark>1722</mark>	3.7	0.995	44.6	LOS D	48.4	350.9	1.00	1.16	1.26	26.3
All Ve	hicles		4685	3.5	<mark>4550</mark>	3.7	0.995	38.3	LOS C	48.4	350.9	0.92	0.87	1.05	26.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3557 [11. Windsor Rd - Schofields Rd - Rouse Hill Dr (Site Folder: Existing PM)]

5pm-6pm

Site Category: Existing Design Signals - EQUISAT (Fixed-Time/

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehi	cle M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class		lows HV]	Fl [Total]		Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Win	dsor Rd													
1	L2	All MCs	761	1.7	761	1.7	0.441	33.5	LOS C	10.5	74.8	0.72	0.80	0.72	51.0
2	T1	All MCs	1540	3.8	1540	3.8	*0.990	79.9	LOS F	32.2	232.9	0.98	1.11	1.26	15.4
3	R2	All MCs	72	35.3	72	35.3	0.163	65.1	LOS E	1.3	12.1	0.91	0.74	0.91	23.0
Appro			2373	4.0	2373	4.0	0.990	64.6	LOS E	32.2	232.9	0.89	1.00	1.08	29.0
East:	Rous	e Hill Dr													
4	L2	All MCs	127	9.1	127	9.1	0.184	32.8	LOS C	3.4	25.4	0.68	0.73	0.68	30.8
5	T1	All MCs	385	4.9	385	4.9	0.542	55.3	LOS D	7.3	53.5	0.95	0.79	0.95	40.4
6	R2	All MCs	211	1.0	211	1.0	0.447	70.7	LOS F	3.2	22.8	0.98	0.77	0.98	10.5
Appro	bach		723	4.5	723	4.5	0.542	55.8	LOS D	7.3	53.5	0.91	0.77	0.91	32.7
North		lsor Rd													
7	L2	All MCs	146	0.7	<mark>138</mark>	0.7	0.737	90.6	LOS F	6.0	42.1	1.00	0.86	1.08	18.1
8	T1	All MCs	1400	5.0	<mark>1317</mark>	5.0	0.795	53.0	LOS D	18.7	136.8	0.96	0.87	1.00	33.3
9	R2	All MCs	447	1.2	<mark>421</mark>	1.2	*0.772	61.2	LOS E	8.4	59.4	0.97	0.84	1.02	41.3
Appro	bach		1994	3.9	<mark>1876</mark>	3.8	0.795	57.6	LOS E	18.7	136.8	0.97	0.86	1.01	34.7
West:	Scho	fields Ro	1												
10	L2	All MCs	402	2.4	402	2.4	0.589	47.3	LOS D	13.2	93.9	0.85	0.84	0.85	43.9
11	T1	All MCs	433	0.5	433	0.5	*0.580	60.6	LOS E	8.3	58.3	0.96	0.81	0.96	39.9
12	R2	All MCs	345	4.0	345	4.0	* 0.958	100.0	LOS F	8.9	64.5	1.00	1.07	1.47	33.2
Appro	bach		1180	2.1	1180	2.1	0.958	67.6	LOS E	13.2	93.9	0.93	0.90	1.07	38.4
All Ve	hicles		6269	3.7	<mark>6151</mark>	3.7	0.990	62.0	LOS E	32.2	232.9	0.93	0.91	1.04	33.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Created: Wednesday, 9 August 2023 12:13:59 PM

Project: X:\23009 Riverstone East SAP\07 Modelling Files\Model\23009-Riverstone Sid v9.1 - 230728.sip9

USER REPORT FOR NETWORK SITE

Project: 23009-Riverstone Sid v9.1 - 230728 Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site: TCS 4463 [12. Schofields Rd - Tallawong Rd - Ridgeline Dr (Site Folder: Existing AM)]

Network: 3 [EX AM - Schofields Corridor (Network Folder: Base Conditions)]

Template: Movement Summary

8am-9am

Site Category: Existing Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehi	cle M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	[Total I	ows HV]	Fl [Total]		Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
Quitt	Dida		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
		Jeline Dr													
1	L2	All MCs	176	0.0	176	0.0	0.285	55.8	LOS D	4.7	32.6	0.79	0.77	0.79	25.1
2	T1	All MCs	278	0.4	278	0.4	0.995	115.1	LOS F	14.0	98.4	1.00	1.30	1.60	17.4
3	R2	All MCs	177	2.4	177	2.4	*0.973	105.2	LOS F	8.2	58.8	1.00	1.19	1.59	14.6
Appro	bach		631	0.8	631	0.8	0.995	95.7	LOS F	14.0	98.4	0.94	1.12	1.37	17.9
East:	Schot	ields Rd													
4	L2	All MCs	222	0.9	222	0.9	0.172	17.2	LOS B	1.7	12.0	0.27	0.65	0.27	47.6
5	T1	All MCs	1084	4.2	1084	4.2	0.751	35.6	LOS C	17.7	128.1	0.92	0.81	0.92	27.3
6	R2	All MCs	55	0.0	55	0.0	0.297	67.3	LOS E	2.0	14.0	1.00	0.78	1.00	21.1
Appro	bach		1361	3.5	1361	3.5	0.751	33.9	LOS C	17.7	128.1	0.82	0.78	0.82	30.8
North	: Talla	wong Ro	ł												
7	L2	All MCs	76	4.2	76	4.2	0.130	36.7	LOS C	1.9	13.9	0.75	0.73	0.75	14.0
8	T1	All MCs	299	3.2	299	3.2	0.858	60.7	LOS E	11.6	83.3	1.00	1.00	1.20	23.2
9	R2	All MCs	236	12.1	236	12.1	0.693	65.8	LOS E	4.4	33.7	1.00	0.85	1.09	9.1
Appro	bach		611	6.7	611	6.7	0.858	59.7	LOS E	11.6	83.3	0.97	0.91	1.10	17.8
West	Scho	fields Ro	1												
10	L2	All MCs	512	3.3	512	3.3	*0.387	10.3	LOS A	4.5	32.1	0.31	0.67	0.31	53.7
11	T1	All MCs	1283	3.4	1283	3.4	* 0.887	30.8	LOS C	21.7	156.5	0.91	0.88	0.99	40.1
12	R2	All MCs	161	0.7	161	0.7	0.880	72.1	LOS F	6.2	43.8	1.00	0.91	1.20	31.3
Appro	bach		1956	3.2	1956	3.2	0.887	28.8	LOS C	21.7	156.5	0.76	0.83	0.83	41.7
All Ve	hicles		4558	3.4	4558	3.4	0.995	43.7	LOS D	21.7	156.5	0.83	0.87	0.94	30.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 4511 [13. Schofields Rd -Hambledon Rd (Site Folder: Existing AM)]

8am-9am Site Category: Existing Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ABC Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C Reference Phase: Phase A

Vehic	cle M	ovemei	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	Dem Fl [Total]	ows	FI	rival ows	Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of	Aver. Speed
			veh/h		veh/h	⊓vj %	v/c	sec		veh.	m Dist j		Rale	Cycles	km/h
South	: Harr	bledon	Rd												
1	L2	All MCs	251	4.6	251	4.6	0.266	7.6	LOS A	1.7	12.3	0.27	0.64	0.27	55.0
3	R2	All MCs	337	6.9	337	6.9	*0.918	72.9	LOS F	14.3	105.7	1.00	1.07	1.31	12.7
Appro	ach		587	5.9	587	5.9	0.918	45.0	LOS D	14.3	105.7	0.69	0.88	0.87	27.1
East:	Schot	ields Rd													
4	L2	All MCs	451	4.7	451	4.7	0.362	9.8	LOS A	3.4	25.0	0.27	0.66	0.27	54.4
5	T1	All MCs	1005	4.6	1005	4.6	*0.643	6.5	LOS A	6.0	43.8	0.36	0.32	0.36	64.3
Appro	bach		1456	4.6	1456	4.6	0.643	7.5	LOS A	6.0	43.8	0.33	0.42	0.33	61.5
West:	Scho	fields Ro	b												
11	T1	All MCs	1597	2.8	1597	2.8	0.611	11.4	LOS A	15.8	113.0	0.60	0.55	0.60	53.3
12	R2	All MCs	412	1.8	412	1.8	* 1.083	156.1	LOS F	24.9	177.2	1.00	1.34	1.90	16.9
Appro	ach		2008	2.6	2008	2.6	1.083	41.0	LOS C	24.9	177.2	0.68	0.71	0.87	33.8
All Ve	hicles		4052	3.8	4052	3.8	1.083	29.6	LOS C	24.9	177.2	0.56	0.63	0.67	42.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 4474 [14. Schofields Rd -Cudgegong Rd (Site Folder: Existing AM)]

8am-9am Site Category: Existing Design Signals - EQUISAT (Fixed-Time/

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ABC Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C Reference Phase: Phase A

Vehi	cle M	ovemei	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	Dem Fl [Total]	ows	FI	rival ows HV/ 1	Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h		veh/h	%	v/c	sec		veh	m		Trate	Oycics	km/h
East:	Schot	ields Rd													
5	T1	All MCs	926	4.0	926	4.0	0.421	29.8	LOS C	14.8	107.2	0.98	0.55	0.98	49.4
6	R2	All MCs	172	7.4	172	7.4	0.489	64.0	LOS E	3.0	22.7	0.99	0.78	0.99	38.1
Appro	bach		1098	4.5	1098	4.5	0.489	35.1	LOS C	14.8	107.2	0.98	0.59	0.98	46.9
North	: Cud	gegong l	Rd												
7	L2	All MCs	325	3.6	325	3.6	0.412	21.5	LOS B	6.6	47.7	0.66	0.76	0.66	52.8
9	R2	All MCs	457	2.3	457	2.3	0.900	63.9	LOS E	18.4	131.7	1.00	1.01	1.22	11.3
Appro	bach		782	2.8	782	2.8	0.900	46.2	LOS D	18.4	131.7	0.86	0.90	0.99	32.0
West	Scho	fields Ro	ł												
10	L2	All MCs	302	6.3	302	6.3	*0.892	14.1	LOS A	26.6	192.3	1.00	0.93	1.06	29.1
11	T1	All MCs	1243	2.7	1243	2.7	*0.892	56.6	LOS E	27.1	194.1	1.00	0.96	1.06	45.9
Appro	bach		1545	3.4	1545	3.4	0.892	48.3	LOS D	27.1	194.1	1.00	0.95	1.06	43.9
All Ve	hicles		3425	3.6	3425	3.6	0.900	43.6	LOS D	27.1	194.1	0.96	0.83	1.02	42.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Created: Wednesday, 9 August 2023 12:14:27 PM

Project: X:\23009 Riverstone East SAP\07 Modelling Files\Model\23009-Riverstone Sid v9.1 - 230728.sip9

USER REPORT FOR NETWORK SITE

Project: 23009-Riverstone Sid v9.1 - 230728 Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site: TCS 4463 [12. Schofields Rd - Tallawong Rd - Ridgeline Dr (Site Folder: Existing PM)]

Network: 4 [EX PM - Schofields Corridor (Network Folder: Base Conditions)]

5pm-6pm

Site Category: Existing Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehi	cle M	ovemer	nt Perfo	orma	nce										
Mov ID	Turn	Mov Class	[Total I	ows HV]	FI Total		Deg. Satn	Delay	Level of Service	Aver. Back [Veh.	Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
South	. Ride	eline Dr	veh/h	%	veh/h	%	v/c	sec	_	veh	m			_	km/h
		All	100	0.0	400	0.0	0.005	40.0		0.0	00.4	0.77	0.75	0.77	05.0
1	L2	MCs	122	0.9	122	0.9	0.205	40.0	LOS C	3.2	22.4	0.77	0.75	0.77	25.2
2	T1	All MCs	197	1.1	197	1.1	0.545	50.4	LOS D	6.4	45.3	0.95	0.78	0.95	26.4
3	R2	All MCs	137	2.3	137	2.3	0.753	65.8	LOS E	5.1	36.7	1.00	0.90	1.15	18.3
Appro	bach		456	1.4	456	1.4	0.753	52.2	LOS D	6.4	45.3	0.92	0.81	0.96	23.4
East:	Schot	ields Rd													
4	L2	All MCs	214	0.0	214	0.0	0.151	7.7	LOS A	0.6	4.3	0.11	0.62	0.11	49.6
5	T1	All MCs	1366	1.3	1366	1.3	*0.890	22.8	LOS B	23.1	163.4	0.83	0.81	0.90	34.2
6	R2	All MCs	58	3.6	58	3.6	0.430	69.8	LOS E	2.2	15.5	1.00	0.77	1.00	20.6
Appro	bach		1638	1.2	1638	1.2	0.890	22.5	LOS B	23.1	163.4	0.74	0.78	0.80	35.9
North	: Talla	wong Ro	I												
7	L2	All MCs	62	0.0	62	0.0	0.106	37.1	LOS C	1.6	11.0	0.75	0.73	0.75	13.8
8	T1	All MCs	212	1.5	212	1.5	*0.550	48.3	LOS D	6.9	49.0	0.95	0.80	0.95	26.2
9	R2	All MCs	316	6.3	316	6.3	*0.893	75.9	LOS F	6.5	47.9	1.00	1.02	1.37	8.1
Appro	bach		589	3.9	589	3.9	0.893	61.9	LOS E	6.9	49.0	0.96	0.91	1.16	15.6
West	Scho	fields Ro	1												
10	L2	All MCs	388	3.3	<mark>362</mark>	3.2	0.249	11.8	LOS A	4.9	35.1	0.53	0.59	0.53	52.4
11	T1	All MCs	1172	1.9	<mark>1092</mark>	1.8	0.725	41.9	LOS C	17.7	125.8	0.97	0.85	0.97	34.7
12	R2	All MCs	124	0.8	<mark>116</mark>	0.8	*0.845	82.0	LOS F	4.6	32.6	1.00	0.94	1.31	29.5
Appro	bach		1684	2.1	<mark>1570</mark>	2.1	0.845	37.9	LOS C	17.7	125.8	0.87	0.79	0.90	37.2
All Ve	hicles		4367	2.0	<mark>4253</mark>	2.0	0.893	36.8	LOS C	23.1	163.4	0.84	0.81	0.90	31.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Template: Movement Summary

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 4511 [13. Schofields Rd -Hambledon Rd (Site Folder: Existing PM)]

5pm-6pm Site Category: Existing Design Signals - EQUISAT (Fixed-Time/S

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ABC Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C Reference Phase: Phase A

Vehic	cle M	ovemei	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	Dem Fl [Total]	ows	FI	rival ows HV/ 1	Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h		veh/h	%	v/c	sec		veh	m		Trate	Oycics	km/h
South	: Han	bledon	Rd												
1	L2	All MCs	286	1.5	286	1.5	0.355	12.8	LOS A	4.0	28.3	0.49	0.71	0.49	51.1
3	R2	All MCs	476	3.1	476	3.1	* 1.316	352.3	LOS F	43.1	310.0	1.00	1.97	2.92	3.2
Appro	ach		762	2.5	762	2.5	1.316	224.7	LOS F	43.1	310.0	0.81	1.50	2.01	8.0
East:	Schof	ields Rd													
4	L2	All MCs	400	5.5	400	5.5	0.294	8.9	LOS A	2.7	20.0	0.26	0.66	0.26	55.0
5	T1	All MCs	1331	4.3	1331	4.3	*0.777	11.5	LOS A	14.9	108.5	0.62	0.56	0.62	60.5
Appro	ach		1731	4.6	1731	4.6	0.777	10.9	LOS A	14.9	108.5	0.54	0.58	0.54	59.4
West:	Scho	fields Ro	b												
11	T1	All MCs	1058	2.3	1058	2.3	0.399	8.7	LOS A	8.2	58.5	0.47	0.42	0.47	56.4
12	R2	All MCs	249	3.4	249	3.4	*0.790	62.4	LOS E	9.2	66.2	1.00	0.91	1.12	30.3
Appro	ach		1307	2.5	1307	2.5	0.790	18.9	LOS B	9.2	66.2	0.57	0.51	0.59	46.4
All Ve	hicles		3800	3.4	3800	3.4	1.316	56.6	LOS E	43.1	310.0	0.60	0.74	0.85	32.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 4474 [14. Schofields Rd -Cudgegong Rd (Site Folder: Existing PM)]

5pm-6pm Site Category: Existing Design Signals - EQUISAT (Fixed-Time/SO

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ABC Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C Reference Phase: Phase A

Vehi	cle M	ovemer	nt Perfo	orma	ance										
Mov ID	Turn	Mov Class		ows		rival ows ⊔∖/ 1	Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h		veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
East:	Schot	ields Rd													
5	T1	All MCs	1262	1.4	1262	1.4	0.581	32.8	LOS C	20.2	142.9	0.98	0.65	0.98	47.9
6	R2	All MCs	139	9.8	139	9.8	0.483	66.2	LOS E	2.5	19.1	1.00	0.77	1.00	37.5
Appro	bach		1401	2.3	1401	2.3	0.581	36.2	LOS C	20.2	142.9	0.98	0.66	0.98	46.4
North	: Cudo	gegong F	Rd												
7	L2	All MCs	156	5.4	156	5.4	0.186	15.2	LOS B	2.3	16.7	0.49	0.69	0.49	56.0
9	R2	All MCs	408	0.5	408	0.5	0.728	46.5	LOS D	13.2	92.9	0.96	0.86	0.96	14.5
Appro	bach		564	1.9	564	1.9	0.728	37.8	LOS C	13.2	92.9	0.83	0.81	0.83	30.8
West	Scho	fields Rd	I												
10	L2	All MCs	279	3.4	<mark>263</mark>	3.3	*0.726	7.6	LOS A	15.4	109.8	0.87	0.81	0.87	39.6
11	T1	All MCs	1075	1.5	<mark>1013</mark>	1.4	* 0.726	39.0	LOS C	20.3	144.2	0.94	0.82	0.94	50.4
Appro	bach		1354	1.9	<mark>1275</mark>	1.8	0.726	32.6	LOS C	20.3	144.2	0.93	0.82	0.93	49.3
All Ve	hicles		3319	2.0	<mark>3241</mark>	2.1	0.728	35.0	LOS C	20.3	144.2	0.93	0.75	0.93	45.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Created: Wednesday, 9 August 2023 12:14:46 PM

Project: X:\23009 Riverstone East SAP\07 Modelling Files\Model\23009-Riverstone Sid v9.1 - 230728.sip9

USER REPORT FOR SITE

Project: 23009-Riverstone Sid v9.1 - 230728

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site: 2 [2. Garfield Rd E - Clarke St (Site Folder: Existing AM)]

8am-9am Site Category: Existing Design Give-Way (Two-Way)

Vehi	cle M	ovemen	t Performa	nce									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Clar	ke St											
1	L2	All MCs	192 7.7	192 7.7	0.401	10.3	LOS A	1.8	13.7	0.68	0.94	0.94	22.2
3	R2	All MCs	32 13.3	32 13.3	0.401	28.1	LOS B	1.8	13.7	0.68	0.94	0.94	53.7
Appro	bach		223 8.5	223 8.5	0.401	12.8	LOS A	1.8	13.7	0.68	0.94	0.94	27.1
East:	Garfie	ld Rd E											
4	L2	All MCs	208 6.1	208 6.1	0.427	6.1	LOS A	0.0	0.0	0.00	0.16	0.00	57.8
5	T1	All MCs	569 9.2	569 9.2	0.427	0.5	LOS A	0.0	0.0	0.00	0.16	0.00	58.7
Appro	bach		778 8.4	778 8.4	0.427	2.0	NA	0.0	0.0	0.00	0.16	0.00	58.4
West	Garfi	eld Rd E											
11	T1	All MCs	375 11.0	375 11.0	0.573	3.9	LOS A	6.4	48.5	0.66	0.81	1.33	53.8
12	R2	All MCs	216 9.8	216 9.8	0.573	22.4	LOS B	6.4	48.5	0.66	0.81	1.33	46.9
Appro	bach		591 10.5	591 10.5	0.573	10.7	NA	6.4	48.5	0.66	0.81	1.33	51.9
All Ve	hicles		1592 9.2	1592 9.2	0.573	6.7	NA	6.4	48.5	0.34	0.51	0.63	50.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 3 [3. Garfield Rd E - Edmund St (Site Folder: Existing AM)]

8am-9am Site Category: Existing Design Give-Way (Two-Way)

Vehi	cle M	ovemen	t Performa	nce									
Mov ID	Turn	Mov Class		Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh	ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Garfie	ld Rd E											
11	T1	All MCs	619 9.9	619 9.9	0.479	0.5	LOS A	2.6	19.7	0.28	0.35	0.41	57.3
12	R2	All MCs	142 4.4	142 4.4	0.479	11.0	LOS A	2.6	19.7	0.28	0.35	0.41	50.9
Appro	bach		761 8.9	761 8.9	0.479	2.5	NA	2.6	19.7	0.28	0.35	0.41	56.4
North	: Edm	und St											
1	L2	All MCs	135 3.9	135 3.9	0.258	8.1	LOS A	1.0	7.2	0.62	0.80	0.68	43.5
3	R2	All MCs	25 8.3	25 8.3	0.258	23.9	LOS B	1.0	7.2	0.62	0.80	0.68	51.2
Appro	bach		160 4.6	160 4.6	0.258	10.6	LOS A	1.0	7.2	0.62	0.80	0.68	45.7
West:	Garfie	eld Rd E											
4	L2	All MCs	33 12.9	33 12.9	0.272	5.8	LOS A	0.0	0.0	0.00	0.04	0.00	57.3
5	T1	All MCs	456 12.5	456 12.5	0.272	0.1	LOS A	0.0	0.0	0.00	0.04	0.00	59.4
Appro	bach		488 12.5	488 12.5	0.272	0.5	NA	0.0	0.0	0.00	0.04	0.00	59.2
All Ve	hicles		1409 9.6	1409 9.6	0.479	2.7	NA	2.6	19.7	0.22	0.29	0.30	56.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 15 [15. Guntawong Rd - Cudgegong Rd (Site Folder: Existing AM)]

8am-9am Site Category: Existing Design Give-Way (Two-Way)

Vehio	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Cud	gegong R	Rd												
1	L2	All MCs	75	4.2	75	4.2	0.152	5.9	LOS A	0.6	4.1	0.31	0.59	0.31	53.7
3	R2	All MCs	82	3.8	82	3.8	0.152	7.8	LOS A	0.6	4.1	0.31	0.59	0.31	53.5
Appro	ach		157	4.0	157	4.0	0.152	6.9	LOS A	0.6	4.1	0.31	0.59	0.31	53.6
East:	Gunta	wong Rd	- E												
4	L2	All MCs	25	0.0	25	0.0	0.067	5.6	LOS A	0.0	0.0	0.00	0.12	0.00	57.3
5	T1	All MCs	100	5.3	100	5.3	0.067	0.0	LOS A	0.0	0.0	0.00	0.12	0.00	58.9
Appro	ach		125	4.2	125	4.2	0.067	1.1	NA	0.0	0.0	0.00	0.12	0.00	58.5
West:	Gunta	awong Ro	b												
11	T1	All MCs	197	5.9	197	5.9	0.189	0.0	LOS A	0.8	5.9	0.20	0.28	0.20	57.4
12	R2	All MCs	127	5.8	127	5.8	0.189	6.4	LOS A	0.8	5.9	0.20	0.28	0.20	55.7
Appro	ach		324	5.8	324	5.8	0.189	2.5	NA	0.8	5.9	0.20	0.28	0.20	56.6
All Ve	hicles		606	5.0	606	5.0	0.189	3.4	NA	0.8	5.9	0.19	0.33	0.19	56.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 16 [16. Guntawong Rd - Worcester Rd (Site Folder: Existing AM)]

8am-9am Site Category: Existing Design Give-Way (Two-Way)

Vehic	cle M	ovemen	t Performa	nce									
Mov ID	Turn	Mov Class		Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% B Que [Veh. veh	ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Wor	cester Rd											
1	L2	All MCs	18 11.8	18 11.8	0.020	6.0	LOS A	0.1	0.6	0.23	0.54	0.23	55.1
3	R2	All MCs	5 20.0	5 20.0	0.020	7.7	LOS A	0.1	0.6	0.23	0.54	0.23	54.5
Appro	ach		23 13.6	23 13.6	0.020	6.4	LOS A	0.1	0.6	0.23	0.54	0.23	55.0
East:	Gunta	wong Rd											
4	L2	All MCs	5 0.0	5 0.0	0.058	5.6	LOS A	0.0	0.0	0.00	0.03	0.00	58.4
5	T1	All MCs	106 3.0	106 3.0	0.058	0.0	LOS A	0.0	0.0	0.00	0.03	0.00	59.7
Appro	ach		112 2.8	112 2.8	0.058	0.3	NA	0.0	0.0	0.00	0.03	0.00	59.6
West:	Gunta	awong Ro	ł										
11	T1	All MCs	218 5.3	218 5.3	0.157	0.0	LOS A	0.4	3.1	0.12	0.17	0.12	58.3
12	R2	All MCs	64 4.9	64 4.9	0.157	6.4	LOS A	0.4	3.1	0.12	0.17	0.12	57.4
Appro	ach		282 5.2	282 5.2	0.157	1.5	NA	0.4	3.1	0.12	0.17	0.12	58.0
All Ve	hicles		417 5.1	417 5.1	0.157	1.4	NA	0.4	3.1	0.09	0.15	0.09	58.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 17 [17. Guntawong Rd - Tallawong Rd (Site Folder: Existing AM)]

8am-9am Site Category: Existing Design Give-Way (Two-Way)

Vehio	cle Mo	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of ieue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Talla	wong Rd													
1	L2	All MCs	120	7.0	120	7.0	0.300	6.2	LOS A	1.2	9.1	0.46	0.63	0.46	45.5
3	R2	All MCs	121	7.0	121	7.0	0.300	11.1	LOS A	1.2	9.1	0.46	0.63	0.46	46.9
Appro	ach		241	7.0	241	7.0	0.300	8.7	LOS A	1.2	9.1	0.46	0.63	0.46	46.3
East:	Gunta	wong Rd													
4	L2	All MCs	38	5.6	38	5.6	0.093	5.6	LOS A	0.0	0.0	0.00	0.13	0.00	54.4
5	T1	All MCs	136	4.7	136	4.7	0.093	0.0	LOS A	0.0	0.0	0.00	0.13	0.00	58.7
Appro	ach		174	4.8	174	4.8	0.093	1.2	NA	0.0	0.0	0.00	0.13	0.00	58.0
West:	Gunta	awong Ro	b												
11	T1	All MCs	204	5.2	204	5.2	0.337	0.0	LOS A	2.0	14.4	0.35	0.44	0.35	55.5
12	R2	All MCs	335	5.0	335	5.0	0.337	6.8	LOS A	2.0	14.4	0.35	0.44	0.35	48.9
Appro	ach		539	5.1	539	5.1	0.337	4.2	NA	2.0	14.4	0.35	0.44	0.35	51.9
All Ve	hicles		954	5.5	954	5.5	0.337	4.8	NA	2.0	14.4	0.31	0.43	0.31	51.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 18 [18. Guntawong Rd - Clarke St (Site Folder: Existing AM)]

8am-9am Site Category: Existing Design Give-Way (Two-Way)

Vehic	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Gunta	wong Rd													
6	R2	All MCs	257	5.7	257	5.7	0.144	5.5	LOS A	0.0	0.0	0.00	0.60	0.00	50.6
Appro	ach		257	5.7	257	5.7	0.144	5.5	NA	0.0	0.0	0.00	0.60	0.00	50.6
North	Clark	ke St													
7	L2	All MCs	524	5.2	524	5.2	0.293	5.7	LOS A	0.0	0.0	0.00	0.57	0.00	50.9
Appro	ach		524	5.2	524	5.2	0.293	5.7	NA	0.0	0.0	0.00	0.57	0.00	50.9
All Ve	hicles		781	5.4	781	5.4	0.293	5.6	NA	0.0	0.0	0.00	0.58	0.00	50.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 19 [19. Clarke St - Riverstone Rd (Site Folder: Existing AM)]

8am-9am Site Category: Existing Design Give-Way (Two-Way)

Vehi	cle M	ovemen	t Performar	псе									
Mov ID	Turn	Mov Class	Demand Flows [Total HV] [veh/h %	Arrival Flows [Total HV] veh/h %	Deg. Satn v/c	Aver. Delay sec	Level of Service	95% Ba Que [Veh. veh		Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Clar	ke St											
1	L2	All MCs	120 0.0	120 0.0	0.143	5.5	LOS A	0.0	0.3	0.02	0.29	0.02	52.7
2	T1	All MCs	136 12.4	136 12.4	0.143	0.0	LOS A	0.0	0.3	0.02	0.29	0.02	57.8
3	R2	All MCs	2 50.0	2 50.0	0.143	12.4	LOS A	0.0	0.3	0.02	0.29	0.02	52.6
Appro	bach		258 6.9	258 6.9	0.143	2.7	NA	0.0	0.3	0.02	0.29	0.02	56.1
East:	Rivers	stone Rd											
4	L2	All MCs	3 66.7	3 66.7	0.008	8.6	LOS A	0.0	0.3	0.48	0.62	0.48	48.8
5	T1	All MCs	1 0.0	1 0.0	0.008	7.7	LOS A	0.0	0.3	0.48	0.62	0.48	49.4
6	R2	All MCs	1 0.0	1 0.0	0.008	9.6	LOS A	0.0	0.3	0.48	0.62	0.48	53.1
Appro	bach		5 40.0	5 40.0	0.008	8.6	LOS A	0.0	0.3	0.48	0.62	0.48	50.0
North	: Clark	ke St											
7	L2	All MCs	1 ^{100.} 0	1 100. 0	0.233	6.7	LOS A	0.5	3.7	0.14	0.16	0.14	53.9
8	T1	All MCs	352 6.9	352 6.9	0.233	0.0	LOS A	0.5	3.7	0.14	0.16	0.14	59.0
9	R2	All MCs	55 11.5	55 11.5	0.233	8.5	LOS A	0.5	3.7	0.14	0.16	0.14	54.9
Appro	bach		407 7.8	407 7.8	0.233	1.2	NA	0.5	3.7	0.14	0.16	0.14	58.5
West	River	stone Rd											
10	L2	All MCs	82 12.8	82 12.8	0.380	7.1	LOS A	2.0	14.9	0.56	0.74	0.69	49.0
11	T1	All MCs	1 0.0	1 0.0	0.380	9.5	LOS A	2.0	14.9	0.56	0.74	0.69	47.4
12	R2	All MCs	168 1.9	168 1.9	0.380	12.3	LOS A	2.0	14.9	0.56	0.74	0.69	44.7
Appro	bach		252 5.4	252 5.4	0.380	10.6	LOS A	2.0	14.9	0.56	0.74	0.69	46.4
All Ve	hicles		922 7.1	922 7.1	0.380	4.2	NA	2.0	14.9	0.22	0.36	0.26	54.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 2 [2. Garfield Rd E - Clarke St (Site Folder: Existing PM)]

5pm-6pm Site Category: Existing Design Give-Way (Two-Way)

Vehio	cle Mo	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Clarl	ke St													
1	L2	All MCs	268	0.8	268	0.8	0.389	9.4	LOS A	2.0	13.9	0.64	0.89	0.84	20.8
3	R2	All MCs	27	0.0	27	0.0	0.389	19.0	LOS B	2.0	13.9	0.64	0.89	0.84	54.8
Appro	ach		296	0.7	296	0.7	0.389	10.3	LOS A	2.0	13.9	0.64	0.89	0.84	24.1
East:	Garfie	eld Rd E													
4	L2	All MCs	85	1.2	85	1.2	0.348	5.9	LOS A	0.0	0.0	0.00	0.08	0.00	58.3
5	T1	All MCs	563	6.7	563	6.7	0.348	0.3	LOS A	0.0	0.0	0.00	0.08	0.00	59.3
Appro	ach		648	6.0	648	6.0	0.348	1.1	NA	0.0	0.0	0.00	0.08	0.00	59.1
West:	Garfie	eld Rd E													
11	T1	All MCs	443	5.5	443	5.5	0.409	0.6	LOS A	2.5	18.5	0.39	0.49	0.53	57.6
12	R2	All MCs	144	2.2	144	2.2	0.409	13.4	LOS A	2.5	18.5	0.39	0.49	0.53	52.9
Appro	ach		587	4.7	587	4.7	0.409	3.7	NA	2.5	18.5	0.39	0.49	0.53	56.9
All Ve	hicles		1532	4.5	1532	4.5	0.409	3.9	NA	2.5	18.5	0.27	0.39	0.37	48.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 3 [3. Garfield Rd E - Edmund St (Site Folder: Existing PM)]

5pm-6pm Site Category: Existing Design Give-Way (Two-Way)

Vehi	cle M	ovemen	t Perforn	nance										
Mov ID	Turn	Mov Class	Demar Flow [Total HV veh/h	's F		Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of ieue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Garfie	ld Rd E												
11	T1	All MCs	591 6	4 591	6.4	0.540	1.0	LOS A	4.5	32.6	0.41	0.50	0.65	56.0
12	R2	All MCs	241 0	9 241	0.9	0.540	10.4	LOS A	4.5	32.6	0.41	0.50	0.65	49.5
Appro	bach		832 4	8 832	4.8	0.540	3.7	NA	4.5	32.6	0.41	0.50	0.65	54.6
North	: Edm	und St												
1	L2	All MCs	136 1	6 136	1.6	0.297	8.2	LOS A	1.2	8.3	0.65	0.83	0.77	42.3
3	R2	All MCs	26 16	0 26	16.0	0.297	30.9	LOS C	1.2	8.3	0.65	0.83	0.77	50.3
Appro	bach		162 3	9 162	3.9	0.297	11.8	LOS A	1.2	8.3	0.65	0.83	0.77	44.7
West:	Garfie	eld Rd E												
4	L2	All MCs	29 10	7 29	10.7	0.257	5.8	LOS A	0.0	0.0	0.00	0.04	0.00	57.4
5	T1	All MCs	452 5	6 452	5.6	0.257	0.1	LOS A	0.0	0.0	0.00	0.04	0.00	59.5
Appro	bach		481 5	9 481	5.9	0.257	0.5	NA	0.0	0.0	0.00	0.04	0.00	59.3
All Ve	hicles		1475 5	1 1475	5.1	0.540	3.5	NA	4.5	32.6	0.30	0.39	0.45	55.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 15 [15. Guntawong Rd - Cudgegong Rd (Site Folder: Existing PM)]

5pm-6pm Site Category: Existing Design Give-Way (Two-Way)

Vehio	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Cud	gegong R	Rd												
1	L2	All MCs	94	1.1	94	1.1	0.166	6.1	LOS A	0.6	4.5	0.33	0.61	0.33	53.8
3	R2	All MCs	91	1.2	91	1.2	0.166	7.2	LOS A	0.6	4.5	0.33	0.61	0.33	53.6
Appro	ach		184	1.1	184	1.1	0.166	6.7	LOS A	0.6	4.5	0.33	0.61	0.33	53.7
East:	Gunta	wong Rd													
4	L2	All MCs	13	8.3	13	8.3	0.090	5.7	LOS A	0.0	0.0	0.00	0.04	0.00	57.5
5	T1	All MCs	161	1.3	161	1.3	0.090	0.0	LOS A	0.0	0.0	0.00	0.04	0.00	59.6
Appro	ach		174	1.8	174	1.8	0.090	0.4	NA	0.0	0.0	0.00	0.04	0.00	59.4
West:	Gunta	awong Ro	b												
11	T1	All MCs	145	2.9	145	2.9	0.119	0.0	LOS A	0.4	2.9	0.19	0.24	0.19	57.8
12	R2	All MCs	63	3.3	63	3.3	0.119	6.7	LOS A	0.4	2.9	0.19	0.24	0.19	56.2
Appro	ach		208	3.0	208	3.0	0.119	2.0	NA	0.4	2.9	0.19	0.24	0.19	57.2
All Ve	hicles		566	2.0	566	2.0	0.166	3.1	NA	0.6	4.5	0.18	0.30	0.18	56.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 16 [16. Guntawong Rd - Worcester Rd (Site Folder: Existing PM)]

5pm-6pm Site Category: Existing Design Give-Way (Two-Way)

Vehic	le Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Wore	cester Rd													
1	L2	All MCs	56	0.0	56	0.0	0.049	5.9	LOS A	0.2	1.3	0.23	0.55	0.23	55.4
3	R2	All MCs	11	0.0	11	0.0	0.049	6.9	LOS A	0.2	1.3	0.23	0.55	0.23	55.1
Appro	ach		66	0.0	66	0.0	0.049	6.0	LOS A	0.2	1.3	0.23	0.55	0.23	55.4
East:	Gunta	wong Rd													
4	L2	All MCs	3	0.0	3	0.0	0.064	5.6	LOS A	0.0	0.0	0.00	0.02	0.00	58.4
5	T1	All MCs	118	3.6	118	3.6	0.064	0.0	LOS A	0.0	0.0	0.00	0.02	0.00	59.8
Appro	ach		121	3.5	121	3.5	0.064	0.2	NA	0.0	0.0	0.00	0.02	0.00	59.8
West:	Gunta	awong Ro	ł												
11	T1	All MCs	199	3.2	199	3.2	0.127	0.0	LOS A	0.2	1.7	0.09	0.12	0.09	58.8
12	R2	All MCs	37	0.0	37	0.0	0.127	6.3	LOS A	0.2	1.7	0.09	0.12	0.09	57.8
Appro	ach		236	2.7	236	2.7	0.127	1.0	NA	0.2	1.7	0.09	0.12	0.09	58.5
All Ve	hicles		423	2.5	423	2.5	0.127	1.5	NA	0.2	1.7	0.08	0.16	0.08	58.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 17 [17. Guntawong Rd - Tallawong Rd (Site Folder: Existing PM)]

5pm-6pm Site Category: Existing Design Give-Way (Two-Way)

Vehi	cle Mo	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of ieue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Talla	wong Rd													
1	L2	All MCs	214	2.0	214	2.0	0.309	6.5	LOS A	1.4	9.7	0.44	0.64	0.44	47.1
3	R2	All MCs	109	3.8	109	3.8	0.309	8.9	LOS A	1.4	9.7	0.44	0.64	0.44	48.2
Appro	bach		323	2.6	323	2.6	0.309	7.3	LOS A	1.4	9.7	0.44	0.64	0.44	47.5
East:	Gunta	wong Rd													
4	L2	All MCs	36	0.0	36	0.0	0.135	5.6	LOS A	0.0	0.0	0.00	0.08	0.00	55.5
5	T1	All MCs	222	1.9	222	1.9	0.135	0.0	LOS A	0.0	0.0	0.00	0.08	0.00	59.1
Appro	bach		258	1.6	258	1.6	0.135	0.8	NA	0.0	0.0	0.00	0.08	0.00	58.7
West:	Gunta	awong Ro	b												
11	T1	All MCs	104	2.0	104	2.0	0.196	0.0	LOS A	1.0	7.2	0.38	0.48	0.38	55.2
12	R2	All MCs	196	2.2	196	2.2	0.196	7.0	LOS A	1.0	7.2	0.38	0.48	0.38	48.9
Appro	bach		300	2.1	300	2.1	0.196	4.6	NA	1.0	7.2	0.38	0.48	0.38	51.6
All Ve	hicles		881	2.2	881	2.2	0.309	4.5	NA	1.4	9.7	0.29	0.42	0.29	52.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 18 [18. Guntawong Rd - Clarke St (Site Folder: Existing PM)]

5pm-6pm Site Category: Existing Design Give-Way (Two-Way)

Vehic	cle Mo	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows IV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Gunta	wong Rd													
6	R2	All MCs	440	1.7	440	1.7	0.240	5.5	LOS A	0.0	0.0	0.00	0.60	0.00	50.8
Appro	ach		440	1.7	440	1.7	0.240	5.5	NA	0.0	0.0	0.00	0.60	0.00	50.8
North	Clark	ke St													
7	L2	All MCs	299	2.5	299	2.5	0.164	5.6	LOS A	0.0	0.0	0.00	0.58	0.00	51.0
Appro	ach		299	2.5	299	2.5	0.164	5.6	NA	0.0	0.0	0.00	0.58	0.00	51.0
All Ve	hicles		739	2.0	739	2.0	0.240	5.5	NA	0.0	0.0	0.00	0.59	0.00	50.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: 19 [19. Clarke St - Riverstone Rd (Site Folder: Existing PM)]

5pm-6pm Site Category: Existing Design Give-Way (Two-Way)

Vehi	cle M	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]	FI	rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Clar	ke St	VCH/H	70	VCII/II	70	V/C	300		VCH		_	_	_	KI1711
1	L2	All MCs	202	1.6	202	1.6	0.236	5.6	LOS A	0.0	0.1	0.00	0.27	0.00	52.8
2	T1	All MCs	241	2.2	241	2.2	0.236	0.0	LOS A	0.0	0.1	0.00	0.27	0.00	58.1
3	R2	All MCs	1	0.0	1	0.0	0.236	5.7	LOS A	0.0	0.1	0.00	0.27	0.00	55.1
Appro	bach		444	1.9	444	1.9	0.236	2.5	NA	0.0	0.1	0.00	0.27	0.00	56.4
East:	Rivers	stone Rd													
4	L2	All MCs	6	0.0	6	0.0	0.010	6.2	LOS A	0.0	0.2	0.38	0.56	0.38	52.0
5	T1	All MCs	1	0.0	1	0.0	0.010	8.1	LOS A	0.0	0.2	0.38	0.56	0.38	50.4
6	R2	All MCs	2	0.0	2	0.0	0.010	8.7	LOS A	0.0	0.2	0.38	0.56	0.38	53.7
Appro	bach		9	0.0	9	0.0	0.010	7.0	LOS A	0.0	0.2	0.38	0.56	0.38	52.3
North	: Clark	ke St													
7	L2	All MCs	1	0.0	1	0.0	0.161	5.5	LOS A	0.5	3.3	0.22	0.26	0.22	56.9
8	T1	All MCs	224	2.8	224	2.8	0.161	0.0	LOS A	0.5	3.3	0.22	0.26	0.22	58.5
9	R2	All MCs	48	2.2	48	2.2	0.161	10.1	LOS A	0.5	3.3	0.22	0.26	0.22	55.3
Appro	bach		274	2.7	274	2.7	0.161	1.8	NA	0.5	3.3	0.22	0.26	0.22	58.0
West	River	stone Rd													
10	L2	All MCs	36	0.0	36	0.0	0.156	6.4	LOS A	0.6	3.9	0.50	0.72	0.50	50.6
11	T1	All MCs	1	100. 0	1	100. 0	0.156	14.9	LOS B	0.6	3.9	0.50	0.72	0.50	45.1
12	R2	All MCs	69	0.0	69	0.0	0.156	10.0	LOS A	0.6	3.9	0.50	0.72	0.50	46.2
Appro	bach		106	1.0	106	1.0	0.156	8.8	LOS A	0.6	3.9	0.50	0.72	0.50	48.0
All Ve	hicles		834	2.0	834	2.0	0.236	3.2	NA	0.6	3.9	0.14	0.33	0.14	56.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Created: Wednesday, 9 August 2023 12:15:55 PM

Project: X:\23009 Riverstone East SAP\07 Modelling Files\Model\23009-Riverstone Sid v9.1 - 230728.sip9

USER REPORT FOR NETWORK SITE

Project: 23009-Riverstone Sid v9.1 - 230728 Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site: TCS 1280 [1. Garfield Rd E - Windsor Rd - Terry Rd (Site Folder: 10-Year Future AM)]

Network: 19 [AM - Windsor Corridor - Int 5 per existing layout + Int 7 upgrade to Tjunction signal (Network Folder: 10-Year Future Conditions)]

Template: Movement Summary

8am-9am

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehio	cle M	ovemei	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	[Total	lows HV]			Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Wine	dsor Rd	VCH/H	70	VCH/H	70		300		<u>von</u>		_	_		NIT#TT
4	L2	All MCs	499	6.1	<mark>473</mark>	6.3	* 0.366	23.8	LOS B	6.5	48.0	0.49	0.74	0.49	59.9
5	T1	All MCs	1396	6.0	<mark>1325</mark>	6.1	1.044	106.8	LOS F	36.7	270.7	1.00	1.37	1.60	22.9
6	R2	All MCs	219	8.2	<mark>208</mark>	8.4	0.783	70.4	LOS E	5.4	40.6	1.00	0.89	1.13	41.5
Appro	ach		2114	6.2	<mark>2006</mark>	6.4	1.044	83.4	LOS F	36.7	270.7	0.88	1.18	1.29	30.6
East:	Terry														
7	L2	All MCs	146	8.6	146	8.6	0.248	30.6	LOS C	3.4	25.7	0.76	0.73	0.76	30.5
8	T1	All MCs	440	3.6	440	3.6	0.762	56.3	LOS D	8.0	57.9	1.00	0.90	1.10	33.0
9	R2	All MCs	216	11.7	216	11.7	0.550	38.8	LOS C	5.9	45.8	0.91	0.80	0.91	27.3
Appro			802	6.7	802	6.7	0.762	46.9	LOS D	8.0	57.9	0.93	0.84	0.99	31.5
North	: Wind	lsor Rd													
10	L2	All MCs	156	14.2	<mark>154</mark>	14.1	0.137	26.8	LOS B	1.2	9.3	0.33	0.68	0.33	62.0
11	T1	All MCs	1393	6.5	<mark>1374</mark>	6.4	* 1.109	154.7	LOS F	45.1	333.3	1.00	1.58	1.92	20.8
12	R2	All MCs	488	4.7	<mark>482</mark>	4.7	1.198	261.6	LOS F	18.3	133.2	1.00	1.49	2.49	17.5
Appro			2037	6.7	<mark>2010</mark>	6.6	1.198	170.6	LOS F	45.1	333.3	0.95	1.49	1.93	21.0
West:		eld Rd E													
1	L2	All MCs	680	1.9	680	1.9	1.070	147.8	LOS F	34.5	245.0	1.00	1.36	1.77	10.7
2	T1	All MCs	194	7.6	194	7.6	0.351	68.0	LOS E	3.2	23.7	0.94	0.74	0.94	32.9
3	R2	All MCs	677	3.9	677	3.9	* 1.047	112.5	LOS F	16.3	117.7	1.00	1.35	1.77	11.5
Appro	ach		1551	3.5	1551	3.5	1.070	122.4	LOS F	34.5	245.0	0.99	1.28	1.67	13.0
All Ve	hicles		6503	5.8	<mark>6368</mark>	5.9	1.198	115.8	LOS F	45.1	333.3	0.94	1.26	1.55	22.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site

Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: 4 [4. Windsor Rd - Junction Rd (Site Folder: 10-Year Future AM)]

Network: 19 [AM - Windsor Corridor - Int 5 per existing layout + Int 7 upgrade to Tjunction signal (Network Folder: 10-Year Future Conditions)]

8am-9am Site Category: Proposed Design Give-Way (Two-Way)

Vehicle Movement Performance															
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Bacl [Veh. veh	< Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
SouthEast: Windsor Rd															
3	L2	All MCs	76	11.1	<mark>71</mark>	11.4	0.062	8.7	LOS A	0.1	0.6	0.30	0.63	0.30	55.6
4	T1	All MCs	1799	6.7	<mark>1675</mark>	6.9	0.449	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	79.6
Appro	bach		1875	6.9	<mark>1746</mark>	7.1	0.449	0.5	LOS A	0.1	0.6	0.01	0.03	0.01	78.0
North	West:	Windso	r Rd												
5	T1	All MCs	1645	5.6	1645	5.6	0.732	11.6	LOS A	5.4	39.3	0.16	0.15	0.45	47.5
6	R2	All MCs	299	6.7	299	6.7	2.051	988.6	LOS F	39.8	294.2	1.00	4.54	18.75	3.1
Appro	bach		1944	5.8	1944	5.8	2.051	161.9	NA	39.8	294.2	0.29	0.83	3.27	8.9
South	West	Junctio	n Rd - S												
1	L2	All MCs	249	11.0	249	11.0	0.570	18.6	LOS B	1.3	10.3	0.81	1.09	1.37	43.7
2	R2	All MCs	71 ⁻	10.4	71 ⁻	10.4	1.748	792.0	LOS F	8.5	64.9	1.00	2.41	7.12	2.3
Appro	bach		320	10.9	320 ⁻	10.9	1.748	189.0	LOS F	8.5	64.9	0.85	1.38	2.64	12.1
All Ve	hicles		4139	6.7	<mark>4010</mark>	6.9	2.051	93.8	NA	39.8	294.2	0.21	0.52	1.80	18.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: TCS 4805 [5. Windsor Rd - Mt Carmel Dr - Existing layout (Site Folder: 10-Year Future AM)]

Network: 19 [AM - Windsor Corridor - Int 5 per existing layout + Int 7 upgrade to Tjunction signal (Network Folder: 10-Year Future Conditions)]

8am-9am

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 75 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ABC Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C Reference Phase: Phase A

Vehi	cle M	ovem <u>e</u> i	nt Perfo	orm <u>a</u>	ince										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	East:	Windsor	r Rd												
5	T1	All MCs	1737	5.5	<mark>1608</mark>	5.6	0.588	12.6	LOS A	14.6	107.4	0.88	0.49	0.88	64.1
6	R2	All MCs	571	5.0	<mark>528</mark>	5.1	* 1.177	197.0	LOS F	30.4	222.0	1.00	1.74	3.10	17.5
Appro	ach		2307	5.4	<mark>2136</mark>	5.5	1.177	58.2	LOS E	30.4	222.0	0.91	0.80	1.43	36.5
North	East:	Mt Carm	nel Dr												
7	L2	All MCs	488	6.5	488	6.5	0.612	12.0	LOS A	5.5	40.4	0.65	0.77	0.65	33.5
9	R2	All MCs	69	4.5	69	4.5	*0.161	39.0	LOS C	0.7	5.3	0.93	0.72	0.93	17.0
Appro	ach		558	6.2	558	6.2	0.612	15.3	LOS B	5.5	40.4	0.69	0.77	0.69	29.7
North	West:	Windso	r Rd												
10	L2	All MCs	160	0.7	<mark>157</mark>	0.6	0.092	8.1	LOS A	0.5	3.2	0.21	0.66	0.21	55.1
11	T1	All MCs	1537	6.8	<mark>1510</mark>	6.7	*0.628	19.0	LOS B	8.9	66.0	0.84	0.74	0.84	42.9
Appro	ach		1697	6.2	<mark>1667</mark>	6.1	0.628	18.0	LOS B	8.9	66.0	0.78	0.73	0.78	44.2
All Ve	hicles		4562	5.8	<mark>4361</mark>	6.1	1.177	37.4	LOS C	30.4	222.0	0.83	0.77	1.09	37.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3986 [6. Windsor Rd - Nelson Rd (Site Folder: 10-Year Future AM)]

Network: 19 [AM - Windsor Corridor - Int 5 per existing layout + Int 7 upgrade to Tjunction signal (Network Folder: 10-Year Future Conditions)]

8am-9am

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 110 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehi	cle <u>M</u>	ovem <u>e</u> r	nt Perfo	rm <u>a</u>	ance _										
Mov ID	Turn	Mov Class	Dema Flo [Total H veh/h	ows IV]	Fl [Total]	rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Win	dsor Rd	VOII/II	/0	VOII/II	,,,	110	000		Von					
4	L2	All MCs	54	0.0	54	40.7	0.005	27.0	LOS B	0.1	0.5	0.37	0.65	0.37	41.4
5	T1	All MCs	1761	6.0	<mark>1674</mark>	6.1	1.013	77.6	LOS F	41.0	302.3	1.00	1.32	1.46	26.6
6	R2	All MCs	238	0.9	<mark>226</mark>	0.9	* 1.096	153.3	LOS F	10.8	75.9	1.00	1.33	2.13	19.4
Appro		n Dd	2004	5.5	<mark>1905</mark>	5.6	1.096	86.5	LOS F	41.0	302.3	1.00	1.32	1.53	24.9
	Nelso	All	070	0.4	070	0.4	0.740	54.0		0.0	04.0	0.00	0.07	1 00	00.4
7	L2	MCs All	278		278		0.740	51.9	LOS D	9.0	64.9	0.99	0.87	1.06	22.4
8	T1	MCs	1	0.0	1	0.0	*0.740	63.1	LOS E	9.0	64.9	0.99	0.87	1.06	25.6
9	R2	All MCs	358	6.8	358	6.8	*0.930	66.4	LOS E	12.8	95.1	1.00	1.15	1.37	19.5
Appro	bach		637	5.3	637	5.3	0.930	60.1	LOS E	12.8	95.1	1.00	1.03	1.23	20.7
North	: Wind	lsor Rd													
10	L2	All MCs	339	4.7	<mark>313</mark>	4.6	0.233	16.5	LOS B	1.5	10.8	0.28	0.68	0.28	61.2
11	T1	All MCs	2078	5.6	<mark>1920</mark>	5.5	* 1.173	176.2	LOS F	68.2	499.7	1.00	1.91	2.28	14.9
12	R2	All MCs	25	50.0	24	49.6	0.012	48.7	LOS D	0.0	0.3	0.92	0.61	0.92	37.4
Appro	bach		2419	5.5	<mark>2235</mark>	5.4	1.173	153.7	LOS F	68.2	499.7	0.90	1.74	2.00	17.7
West	: Nelso	on Rd													
1	L2	All MCs	4 2	25.0	42	25.0	0.020	40.7	LOS C	0.1	1.2	0.85	0.61	0.85	17.9
2	T1	All MCs	1	0.0	1	0.0	0.020	49.2	LOS D	0.1	1.2	0.85	0.61	0.85	27.0
3	R2	All MCs	1	0.0	1	0.0	0.004	31.4	LOS C	0.0	0.2	0.87	0.54	0.87	20.1
Appro	bach		6 1	6.7	6 1	16.7	0.020	40.6	LOS C	0.1	1.2	0.86	0.60	0.86	20.1
All Ve	ehicles		5066	5.5	<mark>4782</mark>	5.8	1.173	114.3	LOS F	68.2	499.7	0.95	1.48	1.71	20.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green. Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: 7v [7. Windsor Rd - Guntawong Rd -Convert to T-junction signal (Site Folder: 10-Year Future AM)]

Network: 19 [AM - Windsor Corridor - Int 5 per existing layout + Int 7 upgrade to Tjunction signal (Network Folder: 10-Year Future Conditions)]

8am-9am

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: ABCD Input Phase Sequence: A, B, C, D* Output Phase Sequence: A, B, C Reference Phase: Phase A

(* Variable Phase)

Vehio	cle M	ovemei	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	Dem Fl [Total l veh/h	ows HV]	F	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Win	dsor Rd													
4	L2	All MCs	308	0.0	<mark>289</mark>	0.0	0.867	14.5	LOS A	24.0	174.4	0.82	0.85	0.87	45.7
5	T1	All MCs	1618	6.6	<mark>1518</mark>	6.8	*0.867	24.4	LOS B	36.8	272.7	0.86	0.82	0.88	39.1
Appro	ach		1926	5.5	<mark>1807</mark>	5.7	0.867	22.8	LOS B	36.8	272.7	0.86	0.83	0.88	40.7
North	: Wind	lsor Rd													
11	T1	All MCs	2043	6.3	<mark>1661</mark>	6.2	0.604	10.9	LOS A	17.4	128.1	0.52	0.48	0.52	61.7
12	R2	All MCs	6	0.0	<mark>5</mark>	0.0	*0.069	87.3	LOS F	0.2	1.6	0.99	0.65	0.99	29.2
Appro	ach		2049	6.3	<mark>1666</mark>	6.1	0.604	11.1	LOS A	17.4	128.1	0.52	0.48	0.52	61.3
West:	Gunt	awong F	۲d												
1	L2	All MCs	259	1.6	259	1.6	0.566	37.5	LOS C	9.2	65.1	0.88	0.84	0.88	25.9
3	R2	All MCs	257	0.0	257	0.0	*0.432	67.4	LOS E	5.2	36.7	0.95	0.79	0.95	17.9
Appro	ach		516	0.8	516	0.8	0.566	52.4	LOS D	9.2	65.1	0.92	0.82	0.92	21.2
All Ve	hicles		4492	5.3	<mark>3988</mark>	6.0	0.867	21.8	LOS B	36.8	272.7	0.73	0.68	0.73	44.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3985 [8. Windsor Rd - Annangrove Rd (Site Folder: 10-Year Future AM)]

Network: 19 [AM - Windsor Corridor - Int 5 per existing layout + Int 7 upgrade to Tjunction signal (Network Folder: 10-Year Future Conditions)]

8am-9am

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 105 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ABDEG Input Phase Sequence: A, B, D, E, G Output Phase Sequence: A, B, D, E, G Reference Phase: Phase A

Mov		Mov	וt Perfc Dem			rival	Deq.	Aver.	Level of	Aver. Back	Of Queue	e Prop_	Eff.	Aver.	Aver.
ID	iani	Class		ows		lows	Satn	Delay	Service	/ Woll: Baok		Que	Stop	No. of	Speed
			[Total l veh/h			HV] %	v/c	sec		[Veh. veh	Dist]		Rate	Cycles	km/h
South	n: Wind	dsor Rd	VEH/H	/0	ven/m	70	v/C	360		Ven	m	_	_		N11/1
4	L2	All	1	0.0	1	0.0	0.001	11.0	LOS A	0.0	0.0	0.18	0.61	0.18	64.5
-	6	MCs		0.0		0.0	0.001	11.0	2007	0.0	0.0	0.10	0.01	0.10	04.0
5	T1	All MCs	1443	7.1	<mark>1411</mark>	7.2	0.754	15.6	LOS B	15.2	112.9	0.74	0.67	0.74	62.3
6	R2	All MCs	467	5.4	<mark>457</mark>	5.4	* 1.305	215.0	LOS F	22.8	167.1	1.00	1.37	2.43	20.2
Appro	bach		1912	6.7	<mark>1869</mark>	6.8	1.305	64.3	LOS E	22.8	167.1	0.80	0.84	1.15	36.5
East:	Annar	ngrove R	ld.												
7	L2	All MCs	248	7.2	248	7.2	0.310	20.5	LOS B	4.3	31.7	0.67	0.75	0.67	40.7
8	T1	All MCs	1	0.0	1	0.0	0.028	59.6	LOS E	0.0	0.2	1.00	0.57	1.00	33.2
9	R2	All MCs	477	1.1	477	1.1	* 1.225	255.5	LOS F	34.3	242.3	1.00	1.71	2.75	8.5
Appro	bach		726	3.2	726	3.2	1.225	174.8	LOS F	34.3	242.3	0.89	1.38	2.04	11.6
North		lsor Rd													
10	L2	MCs	622	4.2	<mark>520</mark>	4.0	0.445	14.5	LOS B	5.3	38.2	0.46	0.74	0.46	54.6
11	T1	All MCs	1689	6.2	<mark>1410</mark>	5.9	* 0.997	84.3	LOS F	33.7	248.1	1.00	1.31	1.50	17.5
12	R2	All MCs	6	0.0	<mark>5</mark>	0.0	0.020	45.0	LOS D	0.1	0.5	0.79	0.66	0.79	45.2
Appro	bach		2318	5.6	<mark>1935</mark>	5.4	0.997	65.4	LOS E	33.7	248.1	0.85	1.15	1.22	25.8
West	Rous		tate Acc	ess											
1	L2	All MCs	6	0.0	6	0.0	0.051	53.1	LOS D	0.2	1.5	0.94	0.66	0.94	22.0
2	T1	All MCs	1	0.0	1	0.0	0.051	58.7	LOS E	0.2	1.5	0.94	0.66	0.94	34.5
3	R2	All MCs	1	0.0	1	0.0	0.003	35.2	LOS C	0.0	0.2	0.82	0.58	0.82	28.6
Appro	bach		8	0.0	8	0.0	0.051	51.5	LOS D	0.2	1.5	0.93	0.65	0.93	24.9
All Ve	hicles		4964	5.7	<mark>4539</mark>	6.2	1.305	82.5	LOS F	34.3	248.1	0.84	1.06	1.32	26.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green. Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3789 [9. Windsor Rd - Rouse Rd -Mile End Rd (Site Folder: 10-Year Future AM)]

Network: 19 [AM - Windsor Corridor - Int 5 per existing layout + Int 7 upgrade to Tjunction signal (Network Folder: 10-Year Future Conditions)]

8am-9am

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehi	cle M	ovemer	nt Perfo	orma	ance										
Mov ID	Turn	Mov Class	Dem Fl	and ows		rival lows	Deg. Satn	Aver. Delay	Level of Service	Aver. Back	Of Queue	e Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
				HV]	[Total veh/h		v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Win	dsor Rd	VGI/II	70	VGII/II	70	v/C	360		VCII		_	_		KIII/11
1	L2	All MCs	305	4.1	<mark>297</mark>	4.2	0.220	38.0	LOS C	2.9	21.3	0.38	0.65	0.38	54.9
2	T1	All MCs	1518	7.6	<mark>1476</mark>	7.6	0.933	74.0	LOS F	36.5	272.0	1.00	1.07	1.17	21.5
3	R2	All MCs	384	6.6	<mark>373</mark>	6.6	* 1.228	302.6	LOS F	15.6	115.5	1.00	1.35	2.32	6.4
Appro	bach		2207	6.9	<mark>2146</mark>	7.0	1.228	108.8	LOS F	36.5	272.0	0.91	1.06	1.26	17.1
East:	Mile E	End Rd													
4	L2	All MCs	399	4.7	399	4.7	1.019	93.3	LOS F	20.1	146.8	1.00	1.24	1.55	3.4
5	T1	All MCs	303	1.0	303	1.0	0.650	65.8	LOS E	7.3	51.3	0.98	0.80	0.99	25.0
6	R2	All MCs	212	2.0	212	2.0	0.935	71.8	LOS F	8.9	63.4	1.00	0.99	1.38	5.8
Appro	bach		914	2.9	914	2.9	1.019	79.2	LOS F	20.1	146.8	0.99	1.03	1.32	10.6
North	: Wind	lsor Rd													
7	L2	All MCs	75	5.6	<mark>64</mark>	5.5	0.056	22.2	LOS B	1.0	7.2	0.40	0.70	0.40	58.1
8	T1	All MCs	1786	6.7	<mark>1530</mark>	6.6	* 1.244	236.4	LOS F	79.7	589.4	1.00	1.94	2.32	14.7
9	R2	All MCs	80	9.2	<mark>69</mark>	9.0	0.329	40.7	LOS C	1.7	12.8	0.95	0.76	0.95	48.3
Appro	bach		1941	6.8	<mark>1663</mark>	6.7	1.244	220.1	LOS F	79.7	589.4	0.97	1.84	2.19	15.8
West	Rous														
10	L2	All MCs	169	1.2	169	1.2	0.348	50.4	LOS D	5.7	40.5	0.86	0.79	0.86	25.6
11	T1	All MCs	353	0.3	353	0.3	* 1.268	332.3	LOS F	31.6	221.5	1.00	1.84	2.50	7.3
12	R2	All MCs	256	5.3	256	5.3	* 1.875	873.3	LOS F	34.2	250.6	1.00	2.07	4.06	2.5
Appro	bach		778	2.2	778	2.2	1.875	448.8	LOS F	34.2	250.6	0.97	1.68	2.66	5.0
All Ve	hicles		5840	5.6	<mark>5500</mark>	6.0	1.875	185.6	LOS F	79.7	589.4	0.95	1.38	1.75	12.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3788 [10. Windsor Rd - Commercial Rd (Site Folder: 10-Year Future AM)]

Network: 19 [AM - Windsor Corridor - Int 5 per existing layout + Int 7 upgrade to Tjunction signal (Network Folder: 10-Year Future Conditions)]

8am-9am

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ABCD Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D Reference Phase: Phase A

Vehi	cle M	ovemei	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Win	dsor Rd													
2	T1	All MCs	1894	6.9	<mark>1832</mark>	7.0	0.668	17.7	LOS B	26.6	197.0	0.76	0.45	0.76	42.9
3	R2	All MCs	376	2.5	<mark>363</mark>	2.5	*0.749	62.9	LOS E	6.1	43.6	1.00	0.84	1.07	22.8
Appro	bach		2269	6.2	<mark>2195</mark>	6.2	0.749	25.2	LOS B	26.6	197.0	0.80	0.52	0.81	35.7
East:	Comr	nercial F	Rd												
4	L2	All MCs	457	3.0	457	3.0	0.885	80.0	LOS F	16.9	121.4	1.00	1.07	1.16	9.7
6	R2	All MCs	311	6.4	311	6.4	*0.726	83.2	LOS F	6.9	50.6	1.00	0.86	1.08	8.5
Appro	bach		767	4.4	767	4.4	0.885	81.2	LOS F	16.9	121.4	1.00	0.99	1.13	9.1
North	: Wind	lsor Rd													
7	L2	All MCs	179	2.9	<mark>129</mark>	2.9	1.040	84.0	LOS F	43.2	317.7	1.00	1.24	1.51	18.8
8	T1	All MCs	2237	6.6	<mark>1611</mark>	6.5	* 1.040	73.0	LOS F	58.8	434.1	1.00	1.28	1.43	17.7
Appro	bach		2416	6.4	<mark>1740</mark>	6.2	1.040	73.8	LOS F	58.8	434.1	1.00	1.28	1.44	17.8
All Ve	hicles	;	5453	6.0	<mark>4703</mark>	7.0	1.040	52.3	LOS D	58.8	434.1	0.91	0.88	1.09	21.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3557 [11. Windsor Rd - Schofields Rd - Rouse Hill Dr (Site Folder: 10-Year Future AM)]

Network: 19 [AM - Windsor Corridor - Int 5 per existing layout + Int 7 upgrade to Tjunction signal (Network Folder: 10-Year Future Conditions)]

8am-9am

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehio	cle M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	Dem	and ows		rival lows	Deg. Satn	Aver. Delay	Level of Service	Aver. Back	Of Queue	e Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
טו		Class	[Total I	HV]	[Total	HV]		Delay	Service	[Veh.	Dist]	Que	Rate	Cycles	
South		dsor Rd	veh/h	%	veh/h	%	v/c	sec	-	veh	m			_	km/h
South															
1	L2	All MCs	588	2.1	588	2.1	0.323	29.4	LOS C	7.3	51.7	0.64	0.77	0.64	52.7
2	T1	All MCs	1599	7.4	1599	7.4	* 1.014	91.1	LOS F	35.1	261.4	0.98	1.16	1.32	14.1
3	R2	All MCs	663	34.9	66	34.9	0.144	65.9	LOS E	1.2	11.0	0.90	0.73	0.90	23.3
Appro	ach		2254	6.9	2254	6.9	1.014	74.2	LOS F	35.1	261.4	0.89	1.05	1.13	25.4
East:	Rouse	e Hill Dr													
4	L2	All MCs	147	18.6	147	18.6	0.244	36.4	LOS C	4.2	33.9	0.73	0.75	0.73	28.6
5	T1	All MCs	192	6.6	192	6.6	0.307	55.1	LOS D	3.5	26.2	0.92	0.73	0.92	40.4
6	R2	All MCs	87	1.2	87	1.2	0.151	65.4	LOS E	1.2	8.8	0.93	0.71	0.93	11.2
Appro	ach	WC3	426	9.6	426	9.6	0.307	50.7	LOS D	4.2	33.9	0.85	0.73	0.85	32.9
North	: Wind	lsor Rd													
7	L2	All MCs	82	0.0	<mark>61</mark>	0.0	0.270	89.9	LOS F	2.4	16.7	0.95	0.76	0.95	20.1
8	T1	All MCs	2047	6.9	<mark>1526</mark>	6.5	0.951	77.4	LOS F	26.4	195.4	1.00	1.07	1.23	27.6
9	R2	All MCs	575	3.8	<mark>429</mark>	3.6	0.764	81.7	LOS F	9.3	67.0	1.00	0.89	1.05	36.4
Appro	bach	WC3	2704	6.0	<mark>2017</mark>	5.7	0.951	78.7	LOS F	26.4	195.4	1.00	1.02	1.19	30.2
West:	Scho	fields Ro	ł												
10	L2	All MCs	643	3.3	643	3.3	* 1.104	197.5	LOS F	45.0	323.6	1.00	1.27	1.81	20.5
11	T1	All	422	1.0	422	1.0	0.639	85.5	LOS F	8.3	58.7	0.98	0.82	0.98	39.1
12	R2	MCs All MCs	891	2.4	891	2.4	*2.013	1016.1	LOS F	66.1	472.0	1.00	2.38	4.27	5.9
Appro	ach	IVIUS	1956	2.4	1956	2.4	2.013	546.0	LOS F	66.1	472.0	1.00	1.68	2.75	9.6
All Ve	hicles		7340	5.5	<mark>6653</mark>	6.1	2.013	212.8	LOS F	66.1	472.0	0.95	1.21	1.61	15.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Created: Wednesday, 9 August 2023 12:17:03 PM

Project: X:\23009 Riverstone East SAP\07 Modelling Files\Model\23009-Riverstone Sid v9.1 - 230728.sip9

USER REPORT FOR NETWORK SITE

Project: 23009-Riverstone Sid v9.1 - 230728 Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Template: Movement Summary

Site: TCS 1280 [1. Garfield Rd E - Windsor Rd - Terry Rd (Site Folder: 10-Year Future PM)]

Network: 20 [PM - Windsor Corridor - Int 5 per existing layout + Int 7 upgrade to Tjunction signal (Network Folder: 10-Year Future Conditions)]

5pm-6pm

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehio	cle <u>M</u>	ovemer	nt Per <u>fo</u>	orm <u>a</u>	ince										
Mov ID	Turn	Mov Class	[Total	lows HV]	F		Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Win	dsor Rd													
4	L2	All MCs	684	2.9	<mark>567</mark>	2.7	0.437	18.4	LOS B	7.7	55.2	0.54	0.81	0.54	58.3
5	T1	All MCs	1718	3.4	<mark>1422</mark>	3.2	0.845	9.4	LOS A	14.3	102.9	0.57	0.54	0.60	64.7
6	R2	All MCs	406	0.8	<mark>337</mark>	0.7	0.987	91.2	LOS F	14.1	99.6	1.00	1.14	1.53	30.7
Appro	bach		2808	2.9	<mark>2326</mark>	2.7	0.987	23.4	LOS B	14.3	102.9	0.63	0.69	0.72	52.1
East:	Terry														
7	L2	MCs	224	4.7	224	4.7	0.335	29.1	LOS C	5.2	37.9	0.75	0.75	0.75	31.2
8	T1	All MCs	381	0.8	381	0.8	*0.897	69.3	LOS E	7.8	54.9	1.00	1.03	1.35	29.6
9	R2	All MCs	185	7.4	185	7.4	0.815	55.1	LOS D	6.3	46.6	1.00	0.91	1.19	22.2
Appro			791	3.5	791	3.5	0.897	54.6	LOS D	7.8	54.9	0.93	0.92	1.14	28.3
North		lsor Rd													
10	L2	All MCs	242	3.0	<mark>239</mark>	3.0	0.208	23.1	LOS B	2.9	20.6	0.46	0.71	0.46	60.3
11	T1	All MCs	1457	2.1	<mark>1440</mark>	2.1	*0.959	65.5	LOS E	33.0	235.4	1.00	1.14	1.29	37.1
12	R2	All MCs	741	1.7	<mark>732</mark>	1.7	* 1.386	423.4	LOS F	36.0	255.9	1.00	1.84	3.21	11.8
Appro			2440	2.1	<mark>2411</mark>	2.0	1.386	170.0	LOS F	36.0	255.9	0.95	1.31	1.79	21.2
West:	Garfi	eld Rd E													
1	L2	All MCs	388	1.1	388	1.1	0.492	18.3	LOS B	7.7	54.3	0.68	0.78	0.68	37.4
2	T1	All MCs	273	2.7	273	2.7	0.663	58.2	LOS E	4.9	35.3	1.00	0.83	1.05	30.7
3	R2	All MCs	460	3.0	460	3.0	* 1.152	194.3	LOS F	14.0	100.3	1.00	1.48	2.29	7.6
Appro	bach		1121	2.3	1121	2.3	1.152	100.2	LOS F	14.0	100.3	0.89	1.08	1.43	15.5
All Ve	hicles		7160	2.6	<mark>6648</mark>	2.8	1.386	93.2	LOS F	36.0	255.9	0.82	1.01	1.28	26.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site

Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: 4 [4. Windsor Rd - Junction Rd (Site Folder: 10-Year Future PM)]

Network: 20 [PM - Windsor Corridor - Int 5 per existing layout + Int 7 upgrade to Tjunction signal (Network Folder: 10-Year Future Conditions)]

5pm-6pm Site Category: Proposed Design Give-Way (Two-Way)

Vehi	cle M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	nEast:	Windsor	Rd												
3	L2	All MCs	117	3.6	<mark>103</mark>	3.4	0.086	8.5	LOS A	0.1	0.9	0.35	0.64	0.35	55.8
4	T1	All MCs	1749	3.4	<mark>1540</mark>	3.3	0.403	0.1	LOSA	0.0	0.0	0.00	0.00	0.00	79.7
Appro	bach		1866	3.4	<mark>1642</mark>	3.3	0.403	0.6	LOS A	0.1	0.9	0.02	0.04	0.02	77.3
North	West:	Windsor	r Rd												
5	T1	All MCs	1842	1.7	1842	1.7	0.779	13.4	LOS A	7.4	52.7	0.18	0.17	0.61	44.8
6	R2	All MCs	307	5.5	307	5.5	1.894	844.8	LOS F	37.8	277.0	1.00	4.56	18.90	3.6
Appro	bach		2149	2.2	2149	2.2	1.894	132.3	NA	37.8	277.0	0.30	0.80	3.22	10.5
South	West:	Junctio	n Rd												
1	L2	All MCs	338	2.2	338	2.2	0.649	17.0	LOS B	1.7	12.4	0.81	1.14	1.54	45.9
2	R2	All MCs	83	3.8	83	3.8	1.601	644.3	LOS F	8.9	64.6	1.00	2.37	7.07	2.8
Appro	bach		421	2.5	421	2.5	1.601	140.9	LOS F	8.9	64.6	0.85	1.38	2.63	15.4
All Ve	hicles		4437	2.8	<mark>4213</mark>	2.9	1.894	81.8	NA	37.8	277.0	0.25	0.56	1.92	20.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 4805 [5. Windsor Rd - Mt Carmel Dr - Existing layout (Site Folder: 10-Year Future PM)]

Network: 20 [PM - Windsor Corridor - Int 5 per existing layout + Int 7 upgrade to Tjunction signal (Network Folder: 10-Year Future Conditions)]

5pm-6pm

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 70 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ABC Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C Reference Phase: Phase A

Vehi	cle M	ovemei	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	nEast:	Windso	r Rd												
5	T1	All MCs	1788	3.6	<mark>1557</mark>	3.4	0.566	5.1	LOS A	7.8	56.0	0.52	0.47	0.52	72.7
6	R2	All MCs	439	1.7	<mark>383</mark>	1.6	*0.820	38.8	LOS C	7.4	52.3	1.00	1.03	1.22	46.6
Appro	bach		2227	3.2	<mark>1940</mark>	3.1	0.820	11.8	LOS A	7.8	56.0	0.61	0.58	0.66	64.4
North	East:	Mt Carm	nel Dr												
7	L2	All MCs	653	1.8	653	1.8	0.803	20.3	LOS B	11.1	78.6	0.89	0.91	0.99	25.8
9	R2	All MCs	137	1.5	137	1.5	*0.326	38.2	LOS C	1.4	9.9	0.96	0.75	0.96	17.2
Appro	bach		789	1.7	789	1.7	0.803	23.4	LOS B	11.1	78.6	0.90	0.88	0.99	23.7
North	West:	Windso	r Rd												
10	L2	All MCs	140	0.0	<mark>138</mark>	0.0	0.081	8.2	LOS A	0.4	2.8	0.23	0.66	0.23	55.1
11	T1	All MCs	1777	2.3	<mark>1748</mark>	2.3	*0.754	22.6	LOS B	11.1	79.3	0.92	0.85	0.97	40.0
Appro	bach		1917	2.1	<mark>1886</mark>	2.1	0.754	21.5	LOS B	11.1	79.3	0.87	0.83	0.92	41.1
All Ve	hicles		4934	2.6	<mark>4615</mark>	2.7	0.820	17.7	LOS B	11.1	79.3	0.77	0.74	0.82	51.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3986 [6. Windsor Rd - Nelson Rd (Site Folder: 10-Year Future PM)]

Network: 20 [PM - Windsor Corridor - Int 5 per existing layout + Int 7 upgrade to Tjunction signal (Network Folder: 10-Year Future Conditions)]

5pm-6pm

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ABDEG Input Phase Sequence: A, B, D, E, G Output Phase Sequence: A, B, D, E, G Reference Phase: Phase A

		ovemei											-		
Mov ID	Turn	Mov Class		ows	FI	rival lows	Deg. Satn	Aver. Delay	Level of Service	Aver. Back		e Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			[Total veh/h		[Total veh/h	HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/r
South	h: Win	dsor Rd													
4	L2	All MCs	6	50.0	<mark>5</mark> 4	47.7	0.005	19.9	LOS B	0.0	0.4	0.28	0.65	0.28	42.5
5	T1	All MCs	2505	2.7	<mark>2018</mark>	2.5	0.995	44.3	LOS D	46.4	331.9	0.91	1.07	1.17	37.2
6	R2	All MCs	231	3.2	<mark>186</mark>	2.9	* 0.697	43.4	LOS D	4.0	28.6	0.99	0.83	1.05	43.9
Appro	bach		2742	2.9	<mark>2208</mark>	2.6	0.995	44.1	LOS D	46.4	331.9	0.92	1.05	1.16	38.
East:	Nelso	n Rd													
7	L2	MCs	271	1.6	271	1.6	*0.744	63.2	LOS E	6.8	48.3	0.99	0.94	1.05	24.
8	T1	All MCs	1	0.0	1	0.0	*0.744	112.3	LOS F	6.8	48.3	0.99	0.94	1.05	26.
9	R2	All MCs	342	3.4	342	3.4	* 1.009	104.1	LOS F	13.2	95.1	1.00	1.29	1.61	13.
Appro	bach		614	2.6	614	2.6	1.009	86.1	LOS F	13.2	95.1	1.00	1.14	1.37	16.
North	: Wind	lsor Rd													
10	L2	All MCs	393	1.1	<mark>379</mark>	1.1	0.471	47.1	LOS D	7.5	52.9	0.72	0.87	0.72	48.
11	T1	All MCs	1842	2.5	<mark>1778</mark>	2.5	* 1.111	144.4	LOS F	56.7	405.5	1.00	1.61	1.85	18.
12	R2	All MCs	4	0.0	4	0.0	0.028	72.4	LOS F	0.1	0.5	0.96	0.63	0.96	36.
Appro	oach		2239	2.3	<mark>2161</mark>	2.2	1.111	127.2	LOS F	56.7	405.5	0.95	1.48	1.65	21.
West	: Nelso														
1	L2	All MCs	7	0.0	7	0.0	0.037	51.0	LOS D	0.3	1.9	0.90	0.64	0.90	16.
2	T1	All MCs	1	0.0	1	0.0	0.037	57.1	LOS E	0.3	1.9	0.90	0.64	0.90	25.
3	R2	All MCs	4	25.0	4 :	25.0	0.017	38.0	LOS C	0.1	1.0	0.88	0.59	0.88	18.
Appro	bach		13	8.3	13	8.3	0.037	47.2	LOS D	0.3	1.9	0.90	0.62	0.90	18.
All Ve	ehicles		5607	2.6	<mark>4996</mark>	2.9	1.111	85.2	LOS F	56.7	405.5	0.94	1.25	1.40	25.

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green. Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: 7v [7. Windsor Rd - Guntawong Rd -Convert to T-junction signal (Site Folder: 10-Year Future PM)]

Network: 20 [PM - Windsor Corridor - Int 5 per existing layout + Int 7 upgrade to Tjunction signal (Network Folder: 10-Year Future Conditions)]

5pm-6pm

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: ABCD Input Phase Sequence: A, B, C, D* Output Phase Sequence: A, B, C Reference Phase: Phase A (* Variable Phase)

Vehicle Movement Performance Mov Aver. Back Of Queue Prop. Aver. Demand Arrival Deg. Flows Flows [Total HV] [Total HV] ID Class Service Satn Delay Que Stop Speed Rate Cycles [Veh. veh/h % veh/h veh South: Windsor Rd All L2 4 224 0.9 166 0.9 0.831 11.1 LOS A 20.1 144.5 0.79 0.80 0.81 47.0 MCs All 5 Τ1 LOS B 0.82 0.78 0.83 2045 3.7 1511 3.6 0.831 22.5 34.1 246.3 40.5 MCs 2269 3.4 1677 3.4 LOS B 246.3 0.82 0.78 0.83 Approach 0.831 21.4 34.1 41.5 North: Windsor Rd All Τ1 11 2142 2.7 1902 2.6 32.6 *0.877 20.1 LOS B 233.6 0.82 0.76 0.84 51.7 MCs All 12 R2 15 0.0 **13** 0.0 LOS F 0.6 0.99 0.68 0.99 0.176 89.9 4.2 29.0 MCs 32.6 0.82 Approach 2157 2.6 1915 2.6 0.877 20.5 LOS B 233.6 0.76 0.84 51.3 West: Guntawong Rd All 12 1 238 0.9 238 0.9 0.493 32.5 LOS C 7.6 53.7 0.80 0.81 0.80 28.0 MCs All R2 LOS E 0.95 0.79 3 214 0.0 214 0.0 *0.465 68.5 4.4 31.1 0.95 17.7MCs LOS D 7.6 53.7 0.88 0.80 0.88 22.0 Approach 452 0.5 452 0.5 0.493 49.5 All Vehicles 4878 2.8 4044 3.4 0.877 LOS B 34.1 246.3 0.83 0.77 0.84 24.1 42.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3985 [8. Windsor Rd - Annangrove Rd (Site Folder: 10-Year Future PM)]

Network: 20 [PM - Windsor Corridor - Int 5 per existing layout + Int 7 upgrade to Tjunction signal (Network Folder: 10-Year Future Conditions)]

5pm-6pm

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 105 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ABDEG Input Phase Sequence: A, B, D, E, G Output Phase Sequence: A, B, D, E, G Reference Phase: Phase A

		ovemer								A	010	D	F ((
Mov ID	Iurn	Mov Class	Dem Fl	and ows		rival lows	Deg. Satn	Aver. Delay	Level of Service	Aver. Back	Of Queue	e Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			[Total l veh/h			HV] %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	n: Wine	dsor Rd													
4	L2	All MCs	2	0.0	2	0.0	0.001	15.7	LOS B	0.0	0.0	0.16	0.62	0.16	64.6
5	T1	All MCs	2156	2.8	<mark>1586</mark>	2.7	0.915	23.4	LOS B	22.9	164.0	0.85	0.85	0.96	57.5
6	R2	All MCs	389	4.6	<mark>286</mark>	4.4	*0.812	37.9	LOS C	3.6	26.2	0.99	0.83	1.13	50.5
Appro	bach		2547	3.1	<mark>1874</mark>	2.9	0.915	25.6	LOS B	22.9	164.0	0.87	0.85	0.98	55.8
East:		ngrove R	ld.												
7	L2	MCs	335	2.8	335	2.8	0.393	19.9	LOS B	5.4	38.6	0.64	0.75	0.64	42.6
8	T1	All MCs	2	0.0	2	0.0	0.011	49.0	LOS D	0.1	0.4	0.92	0.57	0.92	36.7
9	R2	All MCs	541	2.7	541	2.7	* 1.328	337.0	LOS F	43.0	307.8	1.00	2.09	3.24	6.6
Appro	bach		878	2.8	878	2.8	1.328	215.4	LOS F	43.0	307.8	0.86	1.58	2.25	9.7
North		lsor Rd													
10	L2	MCs	515	1.0	<mark>462</mark>	1.0	0.388	24.1	LOS B	5.7	40.6	0.53	0.75	0.53	53.0
11	T1	All MCs	1596	2.9	<mark>1433</mark>	2.9	* 1.186	191.7	LOS F	48.3	346.1	1.00	1.82	2.39	8.5
12	R2	All MCs	3	0.0	3	0.0	0.015	46.5	LOS D	0.0	0.3	0.92	0.62	0.92	41.2
Appro	bach		2114	2.4	<mark>1898</mark>	2.4	1.186	150.6	LOS F	48.3	346.1	0.88	1.56	1.94	13.4
West	: Rous	e Hill Es	tate Acc	ess											
1	L2	All MCs	4	0.0	4	0.0	0.020	44.5	LOS D	0.1	1.0	0.87	0.64	0.87	24.5
2	T1	All MCs	1	0.0	1	0.0	*0.020	48.8	LOS D	0.1	1.0	0.87	0.64	0.87	37.0
3	R2	All MCs	1	0.0	1	0.0	0.003	33.2	LOS C	0.0	0.2	0.79	0.58	0.79	29.5
Appro	bach		6	0.0	6	0.0	0.020	43.3	LOS D	0.1	1.0	0.86	0.63	0.86	28.2
All Ve	hicles		5545	2.8	<mark>4656</mark>	3.3	1.328	112.4	LOS F	48.3	346.1	0.87	1.27	1.61	21.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green. Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3789 [9. Windsor Rd - Rouse Rd -Mile End Rd (Site Folder: 10-Year Future PM)]

Network: 20 [PM - Windsor Corridor - Int 5 per existing layout + Int 7 upgrade to Tjunction signal (Network Folder: 10-Year Future Conditions)]

5pm-6pm

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehi	cle M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	[Total I	ows HV]	FI Total		Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
South	• Wind	dsor Rd	veh/h	%	veh/h	%	v/c	sec	_	veh	m			_	km/h
1	L2	All	324	0.6	<mark>231</mark>	0.6	0.170	31.7	LOS C	2.0	14.1	0.31	0.67	0.31	55.5
2	T1	All MCs	2155	3.4	<mark>1537</mark>	3.4	1.037	104.0	LOS F	47.0	338.7	1.00	1.34	1.46	15.5
3	R2	All MCs	335	3.8	<mark>239</mark>	3.8	*0.711	85.9	LOS F	5.1	36.8	1.00	0.83	1.07	19.6
Appro	bach		2814	3.1	<mark>2007</mark>	3.1	1.037	93.5	LOS F	47.0	338.7	0.92	1.21	1.28	19.0
East:	Mile E	End Rd													
4	L2	All MCs	362	2.6	362	2.6	0.816	57.4	LOS E	11.6	83.2	0.98	1.05	1.07	6.9
5	T1	All MCs	307	0.3	307	0.3	0.547	57.0	LOS E	7.1	49.5	0.95	0.78	0.95	26.1
6	R2	All MCs	226	0.9	226	0.9	0.847	55.3	LOS D	8.1	57.4	1.00	0.90	1.19	7.3
Appro	bach		896	1.4	896	1.4	0.847	56.7	LOS E	11.6	83.2	0.98	0.92	1.06	15.6
North	: Wind	lsor Rd													
7	L2	All MCs	108	4.9	<mark>87</mark>	5.0	0.081	19.3	LOS B	1.5	10.8	0.44	0.71	0.44	56.5
8	T1	All MCs	1618	3.6	<mark>1295</mark>	3.7	* 1.083	92.4	LOS F	45.1	325.7	1.00	1.39	1.57	28.9
9	R2	All MCs	136	1.6	<mark>109</mark>	1.6	0.479	41.0	LOS C	2.4	17.4	0.97	0.77	0.97	48.3
Appro			1862	3.5	<mark>1491</mark>	3.6	1.083	84.4	LOS F	45.1	325.7	0.97	1.30	1.46	31.2
West	Rous														
10	L2	All MCs	161	1.3	161	1.3	0.285	44.9	LOS D	5.1	35.9	0.80	0.77	0.80	27.3
11	T1	All MCs	334	0.3	334	0.3	* 1.035	129.9	LOS F	20.0	140.7	1.00	1.32	1.62	15.5
12	R2	All MCs	202	2.1	202	2.1	*0.947	92.2	LOS F	9.3	66.0	1.00	1.09	1.44	18.6
Appro	bach		697	1.1	697	1.1	1.035	99.3	LOS F	20.0	140.7	0.95	1.13	1.38	18.0
All Ve	hicles		6268	2.8	<mark>5091</mark>	3.4	1.083	85.2	LOS F	47.0	338.7	0.95	1.17	1.31	22.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3788 [10. Windsor Rd - Commercial Rd (Site Folder: 10-Year Future PM)]

Network: 20 [PM - Windsor Corridor - Int 5 per existing layout + Int 7 upgrade to Tjunction signal (Network Folder: 10-Year Future Conditions)]

5pm-6pm

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ABCD Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D Reference Phase: Phase D

Vehi	cle M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	Dem Fl [Total] veh/h	lows HV]	FI	rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Win	dsor Rd													
2	T1	All MCs	2504	2.6	<mark>1725</mark>	2.5	0.802	16.6	LOS B	28.1	200.6	0.83	0.60	0.83	39.3
3	R2	All MCs	492	0.4	<mark>339</mark>	0.4	* 0.654	45.4	LOS D	5.2	36.2	0.98	0.81	0.99	25.7
Appro	bach		2996	2.2	<mark>2064</mark>	2.1	0.802	21.3	LOS B	28.1	200.6	0.86	0.63	0.86	35.1
East:	Comr	nercial F	Rd												
4	L2	All MCs	398	2.1	398	2.1	0.704	54.8	LOS D	12.1	86.3	0.90	0.91	0.90	13.1
6	R2	All MCs	361	5.8	361	5.8	* 1.033	144.6	LOS F	11.6	85.6	1.00	1.24	1.72	4.8
Appro	bach		759	3.9	759	3.9	1.033	97.5	LOS F	12.1	86.3	0.95	1.06	1.29	7.1
North	: Wind	lsor Rd													
7	L2	All MCs	291	1.1	<mark>235</mark>	1.1	1.018	64.9	LOS E	43.4	310.7	1.00	1.19	1.39	23.0
8	T1	All MCs	1908	3.5	<mark>1543</mark>	3.5	* 1.018	53.8	LOS D	53.8	387.5	1.00	1.22	1.33	22.3
Appro	bach		2199	3.2	<mark>1778</mark>	3.1	1.018	55.3	LOS D	53.8	387.5	1.00	1.22	1.34	22.4
All Ve	ehicles		5954	2.8	<mark>4600</mark>	3.6	1.033	47.0	LOS D	53.8	387.5	0.93	0.93	1.12	22.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3557 [11. Windsor Rd - Schofields Rd - Rouse Hill Dr (Site Folder: 10-Year Future PM)]

Network: 20 [PM - Windsor Corridor - Int 5 per existing layout + Int 7 upgrade to Tjunction signal (Network Folder: 10-Year Future Conditions)]

5pm-6pm

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehi	cle M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	Dem	and ows		rival lows	Deg. Satn		Level of	Aver. Back	Of Queue	e Prop. Que	Eff.	Aver.	Aver.
טו		Class	[Total I	HV]	[Total	HV]		Delay	Service	[Veh.	Dist]	Que	Stop Rate	No. of Cycles	Speed
South	· Win	dsor Rd	veh/h	%	veh/h	%	v/c	sec	_	veh	m			_	km/h
1	L2	MCs	963	1.3	963	1.3	0.682	46.8	LOS D	15.5	109.9	0.84	0.85	0.84	49.3
2	T1	All MCs	2266	2.6	2266	2.6	* 1.842	653.9	LOS F	109.0	780.0	1.00	2.45	3.45	2.3
3	R2	All MCs	852	29.6	85	29.6	0.188	74.0	LOS F	1.6	13.9	0.91	0.74	0.91	23.0
Appro	bach		3315	2.9	3315	2.9	1.842	462.6	LOS F	109.0	780.0	0.95	1.94	2.62	6.0
East:	Rouse	e Hill Dr													
4	L2	All MCs	151	7.7	151	7.7	0.215	33.2	LOS C	4.0	30.1	0.69	0.74	0.69	30.8
5	T1	All MCs	386	4.9	386	4.9	0.544	55.3	LOS D	7.4	53.7	0.95	0.79	0.95	40.4
6	R2	All MCs	215	1.0	215	1.0	0.581	72.8	LOS F	3.1	22.2	0.99	0.79	1.01	10.2
Appro	bach		752	4.3	752	4.3	0.581	55.9	LOS D	7.4	53.7	0.91	0.78	0.92	32.4
North	: Winc	lsor Rd													
7	L2	All MCs	159	0.7	<mark>132</mark>	0.7	0.709	88.4	LOS F	5.7	39.9	1.00	0.84	1.08	18.6
8	T1	All MCs	1624	4.3	<mark>1353</mark>	4.3	0.821	56.7	LOS E	19.9	144.5	0.98	0.91	1.04	32.1
9	R2	All MCs	568	0.9	<mark>474</mark>	0.9	*0.867	65.3	LOS E	10.1	71.3	1.00	0.89	1.12	40.2
Appro	bach	mee	2352	3.3	<mark>1959</mark>	3.2	0.867	60.9	LOS E	19.9	144.5	0.98	0.90	1.06	34.1
West	Scho	fields Ro	b												
10	L2	All MCs	478	2.0	478	2.0	0.748	56.9	LOS E	17.0	121.2	0.92	0.87	0.92	42.7
11	T1	All MCs	458	0.5	458	0.5	*0.614	86.1	LOS F	8.8	62.1	0.97	0.82	0.97	39.8
12	R2	All MCs	623	2.2	623	2.2	* 1.708	761.8	LOS F	40.7	289.9	1.00	2.11	3.73	7.9
Appro	bach		1559	1.6	1559	1.6	1.708	347.3	LOS F	40.7	289.9	0.97	1.35	2.06	14.4
All Ve	hicles		7977	2.9	<mark>7584</mark>	3.0	1.842	294.8	LOS F	109.0	780.0	0.96	1.44	1.94	11.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Created: Wednesday, 9 August 2023 12:18:39 PM

Project: X:\23009 Riverstone East SAP\07 Modelling Files\Model\23009-Riverstone Sid v9.1 - 230728.sip9

USER REPORT FOR NETWORK SITE

Project: 23009-Riverstone Sid v9.1 - 230728 Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site: TCS 4463 [12. Schofields Rd - Tallawong Rd - Ridgeline Dr (Site Folder: 10-Year Future AM)]

Network: 8 [AM - Schofields Corridor (Network Folder: 10-Year Future Conditions)]

8am-9am

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehio	cle M	ovemer	nt Perfo	orma	ince										
Mov ID		Mov Class	Dem Fl [Total]	and ows HV]	Ar Fl [Total]		Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
Ocuth	Dida		veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South		jeline Dr													
1	L2	All MCs	186	0.0	186	0.0	0.302	58.4	LOS E	5.0	34.8	0.79	0.77	0.79	25.0
2	T1	All MCs	299	0.4	299	0.4	1.067	162.2	LOS F	17.5	123.2	1.00	1.52	1.89	13.3
3	R2	All MCs	251	1.7	251	1.7	* 1.372	422.6	LOS F	24.3	172.3	1.00	2.10	3.18	4.3
Appro	ach		736	0.7	736	0.7	1.372	224.6	LOS F	24.3	172.3	0.95	1.53	2.05	8.7
East:	Schof	ields Rd													
4	L2	All MCs	275	0.8	<mark>264</mark>	0.8	0.215	26.3	LOS B	3.4	23.9	0.43	0.69	0.43	45.1
5	T1	All MCs	1216	3.7	<mark>1167</mark>	3.8	0.828	45.1	LOS D	20.8	150.2	0.97	0.92	1.03	23.8
6	R2	All MCs	134	0.0	<mark>128</mark>	0.0	0.696	71.1	LOS F	4.8	33.7	1.00	0.85	1.05	20.4
Appro	ach		1624	2.9	<mark>1558</mark>	3.0	0.828	44.1	LOS D	20.8	150.2	0.88	0.87	0.93	27.2
North	: Talla	wong Ro	ł												
7	L2	All MCs	151	2.1	151	2.1	0.254	43.1	LOS D	4.0	28.4	0.79	0.77	0.79	13.6
8	T1	All MCs	329	2.9	329	2.9	0.994	100.0	LOS F	16.4	117.9	1.00	1.26	1.56	17.6
9	R2	All MCs	415	6.9	415	6.9	1.177	236.8	LOS F	15.1	112.0	1.00	1.54	2.41	2.9
Appro	ach		895	4.6	895	4.6	1.177	153.8	LOS F	16.4	117.9	0.96	1.31	1.82	7.8
West:	Scho	fields Ro	b												
10	L2	All MCs	584	2.9	<mark>570</mark>	2.9	*0.454	11.1	LOS A	4.7	33.4	0.31	0.72	0.31	53.1
11	T1	All MCs	1328	3.3	<mark>1296</mark>	3.3	* 0.896	32.0	LOS C	22.4	161.6	0.92	0.90	1.01	39.5
12	R2	All MCs	182	0.6	<mark>178</mark>	0.6	0.971	93.7	LOS F	7.7	54.0	1.00	1.02	1.40	27.3
Appro	ach		2095	3.0	<mark>2044</mark>	3.0	0.971	31.5	LOS C	22.4	161.6	0.76	0.86	0.85	40.3
All Ve	hicles		5349	2.9	<mark>5233</mark>	3.0	1.372	83.3	LOS F	24.3	172.3	0.86	1.03	1.21	19.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site

Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 4511 [13. Schofields Rd -Hambledon Rd - Upgrade to 4-way signal (Site Folder: 10-Year Future AM)]

Network: 8 [AM - Schofields Corridor (Network Folder: 10-Year Future Conditions)]

8am-9am

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: All Phases Input Phase Sequence: A, B*, C*, D, D1*, D2*, E, F1*, F2*, G, G1*, G2* Output Phase Sequence: A, B*, D, E, G, G1* Reference Phase: Phase A (* Variable Phase)

Vehi	cle M	ovemer	nt Perfo	orma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total]	ows	FI	rival ows HV 1	Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h				v/c	sec		veh	m			- 5	km/h
South	: Ham	bledon l	Rd												
1	L2	All MCs	348	3.3	348	3.3	0.383	17.2	LOS B	4.6	33.1	0.62	0.75	0.62	48.0
2	T1	All MCs	108	0.0	108	0.0	0.559	64.5	LOS E	2.0	14.3	1.00	0.77	1.04	26.0
3	R2	All MCs	392	5.9	392	5.9	* 1.019	111.8	LOS F	20.8	152.7	1.00	1.26	1.63	8.8
Appro			848	4.1	848	4.1	1.019	66.9	LOS E	20.8	152.7	0.84	0.99	1.14	22.5
East:	Schof	ields Rd													
4	L2	All MCs	625	3.4	<mark>587</mark>	3.3	0.388	7.0	LOS A	2.2	16.1	0.12	0.61	0.12	56.8
5	T1	All MCs	1097	4.2	<mark>1029</mark>	4.2	0.947	16.8	LOS B	16.2	117.4	0.82	0.81	0.95	57.0
6	R2	All MCs	67	0.0	<mark>63</mark>	0.0	*0.685	67.3	LOS E	2.4	16.5	1.00	0.76	1.04	32.8
Appro			1789	3.8	<mark>1680</mark>	3.7	0.947	15.3	LOS B	16.2	117.4	0.58	0.74	0.66	55.4
North		dName													
7	L2	All MCs	54	0.0	54	0.0	0.159	48.7	LOS D	1.7	11.6	0.87	0.70	0.87	23.5
8	T1	All MCs	149	0.0	149	0.0	*0.767	67.4	LOS E	2.9	20.5	1.00	0.87	1.23	25.4
9	R2	All MCs	167	0.0	167	0.0	0.208	47.2	LOS D	2.5	17.3	0.86	0.75	0.86	37.3
Appro			371	0.0	371	0.0	0.767	55.6	LOS D	2.9	20.5	0.92	0.79	1.01	30.8
West:	Scho	fields Ro	ł												
10	L2	All MCs	204	0.0	204	0.0	0.152	49.1	LOS D	0.9	6.5	0.19	0.63	0.19	56.8
11	T1	All MCs	1661	2.7	1661	2.7	* 1.027	110.6	LOS F	45.7	327.6	1.00	1.42	1.53	19.2
12	R2	All MCs	456	1.6	456	1.6	0.998	98.1	LOS F	15.8	112.2	1.00	1.13	1.52	26.4
Appro	ach		2321	2.2	2321	2.2	1.027	102.7	LOS F	45.7	327.6	0.93	1.30	1.41	22.7
All Ve	hicles		5329	2.9	<mark>5220</mark>	2.9	1.027	65.4	LOS E	45.7	327.6	0.80	1.03	1.10	31.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green. Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 4474 [14. Schofields Rd -Cudgegong Rd (Site Folder: 10-Year Future AM)]

Network: 8 [AM - Schofields Corridor (Network Folder: 10-Year Future Conditions)]

8am-9am Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ABC Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C Reference Phase: Phase A

Vehi	cle M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class		ows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Schot	ields Rd													
5	T1	All MCs	1137	3.2	1137	3.2	0.514	32.1	LOS C	18.5	132.9	0.99	0.60	0.99	48.2
6	R2	All MCs	239	5.3	239	5.3	0.671	66.1	LOS E	4.4	32.1	1.00	0.83	1.07	37.7
Appro	bach		1376	3.6	1376	3.6	0.671	38.0	LOS C	18.5	132.9	0.99	0.64	1.01	45.7
North	: Cudo	gegong F	٦d												
7	L2	All MCs	622	1.9	622	1.9	*0.777	46.4	LOS D	14.9	105.9	0.88	0.95	0.88	49.4
9	R2	All MCs	539	2.0	539	2.0	* 1.145	209.6	LOS F	37.4	265.9	1.00	1.53	2.16	4.1
Appro	bach		1161	1.9	1161	1.9	1.145	122.2	LOS F	37.4	265.9	0.94	1.22	1.48	21.6
West	: Scho	fields Rd	1												
10	L2	All MCs	333	5.7	<mark>314</mark>	5.8	0.930	19.8	LOS B	30.0	216.5	1.00	0.98	1.10	26.5
11	T1	All MCs	1379	2.4	<mark>1299</mark>	2.5	0.930	63.6	LOS E	30.0	216.5	1.00	1.02	1.11	43.8
Appro	bach		1712	3.1	<mark>1613</mark>	3.1	0.930	55.1	LOS D	30.0	216.5	1.00	1.01	1.11	41.7
All Ve	hicles	i	4248	2.9	<mark>4149</mark>	3.0	1.145	68.2	LOS E	37.4	265.9	0.98	0.94	1.18	36.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Created: Wednesday, 9 August 2023 12:19:01 PM

Project: X:\23009 Riverstone East SAP\07 Modelling Files\Model\23009-Riverstone Sid v9.1 - 230728.sip9

USER REPORT FOR NETWORK SITE

Project: 23009-Riverstone Sid v9.1 - 230728 Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site: TCS 4463 [12. Schofields Rd - Tallawong Rd - Ridgeline Dr (Site Folder: 10-Year Future PM)]

Network: 11 [PM - Schofields Corridor (Network Folder: 10-Year Future Conditions)]

Template: Movement Summary

5pm-6pm

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehi	cle M	ovemer	nt Perfo	orma	ince										
Mov ID		Mov Class	Dem Fl [Total]	and ows HV]	Ar Fl [Total]		Deg. Satn	Delay	Level of Service	Aver. Back [Veh.	Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
South	· Ride	jeline Dr	veh/h	%	veh/h	%	v/c	sec	_	veh	m		_	_	km/h
		A 11			40.4	~ ~	0.004	45.0				0 70		0.70	05.4
1	L2	MCs	134	0.8	134	0.8	0.224	45.0	LOS D	3.5	24.7	0.78	0.75	0.78	25.1
2	T1	All MCs	220	1.0	220	1.0	0.650	56.4	LOS D	7.3	51.9	0.97	0.81	0.97	26.1
3	R2	All MCs	217	1.5	217	1.5	* 1.185	250.2	LOS F	16.0	113.7	1.00	1.68	2.44	6.8
Appro	ach		571	1.1	571	1.1	1.185	127.4	LOS F	16.0	113.7	0.94	1.13	1.49	13.2
East:	Schot	ields Rd													
4	L2	All MCs	292	0.0	292	0.0	0.210	7.8	LOS A	0.9	6.3	0.12	0.62	0.12	49.6
5	T1	All MCs	1398	1.3	1398	1.3	*0.918	25.5	LOS B	25.1	177.9	0.85	0.85	0.96	32.2
6	R2	All MCs	105	2.0	105	2.0	0.772	73.3	LOS F	4.1	28.9	1.00	0.87	1.16	20.0
Appro	ach	mee	1795	1.1	1795	1.1	0.918	25.4	LOS B	25.1	177.9	0.74	0.82	0.83	34.3
North	: Talla	wong Ro	ł												
7	L2	All MCs	97	0.0	97	0.0	0.166	37.8	LOS C	2.5	17.6	0.77	0.75	0.77	13.7
8	T1	All MCs	228	1.4	228	1.4	0.594	48.8	LOS D	7.5	53.4	0.96	0.81	0.96	26.0
9	R2	All MCs	379	5.3	379	5.3	1.064	145.0	LOS F	10.8	79.1	1.00	1.31	1.93	4.5
Appro	ach	MOO	704	3.3	704	3.3	1.064	99.0	LOS F	10.8	79.1	0.96	1.07	1.46	10.5
West:	Scho	fields Ro	b												
10	L2	All MCs	614	2.1	<mark>546</mark>	2.0	*0.393	16.9	LOS B	11.0	78.2	0.74	0.58	0.74	48.6
11	T1	All MCs	1361	1.6	<mark>1212</mark>	1.6	0.810	45.4	LOS D	21.6	153.1	0.99	0.90	1.01	33.4
12	R2	All MCs	174	0.6	<mark>155</mark>	0.6	1.127	202.1	LOS F	10.0	70.5	1.00	1.28	2.16	16.6
Appro	ach		2148	1.7	<mark>1913</mark>	1.6	1.127	49.9	LOS D	21.6	153.1	0.92	0.84	1.03	32.6
All Ve	hicles		5218	1.6	<mark>4982</mark>	1.7	1.185	56.9	LOS E	25.1	177.9	0.86	0.90	1.07	24.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site

Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 4511 [13. Schofields Rd -Hambledon Rd - Upgrade to 4-way signal (Site Folder: 10-Year Future PM)]

Network: 11 [PM - Schofields Corridor (Network Folder: 10-Year Future Conditions)]

5pm-6pm

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: All Phases Input Phase Sequence: A, B*, C*, D, D1*, D2*, E, F1*, F2*, G, G1*, G2* Output Phase Sequence: A, D, E, G, G1* Reference Phase: Phase A (* Variable Phase)

Vehi	cle M	ovemei	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	[Total I	ows HV]	Fl [Total]		Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
Ocuth		de la slava d	veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South		nbledon	Rd												
1	L2	All MCs	367	1.1	367	1.1	1.253	276.3	LOS F	29.0	205.1	1.00	1.69	2.71	10.0
2	T1	All MCs	153	0.0	153	0.0	0.674	69.7	LOS E	2.9	20.3	1.00	0.82	1.12	26.0
3	R2	All MCs	687	2.1	687	2.1	* 1.225	276.9	LOS F	54.9	391.1	1.00	1.76	2.51	4.1
Appro	bach		1207	1.6	1207	1.6	1.253	250.5	LOS F	54.9	391.1	1.00	1.62	2.39	7.4
East:	Schot	ields Rd													
4	L2	All MCs	434	5.1	<mark>429</mark>	5.1	0.300	21.4	LOS B	0.4	3.1	0.03	0.59	0.03	56.9
5	T1	All MCs	1360	4.2	<mark>1344</mark>	4.2	* 1.230	272.5	LOS F	56.6	410.1	1.00	2.01	2.51	15.6
6	R2	All MCs	18	0.0	18	0.0	0.088	83.1	LOS F	0.6	4.4	1.00	0.72	1.00	33.4
Appro	bach		1812	4.4	<mark>1790</mark>	4.3	1.230	210.5	LOS F	56.6	410.1	0.77	1.66	1.90	18.2
North	: Road	dName													
7	L2	All MCs	34	0.0	34	0.0	0.077	41.1	LOS C	0.9	6.5	0.79	0.67	0.79	26.0
8	T1	All MCs	181	0.0	181	0.0	*0.796	67.1	LOS E	3.5	24.8	1.00	0.90	1.26	25.5
9	R2	All MCs	202	0.0	202	0.0	0.176	38.0	LOS C	2.6	18.4	0.77	0.74	0.77	40.5
Appro	bach		417	0.0	417	0.0	0.796	50.9	LOS D	3.5	24.8	0.87	0.80	0.98	32.7
West:	Scho	fields Ro	d												
10	L2	All MCs	160	0.0	160	0.0	0.117	53.6	LOS D	0.6	4.1	0.17	0.63	0.17	57.1
11	T1	All MCs	1249	1.9	1249	1.9	1.096	168.8	LOS F	40.4	287.7	1.00	1.60	1.91	13.4
12	R2	All MCs	354	2.4	354	2.4	* 1.113	188.7	LOS F	22.8	162.6	1.00	1.40	2.06	15.1
Appro	bach		1763	1.9	1763	1.9	1.113	162.3	LOS F	40.4	287.7	0.92	1.47	1.78	15.4
All Ve	hicles		5199	2.5	<mark>5178</mark>	2.5	1.253	190.6	LOS F	56.6	410.1	0.88	1.52	1.90	14.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green. Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 4474 [14. Schofields Rd -Cudgegong Rd (Site Folder: 10-Year Future PM)]

Network: 11 [PM - Schofields Corridor (Network Folder: 10-Year Future Conditions)]

5pm-6pm Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ABC Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C Reference Phase: Phase A

Vehi	cle M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	Dem Fl [Total l veh/h	ows HV]	FI	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Schof	ields Rd													
5	T1	All MCs	1428	1.3	1428	1.3	0.657	35.1	LOS C	23.2	164.5	1.00	0.69	1.00	46.9
6	R2	All MCs	304	4.5	304	4.5	1.020	116.6	LOS F	7.8	56.9	1.00	1.16	1.78	28.4
Appro	bach		1733	1.8	1733	1.8	1.020	49.4	LOS D	23.2	164.5	1.00	0.77	1.14	41.5
North	: Cudo	gegong F	Rd												
7	L2	All MCs	309	2.7	309	2.7	0.368	19.1	LOS B	5.7	40.7	0.61	0.74	0.61	54.0
9	R2	All MCs	429	0.5	429	0.5	0.766	48.2	LOS D	14.4	101.1	0.97	0.88	1.01	14.1
Appro	bach		739	1.4	739	1.4	0.766	36.1	LOS C	14.4	101.1	0.82	0.82	0.84	36.1
West	Scho	fields Ro	1												
10	L2	All MCs	354	2.7	<mark>315</mark>	2.6	*0.839	11.7	LOS A	21.7	154.2	0.96	0.92	0.99	34.9
11	T1	All MCs	1309	1.2	<mark>1166</mark>	1.2	*0.839	48.0	LOS D	25.1	177.4	0.98	0.92	1.02	47.6
Appro	bach		1663	1.5	<mark>1481</mark>	1.5	0.839	40.2	LOS C	25.1	177.4	0.98	0.92	1.01	46.1
All Ve	hicles		4135	1.6	<mark>3953</mark>	1.7	1.020	43.5	LOS D	25.1	177.4	0.96	0.84	1.03	42.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Created: Wednesday, 9 August 2023 12:19:22 PM

Project: X:\23009 Riverstone East SAP\07 Modelling Files\Model\23009-Riverstone Sid v9.1 - 230728.sip9

USER REPORT FOR NETWORK SITE

Project: 23009-Riverstone Sid v9.1 - 230728

Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site: 3a [3. Garfield Rd E - Edmund St (Site Folder: 10-Year Future AM)]

Network: 9 [AM - Garfield Corridor (Network Folder: 10-Year Future Conditions)]

8am-9am

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: ABC Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C Reference Phase: Phase A

Vehio	cle M	ovemei	nt Perfo	orma	ance										
Mov ID	Turn	Mov Class		ows		rival lows HV]	Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
East:	Garfie	eld Rd E													
11	T1	All MCs	1051	5.8	1051	5.8	0.349	5.0	LOS A	7.3	53.5	0.41	0.28	0.41	65.6
12	R2	All MCs	157	4.0	157	4.0	*0.322	50.0	LOS D	2.9	21.1	0.85	0.75	0.85	33.7
Appro	bach		1207	5.6	1207	5.6	0.349	10.9	LOS A	7.3	53.5	0.47	0.34	0.47	59.8
North	: Edm	und St													
1	L2	All MCs	178	3.0	178	3.0	0.335	40.5	LOS C	5.0	35.9	0.83	0.78	0.83	23.9
3	R2	All MCs	36	5.9	36	5.9	*0.268	63.5	LOS E	1.3	9.3	0.98	0.73	0.98	33.5
Appro	bach		214	3.4	214	3.4	0.335	44.3	LOS D	5.0	35.9	0.86	0.77	0.86	26.6
West:	Garfi	eld Rd E	E												
4	L2	All MCs	54	7.8	54	7.8	0.042	11.1	LOS A	0.5	3.8	0.29	0.66	0.29	52.6
5	T1	All MCs	711	8.0	711	8.0	*0.329	13.6	LOS A	6.4	48.2	0.55	0.48	0.55	53.6
Appro	bach		764	8.0	764	8.0	0.329	13.4	LOS A	6.4	48.2	0.53	0.50	0.53	53.5
All Ve	hicles		2185	6.2	2185	6.2	0.349	15.0	LOS B	7.3	53.5	0.53	0.44	0.53	54.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Template: Movement Summary

Site: 20 [20. Garfield Rd E - Hambledon Rd (Access 2) (Site Folder: 10-Year Future AM)]

8am-9am

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: All Phases Input Phase Sequence: A, B*, C*, D, D1*, D2*, E, F1*, F2*, G, G1*, G2* Output Phase Sequence: A, C*, D, D2*, E, G, G1* Reference Phase: Phase A

(* Variable Phase)

Vahi	ala M		t Dorfo												
Mov		ovemen Mov	Dem			rival	Deg.	Aver.	Level of	Aver. Back		Dron	Eff.	Aver.	Aver.
ID	Turri	Class		ows		OWS	Satn	Delay	Service	AVEI. DAUK		Que	Stop	No. of	Speed
			[Total I		[Total	HV]				[Veh.	Dist]		Rate	Cycles	
			veh/h			%	v/c	sec		veh	m				km/h
South	n: Ham	bledon F	Rd (Acce	ess 2	2)										
1	L2	All MCs	112	0.0	112	0.0	0.103	17.2	LOS B	1.7	12.1	0.47	0.69	0.47	38.6
2	T1	All MCs	1	0.0	1	0.0	0.002	34.5	LOS C	0.0	0.2	0.76	0.46	0.76	38.6
3	R2	All MCs	166	0.0	166	0.0	*0.287	33.8	LOS C	4.1	29.0	0.78	0.75	0.78	29.2
Appro	bach		279	0.0	279	0.0	0.287	27.1	LOS B	4.1	29.0	0.66	0.73	0.66	32.3
East:	Garfie	eld Rd E													
4	L2	All MCs	331	0.0	331	0.0	0.388	26.5	LOS B	7.1	49.4	0.64	0.77	0.64	43.0
5	T1	All MCs	331	0.0	331	0.0	*0.424	54.4	LOS D	5.9	41.0	1.00	0.84	1.00	23.1
6	R2	All MCs	1	0.0	1	0.0	*0.002	32.6	LOS C	0.0	0.1	0.92	0.57	0.92	40.3
Appro	bach		662	0.0	662	0.0	0.424	40.4	LOS C	7.1	49.4	0.82	0.80	0.82	33.3
North	: Ham	bledon F	Rd (Acce	ess 2)										
7	L2	All MCs	3	0.0	3	0.0	0.008	21.8	LOS B	0.1	0.4	0.77	0.61	0.77	33.7
8	T1	All MCs	2	0.0	2	0.0	0.008	49.8	LOS D	0.1	0.4	0.88	0.57	0.88	34.4
9	R2	All MCs	3	0.0	3	0.0	0.010	33.9	LOS C	0.1	0.5	0.84	0.62	0.84	29.2
Appro	bach		8	0.0	8	0.0	0.010	33.4	LOS C	0.1	0.5	0.82	0.60	0.82	32.4
West:	Garfi	eld Rd E													
10	L2	All MCs	4	0.0	4	0.0	0.006	18.5	LOS B	0.1	0.4	0.51	0.62	0.51	48.6
11	T1	All MCs	301	0.0	301	0.0	0.265	21.9	LOS B	3.3	23.0	0.56	0.46	0.56	41.0
12	R2	All MCs	72	0.0	72	0.0	0.070	28.7	LOS C	0.6	4.3	0.51	0.67	0.51	43.3
Appro	bach	WO3	377	0.0	377	0.0	0.265	23.2	LOS B	3.3	23.0	0.55	0.50	0.55	41.8
All Ve	hicles		1326	0.0	1326	0.0	0.424	32.7	LOS C	7.1	49.4	0.71	0.70	0.71	35.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: 21 [21. Garfield Rd E - Access 3 (Site Folder: 10-Year Future AM)]

Network: 9 [AM - Garfield Corridor (Network Folder: 10-Year Future Conditions)]

8am-9am

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream Iane blockage effects included in determining phase times Phase Sequence: All Phase Input Phase Sequence: A, B*, C*, D, E, E1*, E2* Output Phase Sequence: A, B*, D, E, E2* **Reference Phase: Phase A** (* Variable Phase)

Vehi	cle M	ovemen	t Perfo	orma	ince										
Mov ID	Turn	Mov Class		ows HV]	FI Total		Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queu Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Acce	ess Rd 3													
1	L2	All MCs	61	0.0	61	0.0	0.119	11.7	LOS A	2.1	14.7	0.52	0.57	0.52	39.0
2	T1	All MCs	61	0.0	61	0.0	0.119	22.2	LOS B	2.1	14.7	0.52	0.57	0.52	47.1
3	R2	All MCs	487	0.0	487	0.0	*0.675	28.7	LOS C	12.9	90.6	0.80	0.82	0.80	41.5
Appro	bach		609	0.0	609	0.0	0.675	26.4	LOS B	12.9	90.6	0.74	0.77	0.74	41.8
East:	Garfie	eld Rd E													
4	L2	All MCs	167	0.0	167	0.0	0.676	62.0	LOS E	6.0	41.7	1.00	0.83	1.04	29.8
5	T1	All MCs	434	0.0	434	0.0	0.702	54.6	LOS D	7.6	53.4	1.00	0.85	1.04	22.3
6	R2	All MCs	66	0.0	66	0.0	*0.134	38.1	LOS C	0.8	5.7	0.91	0.71	0.91	37.6
Appro	bach		667	0.0	667	0.0	0.702	54.8	LOS D	7.6	53.4	0.99	0.83	1.03	26.4
North	: Acce	ss Rd 3													
7	L2	All MCs	268	0.0	268	0.0	0.203	10.6	LOS A	3.0	20.9	0.34	0.67	0.34	51.4
8	T1	All MCs	48	0.0	48	0.0	0.310	16.9	LOS B	4.5	31.3	0.60	0.69	0.60	44.4
9	R2	All MCs	171	0.0	171	0.0	0.310	24.4	LOS B	4.5	31.3	0.62	0.69	0.62	35.0
Appro			487	0.0	487	0.0	0.310	16.1	LOS B	4.5	31.3	0.46	0.68	0.46	45.7
West	Garfi	eld Rd E													
10	L2	All MCs	47	0.0	47	0.0	0.219	45.8	LOS D	1.2	8.7	0.74	0.71	0.74	34.8
11	T1	All MCs	382	0.0	382	0.0	*0.692	32.4	LOS C	5.8	40.7	0.80	0.70	0.81	40.9
12	R2	All MCs	47	0.0	47	0.0	0.091	42.3	LOS C	0.7	5.1	0.70	0.69	0.70	36.3
Appro	bach		477	0.0	477	0.0	0.692	34.7	LOS C	5.8	40.7	0.79	0.70	0.80	39.7
All Ve	hicles		2241	0.0	2241	0.0	0.702	34.4	LOS C	12.9	90.6	0.77	0.75	0.78	37.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Created: Wednesday, 9 August 2023 12:19:57 PM

Project: X:\23009 Riverstone East SAP\07 Modelling Files\Model\23009-Riverstone Sid v9.1 - 230728.sip9

USER REPORT FOR NETWORK SITE

Project: 23009-Riverstone Sid v9.1 - 230728 Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site: 3a [3. Garfield Rd E - Edmund St (Site Folder: 10-Year Future PM)]

Network: 12 [PM - Garfield Corridor (Network Folder: 10-Year Future Conditions)]

5pm-6pm

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: ABC Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C Reference Phase: Phase A

Vehi	cle M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class		ows	FI	rival ows	Deg. Satn	Aver. Delay	Level of Service	Aver. Back		e Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
			veh/h		[Total veh/h	HV J %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
East:	Garfie	eld Rd E													
11	T1	All MCs	903	6.8	903	6.8	0.302	2.3	LOS A	3.2	23.9	0.22	0.19	0.22	67.9
12	R2	All MCs	306	2.1	306	2.1	*0.444	51.1	LOS D	6.1	43.2	0.92	0.80	0.92	33.4
Appro	bach		1209	5.6	1209	5.6	0.444	14.7	LOS B	6.1	43.2	0.40	0.35	0.40	55.9
North	: Edm	und St													
1	L2	All MCs	216	2.4	216	2.4	0.330	34.5	LOS C	5.6	40.0	0.77	0.77	0.77	25.9
3	R2	All MCs	35	6.1	35	6.1	*0.260	63.4	LOS E	1.2	9.1	0.98	0.73	0.98	33.5
Appro	bach		251	2.9	251	2.9	0.330	38.5	LOS C	5.6	40.0	0.80	0.76	0.80	27.8
West	: Garfi	eld Rd E	i i												
4	L2	All MCs	55	7.7	55	7.7	0.047	13.7	LOS A	0.7	4.9	0.36	0.67	0.36	51.2
5	T1	All MCs	884	6.4	884	6.4	* 0.457	19.5	LOS B	9.9	73.1	0.68	0.60	0.68	48.7
Appro	bach		939	6.5	939	6.5	0.457	19.1	LOS B	9.9	73.1	0.66	0.61	0.66	49.0
All Ve	hicles		2399	5.7	2399	5.7	0.457	18.9	LOS B	9.9	73.1	0.54	0.49	0.54	50.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Template: Movement Summary

Site: 20 [20. Garfield Rd E - Hambledon Rd (Access 2) (Site Folder: 10-Year Future PM)]

5pm-6pm

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: All Phases Input Phase Sequence: A, B*, C*, D, D1*, D2*, E, F1*, F2*, G, G1*, G2* Output Phase Sequence: A, B*, D, D2*, E, G, G2* Reference Phase: Phase A

(* Variable Phase)

Vehi	no M	ovemen	t Porfo	rma	nco										
Mov		Mov	Dem			rival	Deg.	Aver.	Level of	Aver. Back	Of Queue	e Prop.	Eff.	Aver.	Aver.
ID		Class		ows		ows	Satn	Delay	Service	F \ / 1	D: (1	Que	Stop	No. of	Speed
			[Total l veh/h		[Iotai∣ veh/h	HV J %	v/c	sec		[Veh. veh	Dist] m		Rate	Cycles	km/h
South	: Ham	nbledon F													
1	L2	All MCs	108	0.0	108	0.0	*0.109	14.1	LOS A	1.3	9.3	0.52	0.69	0.52	41.2
2	T1	All MCs	3	0.0	3	0.0	0.006	32.4	LOS C	0.1	0.6	0.74	0.48	0.74	39.5
3	R2	All MCs	162	0.0	162	0.0	*0.273	32.9	LOS C	4.0	27.7	0.77	0.75	0.77	29.6
Appro	ach		274	0.0	274	0.0	0.273	25.5	LOS B	4.0	27.7	0.67	0.72	0.67	33.4
East:	Garfie	eld Rd E													
4	L2	All MCs	268	0.0	268	0.0	*0.354	25.9	LOS B	4.7	32.9	0.95	0.72	0.95	43.3
5	T1	All MCs	268	0.0	268	0.0	0.359	49.8	LOS D	4.6	31.9	0.97	0.78	0.97	24.5
6	R2	All MCs	5	0.0	5	0.0	0.008	52.4	LOS D	0.1	0.6	0.89	0.63	0.89	33.1
Appro			542		542	0.0	0.359	38.0	LOS C	4.7	32.9	0.96	0.75	0.96	34.4
		bledon F	Rd (Acce	ess 2)										
7	L2	All MCs	2	0.0	2	0.0	0.007	42.1	LOS C	0.1	0.5	0.83	0.61	0.83	24.2
8	T1	All MCs	2	0.0	2	0.0	0.007	53.5	LOS D	0.1	0.5	0.89	0.57	0.89	33.4
9	R2	All MCs	2	0.0	2	0.0	0.007	34.1	LOS C	0.0	0.3	0.85	0.60	0.85	29.1
Appro				0.0	6	0.0	0.007	43.2	LOS D	0.1	0.5	0.86	0.59	0.86	29.5
		eld Rd E													
10	L2	All MCs	5	0.0	5	0.0	0.007	22.2	LOS B	0.1	0.5	0.43	0.63	0.43	46.5
11	T1	All MCs	429	0.0	429	0.0	0.367	19.1	LOS B	4.6	31.9	0.53	0.44	0.53	43.3
12	R2	All MCs	102	0.0	102	0.0	*0.122	28.8	LOS C	1.0	6.8	0.82	0.72	0.82	43.3
Appro	ach		537	0.0	537	0.0	0.367	21.0	LOS B	4.6	31.9	0.58	0.50	0.58	43.3
All Ve	hicles		1359	0.0	1359	0.0	0.367	28.8	LOS C	4.7	32.9	0.75	0.64	0.75	37.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: 21 [21. Garfield Rd E - Access 3 (Site Folder: 10-Year Future PM)]

Network: 12 [PM - Garfield Corridor (Network Folder: 10-Year Future Conditions)]

5pm-6pm

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream Iane blockage effects included in determining phase times Phase Sequence: All Phase Input Phase Sequence: A, B*, C*, D, E, E1*, E2* Output Phase Sequence: A, B*, D, E, E2* **Reference Phase: Phase A** (* Variable Phase)

Vehio	cle M	ovemen	it Perfo	orma	ince										
Mov ID	Turn	Mov Class	Dem Fl [Total] veh/h	ows HV]	FI Total		Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Acce	ess Rd 3													
1	L2	All MCs	34	0.0	34	0.0	0.122	26.5	LOS B	1.8	12.3	0.77	0.67	0.77	28.0
2	T1	All MCs	34	0.0	34	0.0	0.122	45.6	LOS D	1.8	12.3	0.77	0.67	0.77	37.8
3	R2	All MCs	272	0.0	272	0.0	*0.675	47.9	LOS D	8.8	61.7	0.95	0.84	0.95	34.0
Appro	ach		339	0.0	339	0.0	0.675	45.6	LOS D	8.8	61.7	0.91	0.81	0.91	34.0
East:	Garfie	eld Rd E													
4	L2	All MCs	481	0.0	481	0.0	* 0.691	40.3	LOS C	14.5	101.5	0.91	0.86	0.91	36.4
5	T1	All MCs	421	0.0	421	0.0	0.270	26.8	LOS B	5.0	35.1	0.71	0.65	0.71	34.1
6	R2	All MCs	301	0.0	301	0.0	* 0.360	28.7	LOS C	2.4	16.8	0.89	0.78	0.89	41.6
Appro			1203	0.0	1203	0.0	0.691	32.7	LOS C	14.5	101.5	0.83	0.77	0.83	37.3
North	: Acce	ess Rd 3													
7	L2	All MCs	95	0.0	95	0.0	0.161	23.5	LOS B	2.7	18.6	0.68	0.70	0.68	40.8
8	T1	All MCs	42	0.0	42	0.0	0.246	44.8	LOS D	2.7	18.7	0.75	0.72	0.75	38.1
9	R2	All MCs	74	0.0	74	0.0	0.246	44.4	LOS D	2.7	18.7	0.83	0.74	0.83	25.8
Appro			211	0.0	211	0.0	0.246	35.1	LOS C	2.7	18.7	0.75	0.72	0.75	35.6
West:		eld Rd E													
10	L2	All MCs	185	0.0	185	0.0	0.363	29.3	LOS C	3.8	26.4	0.60	0.74	0.60	41.3
11	T1	All MCs	308	0.0	308	0.0	0.264	19.0	LOS B	3.1	21.4	0.47	0.49	0.47	48.2
12	R2	All MCs	123	0.0	123	0.0	0.227	42.5	LOS C	2.0	13.9	0.73	0.72	0.73	36.3
Appro	bach		617	0.0	617	0.0	0.363	26.8	LOS B	3.8	26.4	0.56	0.61	0.56	43.2
All Ve	hicles		2369	0.0	2369	0.0	0.691	33.2	LOS C	14.5	101.5	0.77	0.73	0.77	38.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Created: Wednesday, 9 August 2023 12:20:14 PM

Project: X:\23009 Riverstone East SAP\07 Modelling Files\Model\23009-Riverstone Sid v9.1 - 230728.sip9

USER REPORT FOR SITE

Project: 23009-Riverstone Sid v9.1 - 230913 Updates Output produced by SIDRA INTERSECTION Version: 9.1.3.210

W Site: 15v [15. Guntawong Rd - Cudgegong Rd - Convert to Roundabout (Site Folder: 10-Year Future AM)]

8am-9am Site Category: Proposed Design Roundabout

Vehic	cle Mo	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Cudo	gegong R	۲d												
1	L2	All MCs	153	2.1	153	2.1	0.223	5.3	LOS A	1.5	11.0	0.52	0.57	0.52	54.0
3	R2	All MCs	85	3.7	85	3.7	0.223	10.3	LOS A	1.5	11.0	0.52	0.57	0.52	53.5
Appro	ach		238	2.7	238	2.7	0.223	7.1	LOS A	1.5	11.0	0.52	0.57	0.52	53.8
East:	Gunta	wong Rd	- E												
4	L2	All MCs	27	0.0	27	0.0	0.283	7.2	LOS A	1.9	13.8	0.70	0.62	0.70	53.8
5	T1	All MCs	217	2.4	217	2.4	0.283	7.5	LOS A	1.9	13.8	0.70	0.62	0.70	52.5
Appro	ach		244	2.2	244	2.2	0.283	7.5	LOS A	1.9	13.8	0.70	0.62	0.70	52.7
West:	Gunta	awong Ro	ł												
11	T1	All MCs	371	3.1	371	3.1	0.596	5.0	LOS A	6.7	48.1	0.49	0.52	0.49	52.1
12	R2	All MCs	458	1.6	458	1.6	0.596	9.6	LOS A	6.7	48.1	0.49	0.52	0.49	53.0
Appro	ach		828	2.3	828	2.3	0.596	7.5	LOS A	6.7	48.1	0.49	0.52	0.49	52.6
All Ve	hicles		1311	2.3	1311	2.3	0.596	7.4	LOS A	6.7	48.1	0.53	0.55	0.53	52.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

W Site: 16v [16. Guntawong Rd - Worcester Rd - Convert to Roundabout (Site Folder: 10-Year Future AM)]

8am-9am Site Category: Proposed Design Roundabout

Vehic	cle Mo	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total I veh/h	lows HV]	FI	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Wor	cester Rd													
1	L2	All MCs	28	7.4	28	7.4	0.038	4.7	LOS A	0.2	1.6	0.34	0.53	0.34	55.6
3	R2	All MCs	16	6.7	16	6.7	0.038	9.6	LOS A	0.2	1.6	0.34	0.53	0.34	55.0
Appro	ach		44	7.1	44	7.1	0.038	6.5	LOS A	0.2	1.6	0.34	0.53	0.34	55.4
East:	Gunta	wong Rd													
4	L2	All MCs	7	0.0	7	0.0	0.118	4.4	LOS A	0.7	4.8	0.29	0.42	0.29	56.1
5	T1	All MCs	139	2.3	139	2.3	0.118	4.7	LOS A	0.7	4.8	0.29	0.42	0.29	53.7
Appro	ach		146	2.2	146	2.2	0.118	4.7	LOS A	0.7	4.8	0.29	0.42	0.29	53.9
West:	Gunta	awong Ro	k												
11	T1	All MCs	307	3.8	307	3.8	0.260	4.2	LOS A	1.9	13.6	0.12	0.46	0.12	53.7
12	R2	All MCs	102	3.1	102	3.1	0.260	8.8	LOS A	1.9	13.6	0.12	0.46	0.12	55.8
Appro	ach		409	3.6	409	3.6	0.260	5.3	LOS A	1.9	13.6	0.12	0.46	0.12	54.5
All Ve	hicles		600	3.5	600	3.5	0.260	5.2	LOS A	1.9	13.6	0.18	0.46	0.18	54.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

W Site: 17 [17. Guntawong Rd - Tallawong Rd - Upgrade to roundabout (Site Folder: 10-Year Future AM)]

8am-9am Site Category: Proposed Design Roundabout

Vehi	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Talla	wong Rd													
1	L2	All MCs	140	6.0	140	6.0	0.328	5.8	LOS A	2.2	15.9	0.57	0.61	0.57	47.1
2	T1	All MCs	44	0.0	44	0.0	0.328	5.8	LOS A	2.2	15.9	0.57	0.61	0.57	48.9
3	R2	All MCs	149	5.6	149	5.6	0.328	10.6	LOS A	2.2	15.9	0.57	0.61	0.57	48.0
Appro	bach		334	5.0	334	5.0	0.328	8.0	LOS A	2.2	15.9	0.57	0.61	0.57	47.8
East:	Gunta	wong Rd	- E												
4	L2	All MCs	168	1.3	168	1.3	0.471	7.7	LOS A	3.5	25.2	0.77	0.69	0.79	48.5
5	T1	All MCs	203	3.1	203	3.1	0.471	8.0	LOS A	3.5	25.2	0.77	0.69	0.79	51.4
6	R2	All MCs	39	0.0	39	0.0	0.471	12.5	LOS A	3.5	25.2	0.77	0.69	0.79	51.2
Appro	bach		411	2.1	411	2.1	0.471	8.3	LOS A	3.5	25.2	0.77	0.69	0.79	50.3
North	: Talla	wong Rd	- N												
7	L2	All MCs	13	0.0	13	0.0	0.264	10.8	LOS A	1.9	13.1	0.89	0.78	0.89	49.2
8	T1	All MCs	89	0.0	89	0.0	0.264	11.0	LOS A	1.9	13.1	0.89	0.78	0.89	45.4
9	R2	All MCs	45	0.0	45	0.0	0.264	15.6	LOS B	1.9	13.1	0.89	0.78	0.89	47.8
Appro	bach		147	0.0	147	0.0	0.264	12.4	LOS A	1.9	13.1	0.89	0.78	0.89	46.6
West	Gunta	awong Ro	1 - W												
10	L2	All MCs	23	0.0	23	0.0	0.669	6.5	LOS A	7.0	50.4	0.72	0.63	0.76	50.1
11	T1	All MCs	389	2.7	389	2.7	0.669	6.7	LOS A	7.0	50.4	0.72	0.63	0.76	50.7
12	R2	All MCs	358	4.7	358	4.7	0.669	11.4	LOS A	7.0	50.4	0.72	0.63	0.76	45.2
Appro	bach		771	3.6	771	3.6	0.669	8.9	LOS A	7.0	50.4	0.72	0.63	0.76	48.6
All Ve	hicles		1662	3.2	1662	3.2	0.669	8.9	LOS A	7.0	50.4	0.72	0.66	0.74	48.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

W Site: 18 [18. Guntawong Rd - Clarke St (Site Folder: 10-Year Future AM)]

8am-9am Site Category: Proposed Design Roundabout

Vehio	cle Mo	ovement	t Perfo	orma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Clarl	ke St - S													
2	T1	All MCs	138	0.0	138	0.0	0.339	6.2	LOS A	2.2	15.6	0.60	0.64	0.60	50.0
3	R2	All MCs	206	0.0	206	0.0	0.339	10.8	LOS A	2.2	15.6	0.60	0.64	0.60	49.8
Appro	ach		344	0.0	344	0.0	0.339	9.0	LOS A	2.2	15.6	0.60	0.64	0.60	49.8
East:	Gunta	wong Rd	- E												
4	L2	All MCs	58	0.0	58	0.0	0.350	5.1	LOS A	2.5	17.7	0.50	0.61	0.50	49.9
6	R2	All MCs	344	4.3	344	4.3	0.350	10.0	LOS A	2.5	17.7	0.50	0.61	0.50	47.8
Appro	ach		402	3.7	402	3.7	0.350	9.3	LOS A	2.5	17.7	0.50	0.61	0.50	48.1
North	: Clark	ke St - N													
7	L2	All MCs	546	5.0	546	5.0	0.631	5.8	LOS A	6.1	43.8	0.67	0.56	0.67	50.6
8	T1	All MCs	201	0.0	201	0.0	0.631	5.8	LOS A	6.1	43.8	0.67	0.56	0.67	51.8
Appro	bach		747	3.7	747	3.7	0.631	5.8	LOS A	6.1	43.8	0.67	0.56	0.67	50.9
All Ve	hicles		1494	2.8	1494	2.8	0.631	7.5	LOS A	6.1	43.8	0.61	0.59	0.61	49.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

W Site: 19 [19. Clarke St - Riverstone Rd (Site Folder: 10-Year Future AM)]

8am-9am Site Category: Proposed Design Roundabout

Vehi	cle M	ovement	t Perform	ance										
Mov ID	Turn	Mov Class	Demane Flow [Total HV veh/h %	s F	rrival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of ueue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Clarl	ke St - S												
1	L2	All MCs	234 0.0	234	0.0	0.348	4.2	LOS A	2.6	18.6	0.29	0.43	0.29	51.0
2	T1	All MCs	249 6.8	3 249	6.8	0.348	4.5	LOS A	2.6	18.6	0.29	0.43	0.29	55.1
3	R2	All MCs	2 50.0) 2	50.0	0.348	9.8	LOS A	2.6	18.6	0.29	0.43	0.29	51.5
Appro	bach		485 3.	7 485	3.7	0.348	4.4	LOS A	2.6	18.6	0.29	0.43	0.29	53.7
East:	Rivers	stone Rd	- E											
4	L2	All MCs	3 66.	7 3	66.7	0.010	11.3	LOS A	0.1	0.5	0.73	0.65	0.73	48.1
5	T1	All MCs	1 0.0) 1	0.0	0.010	8.4	LOS A	0.1	0.5	0.73	0.65	0.73	47.6
6	R2	All MCs	1 0.0) 1	0.0	0.010	13.0	LOS A	0.1	0.5	0.73	0.65	0.73	51.7
Appro	bach		5 40.0) 5	40.0	0.010	11.1	LOS A	0.1	0.5	0.73	0.65	0.73	48.9
North	: Clark	ke St - N												
7	L2	All MCs	13 8.3	3 13	8.3	0.479	6.0	LOS A	3.6	26.6	0.61	0.56	0.61	53.7
8	T1	All MCs	439 5.	5 439	5.5	0.479	6.1	LOS A	3.6	26.6	0.61	0.56	0.61	53.5
9	R2	All MCs	64 9.8	3 64	9.8	0.479	10.8	LOS A	3.6	26.6	0.61	0.56	0.61	50.7
Appro	bach		516 6.	516	6.1	0.479	6.6	LOS A	3.6	26.6	0.61	0.56	0.61	53.2
West	River	stone Rd	- W											
10	L2	All MCs	93 11.4	4 93	11.4	0.325	5.8	LOS A	2.0	14.6	0.51	0.62	0.51	50.6
11	T1	All MCs	1 0.0) 1	0.0	0.325	5.6	LOS A	2.0	14.6	0.51	0.62	0.51	49.2
12	R2	All MCs	259 1.2	2 259	1.2	0.325	10.3	LOS A	2.0	14.6	0.51	0.62	0.51	46.5
Appro	bach		353 3.9	9 353	3.9	0.325	9.1	LOS A	2.0	14.6	0.51	0.62	0.51	47.9
All Ve	hicles		1359 4.8	3 1359	4.8	0.479	6.5	LOS A	3.6	26.6	0.47	0.53	0.47	52.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

V Site: 15v [15. Guntawong Rd - Cudgegong Rd - Convert to Roundabout (Site Folder: 10-Year Future PM)]

5pm-6pm Site Category: Proposed Design Roundabout

Vehic	cle M	ovemen	t Perfo	rma	nce	_									
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Cud	gegong R	Rd												
1	L2	All MCs	305	0.3	305	0.3	0.467	7.8	LOS A	3.7	26.0	0.80	0.69	0.81	53.2
3	R2	All MCs	96	1.1	96	1.1	0.467	12.7	LOS A	3.7	26.0	0.80	0.69	0.81	52.8
Appro	ach		401	0.5	401	0.5	0.467	9.0	LOS A	3.7	26.0	0.80	0.69	0.81	53.1
East:	Gunta	wong Rd													
4	L2	All MCs	17	6.3	17	6.3	0.422	5.8	LOS A	3.3	23.4	0.58	0.51	0.58	54.0
5	T1	All MCs	462	0.5	462	0.5	0.422	5.8	LOS A	3.3	23.4	0.58	0.51	0.58	53.0
Appro	ach		479	0.7	479	0.7	0.422	5.8	LOS A	3.3	23.4	0.58	0.51	0.58	53.1
West:	Gunt	awong Ro	b												
11	T1	All MCs	234	1.8	234	1.8	0.343	4.8	LOS A	2.9	20.5	0.40	0.51	0.40	52.6
12	R2	All MCs	219	1.0	219	1.0	0.343	9.4	LOS A	2.9	20.5	0.40	0.51	0.40	53.3
Appro	ach		453	1.4	453	1.4	0.343	7.0	LOS A	2.9	20.5	0.40	0.51	0.40	53.0
All Ve	hicles		1333	0.9	1333	0.9	0.467	7.2	LOS A	3.7	26.0	0.58	0.57	0.59	53.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

W Site: 16v [16. Guntawong Rd - Worcester Rd - Convert to Roundabout (Site Folder: 10-Year Future PM)]

5pm-6pm Site Category: Proposed Design Roundabout

Vehic	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Wor	cester Rd													
1	L2	All MCs	78	0.0	78	0.0	0.085	4.9	LOS A	0.5	3.4	0.39	0.53	0.39	55.9
3	R2	All MCs	20	0.0	20	0.0	0.085	9.7	LOS A	0.5	3.4	0.39	0.53	0.39	55.4
Appro	ach		98	0.0	98	0.0	0.085	5.9	LOS A	0.5	3.4	0.39	0.53	0.39	55.8
East:	Gunta	wong Rd													
4	L2	All MCs	6	0.0	6	0.0	0.141	4.2	LOS A	0.8	5.9	0.24	0.40	0.24	56.2
5	T1	All MCs	182	2.3	182	2.3	0.141	4.5	LOS A	0.8	5.9	0.24	0.40	0.24	54.0
Appro	ach		188	2.2	188	2.2	0.141	4.5	LOS A	0.8	5.9	0.24	0.40	0.24	54.1
West:	Gunt	awong Ro	ł												
11	T1	All MCs	256	2.5	256	2.5	0.209	4.2	LOS A	1.5	10.4	0.13	0.45	0.13	53.8
12	R2	All MCs	67	0.0	67	0.0	0.209	8.8	LOS A	1.5	10.4	0.13	0.45	0.13	55.9
Appro	ach		323	2.0	323	2.0	0.209	5.1	LOS A	1.5	10.4	0.13	0.45	0.13	54.5
All Ve	hicles		609	1.7	609	1.7	0.209	5.0	LOS A	1.5	10.4	0.20	0.45	0.20	54.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

W Site: 17 [17. Guntawong Rd - Tallawong Rd - Upgrade to roundabout (Site Folder: 10-Year Future PM)]

5pm-6pm Site Category: Proposed Design Roundabout

Vehi	cle M	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Talla	wong Rd	- S												
1	L2	All MCs	255	1.7	255	1.7	0.583	8.5	LOS A	5.4	38.3	0.80	0.75	0.91	45.4
2	T1	All MCs	93	0.0	93	0.0	0.583	8.6	LOS A	5.4	38.3	0.80	0.75	0.91	47.1
3	R2	All MCs	194	2.2	194	2.2	0.583	13.4	LOS A	5.4	38.3	0.80	0.75	0.91	46.5
Appro	bach		541	1.6	541	1.6	0.583	10.3	LOS A	5.4	38.3	0.80	0.75	0.91	46.1
East:	Gunta	wong Rd	- E												
4	L2	All MCs	87	0.0	87	0.0	0.439	6.0	LOS A	3.1	22.0	0.62	0.58	0.62	49.4
5	T1	All MCs	335	1.3	335	1.3	0.439	6.2	LOS A	3.1	22.0	0.62	0.58	0.62	52.1
6	R2	All MCs	40	0.0	40	0.0	0.439	10.8	LOS A	3.1	22.0	0.62	0.58	0.62	51.8
Appro	bach		462	0.9	462	0.9	0.439	6.6	LOS A	3.1	22.0	0.62	0.58	0.62	51.7
North	: Talla	wong Rd	- N												
7	L2	All MCs	18	0.0	18	0.0	0.150	7.5	LOS A	0.9	6.4	0.69	0.70	0.69	50.6
8	T1	All MCs	38	0.0	38	0.0	0.150	7.7	LOS A	0.9	6.4	0.69	0.70	0.69	47.2
9	R2	All MCs	64	0.0	64	0.0	0.150	12.3	LOS A	0.9	6.4	0.69	0.70	0.69	49.2
Appro	bach		120	0.0	120	0.0	0.150	10.1	LOS A	0.9	6.4	0.69	0.70	0.69	48.9
West	Gunta	awong Ro	d - W												
10	L2	All MCs	15	0.0	15	0.0	0.442	6.1	LOS A	3.3	23.3	0.66	0.63	0.66	50.4
11	T1	All MCs	222	0.9	222	0.9	0.442	6.3	LOS A	3.3	23.3	0.66	0.63	0.66	51.0
12	R2	All MCs	211	2.0	211	2.0	0.442	11.0	LOS A	3.3	23.3	0.66	0.63	0.66	45.7
Appro	bach		447	1.4	447	1.4	0.442	8.5	LOS A	3.3	23.3	0.66	0.63	0.66	48.9
All Ve	hicles		1571	1.2	1571	1.2	0.583	8.7	LOS A	5.4	38.3	0.70	0.66	0.74	49.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

W Site: 18 [18. Guntawong Rd - Clarke St (Site Folder: 10-Year Future PM)]

5pm-6pm Site Category: Proposed Design Roundabout

Vehio	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Clarl	ke St - S													
2	T1	All MCs	176	0.0	176	0.0	0.303	7.0	LOS A	2.0	13.9	0.68	0.66	0.68	50.1
3	R2	All MCs	95	0.0	95	0.0	0.303	11.7	LOS A	2.0	13.9	0.68	0.66	0.68	49.9
Appro	ach		271	0.0	271	0.0	0.303	8.7	LOS A	2.0	13.9	0.68	0.66	0.68	50.0
East:	Gunta	wong Rd	- E												
4	L2	All MCs	192	0.0	192	0.0	0.550	5.3	LOS A	4.6	32.5	0.56	0.60	0.56	50.2
6	R2	All MCs	487	1.5	487	1.5	0.550	10.2	LOS A	4.6	32.5	0.56	0.60	0.56	48.2
Appro	bach		679	1.1	679	1.1	0.550	8.8	LOS A	4.6	32.5	0.56	0.60	0.56	48.8
North	: Clark	ke St - N													
7	L2	All MCs	346	2.1	346	2.1	0.393	4.5	LOS A	3.1	21.9	0.36	0.45	0.36	51.9
8	T1	All MCs	187	0.0	187	0.0	0.393	4.6	LOS A	3.1	21.9	0.36	0.45	0.36	53.0
Appro	bach		534	1.4	534	1.4	0.393	4.5	LOS A	3.1	21.9	0.36	0.45	0.36	52.3
All Ve	hicles		1483	1.0	1483	1.0	0.550	7.2	LOS A	4.6	32.5	0.51	0.56	0.51	50.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

W Site: 19 [19. Clarke St - Riverstone Rd (Site Folder: 10-Year Future PM)]

5pm-6pm Site Category: Proposed Design Roundabout

Vehi	cle M	ovement	l Perfo	orma	nce										
Mov ID	Turn	Mov Class	F			rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Clarl	ke St - S													
1	L2	All MCs	291	1.1	291	1.1	0.476	4.5	LOS A	3.9	27.8	0.36	0.44	0.36	50.4
2	T1	All MCs	374	1.4	374	1.4	0.476	4.7	LOS A	3.9	27.8	0.36	0.44	0.36	54.9
3	R2	All MCs	1	0.0	1	0.0	0.476	9.3	LOS A	3.9	27.8	0.36	0.44	0.36	53.1
Appro	bach		665	1.3	665	1.3	0.476	4.6	LOS A	3.9	27.8	0.36	0.44	0.36	53.6
East:	Rivers	stone Rd ·	·Е												
4	L2	All MCs	6	0.0	6	0.0	0.011	6.9	LOS A	0.1	0.4	0.62	0.60	0.62	51.9
5	T1	All MCs	1	0.0	1	0.0	0.011	7.1	LOS A	0.1	0.4	0.62	0.60	0.62	50.2
6	R2	All MCs	2	0.0	2	0.0	0.011	11.7	LOS A	0.1	0.4	0.62	0.60	0.62	53.4
Appro	bach		9	0.0	9	0.0	0.011	8.0	LOS A	0.1	0.4	0.62	0.60	0.62	52.2
North	: Clark	ke St - N													
7	L2	All MCs	1	0.0	1	0.0	0.370	4.8	LOS A	2.6	18.7	0.45	0.50	0.45	54.3
8	T1	All MCs	369	1.7	369	1.7	0.370	5.1	LOS A	2.6	18.7	0.45	0.50	0.45	54.1
9	R2	All MCs	85	1.2	85	1.2	0.370	9.7	LOS A	2.6	18.7	0.45	0.50	0.45	51.9
Appro	bach		456	1.6	456	1.6	0.370	5.9	LOS A	2.6	18.7	0.45	0.50	0.45	53.7
West	River	stone Rd	- W												
10	L2	All MCs	41	0.0	41	0.0	0.202	5.9	LOS A	1.2	8.2	0.55	0.66	0.55	50.7
11	T1	All MCs	1	100. 0	1	100. 0	0.202	9.2	LOS A	1.2	8.2	0.55	0.66	0.55	46.5
12	R2	All MCs	160	0.0	160	0.0	0.202	10.7	LOS A	1.2	8.2	0.55	0.66	0.55	46.3
Appro	bach		202	0.5	202	0.5	0.202	9.8	LOS A	1.2	8.2	0.55	0.66	0.55	47.4
All Ve	hicles		1333	1.3	1333	1.3	0.476	5.9	LOS A	3.9	27.8	0.42	0.49	0.42	52.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Created: Thursday, 14 September 2023 9:39:26 AM

Project: X:\23009 Riverstone East SAP\07 Modelling Files\Model\23009-Riverstone Sid v9.1 - 230913 Updates.sip9

USER REPORT FOR NETWORK SITE

Project: 23009-Riverstone Sid v9.1 - 230728 Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site: TCS 1280 [1. Garfield Rd E - Windsor Rd - Terry Rd (Site Folder: 20-Year Future AM)]

Network: 21 [AM - Windsor Corridor - Int 5 upgraded (Network Folder: 20-Year Future Conditions)]

8am-9am

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehio	cle M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	Dem Fl [Total] veh/h	lows HV]	FI		Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Win	dsor Rd													
4	L2	All MCs	539	5.7	<mark>466</mark>	5.9	0.373	20.5	LOS B	6.6	48.4	0.52	0.79	0.52	58.2
5	T1	All MCs	1425	5.8	<mark>1234</mark>	6.0	0.959	58.7	LOS E	26.7	196.4	1.00	1.09	1.27	33.7
6	R2	All MCs	352	5.1	<mark>304</mark>	5.3	* 1.125	179.1	LOS F	17.7	129.4	1.00	1.39	2.14	18.7
Appro			2316	5.7	<mark>2004</mark>	5.9	1.125	68.1	LOS E	26.7	196.4	0.89	1.07	1.23	32.6
East:															
7	L2	All MCs	368	3.4	368	3.4	0.585	37.0	LOS C	9.1	65.3	0.86	0.92	0.86	27.6
8	T1	All MCs	558	2.8	558	2.8	*0.961	80.8	LOS F	12.7	91.1	1.00	1.17	1.47	27.1
9	R2	All MCs	149	16.9	149	16.9	0.441	38.2	LOS C	4.0	31.7	0.91	0.78	0.91	27.6
Appro			1076	5.0	1076	5.0	0.961	59.8	LOS E	12.7	91.1	0.94	1.03	1.18	27.2
North	: Wind	lsor Rd													
10	L2	All MCs	135	16.4	<mark>133</mark> ⁻	16.2	0.122	27.8	LOS B	1.4	11.1	0.40	0.69	0.40	60.5
11	T1	All MCs	1328	6.8	<mark>1314</mark>	6.7	* 1.099	143.9	LOS F	43.6	322.5	1.00	1.54	1.87	21.6
12	R2	All MCs	394	5.9	<mark>390</mark>	5.8	0.975	98.7	LOS F	9.2	67.6	1.00	1.11	1.58	33.5
Appro				7.3	<mark>1837</mark>	7.2	1.099	125.9	LOS F	43.6	322.5	0.96	1.39	1.70	25.6
West:		eld Rd E													
1	L2	All MCs	484	2.6	484	2.6	0.635	26.3	LOS B	11.5	82.6	0.81	0.83	0.81	32.1
2	T1	All MCs	326	4.5	326	4.5	0.580	52.5	LOS D	5.6	40.6	0.98	0.80	0.98	32.3
3	R2	All MCs	622	4.2	622	4.2	* 1.061	123.2	LOS F	16.5	119.8	1.00	1.36	1.85	10.8
Appro	bach		1433	3.7	1433	3.7	1.061	74.4	LOS F	16.5	119.8	0.93	1.06	1.30	18.8
All Ve	hicles		6681	5.6	<mark>6350</mark>	5.9	1.125	84.8	LOS F	43.6	322.5	0.93	1.15	1.37	26.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: 4 [4. Windsor Rd - Junction Rd (Site Folder: 20-Year Future AM)]

Network: 21 [AM - Windsor Corridor - Int 5 upgraded (Network Folder: 20-Year Future Conditions)]

8am-9am Site Category: Proposed Design Give-Way (Two-Way)

Vehi	cle M	oveme	nt Perfor	manc	е									
Mov ID	Turn	Mov Class	Dema Flov [Total H veh/h	NS		s Satn	Aver. Delay sec	Level of Service	Aver. Bacl [Veh. veh	k Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	nEast:	Windso	r Rd											
3	L2	All MCs	40 21	1.1	<mark>37</mark> 21.4	0.033	8.7	LOS A	0.0	0.4	0.28	0.60	0.28	55.3
4	T1	All MCs	1923 6	6.3 <mark>17</mark>	<mark>'93</mark> 6.4	0.479	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	79.5
Appro	oach		1963 6	6.6 <mark>18</mark>	<mark>330</mark> 6.7	0.479	0.3	LOS A	0.0	0.4	0.01	0.01	0.01	78.7
North	West:	Windso	r Rd											
5	T1	All MCs	1820 5	5.1 18	320 5.1	0.825	17.2	LOS B	8.1	59.0	0.14	0.14	0.50	39.7
6	R2	All MCs	257 7	7.8 2	257 7.8	2.328	1245.3	LOS F	37.9	283.0	1.00	4.20	17.38	2.5
Appro	oach		2077 5	5.4 20)77 5.4	2.328	169.1	NA	37.9	283.0	0.25	0.64	2.59	8.3
South	nWest	Junctio	n Rd - S											
1	L2	All MCs	164 16	6.7 1	64 16.7	0.447	18.9	LOS B	0.8	6.7	0.80	1.02	1.14	42.9
2	R2	All MCs	61 12	2.1	61 12.1	1.869	919.5	LOS F	8.0	61.6	1.00	2.32	6.74	2.0
Appro	oach		225 15	5.4 2	225 15.4	1.869	263.0	LOS F	8.0	61.6	0.85	1.37	2.66	9.0
All Ve	ehicles	;	4265 6	6.5 <mark>41</mark>	<mark>32</mark> 6.7	2.328	99.5	NA	37.9	283.0	0.17	0.40	1.45	17.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: TCS 4805 [5. Windsor Rd - Mt Carmel Dr - Upgrade to 4-way signal (Site Folder: 20-Year Future AM)]

Network: 21 [AM - Windsor Corridor - Int 5 upgraded (Network Folder: 20-Year Future Conditions)]

8am-9am

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: AII Phases Input Phase Sequence: A, B*, C*, D, D1*, D2*, E, F1*, F2*, G, G1*, G2* Output Phase Sequence: A, C*, D, E, F2*, G Reference Phase: Phase A (* Variable Phase)

Vehi	cle M	ovemer	nt Perfo	orma	ince										
Mov		Mov	Dem	and	Ar	rival	Deg.		Level of	Aver. Back	Of Queue		Eff.	Aver.	Aver.
ID		Class		ows HV 1	FI Total]	ows HV 1	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m			- ,	km/h
South	nEast:	Windsor	Rd												
21	L2	All MCs	155	0.0	<mark>140</mark>	0.0	0.093	9.1	LOS A	0.8	5.4	0.25	0.66	0.25	63.6
5	T1	All MCs	1435	6.7	<mark>1302</mark>	6.9	*0.902	45.3	LOS D	32.3	239.7	0.96	0.87	1.02	43.7
6	R2	All MCs	398	7.1	<mark>361</mark>	7.3	*0.726	38.2	LOS C	3.7	27.8	1.00	0.84	1.09	46.6
Appro	bach		1987	6.3	<mark>1803</mark>	6.4	0.902	41.1	LOS C	32.3	239.7	0.91	0.85	0.97	45.8
North	East:	Mt Carm	el Dr												
7	L2	All MCs	399	7.9	399	7.9	0.668	33.4	LOS C	11.1	83.2	0.89	0.84	0.89	18.4
25	T1	All MCs	246	0.0	246	0.0	0.842	67.3	LOS E	4.9	34.0	1.00	0.95	1.30	24.3
9	R2	All MCs	212	1.5	212	1.5	*0.863	75.4	LOS F	4.3	30.2	1.00	0.96	1.36	10.2
Appro	bach		857	4.1	857	4.1	0.863	53.5	LOS D	11.1	83.2	0.95	0.90	1.12	18.5
North	West:	Windsor	r Rd												
10	L2	All MCs	456	0.2	<mark>450</mark>	0.2	0.360	16.5	LOS B	6.9	48.5	0.52	0.75	0.52	46.5
11	T1	All MCs	1383	7.5	<mark>1363</mark>	7.4	0.711	37.4	LOS C	14.2	105.4	0.93	0.82	0.93	29.2
29	R2	All MCs	128	0.0	<mark>127</mark>	0.0	0.582	71.1	LOS F	2.4	16.6	1.00	0.78	1.04	28.1
Appro	bach		1967	5.4	<mark>1939</mark>	5.3	0.711	34.8	LOS C	14.2	105.4	0.84	0.80	0.84	32.5
South	West	Mt Carr	nel Dr												
30	L2	All MCs	104	0.0	104	0.0	0.155	34.9	LOS C	2.2	15.5	0.66	0.71	0.66	32.7
31	T1	All MCs	598	0.0	598	0.0	* 0.894	66.5	LOS E	12.3	86.3	1.00	1.05	1.27	24.9
32	R2	All MCs	142	0.0	142	0.0	0.656	55.3	LOS D	4.2	29.6	1.00	0.81	1.04	24.5
Appro	bach		844	0.0	844	0.0	0.894	60.8	LOS E	12.3	86.3	0.96	0.97	1.16	25.4
All Ve	hicles		5656	4.7	<mark>5443</mark>	4.9	0.902	43.8	LOS D	32.3	239.7	0.90	0.86	0.98	34.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green. Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3986 [6. Windsor Rd - Nelson Rd (Site Folder: 20-Year Future AM)]

Network: 21 [AM - Windsor Corridor - Int 5 upgraded (Network Folder: 20-Year Future Conditions)]

8am-9am

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 110 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehio	cle M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	Fl [Total			rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Bacl [Veh. veh	k Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Win	dsor Rd	VCH/H	70	VCII/II	70	V/C	300		VCII		_			N11/11
4	L2		5	40.0	54	40.9	0.005	22.9	LOS B	0.1	0.5	0.37	0.65	0.37	41.4
5	T1	All MCs	1744	6.0	<mark>1560</mark>	6.3	0.937	42.1	LOS C	28.6	211.0	0.95	1.01	1.15	39.0
6	R2	All MCs	237	0.9	<mark>211</mark>	0.9	* 1.027	97.5	LOS F	7.9	55.9	1.00	1.24	1.81	24.7
Appro	ach		1986	5.5	<mark>1776</mark>	5.7	1.027	48.6	LOS D	28.6	211.0	0.96	1.03	1.22	35.3
East:	Nelso														
7	L2	All MCs	276	3.4	276	3.4	0.735	64.6	LOS E	8.9	64.2	0.99	0.87	1.05	22.5
8	T1	All MCs	1	0.0	1	0.0	*0.735	75.9	LOS F	8.9	64.2	0.99	0.87	1.05	25.6
9	R2	All MCs	517	4.7	517	4.7	* 1.327	348.2	LOS F	40.6	295.8	1.00	2.06	3.14	4.9
Appro	ach		794	4.2	794	4.2	1.327	249.3	LOS F	40.6	295.8	1.00	1.64	2.41	6.7
North		lsor Rd													
10	L2	All MCs	482	3.3	<mark>451</mark>	3.2	0.333	17.0	LOS B	2.4	17.4	0.31	0.70	0.31	61.1
11	T1	All MCs	2095	5.6	<mark>1958</mark>	5.4	* 1.211	210.1	LOS F	75.9	556.1	1.00	2.06	2.49	12.8
12	R2	All MCs	2	50.0	24	49.4	0.012	46.6	LOS D	0.0	0.3	0.87	0.62	0.87	38.2
Appro	ach		2579	5.2	<mark>2410</mark>	5.1	1.211	173.8	LOS F	75.9	556.1	0.87	1.80	2.08	16.3
West:															
1	L2	All MCs	4	25.0	42	25.0	0.020	40.7	LOS C	0.1	1.2	0.85	0.61	0.85	17.9
2	T1	All MCs	1	0.0	1	0.0	0.020	49.2	LOS D	0.1	1.2	0.85	0.61	0.85	27.0
3	R2	All MCs	1	0.0	1	0.0	0.004	31.4	LOS C	0.0	0.2	0.87	0.54	0.87	20.1
Appro	bach		6	16.7	6	16.7	0.020	40.6	LOS C	0.1	1.2	0.86	0.60	0.86	20.1
All Ve	hicles		5365	5.2	<mark>4987</mark>	5.6	1.327	141.1	LOS F	75.9	556.1	0.92	1.50	1.83	17.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: 7v [7. Windsor Rd - Guntawong Rd -Convert to T-junction signal (Site Folder: 20-Year Future AM)]

Network: 21 [AM - Windsor Corridor - Int 5 upgraded (Network Folder: 20-Year Future Conditions)]

8am-9am

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: ABCD Input Phase Sequence: A, B, C, D* Output Phase Sequence: A, B, C Reference Phase: Phase A (* Variable Phase)

Vehi	cle M	ovemei	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class		ows		rival lows	Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h		veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
South	: Win	dsor Rd													
4	L2	All MCs	308	0.0	<mark>267</mark>	0.0	0.805	8.2	LOS A	17.3	125.7	0.74	0.76	0.74	51.5
5	T1	All MCs	1618	6.6	<mark>1408</mark>	7.0	0.805	20.1	LOS B	31.3	232.2	0.79	0.75	0.79	42.9
Appro	bach		1926	5.5	<mark>1675</mark>	5.9	0.805	18.2	LOS B	31.3	232.2	0.78	0.75	0.78	44.9
North	: Wind	lsor Rd													
11	T1	All MCs	2043	6.3	<mark>1631</mark>	6.1	* 0.885	24.0	LOS B	31.3	230.8	0.83	0.80	0.88	46.8
12	R2	All MCs	6	0.0	<mark>5</mark>	0.0	0.068	85.5	LOS F	0.2	1.6	0.99	0.65	0.99	29.2
Appro	bach		2049	6.3	<mark>1636</mark>	6.1	0.885	24.2	LOS B	31.3	230.8	0.83	0.80	0.88	46.6
West:	Gunt	awong F	Rd												
1	L2	All MCs	259	1.6	259	1.6	0.533	30.7	LOS C	8.3	59.0	0.81	0.82	0.81	28.9
3	R2	All MCs	257	0.0	257	0.0	*0.644	71.6	LOS F	5.8	40.7	0.99	0.83	1.01	17.2
Appro	bach		516	0.8	516	0.8	0.644	51.1	LOS D	8.3	59.0	0.90	0.82	0.91	21.5
All Ve	hicles		4492	5.3	<mark>3827</mark>	6.2	0.885	25.2	LOS B	31.3	232.2	0.82	0.78	0.84	41.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3985 [8. Windsor Rd - Annangrove Rd (Site Folder: 20-Year Future AM)]

Network: 21 [AM - Windsor Corridor - Int 5 upgraded (Network Folder: 20-Year Future Conditions)]

8am-9am

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 105 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ABDEG Input Phase Sequence: A, B, D, E, G Output Phase Sequence: A, B, D, E, G Reference Phase: Phase A

Vehic	cle M	ovemer	nt Perfo	orma	ance										
Mov ID	Turn	Mov Class	Dem Fl	and ows		rival ows	Deg. Satn	Aver. Delay	Level of Service	Aver. Back	Of Queue	e Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
		01400	[Total I	HV]	[Total	HV]			0011100	[Veh.	Dist]	Quo	Rate	Cycles	
South	· \\/im	door Dd	veh/h	%	ven/n	%	v/c	sec	_	veh	m	_	_	_	km/h
		dsor Rd													
4	L2	All MCs	1	0.0	1	0.0	0.001	9.5	LOS A	0.0	0.0	0.18	0.61	0.18	64.5
5	T1	All MCs	1465	7.0	<mark>1381</mark>	7.0	0.733	14.9	LOS B	14.4	106.9	0.72	0.65	0.72	62.6
6	R2	All MCs	513	4.9	<mark>483</mark>	4.9	* 1.375	254.7	LOS F	26.6	194.2	1.00	1.44	2.64	18.1
Appro	ach		1979	6.5	<mark>1865</mark>	6.5	1.375	77.1	LOS F	26.6	194.2	0.79	0.86	1.22	33.2
East:	Annar	ngrove R	d												
7	L2	All	264	6.8	264	6.8	0.409	24.6	LOS B	5.0	37.3	0.73	0.77	0.73	39.5
8	T1	MCs All MCs	1	0.0	1	0.0	0.028	61.8	LOS E	0.0	0.2	1.00	0.57	1.00	33.2
9	R2	All MCs	577	0.9	577	0.9	* 1.464	466.6	LOS F	57.6	406.6	1.00	2.13	3.80	5.0
Appro	ach		842	2.8	842	2.8	1.464	327.4	LOS F	57.6	406.6	0.92	1.70	2.83	6.9
North:	Wind	lsor Rd													
10	L2	All MCs	797	3.3	<mark>677</mark>	3.0	0.577	26.7	LOS B	7.7	55.4	0.52	0.76	0.52	54.3
11	T1	All MCs	1914	5.4	<mark>1622</mark>	5.0	* 1.144	192.9	LOS F	54.7	399.1	1.00	1.82	2.27	8.6
12	R2	All MCs	6	0.0	<mark>5</mark>	0.0	0.020	53.7	LOS D	0.1	0.5	0.78	0.66	0.78	45.4
Appro	ach		2717	4.8	<mark>2304</mark>	4.4	1.144	143.7	LOS F	54.7	399.1	0.86	1.51	1.75	15.0
West:	Rous	e Hill Es	tate Acc	ess											
1	L2	All MCs	6	0.0	6	0.0	0.051	53.1	LOS D	0.2	1.5	0.94	0.66	0.94	22.0
2	T1	All MCs	1	0.0	1	0.0	0.051	59.0	LOS E	0.2	1.5	0.94	0.66	0.94	34.5
3	R2	All MCs	1	0.0	1	0.0	0.003	35.2	LOS C	0.0	0.2	0.82	0.58	0.82	28.6
Appro	ach		8	0.0	8	0.0	0.051	51.6	LOS D	0.2	1.5	0.93	0.65	0.93	24.9
All Ve	hicles		5546	5.1	<mark>5020</mark>	5.6	1.464	149.6	LOS F	57.6	406.6	0.84	1.30	1.73	17.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3789 [9. Windsor Rd - Rouse Rd -Mile End Rd (Site Folder: 20-Year Future AM)]

Network: 21 [AM - Windsor Corridor - Int 5 upgraded (Network Folder: 20-Year Future Conditions)]

8am-9am

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehio	cle M	ovemer	nt Perfo	orma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total l veh/h	ows HV]	FI	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Wine	dsor Rd													
1	L2	All MCs	365	3.5	<mark>339</mark>	3.5	0.247	38.2	LOS C	3.7	26.4	0.39	0.64	0.39	54.9
2	T1	All MCs	1605	7.1	<mark>1490</mark>	7.2	0.955	82.7	LOS F	39.6	294.6	1.00	1.13	1.23	19.4
3	R2	All MCs	415	6.1	<mark>385</mark>	6.1	* 1.262	332.5	LOS F	16.9	124.5	1.00	1.40	2.44	5.9
Appro			2385	6.4	<mark>2214</mark>	6.4	1.262	119.3	LOS F	39.6	294.6	0.91	1.10	1.31	16.0
East:		End Rd													
4	L2	MCs	420	4.5	420	4.5	1.038	106.3	LOS F	22.0	160.3	1.00	1.27	1.61	3.1
5	T1	All MCs	317	1.0	317	1.0	0.680	67.1	LOS E	7.7	54.1	0.99	0.81	1.00	24.9
6	R2	All MCs	220	1.9	220	1.9	0.972	83.5	LOS F	9.9	70.8	1.00	1.05	1.47	5.0
Appro			957	2.8	957	2.8	1.038	88.0	LOS F	22.0	160.3	1.00	1.06	1.37	9.9
North		lsor Rd													
7	L2	All MCs	67	6.3	<mark>52</mark>	6.0	0.046	21.0	LOS B	0.8	5.8	0.39	0.69	0.39	58.1
8	T1	All MCs	2019	5.9	<mark>1562</mark>	5.7	* 1.197	194.0	LOS F	73.9	543.1	1.00	1.82	2.12	17.2
9	R2	All MCs	89	8.2	<mark>69</mark>	8.0	0.335	42.0	LOS C	1.7	13.0	0.96	0.75	0.96	47.8
Appro		o Dd	2176	6.0	<mark>1683</mark>	5.8	1.197	182.4	LOS F	73.9	543.1	0.98	1.74	2.02	18.3
West:															
10	L2	All MCs	177		177		0.363	71.3	LOS F	6.0	42.5	0.86	0.79	0.86	25.5
11	T1	All MCs	376	0.3	376	0.3	* 1.351	411.0	LOS F	37.2	260.9	1.00	2.01	2.78	6.1
12	R2	All MCs	303	4.5	303	4.5	*2.097	1068.5	LOS F	44.3	322.2	1.00	2.21	4.41	2.1
Appro	bach		856	2.0	856	2.0	2.097	573.7	LOS F	44.3	322.2	0.97	1.83	2.96	4.0
All Ve	hicles		6374	5.1	<mark>5710</mark>	5.7	2.097	200.8	LOS F	73.9	543.1	0.95	1.39	1.78	11.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green. Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

8am-9am

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ABCD Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D Reference Phase: Phase A

Vehi	cle M	ovemei	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]	FI	rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	h: Win	dsor Rd													
2	T1	All MCs	2062	6.3	<mark>1891</mark>	6.3	0.727	18.2	LOS B	28.2	208.5	0.77	0.50	0.77	42.6
3	R2	All MCs	376	2.5	<mark>345</mark>	2.5	*0.710	61.8	LOS E	5.7	40.8	1.00	0.82	1.04	23.3
Appro	oach		2438	5.7	<mark>2235</mark>	5.8	0.727	25.0	LOS B	28.2	208.5	0.81	0.55	0.81	36.2
East:	Comr	nercial F	۲d												
4	L2	All MCs	481	2.8	481	2.8	0.930	92.6	LOS F	19.4	139.3	1.00	1.12	1.24	8.4
6	R2	All MCs	317	6.3	317	6.3	*0.787	86.8	LOS F	7.3	54.0	1.00	0.91	1.15	8.2
Appro	oach		798	4.2	798	4.2	0.930	90.3	LOS F	19.4	139.3	1.00	1.04	1.21	8.3
North	: Wind	lsor Rd													
7	L2	All MCs	211	2.5	<mark>143</mark>	2.4	1.026	72.8	LOS F	42.1	308.6	1.00	1.21	1.44	20.7
8	T1	All MCs	2366	6.3	<mark>1600</mark>	6.1	* 1.026	62.9	LOS E	56.5	416.1	1.00	1.24	1.37	19.8
Appro	oach		2577	6.0	<mark>1743</mark>	5.8	1.026	63.7	LOS E	56.5	416.1	1.00	1.24	1.37	19.9
All Ve	ehicles		5813	5.6	<mark>4776</mark>	6.9	1.026	50.0	LOS D	56.5	416.1	0.91	0.88	1.08	21.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3557 [11. Windsor Rd - Schofields Rd - Rouse Hill Dr (Site Folder: 20-Year Future AM)]

Network: 21 [AM - Windsor Corridor - Int 5 upgraded (Network Folder: 20-Year Future Conditions)]

8am-9am

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehi	cle M	ovemer	nt P <u>erf</u> c	orma	ince										
Mov ID	Turn	Mov Class	Dem Fl [Total]	ows	FI	rival ows HV]	Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
Ocuth	10/6-	da en Did	veh/h	%	veh/h	%	v/c	sec	-	veh	m				km/h
		dsor Rd													
1	L2	All MCs	639	2.0	639		0.350	29.8	LOS C	8.0	57.0	0.65	0.78	0.65	52.6
2	T1	All MCs	1725	6.9	1725	6.9	* 1.117	147.3	LOS F	46.4	344.1	0.99	1.37	1.63	9.4
3	R2	All MCs	77 3	30.1	773	30.1	0.162	68.3	LOS E	1.4	12.4	0.90	0.74	0.90	23.3
Appro			2441	6.3	2441	6.3	1.117	114.1	LOS F	46.4	344.1	0.90	1.20	1.35	18.9
East:	Rouse	e Hill Dr													
4	L2	MCs	183 ⁻	14.9	183	14.9	0.296	37.1	LOS C	5.3	41.9	0.74	0.76	0.74	28.6
5	T1	All MCs	195	6.5	195	6.5	0.311	55.1	LOS D	3.6	26.6	0.92	0.73	0.92	40.4
6	R2	All MCs	95	1.1	95	1.1	0.167	65.7	LOS E	1.4	9.7	0.93	0.72	0.93	11.2
Appro	bach		473	8.7	473	8.7	0.311	50.2	LOS D	5.3	41.9	0.85	0.74	0.85	32.5
North	: Wind	lsor Rd													
7	L2	All MCs	92	0.0	<mark>66</mark>	0.0	0.289	90.0	LOS F	2.6	18.1	0.96	0.76	0.96	20.0
8	T1	All MCs	2126	6.6	<mark>1524</mark>	6.2	0.948	76.7	LOS F	26.2	193.0	1.00	1.07	1.23	27.7
9	R2	All MCs	633	3.5	<mark>454</mark>	3.3	0.807	83.1	LOS F	9.9	71.5	1.00	0.91	1.07	36.1
Appro	bach		2851	5.7	<mark>2044</mark>	5.4	0.948	78.5	LOS F	26.2	193.0	1.00	1.02	1.18	30.3
West	Scho	fields Ro	ł												
10	L2	All MCs	656	3.2	656	3.2	* 1.124	214.4	LOS F	47.6	342.3	1.00	1.30	1.89	19.2
11	T1	All MCs	429	1.0	429	1.0	0.650	82.4	LOS F	8.5	59.9	0.99	0.82	0.99	39.1
12	R2	All MCs	783	2.7	783	2.7	* 1.774	795.4	LOS F	52.8	378.0	1.00	2.19	3.86	7.4
Appro	bach		1868	2.5	1868	2.5	1.774	427.6	LOS F	52.8	378.0	1.00	1.56	2.51	11.8
All Ve	hicles		7633	5.3	<mark>6827</mark>	5.9	1.774	184.8	LOS F	52.8	378.0	0.95	1.21	1.58	16.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green. Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Created: Wednesday, 9 August 2023 12:22:19 PM

Project: X:\23009 Riverstone East SAP\07 Modelling Files\Model\23009-Riverstone Sid v9.1 - 230728.sip9

USER REPORT FOR NETWORK SITE

Project: 23009-Riverstone Sid v9.1 - 230728 Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site: TCS 1280 [1. Garfield Rd E - Windsor Rd - Terry Rd (Site Folder: 20-Year Future PM)]

Network: 22 [PM - Windsor Corridor - Int 5 upgraded (Network Folder: 20-Year Future Conditions)]

Template: Movement Summary

5pm-6pm

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehi	cle M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	[Total I	ows HV]	Fl [Total]		Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
veh/h % veh/h % v/c sec veh m South: Windsor Rd													-	_	km/h
4	L2	All	707	2.0	<mark>532</mark>	2.6	0.411	10.0	LOS B	7.2	51.7	0.52	0.80	0.52	58.6
4	LZ	MCs	101	2.0	<u> 332</u>	2.0	0.411	18.0	LU3 B	1.2	51.7	0.52	0.60	0.52	0.06
5	T1	All MCs	1776	3.3	<mark>1334</mark>	3.0	0.792	7.2	LOS A	11.0	79.2	0.50	0.45	0.50	67.8
6	R2	All MCs	511	0.6	<mark>384</mark>	0.6	* 1.134	169.0	LOS F	23.5	165.0	1.00	1.39	2.15	18.3
Appro	bach		2994	2.7	<mark>2250</mark>	2.5	1.134	37.4	LOS C	23.5	165.0	0.59	0.69	0.79	41.4
East: Terry Rd															
7	L2	All MCs	391	2.7	391	2.7	0.652	39.5	LOS C	9.8	70.5	0.90	0.95	0.90	26.6
8	T1	All MCs	509	0.6	509	0.6	* 1.198	248.3	LOS F	19.2	135.4	1.00	1.64	2.48	12.1
9	R2	All MCs	181	7.6	181	7.6	0.851	56.6	LOS E	6.2	46.4	1.00	0.93	1.26	21.8
Appro	bach		1081	2.5	1081	2.5	1.198	140.8	LOS F	19.2	135.4	0.96	1.27	1.70	14.9
North	: Winc	lsor Rd													
10	L2	All MCs	218	3.4	218	3.4	0.193	28.7	LOS C	3.0	21.4	0.47	0.70	0.47	59.2
11	T1	All MCs	1507	2.0	1507	2.0	* 1.011	92.4	LOS F	40.8	290.8	1.00	1.33	1.48	30.1
12	R2	All MCs	481	2.6	481	2.6	0.916	82.7	LOS F	10.2	72.8	1.00	1.03	1.37	37.6
Appro	Approach		2206	2.3	<mark>2205</mark>	2.3	1.011	84.0	LOS F	40.8	290.8	0.95	1.20	1.35	34.0
West	Garfi	eld Rd E													
1	L2	All MCs	202	2.1	202	2.1	0.241	13.6	LOS A	2.8	20.0	0.48	0.70	0.48	41.3
2	T1	All MCs	482	1.5	482	1.5	1.164	219.2	LOS F	17.1	121.2	1.00	1.56	2.34	13.1
3	R2	All MCs	425	3.2	425	3.2	* 1.024	95.4	LOS F	8.9	63.8	1.00	1.29	1.74	12.5
Appro	Approach			2.3	1109	2.3	1.164	134.3	LOS F	17.1	121.2	0.91	1.30	1.77	14.1
All Ve	All Vehicles		7391	2.5	<mark>6646</mark>	2.8	1.198	85.9	LOS F	40.8	290.8	0.82	1.06	1.29	27.1

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: 4 [4. Windsor Rd - Junction Rd (Site Folder: 20-Year Future PM)]

Network: 22 [PM - Windsor Corridor - Int 5 upgraded (Network Folder: 20-Year Future Conditions)]

5pm-6pm Site Category: Proposed Design Give-Way (Two-Way)

Vehi	cle M	ovemei	nt Perfo	orma	ance										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	nEast:	Windso	r Rd												
3	L2	All MCs	28	14.8	<mark>24</mark>	13.7	0.019	8.3	LOS A	0.0	0.2	0.25	0.59	0.25	55.7
4	T1	All MCs	2073	2.9	<mark>1753</mark>	2.7	0.457	0.1	LOS A	0.0	0.0	0.00	0.00	0.00	79.6
Appro	oach		2101	3.1	<mark>1776</mark>	2.8	0.457	0.2	LOS A	0.0	0.2	0.00	0.01	0.00	79.1
North	West:	Windso	r Rd												
5	T1	All MCs	1903	1.6	1903	1.6	0.798	17.9	LOS B	10.7	76.1	0.19	0.18	0.72	38.9
6	R2	All MCs	220	7.7	220	7.7	1.602	592.0	LOS F	22.2	165.6	1.00	3.54	13.73	5.0
Appro	oach		2123	2.2	2123	2.2	1.602	77.4	NA	22.2	165.6	0.27	0.53	2.06	15.9
South	nWest	Junctio	n Rd												
1	L2	All MCs	242	3.0	242	3.0	0.510	16.6	LOS B	1.2	8.4	0.78	1.04	1.23	46.0
2	R2	All MCs	62	5.1	62	5.1	1.020	195.3	LOS F	2.3	16.8	1.00	1.44	2.92	8.5
Appro	oach		304	3.5	304	3.5	1.020	53.1	LOS D	2.3	16.8	0.82	1.12	1.57	28.7
All Ve	ehicles		4528	2.7	<mark>4204</mark>	2.9	1.602	43.0	NA	22.2	165.6	0.20	0.35	1.16	30.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Site: TCS 4805 [5. Windsor Rd - Mt Carmel Dr - Upgrade to 4-way signal (Site Folder: 20-Year Future PM)]

Network: 22 [PM - Windsor Corridor - Int 5 upgraded (Network Folder: 20-Year Future Conditions)]

5pm-6pm

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: AII Phases Input Phase Sequence: A, B*, C*, D, D1*, D2*, E, F1*, F2*, G, G1*, G2* Output Phase Sequence: A, C*, D, D1*, E, G Reference Phase: Phase A (* Variable Phase)

Vehi	cle M	ovemer	nt Perfo	orma	ance										
Mov ID	Turn	Mov Class	Dem	and ows		rival lows	Deg. Satn	Aver. Delav	Level of Service	Aver. Back	Of Queue	e Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
שו		Class			[Total			Delay	Service	[Veh.	Dist]	Que	Rate	Cycles	Sheen
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	nEast:	Windsor	Rd												
21	L2	All MCs	99	0.0	<mark>79</mark>	0.0	0.057	10.8	LOS A	0.7	5.0	0.29	0.66	0.29	62.4
5	T1	All MCs	1663	3.9	<mark>1323</mark>	3.7	* 0.911	45.0	LOS D	39.0	281.4	0.90	0.86	0.95	44.9
6	R2	All MCs	302	2.4	<mark>240</mark>	2.4	0.662	46.2	LOS D	3.1	22.0	1.00	0.80	1.04	43.4
Appro	bach		2064	3.5	<mark>1642</mark>	3.3	0.911	43.5	LOS D	39.0	281.4	0.89	0.84	0.93	45.5
North	East:	Mt Carm	el Dr												
7	L2	All MCs	538	2.2	538	2.2	0.567	19.2	LOS B	12.6	89.6	0.62	0.77	0.62	26.2
25	T1	All MCs	501	0.0	501	0.0	0.535	53.4	LOS D	9.8	68.4	0.93	0.78	0.93	27.7
9	R2	All MCs	468	0.4	468	0.4	*0.903	88.1	LOS F	11.8	82.9	1.00	1.01	1.27	8.9
Appro	bach		1507	0.9	1507	0.9	0.903	52.0	LOS D	12.6	89.6	0.84	0.85	0.92	19.6
North	West:	Windsor	r Rd												
10	L2	All MCs	196	0.0	196	0.0	0.139	13.2	LOS A	2.4	17.1	0.35	0.69	0.35	49.7
11	T1	All MCs	1651	2.5	<mark>1650</mark>	2.5	0.737	42.8	LOS D	20.9	149.4	0.92	0.83	0.92	26.9
29	R2	All MCs	172	0.0	171	0.0	*0.861	94.0	LOS F	4.3	29.8	1.00	0.91	1.32	23.7
Appro	bach		2018	2.0	<mark>2017</mark>	2.0	0.861	44.3	LOS D	20.9	149.4	0.87	0.82	0.90	27.9
South	West	Mt Carr	nel Dr												
30	L2	All MCs	72	0.0	72	0.0	0.119	49.4	LOS D	2.0	13.9	0.68	0.71	0.68	28.6
31	T1	All MCs	522	0.0	522	0.0	*0.889	84.1	LOS F	13.1	91.5	1.00	1.02	1.23	22.0
32	R2	A 11	55	0.0	55	0.0	0.553	95.5	LOS F	2.5	17.7	1.00	0.77	1.01	16.4
Appro	bach		648	0.0	648	0.0	0.889	81.2	LOS F	13.1	91.5	0.96	0.97	1.15	22.0
All Ve	hicles		6238	2.0	<mark>5814</mark>	2.2	0.911	50.2	LOS D	39.0	281.4	0.88	0.85	0.94	30.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green. Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3986 [6. Windsor Rd - Nelson Rd (Site Folder: 20-Year Future PM)]

Network: 22 [PM - Windsor Corridor - Int 5 upgraded (Network Folder: 20-Year Future Conditions)]

5pm-6pm

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ABDEG Input Phase Sequence: A, B, D, E, G Output Phase Sequence: A, B, D, E, G Reference Phase: Phase A

Vehi	cle M	ovemei	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	Dem FI	and lows		rival lows	Deg. Satn	Aver. Delay	Level of Service	Aver. Back	Of Queue	e Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
		01033	[Total	HV]	[Total			Delay	CEIVICE	[Veh.	Dist]	Que	Rate	Cycles	
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South		dsor Rd													
4	L2	All MCs	6	50.0	<mark>5</mark> ·	47.3	0.005	16.4	LOS B	0.0	0.4	0.28	0.64	0.28	42.5
5	T1	All MCs	2460	2.8	<mark>1925</mark>	2.5	0.938	21.8	LOS B	30.4	217.1	0.75	0.78	0.86	51.4
6	R2	All MCs	240	3.1	<mark>188</mark>	2.8	*0.705	40.8	LOS C	4.0	29.0	1.00	0.83	1.06	43.8
Appro	bach		2706	2.9	<mark>2117</mark>	2.6	0.938	23.5	LOS B	30.4	217.1	0.77	0.79	0.87	50.1
East:	Nelso	n Rd													
7	L2	All MCs	274	1.5	274	1.5	*0.752	67.4	LOS E	6.9	49.1	1.00	0.95	1.06	23.9
8	T1	All	1	0.0	1	0.0	* 0.752	116.8	LOS F	6.9	49.1	1.00	0.95	1.06	26.6
9	R2	All MCs	558	2.1	558	2.1	* 1.633	635.6	LOS F	62.9	448.0	1.00	2.39	3.97	2.9
Appro	bach	moo	833	1.9	833	1.9	1.633	448.2	LOS F	62.9	448.0	1.00	1.92	3.01	4.0
North	: Wind	lsor Rd													
10	L2	All MCs	532	0.8	<mark>526</mark>	0.8	0.653	53.6	LOS D	11.6	81.7	0.81	0.93	0.81	47.0
11	T1	All MCs	1901	2.4	<mark>1881</mark>	2.4	* 1.189	212.4	LOS F	71.5	511.1	1.00	1.90	2.26	13.2
12	R2	All MCs	4	0.0	4	0.0	0.029	74.7	LOS F	0.1	0.5	0.92	0.64	0.92	36.7
Appro	bach	moo	2437	2.1	<mark>2411</mark>	2.1	1.189	177.5	LOS F	71.5	511.1	0.96	1.69	1.94	17.0
West:	Nelso	on Rd													
1	L2	All MCs	7	0.0	7	0.0	0.037	51.0	LOS D	0.3	1.9	0.90	0.64	0.90	16.4
2	T1	All MCs	1	0.0	1	0.0	0.037	57.1	LOS E	0.3	1.9	0.90	0.64	0.90	25.2
3	R2	All MCs	4	25.0	4	25.0	0.017	38.0	LOS C	0.1	1.0	0.88	0.59	0.88	18.8
Appro	bach		13	8.3	13	8.3	0.037	47.2	LOS D	0.3	1.9	0.90	0.62	0.90	18.0
All Ve	hicles		5988	2.4	<mark>5373</mark>	2.7	1.633	158.5	LOS F	71.5	511.1	0.89	1.36	1.68	15.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: 7v [7. Windsor Rd - Guntawong Rd -Convert to T-junction signal (Site Folder: 20-Year Future PM)]

Network: 22 [PM - Windsor Corridor - Int 5 upgraded (Network Folder: 20-Year Future Conditions)]

5pm-6pm

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Isolated Cycle Time = 150 seconds (Site Practical Cycle Time)

Timings based on settings in the Site Phasing & Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: ABCD Input Phase Sequence: A, B, C, D* Output Phase Sequence: A, B, C Reference Phase: Phase A (* Variable Phase)

Vehi	cle M	ovemei	nt Perfo	orma	nce										
Mov ID	Turn	Mov Class		ows HV]	FI Total	rival ows HV]	Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	n: Wine	dsor Rd													
4	L2	All MCs	224	0.9	<mark>160</mark>	0.9	0.800	8.3	LOS A	17.5	125.4	0.76	0.76	0.76	49.6
5	T1	All MCs	2045	3.7	<mark>1456</mark>	3.6	0.800	20.6	LOS B	31.5	227.6	0.79	0.75	0.79	42.3
Appro	bach		2269	3.4	<mark>1616</mark>	3.3	0.800	19.3	LOS B	31.5	227.6	0.79	0.75	0.79	43.4
North	: Wind	lsor Rd													
11	T1	All MCs	2142	2.7	<mark>1829</mark>	2.7	* 1.021	84.4	LOS F	58.7	420.0	1.00	1.31	1.38	22.9
12	R2	All MCs	15	0.0	<mark>13</mark>	0.0	0.169	86.7	LOS F	0.6	4.0	0.99	0.68	0.99	29.0
Appro	bach		2157	2.6	<mark>1842</mark>	2.7	1.021	84.4	LOS F	58.7	420.0	1.00	1.30	1.38	22.9
West:	Gunt	awong F	۲d												
1	L2	All MCs	238	0.9	238	0.9	0.481	29.6	LOS C	7.3	51.4	0.77	0.81	0.77	29.5
3	R2	All MCs	214	0.0	214	0.0	*0.562	70.3	LOS E	4.6	32.0	0.97	0.80	0.97	17.4
Appro	bach		452	0.5	452	0.5	0.562	48.8	LOS D	7.3	51.4	0.87	0.81	0.87	22.2
All Ve	hicles		4878	2.8	<mark>3910</mark>	3.5	1.021	53.4	LOS D	58.7	420.0	0.90	1.01	1.08	27.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3985 [8. Windsor Rd - Annangrove Rd (Site Folder: 20-Year Future PM)]

Network: 22 [PM - Windsor Corridor - Int 5 upgraded (Network Folder: 20-Year Future Conditions)]

5pm-6pm

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 105 seconds (Site User-Given Phase Times)

Timings based on settings in the Site Phasing & Timing dialog Phase Times specified by the user Phase Sequence: ABDEG Input Phase Sequence: A, B, D, E, G Output Phase Sequence: A, B, D, E, G Reference Phase: Phase A

Vehic	le M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	Dem	and ows		rival lows	Deg. Satn	Aver. Delay	Level of Service	Aver. Back	Of Queue	e Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
		Class	[Total I	HV]	[Total	HV]		Delay	Service	[Veh.	Dist]	Que	Rate	Cycles	
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South		dsor Rd													
4	L2	All MCs	2	0.0	1	0.0	0.001	13.5	LOS A	0.0	0.0	0.16	0.62	0.16	64.6
5	T1	All MCs	2179	2.8	<mark>1547</mark>	2.6	0.889	19.2	LOS B	20.2	144.7	0.80	0.78	0.88	60.2
6	R2	All MCs	377	4.7	<mark>267</mark>	4.5	*0.758	36.2	LOS C	3.2	23.4	0.99	0.82	1.08	51.0
Appro	ach		2558	3.0	<mark>1816</mark>	2.9	0.889	21.7	LOS B	20.2	144.7	0.83	0.79	0.91	57.9
East: /	Annar	ngrove R	d												
7	L2	All MCs	414	2.3	414	2.3	0.487	24.1	LOS B	7.1	50.9	0.69	0.77	0.69	42.0
8	T1	All MCs	2	0.0	2	0.0	0.011	52.3	LOS D	0.1	0.4	0.92	0.57	0.92	36.7
9	R2	All MCs	566	2.6	566	2.6	* 1.389	391.0	LOS F	49.1	351.1	1.00	2.22	3.51	5.8
Appro	ach	WC3	982	2.5	982	2.5	1.389	235.7	LOS F	49.1	351.1	0.87	1.61	2.31	9.1
North:	Wind	lsor Rd													
10	L2	All MCs	703	0.7	<mark>603</mark>	0.7	0.506	26.9	LOS B	8.2	57.5	0.58	0.77	0.58	52.7
11	T1	All MCs	1746	2.7	<mark>1498</mark>	2.6	* 1.238	238.5	LOS F	56.0	400.5	1.00	2.00	2.68	6.9
12	R2	All MCs	3	0.0	3	0.0	0.014	48.7	LOS D	0.0	0.3	0.92	0.62	0.92	41.2
Appro	ach	moo	2453	2.1	<mark>2104</mark>	2.1	1.238	177.6	LOS F	56.0	400.5	0.88	1.64	2.08	12.2
West:	Rous	e Hill Es	tate Acc	ess											
1	L2	All MCs	4	0.0	4	0.0	0.020	44.5	LOS D	0.1	1.0	0.87	0.64	0.87	24.5
2	T1	All MCs	1	0.0	1	0.0	*0.020	49.0	LOS D	0.1	1.0	0.87	0.64	0.87	37.0
3	R2	All MCs	1	0.0	1	0.0	0.003	33.2	LOS C	0.0	0.2	0.79	0.58	0.79	29.5
Appro	ach	WO3	6	0.0	6	0.0	0.020	43.3	LOS D	0.1	1.0	0.86	0.63	0.86	28.2
All Vel	hicles		5999	2.6	<mark>4909</mark>	3.1	1.389	131.4	LOS F	56.0	400.5	0.86	1.32	1.69	18.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3789 [9. Windsor Rd - Rouse Rd -Mile End Rd (Site Folder: 20-Year Future PM)]

Network: 22 [PM - Windsor Corridor - Int 5 upgraded (Network Folder: 20-Year Future Conditions)]

5pm-6pm

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehi	cle M	ovemer	nt P <u>erfo</u>	orma	anc <u>e</u>										
Mov ID	Turn	Mov Class	[Total I	ows HV]	Fl [Total]		Deg. Satn	Delay	Level of Service	Aver. Back [Veh.	Dist]	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
South	n: Win	dsor Rd	veh/h	%	veh/h	%	v/c	sec	_	veh	m	_	_	_	km/h
1	L2	All MCs	417	0.5	<mark>286</mark>	0.5	0.213	29.0	LOS C	2.6	18.6	0.33	0.69	0.33	55.2
2	T1	All MCs	2218	3.3	<mark>1521</mark>	3.2	1.041	106.2	LOS F	47.5	341.6	1.00	1.35	1.48	15.1
3	R2	All MCs	361	3.5	<mark>248</mark>	3.4	*0.735	86.4	LOS F	5.3	38.3	1.00	0.84	1.09	19.5
Appro	bach		2996	2.9	<mark>2055</mark>	2.9	1.041	93.1	LOS F	47.5	341.6	0.91	1.20	1.27	19.3
East:	Mile E	End Rd													
4	L2	All MCs	382	2.5	382	2.5	0.940	81.4	LOS F	15.6	111.2	1.00	1.17	1.31	5.0
5	T1	All MCs	319	0.3	319	0.3	0.568	57.2	LOS E	7.4	51.6	0.96	0.78	0.96	26.1
6	R2	All MCs	224	0.9	224	0.9	0.839	54.7	LOS D	8.0	56.4	1.00	0.90	1.18	7.3
Appro			925	1.4	925	1.4	0.940	66.6	LOS E	15.6	111.2	0.98	0.97	1.15	13.9
North	: Wind	lsor Rd													
7	L2	MCs	140	3.8	<mark>105</mark>	3.9	0.097	19.5	LOS B	1.8	13.2	0.45	0.71	0.45	56.4
8	T1	All MCs	1766	3.3	<mark>1330</mark>	3.4	* 1.162	160.2	LOS F	55.9	402.6	1.00	1.63	1.94	19.7
9	R2	All MCs	162	1.3	<mark>122</mark>	1.3	0.537	43.0	LOS D	2.8	19.6	0.98	0.78	0.98	47.5
Appro	bach		2068	3.2	<mark>1558</mark>	3.2	1.162	141.5	LOS F	55.9	402.6	0.96	1.50	1.77	22.2
West	: Rous	e Rd													
10	L2	All MCs	171	1.2	171	1.2	0.302	45.1	LOS D	5.4	38.2	0.81	0.78	0.81	27.2
11	T1	All MCs	344	0.3	344	0.3	* 1.073	158.6	LOS F	22.3	156.2	1.00	1.41	1.76	13.4
12	R2	All MCs	271	1.6	271	1.6	* 1.363	395.4	LOS F	24.6	174.7	1.00	1.75	2.85	5.1
Appro	bach		785	0.9	785	0.9	1.363	215.6	LOS F	24.6	174.7	0.96	1.39	1.93	9.4
All Ve	hicles	;	6775	2.5	<mark>5323</mark>	3.2	1.363	120.7	LOS F	55.9	402.6	0.94	1.28	1.49	17.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green. Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3788 [10. Windsor Rd - Commercial Rd (Site Folder: 20-Year Future PM)]

Network: 22 [PM - Windsor Corridor - Int 5 upgraded (Network Folder: 20-Year Future Conditions)]

5pm-6pm

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ABCD Input Phase Sequence: A, B, C, D Output Phase Sequence: A, B, C, D Reference Phase: Phase D

Vehi	cle M	ovemei	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Wine	dsor Rd													
2	T1	All MCs	2628	2.5	<mark>1770</mark>	2.4	0.809	16.7	LOS B	29.3	209.4	0.84	0.61	0.84	39.2
3	R2	All MCs	494	0.4	<mark>333</mark>	0.4	*0.642	45.4	LOS D	5.0	35.4	0.98	0.80	0.98	25.7
Appro	bach		3122	2.2	<mark>2103</mark>	2.0	0.809	21.2	LOS B	29.3	209.4	0.86	0.64	0.86	35.2
East:	Comn	nercial F	۲d												
4	L2	All MCs	428	2.0	428	2.0	0.754	59.1	LOS E	13.1	93.5	0.92	0.94	0.93	12.6
6	R2	All MCs	424	5.0	424	5.0	* 1.188	265.8	LOS F	18.3	133.6	1.00	1.51	2.27	2.7
Appro	bach		853	3.5	853	3.5	1.188	162.0	LOS F	18.3	133.6	0.96	1.23	1.59	4.4
North	: Winc	dsor Rd													
7	L2	All MCs	303	1.0	<mark>218</mark>	1.0	1.031	73.6	LOS F	44.6	319.1	1.00	1.22	1.44	21.2
8	T1	All MCs	2178	3.0	<mark>1569</mark>	3.0	* 1.031	62.4	LOS E	56.2	403.4	1.00	1.26	1.38	20.1
Appro	bach		2481	2.8	<mark>1788</mark>	2.8	1.031	63.8	LOS E	56.2	403.4	1.00	1.25	1.39	20.2
All Ve	hicles		6456	2.6	<mark>4743</mark>	3.5	1.188	62.6	LOS E	56.2	403.4	0.93	0.98	1.19	17.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 3557 [11. Windsor Rd - Schofields Rd - Rouse Hill Dr (Site Folder: 20-Year Future PM)]

Network: 22 [PM - Windsor Corridor - Int 5 upgraded (Network Folder: 20-Year Future Conditions)]

5pm-6pm

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 140 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehi	cle M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	Dem Fl [Total] veh/h	ows HV]	FI	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Wine	dsor Rd													
1	L2	All MCs	1039	1.2	1039	1.2	0.806	54.8	LOS D	19.1	135.0	0.92	0.88	0.95	47.3
2	T1	All MCs	2358	2.5	2358	2.5	* 1.897	700.2	LOS F	118.0	843.6	1.00	2.53	3.56	2.1
3	R2	All MCs	993	25.5	992	25.5	0.213	75.3	LOS F	1.8	15.8	0.92	0.75	0.92	23.0
Appro			3496	2.7	3496	2.7	1.897	490.7	LOS F	118.0	843.6	0.97	1.99	2.71	5.8
East:	Rouse	e Hill Dr													
4	L2	All MCs	173	6.7	173	6.7	0.245	33.6	LOS C	4.7	34.7	0.70	0.74	0.70	30.7
5	T1	All MCs	393	4.8	393	4.8	0.552	55.4	LOS D	7.5	54.6	0.96	0.79	0.96	40.3
6	R2	All MCs	234	0.9	234	0.9	0.626	73.5	LOS F	3.5	24.7	0.99	0.80	1.03	10.2
Appro			799	4.1	799	4.1	0.626	56.0	LOS D	7.5	54.6	0.91	0.79	0.92	31.9
		lsor Rd													
7	L2	All MCs	220		166	0.5	0.886	96.1	LOS F	7.7	54.2	1.00	0.94	1.30	17.4
8	T1	All MCs All	1793		1349	3.8	0.820	56.8	LOS E	19.9	144.0	0.98	0.91	1.04	32.0
9	R2	MCs	637		479	0.8	*0.877	65.9	LOS E	10.3	72.7	1.00	0.90	1.14	40.0
Appro		fields Ro	2649	2.9	<mark>1994</mark>	2.8	0.886	62.2	LOS E	19.9	144.0	0.98	0.91	1.09	33.5
10	L2	All MCs All	523		523		0.840	68.1	LOS E	21.1	149.7	0.98	0.91	1.05	40.2
11	T1	MCs	469		469		*0.629	89.6	LOS F	9.1	63.9	0.97	0.82	0.97	39.8
12	R2	All MCs	653	2.1	653		* 1.788	836.0	LOS F	44.3	315.7	1.00	2.19	3.89	7.3
Appro	bach		1645	1.5	1645	1.5	1.788	378.8	LOS F	44.3	315.7	0.98	1.39	2.15	13.4
All Ve	hicles		8589	2.7	<mark>7934</mark>	2.9	1.897	316.1	LOS F	118.0	843.6	0.97	1.47	2.01	10.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green. Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Created: Wednesday, 9 August 2023 12:22:43 PM

Project: X:\23009 Riverstone East SAP\07 Modelling Files\Model\23009-Riverstone Sid v9.1 - 230728.sip9

USER REPORT FOR NETWORK SITE

Project: 23009-Riverstone Sid v9.1 - 230728 Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site: TCS 4463 [12. Schofields Rd - Tallawong Rd - Ridgeline Dr (Site Folder: 20-Year Future AM)]

Network: 15 [AM - Schofields Corridor (Network Folder: 20-Year Future Conditions)]

Template: Movement Summary

8am-9am

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehi	cle M	ovemer	nt Perfo	orma	ince										
Mov ID		Mov Class	Dem	and ows	Ar Fl	rival lows HV]	Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Ridg	Jeline Dr													
1	L2	All MCs	298	0.0	298	0.0	0.691	64.0	LOS E	9.3	65.2	0.93	0.84	0.93	23.3
2	T1	All MCs	302	0.3	302	0.3	1.169	243.6	LOS F	21.9	153.8	1.00	1.81	2.35	9.3
3	R2	All MCs	274	1.5	274	1.5	* 1.497	536.4	LOS F	29.9	212.3	1.00	2.34	3.59	3.4
Appro	ach		874	0.6	874	0.6	1.497	274.1	LOS F	29.9	212.3	0.98	1.65	2.26	7.1
East:	Schot	ields Rd													
4	L2	All MCs	287	0.7	<mark>278</mark>	0.7	0.228	30.9	LOS C	4.4	31.1	0.53	0.71	0.53	43.7
5	T1	All MCs	1368	3.3	<mark>1326</mark>	3.3	* 0.952	70.3	LOS E	29.8	214.3	1.00	1.14	1.24	17.5
6	R2	All MCs	142	0.0	<mark>138</mark>	0.0	0.747	74.2	LOS F	5.2	36.4	1.00	0.87	1.07	20.2
Appro	ach		1798	2.6	<mark>1742</mark>	2.7	0.952	64.3	LOS E	29.8	214.3	0.93	1.05	1.11	21.4
North	: Talla	wong Ro	ł												
7	L2	All MCs	186	1.7	186	1.7	0.314	48.8	LOS D	5.0	35.9	0.80	0.78	0.80	13.4
8	T1	All MCs	364	2.6	364	2.6	1.102	176.3	LOS F	22.9	163.9	1.00	1.55	2.01	11.8
9	R2	All MCs	459	6.2	459	6.2	1.296	356.5	LOS F	20.3	149.4	1.00	1.78	2.90	2.0
Appro	ach		1009	4.1	1009	4.1	1.296	234.7	LOS F	22.9	163.9	0.96	1.51	2.19	5.5
West:	Scho	fields Ro	k												
10	L2	All MCs	647	2.6	<mark>561</mark>	2.6	*0.448	10.3	LOS A	3.9	28.0	0.26	0.71	0.26	53.8
11	T1	All MCs	1419	3.1	<mark>1229</mark>	3.1	0.843	26.3	LOS B	18.9	135.7	0.86	0.81	0.90	42.4
12	R2	All MCs	252	0.4	<mark>218</mark>	0.4	1.189	251.2	LOS F	15.9	111.8	1.00	1.42	2.34	13.9
Appro	ach		2318	2.7	<mark>2008</mark>	2.7	1.189	46.3	LOS D	18.9	135.7	0.71	0.85	0.88	33.5
All Ve	hicles		5999	2.6	<mark>5633</mark>	2.8	1.497	120.9	LOS F	29.9	214.3	0.86	1.15	1.40	15.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site

Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 4511 [13. Schofields Rd -Hambledon Rd - Upgrade to 4-way signal (Site Folder: 20-Year Future AM)]

Network: 15 [AM - Schofields Corridor (Network Folder: 20-Year Future Conditions)]

8am-9am

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: All Phases Input Phase Sequence: A, B*, C*, D, D1*, D2*, E, F1*, F2*, G, G1*, G2* Output Phase Sequence: A, D, E, G, G1* Reference Phase: Phase A (* Variable Phase)

Vehi	cle M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	Dem Fl	and ows		rival ows	Deg. Satn	Aver. Delay	Level of Service	Aver. Back	Of Queue	e Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
		01000	[Total I	HV]	[Total	HV]			0011100	[Veh.	Dist]	Que	Rate	Cycles	
South	. Han	nbledon l	veh/h Rd	%	ven/n	%	v/c	sec	_	veh	m	_	_	_	km/h
1	L2	A 11	385	3.0	385	3.0	0.580	29.1	LOS C	7.7	55.6	0.80	0.87	0.80	41.3
1	LZ	MCs	300	3.0	300	3.0	0.560	29.1	L03 C	1.1	55.0	0.00	0.07	0.00	41.5
2	T1	All MCs	159	0.0	159	0.0	0.819	69.0	LOS E	3.2	22.1	1.00	0.90	1.31	25.1
3	R2	All MCs	435	5.3	435	5.3	* 1.172	227.6	LOS F	31.6	231.6	1.00	1.62	2.31	4.7
Appro	bach		979	3.5	979	3.5	1.172	123.7	LOS F	31.6	231.6	0.92	1.21	1.56	14.7
East:	Schof	ields Rd													
4	L2	All MCs	677	3.1	<mark>630</mark>	3.0	0.434	7.2	LOS A	3.4	24.3	0.17	0.59	0.17	56.6
5	T1	All MCs	1216	3.8	<mark>1131</mark>	3.7	0.860	9.8	LOS A	12.0	86.7	0.60	0.56	0.63	61.8
6	R2	All MCs	159	0.0	<mark>148</mark>	0.0	* 1.069	131.8	LOS F	7.9	55.5	1.00	1.10	1.69	22.4
Appro	bach		2052	3.3	<mark>1909</mark>	3.2	1.069	18.4	LOS B	12.0	86.7	0.49	0.61	0.56	53.3
North	: Road	dName													
7	L2	All MCs	56	0.0	56	0.0	0.149	46.0	LOS D	1.7	11.6	0.84	0.70	0.84	24.3
8	T1	All MCs	205	0.0	205	0.0	* 1.053	130.9	LOS F	5.6	39.2	1.00	1.17	1.97	16.5
9	R2	All MCs	229	0.0	229	0.0	0.297	49.1	LOS D	3.5	24.5	0.89	0.77	0.89	36.7
Appro	bach		491	0.0	491	0.0	1.053	83.0	LOS F	5.6	39.2	0.93	0.93	1.34	25.0
West:	Scho	fields Ro	ł												
10	L2	All MCs	203	0.0	203	0.0	0.161	55.6	LOS D	1.4	9.6	0.25	0.64	0.25	56.1
11	T1	All MCs	1800	2.5	1800	2.5	* 1.159	213.9	LOS F	66.6	475.7	1.00	1.93	2.17	10.9
12	R2	All MCs	527	1.4	527	1.4	1.153	222.2	LOS F	37.0	262.4	1.00	1.49	2.20	13.5
Appro	bach		2531	2.0	2531	2.0	1.159	202.9	LOS F	66.6	475.7	0.94	1.73	2.02	12.8
All Ve	hicles		6052	2.5	<mark>5909</mark>	2.6	1.172	120.2	LOS F	66.6	475.7	0.79	1.22	1.42	20.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green. Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 4474 [14. Schofields Rd -Cudgegong Rd (Site Folder: 20-Year Future AM)]

Network: 15 [AM - Schofields Corridor (Network Folder: 20-Year Future Conditions)]

8am-9am Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ABC Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C Reference Phase: Phase A

Vehi	cle M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Schot	ields Rd													
5	T1	All MCs	1307	2.8	1307	2.8	0.590	34.3	LOS C	21.5	154.3	1.00	0.64	1.00	47.2
6	R2	All MCs	265	4.8	265	4.8	*0.742	67.8	LOS E	5.0	36.3	1.00	0.87	1.14	37.3
Appro	bach		1573	3.1	1573	3.1	0.742	40.0	LOS C	21.5	154.3	1.00	0.67	1.02	44.9
North	: Cudo	gegong F	Rd												
7	L2	All MCs	525	2.2	525	2.2	0.646	40.2	LOS C	12.4	88.8	0.79	0.82	0.79	51.3
9	R2	All MCs	529	2.0	529	2.0	* 1.119	187.9	LOS F	34.9	248.3	1.00	1.45	2.04	4.6
Appro	bach		1055	2.1	1055	2.1	1.119	114.3	LOS F	34.9	248.3	0.89	1.14	1.42	21.6
West	: Scho	fields Rd	I												
10	L2	All MCs	344	5.5	<mark>293</mark>	5.5	0.907	16.8	LOS B	28.0	201.9	1.00	0.95	1.07	27.4
11	T1	All MCs	1502	2.2	<mark>1278</mark>	2.3	* 0.907	59.6	LOS E	28.2	201.9	1.00	0.98	1.08	44.9
Appro	bach		1846	2.9	<mark>1571</mark>	2.9	0.907	51.6	LOS D	28.2	201.9	1.00	0.98	1.08	42.8
All Ve	hicles	i	4474	2.8	<mark>4198</mark>	3.0	1.119	63.0	LOS E	34.9	248.3	0.97	0.90	1.14	37.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Created: Wednesday, 9 August 2023 12:23:37 PM

Project: X:\23009 Riverstone East SAP\07 Modelling Files\Model\23009-Riverstone Sid v9.1 - 230728.sip9

USER REPORT FOR NETWORK SITE

Project: 23009-Riverstone Sid v9.1 - 230728 Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site: TCS 4463 [12. Schofields Rd - Tallawong Rd - Ridgeline Dr (Site Folder: 20-Year Future PM)]

Network: 16 [PM - Schofields Corridor (Network Folder: 20-Year Future Conditions)]

Template: Movement Summary

5pm-6pm

Site Category: Proposed Design Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ADEG Input Phase Sequence: A, D, E, G Output Phase Sequence: A, D, E, G Reference Phase: Phase A

Vehi	cle M	ovemer	nt Perfo	orma	nce										
Mov		Mov	Dem			rival	Deg.	Aver.	Level of	Aver. Back	Of Queue	e Prop.	Eff.	Aver.	Aver.
ID		Class		ows HV/1	FI Total]	OWS H\/ 1	Satn	Delay	Service	[Veh.	Dist]	Que	Stop Rate	No. of Cycles	Speed
			veh/h		veh/h	%	v/c	sec		veh	m		TALC	Cycles	km/h
South	n: Ridg	geline Dr													
1	L2	All MCs	187	0.6	187	0.6	0.316	51.4	LOS D	5.1	35.7	0.80	0.77	0.80	24.7
2	T1	All MCs	249	0.8	249	0.8	0.821	73.8	LOS F	9.4	66.0	1.00	1.00	1.17	24.1
3	R2	All MCs	281	1.1	281	1.1	* 1.533	567.7	LOS F	31.7	223.7	1.00	2.44	3.70	3.2
Appro	bach		718	0.9	718	0.9	1.533	261.3	LOS F	31.7	223.7	0.95	1.51	2.07	7.4
East:	Schot	ields Rd													
4	L2	All MCs	286	0.0	<mark>273</mark>	0.0	0.203	25.4	LOS B	4.3	30.3	0.58	0.65	0.58	44.7
5	T1	All MCs	1584	1.1	<mark>1508</mark>	1.1	* 1.082	146.6	LOS F	44.1	311.7	1.00	1.53	1.72	9.3
6	R2	All MCs	131	1.6	<mark>124</mark>	1.6	0.909	82.1	LOS F	5.1	36.0	1.00	0.97	1.37	19.3
Appro	bach		2001	1.0	<mark>1905</mark>	1.0	1.082	125.1	LOS F	44.1	311.7	0.94	1.37	1.53	12.4
North	: Talla	wong Rd	1												
7	L2	All MCs	129	0.0	129	0.0	0.221	38.5	LOS C	3.4	24.0	0.78	0.76	0.78	13.5
8	T1	All MCs	281	1.1	281	1.1	0.729	51.6	LOS D	9.8	69.0	0.99	0.87	1.04	25.3
9	R2	All MCs	415	4.8	415	4.8	1.206	262.1	LOS F	16.4	119.7	1.00	1.60	2.54	2.6
Appro	bach		825	2.8	825	2.8	1.206	155.3	LOS F	16.4	119.7	0.96	1.22	1.75	7.4
West:	Scho	fields Ro	1												
10	L2	All MCs	698	1.8	<mark>598</mark>	1.8	*0.452	13.3	LOS A	7.5	53.1	0.46	0.74	0.46	51.4
11	T1	All MCs	1443	1.5	<mark>1236</mark>	1.5	0.827	29.8	LOS C	19.0	134.7	0.88	0.83	0.93	40.5
12	R2	All MCs	293	0.4	<mark>251</mark>	0.3	1.823	820.4	LOS F	33.6	236.1	1.00	2.16	4.42	5.0
Appro	bach		2434	1.5	<mark>2085</mark>	1.4	1.823	120.2	LOS F	33.6	236.1	0.78	0.96	1.21	18.7
All Ve	hicles		5978	1.4	<mark>5532</mark>	1.5	1.823	145.4	LOS F	44.1	311.7	0.88	1.21	1.51	12.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site

Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 4511 [13. Schofields Rd -Hambledon Rd - Upgrade to 4-way signal (Site Folder: 20-Year Future PM)]

5pm-6pm

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: AII Phases Input Phase Sequence: A, B*, C*, D, D1*, D2*, E, F1*, F2*, G, G1*, G2* Output Phase Sequence: A, B*, D, D2*, E, G, G2* Reference Phase: Phase A (* Variable Phase)

Vohid	olo M	ovemer	at Dorfe	rma	nco										
Mov		Mov	Dem			rival	Deg.	Avor	Level of	Aver. Back		Dron	Eff.	Aver.	Aver.
ID	Turri	Class		ows		OWS	Satn	Delay	Service	AVEI. DAUK		Que	⊂⊓. Stop	No. of	Speed
			[Total I							[Veh.	Dist]		Rate	Cycles	
			veh/h	%	veh/h	%	v/c	sec		veh	m				km/h
South	: Han	bledon I	Rd												
1	L2	All MCs	460	0.9	460	0.9	0.585	21.5	LOS B	10.7	75.4	0.75	0.81	0.75	45.4
2	T1	All MCs	138	0.0	138	0.0	0.251	57.1	LOS E	2.2	15.7	0.93	0.72	0.93	29.8
3	R2	All MCs	737	2.0	737	2.0	* 1.312	355.9	LOS F	66.5	473.8	1.00	1.96	2.88	3.2
Appro	ach		1335	1.4	1335	1.4	1.312	209.8	LOS F	66.5	473.8	0.91	1.43	1.94	9.2
East:	Schot	ields Rd													
4	L2	All MCs	528	4.2	<mark>466</mark>	4.4	0.340	44.3	LOS D	3.8	27.5	0.31	0.68	0.31	54.5
5	T1	All MCs	1533	3.7	<mark>1352</mark>	3.9	* 1.320	347.3	LOS F	62.6	452.7	1.00	2.22	2.87	12.8
6	R2	All MCs	58	0.0	<mark>51</mark>	0.0	0.207	67.2	LOS E	1.4	10.1	0.80	0.72	0.80	37.8
Appro	ach		2119	3.7	<mark>1870</mark>	3.9	1.320	264.1	LOS F	62.6	452.7	0.82	1.79	2.18	15.3
North	: Road	dName													
7	L2	All MCs	140	0.0	140	0.0	0.713	44.1	LOS D	3.9	27.1	1.00	0.81	1.09	25.0
8	T1	All MCs	186	0.0	186	0.0	*0.955	82.4	LOS F	4.1	28.7	1.00	1.04	1.63	22.5
9	R2	All MCs	212	0.0	212	0.0	0.263	47.8	LOS D	3.2	22.2	0.87	0.76	0.87	37.1
Appro	ach		538	0.0	538	0.0	0.955	58.8	LOS E	4.1	28.7	0.95	0.87	1.19	29.0
West:	Scho	fields Ro	ł												
10	L2	All MCs	299	0.0	299	0.0	0.185	52.6	LOS D	1.3	9.3	0.16	0.63	0.16	57.0
11	T1	All MCs	1374	1.8	1374	1.8	1.145	208.2	LOS F	50.6	359.8	1.00	1.79	2.14	11.1
12	R2	All MCs	324	2.6	324	2.6	* 1.341	374.6	LOS F	26.5	189.5	1.00	1.76	3.04	8.2
Appro	ach		1997	1.6	1997	1.6	1.341	211.9	LOS F	50.6	359.8	0.87	1.61	1.99	12.4
All Ve	hicles	i	5988	2.2	<mark>5739</mark>	2.3	1.341	214.1	LOS F	66.5	473.8	0.87	1.56	1.96	13.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green. Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: TCS 4474 [14. Schofields Rd -Cudgegong Rd (Site Folder: 20-Year Future PM)]

/-

5pm-6pm Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network Site User-Given Phase Times)

Timings based on settings in the Network Timing dialog Phase Times specified by the user Phase Sequence: ABC Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C Reference Phase: Phase A

Vehi	cle M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
East:	Schof	ields Rd													
5	T1	All MCs	1618	1.1	1618	1.1	*0.997	83.5	LOS F	39.4	278.6	1.00	1.24	1.30	32.2
6	R2	All MCs	372	3.7	372	3.7	1.238	291.8	LOS F	15.1	109.0	1.00	1.52	2.68	15.3
Appro	ach		1989	1.6	1989	1.6	1.238	122.4	LOS F	39.4	278.6	1.00	1.29	1.56	26.1
North	: Cudo	gegong F	Rd												
7	L2	All MCs	296	2.8	296	2.8	0.335	14.2	LOS A	4.4	31.5	0.51	0.71	0.51	56.6
9	R2	All MCs	424	0.5	424	0.5	* 1.031	119.2	LOS F	23.9	167.8	1.00	1.28	1.68	6.7
Appro	bach		720	1.5	720	1.5	1.031	76.1	LOS F	23.9	167.8	0.80	1.05	1.20	24.0
West:	Scho	fields Ro	ł												
10	L2	All MCs	363	2.6	<mark>303</mark>	2.5	0.867	10.3	LOS A	15.7	111.5	0.64	0.71	0.67	46.8
11	T1	All MCs	1459	1.1	<mark>1219</mark>	1.0	0.867	14.5	LOS B	18.9	133.4	0.70	0.72	0.75	60.7
Appro	ach		1822	1.4	<mark>1523</mark>	1.3	0.867	13.7	LOS A	18.9	133.4	0.69	0.72	0.73	59.2
All Ve	hicles		4532	1.5	<mark>4232</mark>	1.6	1.238	75.4	LOS F	39.4	278.6	0.85	1.04	1.20	33.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Created: Wednesday, 9 August 2023 12:23:53 PM

Project: X:\23009 Riverstone East SAP\07 Modelling Files\Model\23009-Riverstone Sid v9.1 - 230728.sip9

USER REPORT FOR NETWORK SITE

Project: 23009-Riverstone Sid v9.1 - 230728 Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site: 3a [3. Garfield Rd E - Edmund St (Site Folder: 20-Year Future AM)]

Network: 17 [AM - Garfield Corridor (Network Folder: 20-Year Future Conditions)]

8am-9am

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: ABC Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C Reference Phase: Phase A

Vehio	cle M	ovemer	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class		ows		rival ows HV 1	Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h		veh/h	%	v/c	sec		veh	m				km/h
East:	Garfie	eld Rd E													
11	T1	All MCs	1266	4.8	1266	4.8	0.419	5.7	LOS A	9.5	69.0	0.46	0.30	0.46	65.1
12	R2	All MCs	115	5.5	115	5.5	* 0.397	61.7	LOS E	2.4	18.0	0.96	0.75	0.96	30.6
Appro	ach		1381	4.9	1381	4.9	0.419	10.3	LOS A	9.5	69.0	0.50	0.34	0.50	60.6
North	: Edm	und St													
1	L2	All MCs	71	7.5	71	7.5	0.178	45.2	LOS D	2.0	15.3	0.85	0.74	0.85	22.6
3	R2	All MCs	92	22.2	92	22.2	*0.079	62.3	LOS E	0.3	2.7	0.96	0.67	0.96	33.5
Appro	ach		80	9.2	80	9.2	0.178	47.2	LOS D	2.0	15.3	0.86	0.73	0.86	24.7
West:	Garfi	eld Rd E													
4	L2	All MCs	33	12.9	33	12.9	0.024	9.1	LOS A	0.2	1.8	0.21	0.64	0.21	53.7
5	T1	All MCs	1014	5.6	1014	5.6	*0.414	10.6	LOS A	8.5	62.6	0.52	0.46	0.52	56.6
Appro	bach		1046	5.8	1046	5.8	0.414	10.6	LOS A	8.5	62.6	0.51	0.47	0.51	56.4
All Ve	hicles		2507	5.4	2507	5.4	0.419	11.6	LOS A	9.5	69.0	0.51	0.41	0.51	57.9

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Template: Movement Summary

Site: 20 [20. Garfield Rd E - Hambledon Rd (Access 2) (Site Folder: 20-Year Future AM)]

8am-9am

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: All Phases Input Phase Sequence: A, B*, C*, D, D1*, D2*, E, F1*, F2*, G, G1*, G2* Output Phase Sequence: A, C*, D, E, G, G1* Reference Phase: Phase A

(* Variable Phase)

Vohi	olo M	ovemen	t Porfo	rma	nco										
Mov		Mov	Dem			rival	Deg.	Aver.	Level of	Aver. Back		Pron	Eff.	Aver.	Aver.
ID	Turri	Class		OWS		OWS	Satn	Delay	Service	AVEI. DACK		Que	Stop	No. of	Speed
			[Total I							[Veh.	Dist]		Rate	Cycles	
0 11			veh/h		veh/h	%	v/c	sec		veh	m				km/h
		bledon F	,		,										
1	L2	All MCs	137	0.0	137	0.0	0.496	27.5	LOS B	7.3	51.4	0.90	0.79	0.90	25.0
2	T1	All MCs	328	0.0	328	0.0	*0.496	50.4	LOS D	7.3	51.4	0.91	0.78	0.91	35.3
3	R2	All MCs	82	0.0	82	0.0	0.194	33.0	LOS C	2.0	13.8	0.79	0.72	0.79	29.6
Appro	ach		547	0.0	547	0.0	0.496	42.1	LOS C	7.3	51.4	0.89	0.77	0.89	32.5
East:	Garfie	eld Rd E													
4	L2	All MCs	269	0.0	269	0.0	0.425	52.5	LOS D	9.2	64.5	1.00	0.77	1.00	33.0
5	T1	All MCs	385	0.0	385	0.0	*0.515	55.5	LOS D	6.9	48.1	1.00	0.85	1.00	22.8
6	R2	All MCs	116	0.0	116	0.0	* 0.156	35.5	LOS C	1.3	9.3	1.00	0.75	1.00	39.1
Appro	ach		771	0.0	771	0.0	0.515	51.4	LOS D	9.2	64.5	1.00	0.81	1.00	29.5
North	: Ham	bledon F	Rd (Acce	ess 2)										
7	L2	All MCs	42	0.0	42	0.0	0.271	19.1	LOS B	3.2	22.5	0.85	0.76	0.85	26.4
8	T1	All MCs	211	0.0	211	0.0	0.271	44.9	LOS D	3.6	25.4	0.86	0.72	0.86	36.3
9	R2	All MCs	168	0.0	168	0.0	*0.499	35.9	LOS C	4.3	30.0	0.91	0.78	0.91	28.3
Appro	ach	mee	421	0.0	421	0.0	0.499	38.7	LOS C	4.3	30.0	0.88	0.75	0.88	32.9
West:	Garfi	eld Rd E													
10	L2	All MCs	141	0.0	141	0.0	0.240	17.0	LOS B	1.6	10.9	0.51	0.70	0.51	49.5
11	T1	All MCs	423	0.0	423	0.0	0.501	26.1	LOS B	5.1	35.8	0.68	0.56	0.68	38.0
12	R2	All MCs	141	0.0	141	0.0	0.138	29.5	LOS C	1.3	9.1	0.54	0.69	0.54	42.9
Appro	ach	IVIC5	705	0.0	705	0.0	0.501	25.0	LOS B	5.1	35.8	0.62	0.61	0.62	42.0
All Ve	hicles		2444	0.0	2444	0.0	0.515	39.5	LOS C	9.2	64.5	0.84	0.73	0.84	33.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: 21 [21. Garfield Rd E - Access 3 (Site Folder: 20-Year Future AM)]

Network: 17 [AM - Garfield Corridor (Network Folder: 20-Year Future Conditions)]

8am-9am

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream Iane blockage effects included in determining phase times Phase Sequence: All Phase Input Phase Sequence: A, B*, C*, D, E, E1*, E2* Output Phase Sequence: A, B*, D, E, E2* **Reference Phase: Phase A** (* Variable Phase)

Vehi	cle M	ovemen	t Perfo	orma	ince										
Mov ID	Turn	Mov Class		ows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queu Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Acce	ess Rd 3													
1	L2	All MCs	236	0.0	236	0.0	0.425	19.4	LOS B	8.7	61.2	0.71	0.73	0.71	32.7
2	T1	All MCs	135	0.0	135	0.0	0.425	38.0	LOS C	8.7	61.2	0.71	0.73	0.71	42.1
3	R2	All MCs	303	0.0	303	0.0	0.515	34.9	LOS C	8.2	57.6	0.81	0.80	0.81	38.7
Appro			674	0.0	674	0.0	0.515	30.1	LOS C	8.7	61.2	0.76	0.76	0.76	38.0
East:	Garfie	eld Rd E													
4	L2	All MCs	145	0.0	145	0.0	0.348	48.7	LOS D	4.4	30.9	0.89	0.79	0.89	33.6
5	T1	All MCs	435	0.0	435	0.0	0.446	42.1	LOS C	6.6	46.2	0.89	0.77	0.89	26.4
6	R2	All MCs	145	0.0	145	0.0	*0.293	35.1	LOS C	1.6	11.0	0.94	0.75	0.94	38.8
Appro			725	0.0	725	0.0	0.446	42.0	LOS C	6.6	46.2	0.90	0.77	0.90	31.2
North	: Acce	ess Rd 3													
7	L2	All MCs	263	0.0	263	0.0	0.313	17.9	LOS B	6.1	42.6	0.58	0.71	0.58	45.3
8	T1	All MCs	158	0.0	158	0.0	0.479	29.2	LOS C	6.1	42.6	0.76	0.74	0.76	39.6
9	R2	All MCs	105	0.0	105	0.0	*0.479	47.6	LOS D	6.0	42.3	0.85	0.76	0.85	27.5
Appro			526	0.0	526	0.0	0.479	27.2	LOS B	6.1	42.6	0.69	0.73	0.69	40.3
West	: Garfi	eld Rd E													
10	L2	All MCs	56	0.0	56	0.0	0.144	28.7	LOS C	0.9	6.6	0.49	0.69	0.49	41.6
11	T1	All MCs	443	0.0	443	0.0	*0.487	15.0	LOS B	3.5	24.5	0.43	0.47	0.43	51.0
12	R2	All MCs	56	0.0	56	0.0	0.108	35.0	LOS C	0.7	4.9	0.57	0.67	0.57	39.2
Appro	bach		555	0.0	555	0.0	0.487	18.4	LOS B	3.5	24.5	0.45	0.51	0.45	48.4
All Ve	hicles		2480	0.0	2480	0.0	0.515	30.4	LOS C	8.7	61.2	0.72	0.70	0.72	38.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Created: Wednesday, 9 August 2023 12:24:08 PM

Project: X:\23009 Riverstone East SAP\07 Modelling Files\Model\23009-Riverstone Sid v9.1 - 230728.sip9

USER REPORT FOR NETWORK SITE

Project: 23009-Riverstone Sid v9.1 - 230728 Output produced by SIDRA INTERSECTION Version: 9.1.3.210

Site: 3a [3. Garfield Rd E - Edmund St (Site Folder: 20-Year Future PM)]

Network: 18 [PM - Garfield Corridor (Network Folder: 20-Year Future Conditions)]

5pm-6pm

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: ABC Input Phase Sequence: A, B, C Output Phase Sequence: A, B, C Reference Phase: Phase A

Vehi	cle M	ovemer	nt Perfor	ma	nce										
Mov ID	Turn	Mov Class	Dema Flo [Total H	WS	Arri Flo	ws	Deg. Satn	Aver. Delay	Level of Service	Aver. Back [Veh.	Of Queue Dist]	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed
			veh/h		veh/h	%	v/c	sec		veh	m		Trate	Cycles	km/h
East:	Garfie	eld Rd E													
11	T1	All MCs	1245 4	4.9	1245	4.9	0.412	5.0	LOS A	8.3	60.7	0.41	0.30	0.41	65.6
12	R2	All MCs	209 3	3.0	209	3.0	*0.475	57.9	LOS E	4.4	31.4	0.96	0.78	0.96	31.5
Appro	bach		1455 4	4.6	1455	4.6	0.475	12.6	LOS A	8.3	60.7	0.49	0.37	0.49	58.4
North	: Edm	und St													
1	L2	All MCs	56 9	9.4	56	9.4	0.117	39.5	LOS C	1.5	11.3	0.78	0.72	0.78	24.2
3	R2	All MCs	633	3.3	6 3	3.3	0.056	62.3	LOS E	0.2	2.0	0.95	0.65	0.95	33.3
Appro	bach		62 1 ⁻	1.9	62 1	1.9	0.117	41.9	LOS C	1.5	11.3	0.80	0.71	0.80	25.9
West:	Garfi	eld Rd E													
4	L2	All MCs	33 12	2.9	33 1	2.9	0.026	10.6	LOS A	0.3	2.2	0.27	0.65	0.27	52.8
5	T1	All MCs	1128	5.0	1128	5.0	*0.498	14.5	LOS A	11.3	82.9	0.62	0.55	0.62	52.9
Appro	bach		1161	5.3	1161	5.3	0.498	14.4	LOS A	11.3	82.9	0.61	0.56	0.61	52.9
All Ve	hicles		2678	5.1	2678	5.1	0.498	14.1	LOS A	11.3	82.9	0.55	0.46	0.55	55.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

Template: Movement Summary

Site: 20 [20. Garfield Rd E - Hambledon Rd (Access 2) (Site Folder: 20-Year Future PM)]

5pm-6pm

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream lane blockage effects included in determining phase times Phase Sequence: All Phases Input Phase Sequence: A, B*, C*, D, D1*, D2*, E, F1*, F2*, G, G1*, G2* Output Phase Sequence: A, C*, D, E, G, G1* Reference Phase: Phase A

(* Variable Phase)

Vehio	cle M	ovemen	nt Perfo	orma	ince										
Mov ID	Turn	Mov Class	Dem	and ows		rival ows	Deg. Satn	Aver. Delay	Level of Service	Aver. Back	Of Queu	e Prop. Que	Eff. Stop	Aver. No. of	Aver. Speed
		01035	[Total I	HV]	[Total	HV]			Gervice	[Veh.	Dist]	Que	Rate	Cycles	
South	· Hom	nbledon F	veh/h			%	v/c	sec	_	veh	m	_	_	_	km/h
			``		,										
1	L2	All MCs	107	0.0	107	0.0	0.447	28.8	LOS C	6.0	41.8	0.91	0.78	0.91	24.5
2	T1	All MCs	267	0.0	267	0.0	0.447	52.1	LOS D	6.0	41.8	0.92	0.77	0.92	34.7
3	R2	All MCs	160	0.0	160	0.0	0.366	32.3	LOS C	3.8	26.7	0.84	0.77	0.84	29.9
Appro	ach		535	0.0	535	0.0	0.447	41.5	LOS C	6.0	41.8	0.89	0.77	0.89	31.8
East:	Garfie	eld Rd E													
4	L2	All MCs	226	0.0	226	0.0	0.332	51.5	LOS D	7.9	55.3	1.00	0.72	1.00	33.3
5	T1	All MCs	323	0.0	323	0.0	* 0.497	58.2	LOS E	5.8	40.8	1.00	0.85	1.00	22.1
6	R2	All MCs	97	0.0	97	0.0	*0.196	36.9	LOS C	1.1	7.4	1.00	0.74	1.00	38.5
Appro	ach	NIC3	646	0.0	646	0.0	0.497	52.6	LOS D	7.9	55.3	1.00	0.79	1.00	29.1
North	: Ham	bledon F	Rd (Acce	ess 2)										
7	L2	All MCs	93	0.0	93	0.0	0.470	25.7	LOS B	5.7	39.6	0.91	0.85	0.91	24.8
8	T1	All MCs	307	0.0	307	0.0	*0.470	51.0	LOS D	6.1	42.5	0.92	0.80	0.92	34.7
9	R2	All MCs	215	0.0	215	0.0	*0.494	33.3	LOS C	5.3	37.1	0.88	0.79	0.88	29.4
Appro	ach	NICS	615	0.0	615	0.0	0.494	41.0	LOS C	6.1	42.5	0.90	0.80	0.90	32.0
West:	Garfi	eld Rd E													
10	L2	All	155	0.0	155	0.0	0.204	12.5	LOS A	1.2	8.3	0.32	0.66	0.32	52.4
11	T1	MCs All	504	0.0	504	0.0	0.500	19.4	LOS B	5.2	36.2	0.57	0.48	0.57	43.0
12	R2	MCs All	116	0.0	116	0.0	0.113	26.8	LOS B	0.9	6.6	0.48	0.67	0.48	44.3
Appro	ach	MCs	775	0.0	775	0.0	0.500	19.2	LOS B	5.2	36.2	0.51	0.55	0.51	45.6
All Ve	hicles		2571	0.0	2571	0.0	0.500	37.4	LOS C	7.9	55.3	0.81	0.71	0.81	34.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

Site: 21 [21. Garfield Rd E - Access 3 (Site Folder: 20-Year Future PM)]

Network: 18 [PM - Garfield Corridor (Network Folder: 20-Year Future Conditions)]

5pm-6pm

Site Category: Proposed Design

Signals - EQUISAT (Fixed-Time/SCATS) Coordinated Cycle Time = 120 seconds (Network User-Given Cycle Time)

Timings based on settings in the Network Timing dialog Phase Times determined by the program Downstream Iane blockage effects included in determining phase times Phase Sequence: All Phase Input Phase Sequence: A, B*, C*, D, E, E1*, E2* Output Phase Sequence: A, B*, D, E, E2* **Reference Phase: Phase A** (* Variable Phase)

Vehi	cle M	ovemen	t Perfo	orma	ince										
Mov ID	Turn	Mov Class		ows HV]	FI Total		Deg. Satn v/c	Aver. Delay sec	Level of Service	Aver. Back [Veh. veh	Of Queu Dist] m	e Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Acce	ess Rd 3													
1	L2	All MCs	100	0.0	100	0.0	0.440	28.1	LOS B	6.7	47.2	0.88	0.77	0.88	26.1
2	T1	All MCs	160	0.0	160	0.0	0.440	49.0	LOS D	6.7	47.2	0.88	0.77	0.88	35.7
3	R2	All MCs	140	0.0	140	0.0	0.440	47.2	LOS D	5.3	37.0	0.89	0.79	0.89	34.7
Appro	bach		400	0.0	400	0.0	0.440	43.2	LOS D	6.7	47.2	0.88	0.78	0.88	33.5
East:	Garfie	eld Rd E													
4	L2	All MCs	357	0.0	357	0.0	*0.512	37.5	LOS C	9.9	69.0	0.83	0.82	0.83	37.5
5	T1	All MCs	476	0.0	476	0.0	0.305	27.2	LOS B	5.8	40.3	0.73	0.67	0.73	33.9
6	R2	All MCs	357	0.0	357	0.0	*0.443	29.6	LOS C	3.1	21.7	0.91	0.79	0.91	41.2
Appro			1189	0.0	1189	0.0	0.512	31.0	LOS C	9.9	69.0	0.81	0.75	0.81	37.8
North	: Acce	ess Rd 3													
7	L2	All MCs	61	0.0	61	0.0	0.331	22.5	LOS B	4.9	34.4	0.83	0.72	0.83	37.2
8	T1	All MCs	166	0.0	166	0.0	0.506	44.9	LOS D	4.9	34.4	0.87	0.74	0.87	35.6
9	R2	All MCs	76	0.0	76	0.0	* 0.506	59.1	LOS E	4.3	29.9	0.95	0.79	0.95	22.9
Appro			303	0.0	303	0.0	0.506	43.9	LOS D	4.9	34.4	0.88	0.75	0.88	33.2
West	Garfi	eld Rd E													
10	L2	All MCs	76	0.0	76	0.0	0.136	28.5	LOS B	1.4	9.7	0.54	0.71	0.54	41.7
11	T1	All MCs	494	0.0	494	0.0	0.389	19.3	LOS B	4.8	33.6	0.54	0.54	0.54	48.0
12	R2	All MCs	191	0.0	191	0.0	0.322	40.4	LOS C	3.0	21.3	0.72	0.74	0.72	37.1
Appro	bach		760	0.0	760	0.0	0.389	25.5	LOS B	4.8	33.6	0.58	0.60	0.58	44.0
All Ve	hicles		2653	0.0	2653	0.0	0.512	32.7	LOS C	9.9	69.0	0.77	0.71	0.77	38.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Network Data dialog (Override Site Data tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Green.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

* Critical Movement (Signal Timing)

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Created: Wednesday, 9 August 2023 12:24:43 PM

Project: X:\23009 Riverstone East SAP\07 Modelling Files\Model\23009-Riverstone Sid v9.1 - 230728.sip9

USER REPORT FOR SITE

Project: 23009-Riverstone Sid v9.1 - 230913 Updates Output produced by SIDRA INTERSECTION Version: 9.1.3.210

W Site: 15v [15. Guntawong Rd - Cudgegong Rd - Convert to Roundabout (Site Folder: 20-Year Future AM)]

8am-9am Site Category: Proposed Design Roundabout

Vehio	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Cud	gegong R	۲d												
1	L2	All MCs	207	1.5	207	1.5	0.348	5.6	LOS A	2.6	18.6	0.57	0.59	0.57	53.6
3	R2	All MCs	171	1.9	171	1.9	0.348	10.5	LOS A	2.6	18.6	0.57	0.59	0.57	53.2
Appro	ach		378	1.7	378	1.7	0.348	7.8	LOS A	2.6	18.6	0.57	0.59	0.57	53.4
East:	Gunta	wong Rd	- E												
4	L2	All MCs	42	0.0	42	0.0	0.267	5.7	LOS A	1.9	13.5	0.59	0.54	0.59	54.2
5	T1	All MCs	228	2.3	228	2.3	0.267	6.0	LOS A	1.9	13.5	0.59	0.54	0.59	53.1
Appro	ach		271	1.9	271	1.9	0.267	6.0	LOS A	1.9	13.5	0.59	0.54	0.59	53.3
West:	Gunta	awong Ro	ł												
11	T1	All MCs	568	2.0	568	2.0	0.686	6.1	LOS A	8.1	57.5	0.74	0.56	0.74	51.8
12	R2	All MCs	271	2.7	271	2.7	0.686	10.7	LOS A	8.1	57.5	0.74	0.56	0.74	52.7
Appro	ach		839	2.3	839	2.3	0.686	7.6	LOS A	8.1	57.5	0.74	0.56	0.74	52.2
All Ve	hicles		1487	2.1	1487	2.1	0.686	7.4	LOS A	8.1	57.5	0.67	0.56	0.67	52.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

W Site: 16v [16. Guntawong Rd - Worcester Rd - Convert to Roundabout (Site Folder: 20-Year Future AM)]

8am-9am Site Category: Proposed Design Roundabout

Vehic	cle M	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class	Dem Fl [Total veh/h	lows HV]	FI	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Wor	cester Rd													
1	L2	All MCs	27	7.7	27	7.7	0.064	5.1	LOS A	0.4	2.6	0.41	0.59	0.41	54.9
3	R2	All MCs	43	2.4	43	2.4	0.064	9.9	LOS A	0.4	2.6	0.41	0.59	0.41	54.4
Appro	ach		71	4.5	71	4.5	0.064	8.1	LOS A	0.4	2.6	0.41	0.59	0.41	54.6
East:	Gunta	wong Rd													
4	L2	All MCs	29	0.0	29	0.0	0.177	4.4	LOS A	1.1	7.9	0.29	0.42	0.29	56.1
5	T1	All MCs	202	1.6	202	1.6	0.177	4.6	LOS A	1.1	7.9	0.29	0.42	0.29	53.8
Appro	ach		232	1.4	232	1.4	0.177	4.6	LOS A	1.1	7.9	0.29	0.42	0.29	54.3
West:	Gunt	awong Ro	b												
11	T1	All MCs	445	2.6	445	2.6	0.361	4.4	LOS A	3.0	21.3	0.24	0.43	0.24	53.5
12	R2	All MCs	89	3.5	89	3.5	0.361	9.0	LOS A	3.0	21.3	0.24	0.43	0.24	55.7
Appro	ach		535	2.8	535	2.8	0.361	5.2	LOS A	3.0	21.3	0.24	0.43	0.24	54.0
All Ve	hicles		837	2.5	837	2.5	0.361	5.2	LOS A	3.0	21.3	0.27	0.44	0.27	54.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

W Site: 17 [17. Guntawong Rd - Tallawong Rd - Upgrade to roundabout (Site Folder: 20-Year Future AM)]

8am-9am Site Category: Proposed Design Roundabout

Vehi	cle M	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Talla	wong Rd	- S												
1	L2	All MCs	151	5.6	151	5.6	0.385	6.0	LOS A	2.7	19.5	0.62	0.62	0.62	47.0
2	T1	All MCs	78	0.0	78	0.0	0.385	6.0	LOS A	2.7	19.5	0.62	0.62	0.62	48.8
3	R2	All MCs	159	5.3	159	5.3	0.385	10.8	LOS A	2.7	19.5	0.62	0.62	0.62	48.0
Appro	bach		387	4.3	387	4.3	0.385	8.0	LOS A	2.7	19.5	0.62	0.62	0.62	47.8
East:	Gunta	wong Rd	- E												
4	L2	All MCs	167	1.3	167	1.3	0.490	8.0	LOS A	3.9	27.4	0.78	0.71	0.83	48.1
5	T1	All MCs	192	3.3	192	3.3	0.490	8.2	LOS A	3.9	27.4	0.78	0.71	0.83	51.1
6	R2	All MCs	63	0.0	63	0.0	0.490	12.7	LOS A	3.9	27.4	0.78	0.71	0.83	50.9
Appro	bach		422	2.0	422	2.0	0.490	8.8	LOS A	3.9	27.4	0.78	0.71	0.83	50.0
North	: Talla	wong Rd	- N												
7	L2	All MCs	42	0.0	42	0.0	0.333	11.0	LOS A	2.4	17.0	0.92	0.79	0.92	49.1
8	T1	All MCs	83	0.0	83	0.0	0.333	11.2	LOS A	2.4	17.0	0.92	0.79	0.92	45.2
9	R2	All MCs	54	0.0	54	0.0	0.333	15.8	LOS B	2.4	17.0	0.92	0.79	0.92	47.6
Appro	bach		179	0.0	179	0.0	0.333	12.5	LOS A	2.4	17.0	0.92	0.79	0.92	47.1
West	Gunta	awong Ro	l - W												
10	L2	All MCs	22	0.0	22	0.0	0.711	8.3	LOS A	8.6	62.1	0.82	0.73	0.95	49.3
11	T1	All MCs	382	2.8	382	2.8	0.711	8.6	LOS A	8.6	62.1	0.82	0.73	0.95	49.8
12	R2	All MCs	357	4.7	357	4.7	0.711	13.4	LOS A	8.6	62.1	0.82	0.73	0.95	44.1
Appro	bach		761	3.6	761	3.6	0.711	10.8	LOS A	8.6	62.1	0.82	0.73	0.95	47.6
All Ve	hicles		1749	3.0	1749	3.0	0.711	9.9	LOS A	8.6	62.1	0.78	0.71	0.84	48.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

W Site: 18 [18. Guntawong Rd - Clarke St (Site Folder: 20-Year Future AM)]

8am-9am Site Category: Proposed Design Roundabout

Vehi	cle Mo	ovement	t Perfo	orma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	South: Clarke St - S														
2	T1	All MCs	302	0.0	302	0.0	0.458	5.9	LOS A	3.5	24.2	0.61	0.60	0.61	50.5
3	R2	All MCs	201	0.0	201	0.0	0.458	10.6	LOS A	3.5	24.2	0.61	0.60	0.61	50.2
Appro	ach		503	0.0	503	0.0	0.458	7.8	LOS A	3.5	24.2	0.61	0.60	0.61	50.4
East:	Gunta	wong Rd	- E												
4	L2	All MCs	119	0.0	119	0.0	0.367	5.5	LOS A	2.6	18.7	0.58	0.62	0.58	50.3
6	R2	All MCs	271	5.4	271	5.4	0.367	10.5	LOS A	2.6	18.7	0.58	0.62	0.58	48.1
Appro	bach		389	3.8	389	3.8	0.367	9.0	LOS A	2.6	18.7	0.58	0.62	0.58	48.8
North	: Clark	ke St - N													
7	L2	All MCs	554	4.9	554	4.9	0.684	6.0	LOS A	7.3	52.8	0.72	0.57	0.73	50.3
8	T1	All MCs	267	0.0	267	0.0	0.684	6.0	LOS A	7.3	52.8	0.72	0.57	0.73	51.6
Appro	bach		821	3.3	821	3.3	0.684	6.0	LOS A	7.3	52.8	0.72	0.57	0.73	50.8
All Ve	hicles		1714	2.5	1714	2.5	0.684	7.2	LOS A	7.3	52.8	0.65	0.59	0.66	50.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

W Site: 19 [19. Clarke St - Riverstone Rd (Site Folder: 20-Year Future AM)]

8am-9am Site Category: Proposed Design Roundabout

Vehi	cle Mo	ovement	t Perform	ance										
Mov ID	Turn	Mov Class	Deman Flow [Total HV veh/h			Satn	Aver. Delay sec	Level of Service		Back Of ueue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Clarl	ke St - S												
1	L2	All MCs	234 0.	0 23	4 0.0	0.441	4.6	LOS A	3.6	26.2	0.42	0.45	0.42	50.3
2	T1	All MCs	346 4	9 34	6 4.9	0.441	4.8	LOS A	3.6	26.2	0.42	0.45	0.42	54.7
3	R2	All MCs	2 50	0	2 50.0	0.441	10.4	LOS A	3.6	26.2	0.42	0.45	0.42	51.0
Appro	bach		582 3	1 58	2 3.1	0.441	4.7	LOS A	3.6	26.2	0.42	0.45	0.42	53.4
East:	Rivers	stone Rd	- E											
4	L2	All MCs	3 66	7	3 66.7	0.013	13.8	LOS A	0.1	0.7	0.81	0.70	0.81	46.8
5	T1	All MCs	1 0.	0	1 0.0	0.013	10.2	LOS A	0.1	0.7	0.81	0.70	0.81	45.9
6	R2	All MCs	1 0.	0	1 0.0	0.013	14.8	LOS B	0.1	0.7	0.81	0.70	0.81	50.5
Appro	bach		5 40.	0	5 40.0	0.013	13.3	LOS A	0.1	0.7	0.81	0.70	0.81	47.6
North	: Clark	ke St - N												
7	L2	All MCs). 0	1 100. 0	0.000	9.9	LOS A	5.7	41.6	0.72	0.62	0.75	51.3
8	T1	All MCs	548 4	4 54	8 4.4	0.608	6.7	LOS A	5.7	41.6	0.72	0.62	0.75	53.1
9	R2	All MCs	104 6.	1 10	4 6.1	0.608	11.4	LOS A	5.7	41.6	0.72	0.62	0.75	50.5
Appro	bach		654 4.	8 65	4 4.8	0.608	7.5	LOS A	5.7	41.6	0.72	0.62	0.75	52.7
West	River	stone Rd	- W											
10	L2	All MCs	164 6	4 16	4 6.4	0.438	6.5	LOS A	3.1	21.9	0.65	0.66	0.65	50.8
11	T1	All MCs	1 0.	0	1 0.0	0.438	6.5	LOS A	3.1	21.9	0.65	0.66	0.65	49.2
12	R2	All MCs	269 1	2 26	9 1.2	0.438	11.2	LOS A	3.1	21.9	0.65	0.66	0.65	46.5
Appro	bach		435 3	1 43	5 3.1	0.438	9.4	LOS A	3.1	21.9	0.65	0.66	0.65	48.5
All Ve	hicles		1676 3.	9 167	6 3.9	0.608	7.1	LOS A	5.7	41.6	0.60	0.57	0.61	52.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

V Site: 15v [15. Guntawong Rd - Cudgegong Rd - Convert to Roundabout (Site Folder: 20-Year Future PM)]

5pm-6pm Site Category: Proposed Design Roundabout

Vehicle Movement Performance															
Mov ID	Turn	Mov Class	Dem Fl [Total I veh/h	lows HV]	FI	rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South: Cudgegong Rd															
1	L2	All MCs	334	0.3	334	0.3	0.528	8.6	LOS A	4.7	32.9	0.81	0.73	0.88	52.6
3	R2	All MCs	133	0.8	133	0.8	0.528	13.5	LOS A	4.7	32.9	0.81	0.73	0.88	52.2
Appro	ach		466	0.5	466	0.5	0.528	10.0	LOS A	4.7	32.9	0.81	0.73	0.88	52.5
East:	East: Guntawong Rd														
4	L2	All MCs	57	1.9	57	1.9	0.402	4.9	LOS A	3.3	23.3	0.47	0.46	0.47	54.5
5	T1	All MCs	452	0.5	452	0.5	0.402	5.1	LOS A	3.3	23.3	0.47	0.46	0.47	53.5
Appro	ach		508	0.6	508	0.6	0.402	5.1	LOS A	3.3	23.3	0.47	0.46	0.47	53.7
West:	Gunta	awong Ro	b												
11	T1	All MCs	388	1.1	388	1.1	0.418	5.1	LOS A	3.7	26.4	0.50	0.50	0.50	52.8
12	R2	All MCs	136	1.6	136	1.6	0.418	9.8	LOS A	3.7	26.4	0.50	0.50	0.50	53.5
Appro	ach		524	1.2	524	1.2	0.418	6.3	LOS A	3.7	26.4	0.50	0.50	0.50	53.0
All Ve	hicles		1499	0.8	1499	0.8	0.528	7.0	LOS A	4.7	32.9	0.59	0.55	0.61	53.0

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

W Site: 16v [16. Guntawong Rd - Worcester Rd - Convert to Roundabout (Site Folder: 20-Year Future PM)]

5pm-6pm Site Category: Proposed Design Roundabout

Vehicle Movement Performance															
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		ack Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South: Worcester Rd															
1	L2	All MCs	78	0.0	78	0.0	0.129	5.3	LOS A	0.8	5.4	0.47	0.59	0.47	55.3
3	R2	All MCs	62	0.0	62	0.0	0.129	10.2	LOS A	0.8	5.4	0.47	0.59	0.47	54.7
Appro	ach		140	0.0	140	0.0	0.129	7.5	LOS A	0.8	5.4	0.47	0.59	0.47	55.1
East:	Gunta	wong Rd													
4	L2	All MCs	26	0.0	26	0.0	0.200	4.2	LOS A	1.3	9.3	0.26	0.41	0.26	56.2
5	T1	All MCs	246	1.7	246	1.7	0.200	4.5	LOS A	1.3	9.3	0.26	0.41	0.26	53.9
Appro	ach		273	1.5	273	1.5	0.200	4.5	LOS A	1.3	9.3	0.26	0.41	0.26	54.3
West:	Gunta	awong Ro	Ł												
11	T1	All MCs	387	1.6	387	1.6	0.322	4.5	LOS A	2.5	17.9	0.29	0.44	0.29	53.3
12	R2	All MCs	71	0.0	71	0.0	0.322	9.1	LOS A	2.5	17.9	0.29	0.44	0.29	55.7
Appro	ach		458	1.4	458	1.4	0.322	5.2	LOS A	2.5	17.9	0.29	0.44	0.29	53.9
All Ve	hicles		871	1.2	871	1.2	0.322	5.3	LOS A	2.5	17.9	0.31	0.45	0.31	54.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

W Site: 17 [17. Guntawong Rd - Tallawong Rd - Upgrade to roundabout (Site Folder: 20-Year Future PM)]

5pm-6pm Site Category: Proposed Design Roundabout

Vehi	cle M	ovement	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of eue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	n: Talla	wong Rd													
1	L2	All MCs	239	1.8	239	1.8	0.614	9.4	LOS A	6.1	43.3	0.84	0.79	1.00	44.6
2	T1	All MCs	104	0.0	104	0.0	0.614	9.5	LOS A	6.1	43.3	0.84	0.79	1.00	46.3
3	R2	All MCs	205	2.1	205	2.1	0.614	14.2	LOS A	6.1	43.3	0.84	0.79	1.00	45.8
Appro	bach		548	1.5	548	1.5	0.614	11.2	LOS A	6.1	43.3	0.84	0.79	1.00	45.4
East:	Gunta	wong Rd	- E												
4	L2	All MCs	83	0.0	83	0.0	0.489	6.5	LOS A	3.6	25.4	0.68	0.62	0.68	48.9
5	T1	All MCs	341	1.2	341	1.2	0.489	6.7	LOS A	3.6	25.4	0.68	0.62	0.68	51.7
6	R2	All MCs	69	0.0	69	0.0	0.489	11.3	LOS A	3.6	25.4	0.68	0.62	0.68	51.4
Appro	bach		494	0.9	494	0.9	0.489	7.3	LOS A	3.6	25.4	0.68	0.62	0.68	51.3
North	: Talla	wong Rd	- N												
7	L2	All MCs	29	0.0	29	0.0	0.234	8.2	LOS A	1.5	10.7	0.76	0.71	0.76	50.7
8	T1	All MCs	85	0.0	85	0.0	0.234	8.4	LOS A	1.5	10.7	0.76	0.71	0.76	47.4
9	R2	All MCs	60	0.0	60	0.0	0.234	13.0	LOS A	1.5	10.7	0.76	0.71	0.76	49.4
Appro	bach		175	0.0	175	0.0	0.234	10.0	LOS A	1.5	10.7	0.76	0.71	0.76	48.8
West	Gunta	awong Ro	1 - W												
10	L2	All MCs	9	0.0	9	0.0	0.506	6.7	LOS A	4.0	28.3	0.73	0.67	0.74	50.1
11	T1	All MCs	264	0.8	264	0.8	0.506	6.9	LOS A	4.0	28.3	0.73	0.67	0.74	50.7
12	R2	All MCs	215	2.0	215	2.0	0.506	11.6	LOS A	4.0	28.3	0.73	0.67	0.74	45.3
Appro	bach		488	1.3	488	1.3	0.506	9.0	LOS A	4.0	28.3	0.73	0.67	0.74	48.8
All Ve	hicles		1705	1.1	1705	1.1	0.614	9.3	LOS A	6.1	43.3	0.76	0.70	0.81	48.6

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

W Site: 18 [18. Guntawong Rd - Clarke St (Site Folder: 20-Year Future PM)]

5pm-6pm Site Category: Proposed Design Roundabout

Vehi	cle Mo	ovemen	t Perfo	rma	nce										
Mov ID	Turn	Mov Class		lows HV]		rival ows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South: Clarke St - S															
2	T1	All MCs	288	0.0	288	0.0	0.496	7.7	LOS A	4.0	28.0	0.78	0.70	0.82	49.6
3	R2	All MCs	156	0.0	156	0.0	0.496	12.3	LOS A	4.0	28.0	0.78	0.70	0.82	49.4
Appro	ach		444	0.0	444	0.0	0.496	9.3	LOS A	4.0	28.0	0.78	0.70	0.82	49.6
East:	Gunta	wong Rd	- E												
4	L2	All MCs	183	0.0	183	0.0	0.603	6.9	LOS A	5.6	39.7	0.73	0.68	0.78	49.6
6	R2	All MCs	460	1.6	460	1.6	0.603	11.8	LOS A	5.6	39.7	0.73	0.68	0.78	47.6
Appro	bach		643	1.1	643	1.1	0.603	10.4	LOS A	5.6	39.7	0.73	0.68	0.78	48.2
North	: Clark	ke St - N													
7	L2	All MCs	334	2.2	334	2.2	0.515	5.0	LOS A	4.6	32.4	0.54	0.50	0.54	51.1
8	T1	All MCs	313	0.0	313	0.0	0.515	5.2	LOS A	4.6	32.4	0.54	0.50	0.54	52.2
Appro	bach		646	1.1	646	1.1	0.515	5.1	LOS A	4.6	32.4	0.54	0.50	0.54	51.6
All Ve	hicles		1734	0.9	1734	0.9	0.603	8.1	LOS A	5.6	39.7	0.67	0.62	0.70	49.8

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

W Site: 19 [19. Clarke St - Riverstone Rd (Site Folder: 20-Year Future PM)]

5pm-6pm Site Category: Proposed Design Roundabout

Vehi	cle M	ovement	Perfo	orma	nce										
Mov ID	Turn	Mov Class	Derr Fl [Total veh/h	lows HV]	F	rival lows HV] %	Deg. Satn v/c	Aver. Delay sec	Level of Service		Back Of leue Dist] m	Prop. Que	Eff. Stop Rate	Aver. No. of Cycles	Aver. Speed km/h
South	: Clarl	ke St - S													
1	L2	All MCs	324	1.0	324	1.0	0.579	5.0	LOS A	5.4	38.4	0.54	0.49	0.54	49.5
2	T1	All MCs	423	1.2	423	1.2	0.579	5.2	LOS A	5.4	38.4	0.54	0.49	0.54	54.4
3	R2	All MCs	1	0.0	1	0.0	0.579	9.8	LOS A	5.4	38.4	0.54	0.49	0.54	52.4
Appro	bach		748	1.1	748	1.1	0.579	5.2	LOS A	5.4	38.4	0.54	0.49	0.54	52.9
East:	Rivers	stone Rd	·Е												
4	L2	All MCs	6	0.0	6	0.0	0.015	8.9	LOS A	0.1	0.6	0.76	0.65	0.76	50.6
5	T1	All MCs	1	0.0	1	0.0	0.015	9.0	LOS A	0.1	0.6	0.76	0.65	0.76	48.6
6	R2	All MCs	2	0.0	2	0.0	0.015	13.7	LOS A	0.1	0.6	0.76	0.65	0.76	52.4
Appro	bach		9	0.0	9	0.0	0.015	9.9	LOS A	0.1	0.6	0.76	0.65	0.76	50.9
North	: Clark	ke St - N													
7	L2	All MCs	1	0.0	1	0.0	0.536	5.3	LOS A	4.6	32.9	0.58	0.54	0.58	53.8
8	T1	All MCs	505	1.3	505	1.3	0.536	5.5	LOS A	4.6	32.9	0.58	0.54	0.58	53.6
9	R2	All MCs	142	0.7	142	0.7	0.536	10.1	LOS A	4.6	32.9	0.58	0.54	0.58	51.4
Appro	bach		648	1.1	648	1.1	0.536	6.5	LOS A	4.6	32.9	0.58	0.54	0.58	53.2
West:	River	stone Rd	- W												
10	L2	All MCs	115	0.0	115	0.0	0.322	6.5	LOS A	2.1	14.8	0.65	0.67	0.65	50.9
11	T1	All MCs	1	100. 0	1	100. 0	0.322	10.3	LOS A	2.1	14.8	0.65	0.67	0.65	46.8
12	R2	All MCs	187	0.0	187	0.0	0.322	11.3	LOS A	2.1	14.8	0.65	0.67	0.65	46.5
Appro	bach		303	0.3	303	0.3	0.322	9.5	LOS A	2.1	14.8	0.65	0.67	0.65	48.6
All Ve	hicles		1709	1.0	1709	1.0	0.579	6.5	LOS A	5.4	38.4	0.58	0.54	0.58	52.3

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

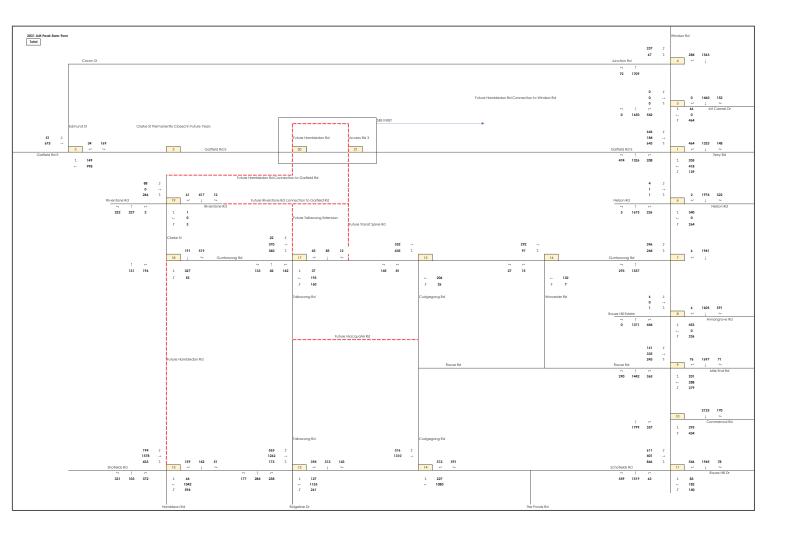
Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

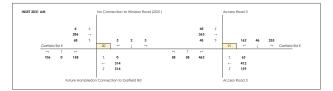
Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

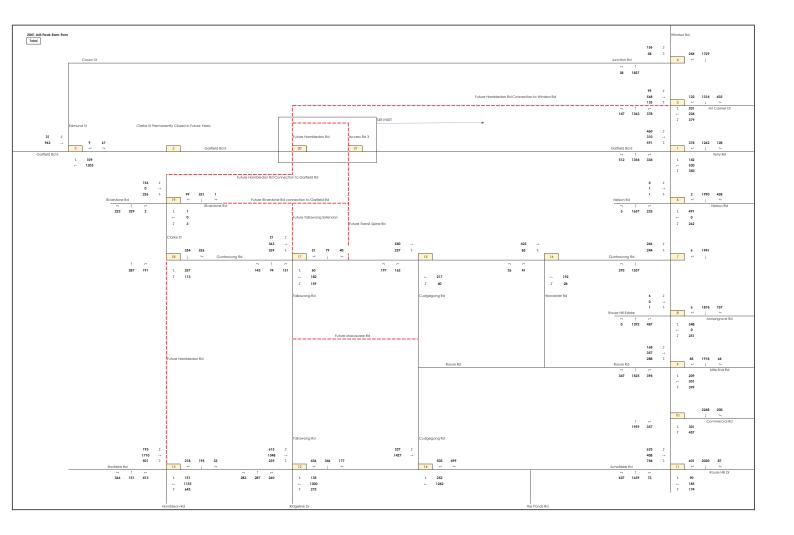
Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

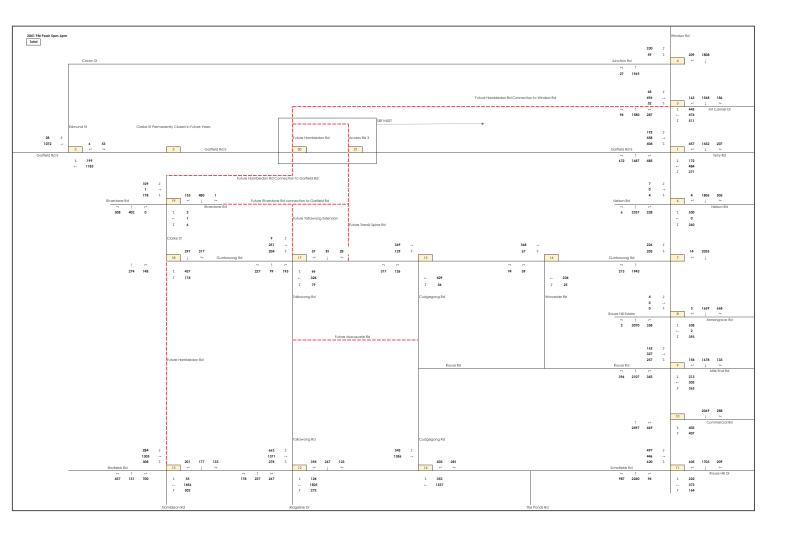
SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

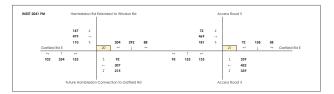

Organisation: TTPP - THE TRANSPORT PLANNING PARTNERSHIP | Licence: NETWORK / 1PC | Created: Thursday, 14 September 2023 9:39:59 AM


Project: X:\23009 Riverstone East SAP\07 Modelling Files\Model\23009-Riverstone Sid v9.1 - 230913 Updates.sip9

Appendix C


Estimated Traffic Volumes





The Transport Planning Partnership Suite 402 Level 4, 22 Atchison Street St Leonards NSW 2065

> P.O. Box 237 St Leonards NSW 1590

> > 02 8437 7800

info@ttpp.net.au

www.ttpp.net.au