

DETAILED ENVIRONMENTAL SITE ASSESSMENT 19 MARSH STREET, ARNCLIFFE, NSW COOKS COVE DEVELOPMENT ZONE PREPARED FOR COOK COVE INLET PTY LTD

CES Document Reference: CES130608-BP-AT

Written by: Dr V. Arias

SC41156 & CEnvP (General) 682 Reviewed by: T. Goodbody

IE lave

Authorised by: D. Lowe

Client: Cook Cove Inlet Pty Ltd Level 3, 161 Castlereagh Street Sydney, NSW, 2000

Date: 16 February 2023

Telephone: 02 8569 2200 • Fax: 02 9552 4399 • Level 1, Suite 3 55-65 Grandview Street • Pymble NSW 2073 • Australia • www.consultingearth.com.au © Consulting Earth Scientists Pty Ltd ALL RIGHTS RESERVED UNAUTHORISED REPRODUCTION OR COPYING STRICTLY PROHIBITED

Document Control

DETAILED ENVIRONMENTAL SITE ASSESSMENT 19 MARSH STREET, ARNCLIFFE, NSW COOKS COVE DEVELOPMENT ZONE PREPARED FOR COOK COVE INLET PTY LTD

CES Document Reference: CES130608-BP-AT

Distribution Register

Hard Copy	Digital copy	Recipient	Location
	1	Peter Bettridge	Cook Cove Inlet Pty Ltd
	1	CES Library	CES Pty Ltd

The Distribution Register identifies the recipients of issued copies of this report.

Revision Register

Revision Number	Revision Date	Description
0.0	20.07.2018	19 Marsh Street, Arncliffe – Detailed Environmental Site Investigation
1.0	16/02/2023	19 Marsh Street, Arncliffe – Detailed Environmental Site Investigation

The revision register tracks changes to the document.

The latest revision of this document supersedes all previous revisions. It is the responsibility of the recipient to ensure that superseded revisions of this document are removed from circulation.

Documents are only valid if they are signed, original documents issued by CES Pty Ltd. CES Pty Ltd does not accept any liability for actions taken based upon incomplete copies of this document.

DETAILED ENVIRONMENTAL SITE ASSESSMENT 19 MARSH STREET, ARNCLIFFE, NSW COOKS COVE DEVELOPMENT ZONE PREPARED FOR COOK COVE INLET PTY LTD

CES Document Reference: CES130608-BP-AT

Executive Summary

This report comprises a Detailed Environmental Site Assessment (DESA) of 19 Marsh Street, Arncliffe, New South Wales (NSW), legally described as Lot 31 in Deposited Plan (DP) 1231486 (formerly described as Lot 10 DP570900 and Lot 101 DP 1231954) (the site). The site consists of approximately 4,400 square metres (0.4 ha) and is immediately bounded by neighbouring Lots (Lot 103 of DP 1231954, Lot 13 of DP 570900, and Lot 14 of DP 213314) and Marsh Street to the south and west, the Cooks River immediately bordering the northeastern boundary, and infrastructure and facilities of Rowers Recreation Club. The site was unoccupied and secured with fencing and electronic gating at the time of the investigation. The site has been previously used as car parking facilities and as a temporary construction compound for the WestConnex New M5 tunnelling works. The findings of this report are based on an intrusive investigation of the underlying soil and groundwater.

The objective of the DESA is to investigate the Contaminants of Potential Concern (CoPC) identified in the corresponding Preliminary Environmental Site Assessment (PESA) (CES, 2017) and determine whether the site in its present state, without further investigation or remediation, is suitable for the proposed mixed (SP4 Enterprise and RE1 Public Recreation) use of the site.

To achieve the objective, CES has completed the following scope of works:

- Undertake drilling of five (5) boreholes to target depths ranging 5 m to 30 m, in addition to five (5) boreholes excavated by hand auger;
- Photoionization Detection (PID) screening of samples collected every 1 m to determine potential presence of volatiles;
- Sampling of fill materials and soil for laboratory analysis;
- \circ Acid sulfate soil screening in three boreholes to a maximum depth of 2 m
- Installation of groundwater monitoring wells in three of the 5 drilled boreholes to a depth of 6 m to allow for determination of groundwater flow and to collect groundwater samples;
- One-off groundwater sampling event to chemically characterise the groundwater encountered at the site;

- Laboratory analysis of fifteen (15) soil samples for a general suite of analytes (Total Recoverable Hydrocarbons (TRH), monocyclic aromatic hydrocarbons (benzene, toluene, ethylbenzene, xylenes (BTEX)), heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc), Polycyclic Aromatic Hydrocarbons (PAHs), Organochlorine Pesticides (OCPs), Organophosphorus Pesticides (OPPs), Polychlorinated Biphenyls (PCBs) and asbestos);
- Laboratory analysis on two (2) soil samples for Suspension Peroxide Oxidation Combined Acidity and Sulfur (sPOCAS) testing;
- Laboratory analysis of three (3) groundwater samples for a general suite of analytes (TRH, BTEX, PAHs, OCPs, OPPs, dissolved heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc), and nutrients); and
- Preparation of this Preliminary Detailed Site Investigation Report (DESA).

Analysis of the results of soil samples submitted for laboratory testing identified the following exceedances of the Site Assessment Criteria (SAC):

- BH2-4.5-4.95 exceeded the SAC HSL- A & B value for Fraction 1 TPH (45 mg/kg) with a value of 120 mg/kg (and 86 mg/kg, laboratory replicate); and
- BH5-22.5-22.95 exceeded the SAC HSL A & B values for Fraction 1 TPH (45 mg/kg) with a value of 220 mg/kg.

All soil samples analysed for PAH, heavy metals, OCP's, OPP's, PCB's and asbestos indicated results of concentrations less than the SAC.

Acid Sulfate Soils (ASS) samples submitted for testing indicated that ASS were present in both locations as follows:

- BH01 at 1.5 mbgl, sulfur trail 0.36%, acid trail 120 mol H^+ /tonne; and
- BH02 at 3.25-3.45 mbgl, sulfur trail 0.35%, acid trail 190 mol H^+ /tonne.

Groundwater levels ranged between 1.68 metres below ground level (mbgl) and 1.72 mbgl, and indicated a flow direction towards the Cooks River to the north of the Site. Groundwater samples indicated concentrations of analytes to be less than the SAC, with the following exceptions:

- Nickel in sample collected from BH05 which exceeded the Groundwater Investigation Level (GIL) trigger value of 7 μ g/L with a concentration of 13 μ g/L;
- Total Nitrogen concentration ranged from 9.1 mg/L in BH01 to 18 mg/L in BH02, the values within the range exceeding the GIL trigger criteria of 0.30 mg/L;

- Oxides of Nitrogen concentrations ranged from less than the laboratory PQL of 0.005 mg/L in BH05 to 0.3 mg/L in BH02, the values within the range exceeding the GIL trigger value of 0.015 mg/L;
- Ammonia concentrations ranged from 5.2 mg/L in BH01 to 12 mg/L in BH02, the values within the range exceeding the GIL trigger value of 4.55 mg/L;
- Phosphate concentrations ranged from 0.062 mg/L in BH05 to 0.23 mg/L in BH02, the values within the range exceeding the GIL trigger value of 0.005 mg/L; and
- Phosphorus concentrations ranged from 0.4 mg/L in BH01 to 1.2 mg/L in BH02, the values within the range exceeding the GIL trigger value of 0.03 mg/L.

The site is considered suitable for the intended future use as mixed use (SP4 Enterprise and RE1 Public Recreation). In the event the construction activities will include dewatering of the site, further investigation of groundwater quality should be undertaken to determine the appropriate groundwater disposal method. Excavation works at the site should be managed in accordance with the *Acid Sulfate Soils Management Plan, Cooks Cove Development Zone, Arncliffe and Banksia, NSW* prepared by CES (Document Reference: CES130608-BP-AZ, dated 15 February 2023) in the event excavation is undertaken.

DETAILED ENVIRONMENTAL SITE ASSESSMENT 19 MARSH STREET, ARNCLIFFE, NSW COOKS COVE DEVELOPMENT ZONE PREPARED FOR COOK COVE INLET PTY LTD

CES Document Reference: CES130608-BP-AT

TABLE OF CONTENTS

1	INTRODUCTION	11
2	OBJECTIVES AND SCOPE OF WORKS	14
3	DATA QUALITY OBJECTIVES	15
4	SITE INFORMATION	19
4.1	SITE IDENTIFICATION	19
4.2	SITE ZONING	19
4.3	SITE DESCRIPTION	19
4.4	PROPOSED DEVELOPMENT	20
4.5	SURROUNDING LAND USE	20
4.6	Topography	21
4.7	HYDROLOGY AND DRAINAGE	21
4.8	GEOLOGY	21
4.9	Soils	21
4.10	ACID SULFATE SOILS	21
4.11	HYDROGEOLOGY	22
4.12	SENSITIVE LOCAL ENVIRONMENTS	22
5	SITE HISTORY	23
5.1	PROPERTY TITLE INFORMATION	23
5.2	HISTORICAL AERIAL PHOTOGRAPH INTERPRETATION	23
5.3	SEWER AND SERVICE PLANS	23
6	PRELIMINARY CONCEPTUAL SITE MODEL	25
6.1	POTENTIAL SOURCES OF CONTAMINATION	25
6.	1.1 Uncontrolled Fill	25
6.	1.2 Car Parking	25
6.	1.3 Off-site Contamination Sources	25
6.2	POTENTIAL PATHWAYS	25
6.3	Receptors	26
7	SAMPLING AND ANALYTICAL PROGRAMME	27
7.1	SAMPLING PATTERN	27

7.2 GRO	UNDWATER MONITORING WELL INSTALLATION	27	
7.3 SAM	IPLING DENSITY	27	
7.4 DEP			
7.5 Met	HOD OF SAMPLING COLLECTION	28	
7.6 DECO	ONTAMINATION PROCEDURES	28	
7.6.1 Sc	ample Containers	28	
7.7 MET	HOD OF SAMPLE STORAGE AND HANDLING	28	
7.8 DOC	CUMENTATION	29	
7.9 ANA	LYTICAL PROGRAMME	30	
7.9.1 Na	umber of Samples for Analysis	30	
7.9.1.1	Soil	30	
7.9.1.2	Groundwater	30	
7.9.2 La	aboratory	30	
7.9.2.1	Analytical Methods	30	
8 SIT	E ASSESSMENT CRITERIA	32	
8.1 INVE	STIGATION AND SCREENING LEVELS	32	
8.1.1 So	pil	33	
8.1.1.1	Human Health Assessment	33	
8.1.1.2	Ecological Assessment	34	
8.1.1.3	Acid Sulfate Soils	34	
8.1.1.4	Asbestos	34	
8.1.2 G	roundwater	34	
9 QA	QC DATA EVALUATION	36	
9.1 DAT	A ACCEPTANCE CRITERIA	36	
9.1.1 Fi	ield QA/QC Programme	36	
9.1.1.1	Blind Replicate Samples	36	
Soil		36	
Gro	undwater	37	
9.1.1.2	Split Duplicate Samples	37	
Soil		37	
Gro	undwater	37	
9.1.1.3	Laboratory Prepared Trip Blank	37	
9.1.2 La	aboratory QA/QC Programme	38	
9.1.2.1	Laboratory Duplicate Samples	38	
9.1.2.2	Laboratory Control Samples	38	
9.1.2.3	Surrogates	38	
9.1.2.4	Matrix Spike	38	
9.1.2.5	Method Blanks	39	
9.2 QAQ	C Assessment Summary	39	
10 INV	ESTIGATION RESULTS	40	

10.1	SOIL		40
10.1.1 Fieldwork		40	
1	0.1.1.1	Acid Sulfate soil screening	40
10.1.2 Laboratory Analytical Results		40	
1	0.1.2.1	TRH and BTEX	41
1	0.1.2.2	PAHs	41
1	0.1.2.3	Heavy Metals	41
1	0.1.2.4	OCPs	41
1	0.1.2.5	OPPs	41
1	0.1.2.6	PCBs	41
1	0.1.2.7	Asbestos	41
1	0.1.2.8	Acid Sulfate Soil	41
10.2 GROUNDWATER		41	
10.2.1 Fieldwork			41
1	0.2.1.1	Groundwater Quality Field Parameters	42
10.2.1.1.1 Groundwater Levels		42	
		oratory Analytical Results	43
	0.2.2.1	TRH and BTEX	43
	0.2.2.2	РАН	43
	••••••	Heavy Metals	43
	0.2.2.4	OCPs	43
		OPPs	43
1	0.2.2.6	Nutrients	43
11	DISCU	JSSION	45
11.1	SOIL		45
11.2	GROUNI	DWATER	45
12	SUMM	IARY AND RECOMMENDATIONS	46
13	REFE	RENCES	47
14	LIMIT	TATIONS OF THIS REPORT	49

LIST OF FIGURES

Figure 1: Site Location Plan

Figure 2: Sampling Location Plan

LIST OF TABLES

- Table 1:
 Summary of Borehole Information
- Table 2:Groundwater Gauging Table
- Table 3:Sample Holding Times
- Table 4:Analytical parameters soil
- Table 5:
 Analytical parameters groundwater
- Table 6:Site Assessment Criteria
- Table 7:Data Acceptance Criteria
- Table 8:
 Quality Assurance / Quality Control results
- Table 9:Soil Analytical Results
- Table 10: Groundwater Analytical Results
- Table 11: PID Screening Results
- Table 12:sPOCAS Analytical Results

LIST OF APPENDICES

- Appendix A: Proposed Development Plans
- Appendix B: Borehole Log
- Appendix C: Laboratory Certificates of Analysis
- Appendix D: Acid Sulfate Soil Screening Results
- Appendix E: Field Data Sheets

LIST OF ABBREVIATIONS

ACM	Asbestos Containing Material
AHD	Australian Height Datum
ASS	Acid Sulfate Soil
BTEX	Benzene, Toluene, Ethylbenzene, Total Xylenes
CES	Consulting Earth Scientists Pty Ltd
COC	Chain of Custody
COPC	Contaminants of Potential Concern
CSM	Conceptual Site Model
ESA	Environmental Site Assessment
GME	Groundwater Monitoring Event
km	Kilometre
LGA	Local Government Area
m	Metre
mbgl	metres Below Ground Level
NEPM	National Environment Protection Measure
NSW	New South Wales
OCP	Organochlorine Pesticide
PAH	Polycyclic Aromatic Hydrocarbon
PSP	Project Safety Plan
SWSOOS	Southern and Western Suburbs Ocean Outfall System
TRH	Total Recoverable Hydrocarbons

DETAILED ENVIRONMENTAL SITE ASSESSMENT 19 MARSH STREET, ARNCLIFFE, NSW COOKS COVE DEVELOPMENT ZONE PREPARED FOR COOK COVE INLET PTY LTD

CES Document Reference: CES130608-BP-AT

1 INTRODUCTION

This report has been prepared by Consulting Earth Scientists Pty Ltd (CES), on behalf of Cook Cove Inlet Pty Ltd (the Client), to support the public exhibition and assessment of the Cooks Cove Planning Proposal (PP-2022-1748), which was issued a Gateway Determination by the Department of Planning and Environment on 5 August 2022. The proposal seeks to amend Bayside Local Environmental Plan 2021 (BLEP 2021) to rezone and insert planning controls for certain land known as Cooks Cove within the BLEP 2021.

The Cooks Cove Planning Proposal aims to facilitate the long-planned transformation of 36.2ha of underutilised and strategically important land at Arncliffe, located to the north of the M5 Motorway and adjacent the western foreshore of the Cooks River. The project seeks a renewed focus on delivering a contemporary logistics and warehousing precinct within a well-connected location, surrounded by enhanced open space provisions. The site forms part of the broader Bayside West 2036 Precincts and generally comprises the footprint of the former Kogarah Golf Club, now in part occupied by a temporary M6 Stage 1 construction compound.

The Environmental Site Assessment (ESA) and subsequent Remediation Action Plan are required to satisfy State Environmental Planning Policy (Resilience and Hazards) 2021 former State Environmental Planning Policy No 55—Remediation of Land (SEPP 55).

The Cooks Cove Master Plan, as prepared by Hassell, represents an optimised and refined reference scheme, to guide best practice design and the preparation of detailed planning controls to achieve an attractive precinct with high amenity. Key features of the Cooks Cove Master Plan are:

- A net development zone of approximately 15ha with up to 343,250m2 Gross Floor Area (GFA) comprising
 - \circ 290,000m² of multi-level logistics and warehousing;
 - \circ 20,000 m² for hotel and visitor accommodation uses;
 - \circ 22,350 m² for commercial office uses;
 - \circ 10,900 m² of retail uses;
- Multi-level logistics with building heights generally up to 5 storeys (approx. 48m)
- A retail podium with commercial office and hotel above, up to a total of 12 storeys (approx. 51m)

- Built form of a scale and composition which caters for the generation of approximately 3,300 new jobs
- A surrounding open space precinct including:
- A highly activated waterfront including the Fig Tree Grove outdoor dining and urban park precinct
- A significant extension of the regional Bay to Bay cycle link, 'Foreshore Walk', including active and passive recreational uses, together with environmental enhancements
- Master planned and Council-owned 'Pemulwuy Park' with an agreed embellishment outcome of passive open space and environmental enhancements to be delivered in stages post construction of the M6 Stage 1 Motorway
- Complementary on and off-site infrastructure to be delivered by way of State and Local Voluntary Planning Agreements.

This report applies to a portion of the Cooks Cove Development Zone and provides an environmental site assessment of 19 Marsh Street, Arncliffe, New South Wales (NSW) legally described as Lot 31 in Deposited Plan (DP) 1231486 (formerly described as Lot 10 DP570900 and Lot 101 DP 1231954) (the site).

The site consists of approximately $4,400 \text{ m}^2(0.4 \text{ ha})$ and immediately bound by neighbouring Lots (Lot 103 of DP 1231954, Lot 13 of DP 570900, and Lot 14 of DP 213314) and Marsh Street to the south and west, the Cooks River immediately bordering the north-eastern boundary, and infrastructure and facilities of Rowers on Cooks River. The site was unoccupied and secured with fencing and electronic gating at the time of the investigation.

This report comprises a Detailed Environmental Site Assessment (DESA). A site location plan is presented on Figure 1.

This report has been prepared in general accordance with the CES proposal dated 28 July 2015 (CES document reference: CES130608-BP-AD v3). It has also been prepared in general accordance with the requirements specified for a Site Investigation as published by the NSW Environment Protection Authority (EPA) *Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites* (State of NSW and Office of Environment and Heritage (OEH)), 2011 and the National Environmental Protection Measure (NEPM) *Guideline on Site Characterisation* (Schedule B2) 1999, as amended 2013. This report should be read in conjunction with the Preliminary Environmental Site Assessment (PESA) (Desk Study) compiled by CES (CES Document Reference: CES130608-BP-AT, dated 5 May 2017).

It is noted that the *Contaminated Sites Sampling Design Guidelines* (NSW EPA, 1995) have been superseded by the new *Contaminated Land Guidelines Sampling Design Part 1 – Application* (NSW EPA 2022) and *Contaminated Land Guidelines Sampling Design Part 2 – Interpretation* (NSW EPA 2022).

It is also noted that the *Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites* (State of NSW and Office of Environment and Heritage (OEH)), 2011 have been superseded by the NSW EPA, *Contaminated Land Guidelines: Consultants Reporting on Contaminated Land* (NSW EPA, 2020).

Based on a review of the new guidelines, overall, the investigation has been completed in general accordance with the updated guidelines and not impacted the assessment.

The findings of this report are based on an intrusive investigation of the underlying soil and groundwater.

The DESA undertaken at the site comprised an initial intrusive assessment of the underlying soils and groundwater to investigate the site suitability for the proposed Enterprise and Public Open Space development. Systematic sampling was undertaken to determine the existence and distribution of the COPC identified within the PESA (CES, 2017).

The results of this preliminary DESA indicate that the site has some localised Fraction 1 TRH impact, in addition to confirmed classification of AASS and groundwater quality that exceeds the nominated screening criteria. However, upon review of the current proposed site development plans, it is unlikely that the current soil conditions and groundwater quality underlying the site will adversely impact current and future site users and sensitive ecological receptors.

The site is therefore considered suitable for the intended future use SP4 Enterprise and RE1 Open Space. In the event the construction activities will include dewatering of the site, further investigation of groundwater quality should be undertaken to determine the appropriate groundwater disposal method. Excavation works at the site should be managed in accordance with the Acid Sulfate Soils Management Plan, Cooks Cove Development Zone, Arncliffe and Banksia, NSW prepared by CES (Document Reference: CES130608-BP-AZ, dated 15 February 2023), in the event excavation is undertaken.

2 OBJECTIVES AND SCOPE OF WORKS

The objective of the DESA is to investigate the COPC identified in the corresponding PESA (CES, 2017) and determine whether the site in its present state, without further investigation or remediation, is suitable for the proposed future use of the site.

To achieve the objective, CES has completed the following scope of works:

- Undertake drilling of five (5) boreholes to target depths ranging 5 m to 30 m, in addition to five (5) boreholes excavated by hand auger;
- PID screening of samples collected every 1 m to determine potential presence of volatiles;
- Sampling of fill materials and soil for laboratory analysis;
- Acid sulfate soil screening in three boreholes to a maximum depth of 2 m
- Installation of groundwater monitoring wells in three of the 5 drilled boreholes to a depth of 6 m to allow for determination to groundwater flow;
- One-off groundwater sampling event to chemically characterise the groundwater encountered at the site;
- Laboratory analysis of fifteen (15) soil samples for a general suite of analytes (Total Recoverable Hydrocarbons (TRH), monocyclic aromatic hydrocarbons (benzene, toluene, ethylbenzene, xylenes (BTEX)), heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc), Polycyclic Aromatic Hydrocarbons (PAHs), Organochlorine Pesticides (OCPs), Organophosphorus Pesticides (OPPs), Polychlorinated Biphenyls (PCBs) and asbestos);
- Additional laboratory analysis on two (2) acid sulfate soil (ASS) screened samples for Suspension Peroxide Oxidation Combined Acidity and Sulfur (sPOCAS) testing;
- Laboratory analysis of three (3) groundwater samples for a general suite of analytes including TPH, BTEX, PAH's, OCPs and OPPs; and
- Preparation of this Preliminary Detailed Environmental Site Assessment report (DESA).

3 DATA QUALITY OBJECTIVES

Step 1 - State the Problem

The problem is that the limited investigations undertaken on the site to date do not provide sufficient information to adequately characterise soil and groundwater quality.

Step 2 - Identify the Decision Statement

The aim of this step is to identify what questions this program will attempt to resolve and to discuss what actions may result.

The primary question that this investigation will attempt to resolve is:

 What is the extent of soil and groundwater, if any, as a result of previous land uses on both this and adjacent sites?

It is expected that by resolving this question, it will be possible to develop more focussed remediation options for the site, if required.

Step 3 - Identify inputs to the decision

The following data are required to resolve the decision question(s):

- The key contaminants of concern as identified from the findings from previous environmental investigations;
- The installation of 10 boreholes across the site, with three boreholes converted to groundwater monitoring wells. In addition;
- Collection of soil samples at regular depth intervals in each borehole;
- Collection of groundwater samples from each of the groundwater monitoring wells following development and purging in accordance with appropriate methods;
- Standing water levels to be recorded in each monitoring well prior to sampling;
- Analysis of both soil and groundwater samples for the contaminants of concern and other analytes which will assist in characterising underlying soils and groundwater and developing remediation techniques, if required;
- Comparison of the results with relevant site assessment criteria (*ie.* NEPC (2013) Investigation Levels for Soil and Groundwater; ANZG (2018) Australian and New Zealand guidelines for fresh and marine water quality and Ahern et. al. (1998) Acid Sulfate Soils Assessment Guidelines; and
- Obtain survey data, including the position and relative heights, for each of the monitoring wells. When combined with the water level data and analytical results this

will enable a determination of the spatial and vertical extent of the contaminant plumes and direction of groundwater flow.

Step 4 - Define the boundaries of the study

The site has been referred to as 19 Marsh Street, within the Cooks Cove Development Zone. It is bound by Marsh Street to the north, Marsh Street to the west, the Cooks River to the east and Marsh Street to the south.

The legal description of the developable land is Lot 31 in Deposited Plan (DP) 1231486 (formerly described as Lot 10 DP570900 and Lot 101 DP 1231954). It is located within the Local Government Area (LGA) of Bayside , Parish of St George, County of Cumberland.

A site survey plan including the site and individual allotment boundaries, building locations and other relevant detail is provided as Figure 2.

It is anticipated that the vertical extent of the study will be the top approximately 25 m, with this depth considered sufficient to provide an assessment of natural soil as well as intercept the shallow groundwater zone.

Step 5 - Develop a decision rule

The purpose of this step is to define the parameters of interest, specify the action levels and combine the outputs of the previous DQO steps into an "if...then..." decision rule that defines the conditions that would cause the decision maker to choose alternative actions.

The parameters of interest (or contaminants of concern) in the soil for this investigation are metals and metalloids, TRH, BTEX, PAHs, OCPs, PCBs and asbestos. For the groundwater investigation, the contaminants of concern are metals and metalloids, nutrients, TPH, BTEX, PAHs, OCPs and OPPs.

The action level which will be used to decide if the parameter represents an unacceptable risk for the proposed Enterprise and Open Space land use are provided as Site Assessment Criteria (SAC) in Section 8 of this document.

The types of data quality required during the fieldwork component of the investigation and for the laboratory analyses are specified in Section 9. The acceptable limits for this data are defined in Table 7.

Based on these data quality types and limits the following decision rules will apply:

Impacted soil will be identified by concentrations exceeding the assessment criteria;

- Impacted groundwater will be identified by concentrations exceeding the assessment criteria;
- If contaminants of concern are detected in the trip blanks, then potential cross contamination may have occurred during sample transport. To assess whether this is the case, CES will check the trip blank results with the laboratory and compare the results with other blanks provide by the same laboratory. It is possible that detections in trip blanks may reflect background concentrations in laboratory-supplied water or analytical error. If it is concluded that decontamination procedures were inadequate CES will assess the severity of the cross contamination and subsequent impacts on the ability to resolve the decision question. Possible actions may include the raising of working detection limits or the collection of replacement data;
- If RPDs for blind replicates or split samples are outside the acceptable limits, then there may be errors in laboratory analysis process. When assessing duplicate pairs with elevated RPDs, CES will check the results with the laboratory(ies) and examine the nature of the sample being assessed, since heterogeneous samples can often provide high RPDs. If it is believed that irreversible errors have occurred during the laboratory process then additional investigation will be required to resolve the decision question; and
- If any of the laboratory data quality tests do not meet the acceptable limits, the laboratory will be requested to retest samples or provide justification for the results.

Step 6 - Specify acceptable limits on decision errors

There are two types of errors:

- a) Deciding that the site is acceptable for mixed (Enterprise and Public Recreation) land use when it actually is not (Type I error). The consequence of this error may be unacceptable ecological or health risk for future users of the site.
- b) Deciding that the site is unacceptable for mixed (Enterprise and Public Recreation) land use when it is acceptable (Type II error). The consequence of this error is that the client will pay for further investigation / remediation that is not necessary.

The more severe consequence is with decision error (a) since the risk of jeopardising human health outweighs the consequences of paying more for remediation.

It will not be possible to conduct statistical hypothesis tests as the proposed sampling programme consists of the collection of one round of samples only. Unlike soils, it is not generally appropriate to compare guideline levels with Upper Confidence Limits (UCLs) for the mean of measured concentrations. The level of impact on groundwater will need to be assessed at each monitoring well.

Step 7 - Optimising the Design for Obtaining Data

The purpose of this step is to identify a resource-effective data collection design for generating data that are expected to satisfy the DQOs.

The resource effective data collection design that is expected to satisfy the DQOs is described in detail in Section 7. To ensure the design satisfies the DQOs a comprehensive Quality Assurance and Quality Control plan will be implemented as described in Section 9.

4 SITE INFORMATION

The site information presented below is based on a review of government and publicly available information sources.

4.1 SITE IDENTIFICATION

The site is located at 19 Marsh Street, Arncliffe, NSW 2205, within the Local Government Area (LGA) of Bayside Council. The site covers an area of approximately 0.4 hectares, and is legally identified as a single lot, Lot 31 in Deposited Plan (DP) 1231486. A site location plan is presented on Figure 1. The geographical extent of the site is presented in Table 4.1 below.

Corner/point of site	Eastings	Northings
North corner of site	329916.822 mE	6243704.569 mN
East corner of site	329975.682 mE	6243651.684 mN
West corner of site	329867.42 mE	6243665.665 mN
Southwest corner of site	329843.809 mE	6243633.889 mN
Centre of site	329908.981 mE	6243664.682 mN

Table 4.1: Geographical extent of site

4.2 SITE ZONING

The site is currently zoned for Open Space, land use under the State Environmental Planning Policy (Precincts—Eastern Harbour City) 2021. It is proposed to rezone the site for Infrastructure, Public Recreation and Enterprise uses.

4.3 SITE DESCRIPTION

The site was unoccupied at the time of the investigation. The site comprised a demountable building for use as site offices and the East Australian Pipeline Limited Valve Station, occupying the south-eastern boundary of the site.

No visual or olfactory evidence of impacts were identified during the site inspection (e.g. surface staining or distressed vegetation) and no storage of chemicals or fuels were observed.

The north-eastern boundary of the site is defined by the banks of Cooks River, whilst the southern boundary is defined by neighbouring Lot 103 of DP 1231954 and Marsh Street. The northern boundary is defined by Levey Street and the infrastructure and facilities of Rowers Recreation Club and the western boundary of the site is bounded by Lot 13 of DP 570900 and Lot 14 of DP 213314.

The inspected condition of Marsh Street is good and the remaining site surface conditions within the fenced compound of the site were unsealed but well maintained.

4.4 PROPOSED DEVELOPMENT

The current proposed mixed-use development is illustrated in The Cooks Cove Master Plan, as prepared by Hassell. The Master Plan represents an optimised and refined reference scheme, to guide best practice design and the preparation of detailed planning controls to achieve an attractive precinct with high amenity. Key features of the Cooks Cove Master Plan are:

- A net development zone of approximately 15ha with up to 343,250m² Gross Floor Area (GFA) comprising
 - \circ 290,000m² of multi-level logistics and warehousing;
 - \circ 20,000m² for hotel and visitor accommodation uses;
 - \circ 22,350m² for commercial office uses;
 - \circ 10,900m² of retail uses;
- Multi-level logistics with building heights generally up to 5 storeys (approx. 48m)
- A retail podium with commercial office and hotel above, up to a total of 12 storeys (approx. 51m)
- Built form of a scale and composition which caters for the generation of approximately 3,300 new jobs
- A surrounding open space precinct including:
- A highly activated waterfront including the Fig Tree Grove outdoor dining and urban park precinct
- A significant extension of the regional Bay to Bay cycle link, 'Foreshore Walk', including active and passive recreational uses, together with environmental enhancements
- Master planned and Council-owned 'Pemulwuy Park' with an agreed embellishment outcome of passive open space and environmental enhancements to be delivered in stages post construction of the M6 Stage 1 Motorway
- Complementary on and off-site infrastructure to be delivered by way of State and Local Voluntary Planning Agreements.

4.5 SURROUNDING LAND USE

Based on observations from the site inspection, the surrounding land use comprised the following:

- North The site is immediately bordered by Levey Street and the infrastructure and facilities of Rowers Recreation Club;
- **East** The site is immediately bordered by the Cooks River;
- South The site is bordered by neighbouring Lot 103 of DP 1231954 and Marsh Street, with the Kogarah Golf Club present further south; and

• West – Immediately bordered by Lot 13 of DP 570900 and Lot 14 of DP 213314, and further west by Marsh Street and the Mercure Sydney International Airport Hotel; beyond which is detached residential properties.

4.6 TOPOGRAPHY

A review of the Botany Bay 1:25,000 Topographic map (Sheet No. 9130-3-S) indicated that the site elevation is less than 2 m Australian Height Datum (AHD). The site appears generally flat.

4.7 HYDROLOGY AND DRAINAGE

The nearest surface water features are Cooks River (flowing from west to east) located north and east of the site boundary. Based on contouring of the site, drainage is considered likely to be in an easterly direction towards Cooks River.

4.8 GEOLOGY

The Sydney 1:100,000 Geological Series Map indicates that the geology underlying the site comprises medium to coarse-grained quartz sandstone, very minor shale and laminate lenses of the Wianamatta Group. This lithology is most likely to be of braided alluvial channel fill origin. The deposit has been reworked significantly in the last century as part of river diversion works, of which has involved significant dredging operations.

4.9 SOILS

A review of the Sydney 1:100,000 Soil Landscape Series Map (Sheet 9130: Soil Conservation Service of NSW, 1983) indicates that the site is underlain by a combination of Disturbed Terrain and Birrong Soil Landscape Group. The Birrong Soil Landscape Group is characterised by *"level to gently undulating alluvial floodplain draining Wianamatta Group shales. Local relief to 5m, slopes <3%. Broad valley flats. Extensively cleared tall open-forest and woodland"*.

4.10 ACID SULFATE SOILS

In accordance with the ASS Soil Classification, the area of Cooks River has been identified as Soil Class 1 and has been described as area of the highest environmental risk. ASS in a Class 1 area are likely to be found on and/or immediately below the natural ground surface and any works will trigger the requirement for assessment and may require management. The majority of the site has been unmapped, with the exception of a small portion within the western corner of the site classified as Class 3. Class 3 ASS soil classification is defined as soils that are likely to be found beyond 1 metre below the natural ground surface. Development consent is required in this area for works more than 1 metre below the natural ground surface and works by which the watertable is likely to be lowered more than 1 metre below the natural ground surface.

4.11 HYDROGEOLOGY

The aquifers on site is described as a porous, extensive highly productive aquifers. It is expected that groundwater would flow towards Cooks River to the northeast.

Within the vicinity of the site, Cooks River is tidal and diurnal fluctuations in groundwater levels in the peripheral areas of the site are expected to occur in response to tidal cycles.

A total of 10 registered groundwater wells are located within 500 metres of the site. The majority (6) are registered for private 'Domestic Use' whilst the others are registered for 'General Use', 'Domestic, stock', 'Irrigation' and 'Recreation'. General and domestic wells refer to use by private persons for non-potable use. None of the registered wells are located on the site. Two registered groundwater wells have reported well yields range of 7.7 and 0.79 L s⁻¹ and depth to groundwater noted as 14 metres below ground level in one of the two wells. The salinity of the two recorded wells installed are reported as 1600 and 8000 mg/L. These data indicate that the study area is surrounded and underlain by relatively permeable strata.

4.12 SENSITIVE LOCAL ENVIRONMENTS

There are no records or observations of underground storage tanks located at the site. The site is located within an Underground Petroleum Storage System (UPSS) sensitive local environment in the Local Government Area (LGA) of Rockdale as determined by NSW EPA.

Additionally, there were no records of any storage of dangerous goods within the site. This also means the SafeWork NSW do not have any records of above and below ground (fuel) tanks.

5 SITE HISTORY

Information pertaining to the history of the site was obtained through a review of information available from external sources including historical title searches, aerial photographs, SafeWork NSW Dangerous Goods files and council records.

5.1 **PROPERTY TITLE INFORMATION**

A title deeds search was conducted by Lotsearch for the site for the Preliminary Site Assessment (CES document reference: CES130608-BP-AT, dated 5 May 2017). A summary of the property title information indicates that the site has predominantly been owned and utilised as a recreational golf facility since 1922. Kogarah Golf Club has taken ownership of the site since 1972 to the present day.

There is no evidence of historic contaminating activities being undertaken within the vicinity of the study site. However, a review of the historical aerial photographs suggests that the site may have been resurfaced using materials sourced from the materials dredged from the Cooks River.

5.2 HISTORICAL AERIAL PHOTOGRAPH INTERPRETATION

A review of historical aerial photographs taken between 1943 and 2014 indicates that the site was initially vacant land. Development is apparent around 1970 with the construction of a dam feature (which has since been filled) and construction of several small buildings. The footprint of the site was developed with concrete hardstand between 2001 and 2009. The review also suggests that the site was used as a car parking lot between the dates of 2009 and 2014. The review suggests there being no significant on-site sources of contamination.

A review of the historical photographs produced on Nearmap (accessed 3 February2023) was undertaken. The review indicated no significant change to the site or its surrounds between the dates of 14 November 2009 and November 2022, with the exception of the construction of the Westconnex M8 and M6 Stage 1 Motorway Temporary Compound during August 2016 to date.

Various potentially contaminating land uses have been identified in the immediate vicinity of the site, which include the Alexandria Foundry and Steggles Poultry Processing Plant, previously situated in the current location of the Mercure Sydney International Airport Hotel.

5.3 SEWER AND SERVICE PLANS

A review of Dial-Before-You-Dig (DBYD) plans indicates numerous significant underground services transect the site. Targeted location of underground services in the proposed investigation areas identified:

- The presence of the Gorodok Ethane Pipeline, running through the centre of the site before running east parallel to Marsh Street;
- Electricity cables along the southern boundary of the site;

- Telstra services are also on site within the south-western portion of the site;
- Optus fibre optic cables running the length of the southern boundary;
- A Sydney Water cast iron sewer main is mapped in the DBYD plans as transecting the western corner of the site; and
- A steel cement lined potable water main (desalination pipeline) which is approximately 1800 mm in diameter and runs through the centre of the site from the south and turning northeast towards Cooks River.

6 PRELIMINARY CONCEPTUAL SITE MODEL

A Preliminary Conceptual Site Model (CSM) has been developed to provide an understanding of the contamination status of the site. Its purpose is to develop a hypothesis on the contamination of the site which can be tested through a programme of soil and groundwater testing.

The Preliminary CSM has been developed in consideration of the historical information and current site conditions. It considers historic site uses and the proposed future redevelopment scheme.

6.1 POTENTIAL SOURCES OF CONTAMINATION

The following potential contamination sources are relevant to the site:

6.1.1 Uncontrolled Fill

As part of the infilling of the dam feature, uncontrolled fill is likely to be present. The origin of the fill is unknown and the potential exists for this material to be contaminated. Contaminants of Potential Concern (COPC) typically encountered in uncontrolled fill include:

- Total Recoverable Hydrocarbons (TRH);
- Monocyclic Aromatic Hydrocarbons (BTEX);
- Polycyclic Aromatic Hydrocarbons (PAHs);
- Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, and zinc);
- Organochlorine Pesticides (OCPs); and
- Asbestos.

6.1.2 Car Parking

The potential for parked cars to cause significant contamination is low, since the volumes of fuel are relatively low and the surface is covered with hardstanding; however, there remains the potential for isolated and localised pockets of TRH, BTEX and PAH impact.

6.1.3 Off-site Contamination Sources

Due to the historical use of the Mercure Sydney International Airport Hotel location as the Alexandria Foundry and Steggles Poultry Processing Plant, it is possible that contaminants may have migrated (along preferential pathways – such as buried services or in groundwater) from these historical sources, however this is considered low risk.

6.2 POTENTIAL PATHWAYS

The pathways through which contaminants may reach receptors are in part dependent on the nature and behaviour of the contaminant and the specific nature, use and layout of the future development. The following potential pathways have been identified:

- Soil ingestion and dermal contact with impacted fill / soils;
- Inhalation of contaminants in the particulate form (dust);
- Volatilisation and migration of volatile organic contaminants from soil and / or perched groundwater to indoor (following future building construction) or outdoor air and inhalation;
- Leaching of contaminants from site fill / soils into groundwater; and
- Lateral migration of contaminants in groundwater (dissolved and immiscible phases) to surface waters (Cooks River).

Preferential flow pathways may be provided by:

- More permeable layers within the fill and / or natural strata; and
- Underground services e.g. water pipes and drainage networks that transect the site.

6.3 RECEPTORS

Potential sensitive receptors (on and off-site) are listed below:

- Future workers during the construction of the proposed redevelopment;
- Future users / visitors of the proposed redevelopment;
- Groundwater beneath the site;
- Nearby surface waters (Cooks River); and
- Neighbouring residents / site users.

7 SAMPLING AND ANALYTICAL PROGRAMME

The following sampling programme has been carried out, to identify potential contamination issues resulting from past activities undertaken at the site and takes into consideration the objectives of the environmental investigation. The sampling and analysis programme is designed to assess the contamination status of fill and natural soils, and groundwater.

7.1 SAMPLING PATTERN

To determine the degree of potential contamination across the site, CES carried out a systematic sampling pattern within the constraints of the site. However, final borehole locations were influenced by the underground services underlying the site and as such may not have reflected regular and even intervals.

The location of the boreholes is presented in Figure 2.

7.2 GROUNDWATER MONITORING WELL INSTALLATION

Three groundwater monitoring wells were installed in boreholes BH01, BH02 and BH05. BH01 and BH02 were installed to depths of 5 metres below ground level (mbgl) (screened 4 m), and BH05 was installed to depth of 6 mbgl (screened 5 m). All installations were completed with a gravel pack from the depth of the well to 0.5 mbgl and finalised with bentonite and gatic covers.

7.3 SAMPLING DENSITY

A total of ten assessment locations were identified for the DESA. In accordance with Table A of the Sampling Design Guidelines (NSW EPA, 1995) to identify a soil contamination hotspot with a diameter of between 22.5 and 23.1 m with 95% confidence on a site area between 0.4 and 0.5 ha, the minimum sample points required would range between 11 and 13 locations. This investigation is considered to be a DESA for the following reasons:

- The number of services underlying the site restrict the density and sampling pattern; and
- Lack of areas of environmental concern identified during the Preliminary Site Investigation due to the previous site use.

It is noted that the *Contaminated Sites Sampling Design Guidelines* (NSW EPA, 1995) have been superseded by the new *Contaminated Land Guidelines Sampling Design Part 1 – Application* (NSW EPA 2022) and *Contaminated Land Guidelines Sampling Design Part 2 – Interpretation* (NSW EPA 2022). The sample density was less than the minimum sampling points for site characterisation recommended in the NSW EPA (2020), however, is still considered appropriate considering:

- land is being redeveloped for a less sensitive land use,
- a review of the sampling locations (Figure 2) indicated a comprehensive site coverage
- the guidelines allow for judgemental/targeted sampling based on knowledge of the probable distribution of contaminants at the site, with known or suspected areas of contamination being specifically targeted based on the CSM.

7.4 DEPTH INTERVALS OF SAMPLING

Soil samples were collected from the fill and natural soils. Details on sample locations and depths are presented in Table 1.

7.5 METHOD OF SAMPLING COLLECTION

Care was taken to ensure that representative samples are obtained from the depth required and that the integrity is maintained during the intrusive investigation. All soil samples were collected directly from the auger and standard penetration test (SPT) split core barrel using new nitrile gloves. Care was taken when collecting samples to ensure the most representative sample of the targeted material was sampled.

7.6 DECONTAMINATION PROCEDURES

Drilling equipment was washed down between sampling looations. Soil samples were transferred directly from auger and SPT core barrels to laboratory prepared sample jars. Groundwater samples were collected using a bladder pump. Dedicated bladders and tubing were used at each sample location.

7.6.1 Sample Containers

The soil samples were collected in laboratory prepared glass jars with Teflon lined lids. The jars were completely filled with soil, sealed, labelled with the job number, date, unique sampling point identification and depth. Details of sample containers, preservation requirements and holding times for soil and groundwater samples are presented as Table 3a and 3b respectively.

Groundwater samples were collected in laboratory supplied containers. The containers were supplied by the laboratory with the appropriate sample preservatives for the proposed analysis.

7.7 METHOD OF SAMPLE STORAGE AND HANDLING

The sample containers were immediately placed in a cool box in which ice had been added to keep the samples cool. Samples were then transported directly to the laboratory.

7.8 DOCUMENTATION

While on site, the supervising engineer/scientist filled out a copy of CES "Daily Field Data Sheet", which documents:

- Time of sample collection;
- Weather;
- Unique sample identification number; and
- Sample location and depth.

All samples were classified in the field based on soil/fill characteristics and obvious signs of contamination such as discolouration or odour were noted on a log.

All samples, including QA samples, were transported to the primary and check laboratories under Chain-of Custody (COC) procedures and maintained in an ice-filled cooler. The COC details the following information:

- Site identification;
- The sampler's name;
- Nature of the sample;
- Collection time and date;
- Analyses to be performed;
- Sample preservation method;
- Departure time from site; and
- Dispatch courier(s)

During excavation, a borehole log was completed by a qualified geotechnical engineer / environmental scientist. The log recorded the following data:

- Sample number and depth;
- Soil classification, colour, consistency or density, and moisture content;
- Unusual characteristics such as odour and staining;
- Photoionization Detector (PID) screening results;
- Depth of excavation;
- Push tube rig refusal;
- Groundwater well installation details (where relevant);
- Method of excavation; and
- The depth of first encountered free water.

Borehole logs are presented as Appendix B.

7.9 ANALYTICAL PROGRAMME

7.9.1 Number of Samples for Analysis

7.9.1.1 Soil

A total of fifteen (15) environmental soil samples for were scheduled for analysis for a common suite of contaminants, and two (2) environmental soil samples scheduled for sPOCAS testing. The analytical programme is summarised below:

- Fifteen (15) soil samples for a suite of common contaminants including TRH, BTEX, Heavy Metals (Ar, Cd, Cr, Cu, Pb, Hg, Ni, and Zn), PAH, OCPs, OPPs, PCBs and Asbestos;
- Two (2) soil samples submitted for sPOCAS testing
- Quality control one blind replicate and one split replicate samples analysed for TRH, BTEX, heavy metals (Ar, Cd, Cr, Cu, Pb, Hg, Ni, and Zn), PAH, OCPs, OPPs, PCBs and asbestos; and
- Quality control Trip Blank analysed for TRH.

7.9.1.2 Groundwater

A total of three (3) environmental groundwater samples were scheduled for analysis. The analytical programme is summarised below:

- Three (3) groundwater samples for nutrients, TRH, BTEX, PAHs, OCPs, OPPs and dissolved heavy metals (Ar, Cd, Cr, Cu, Pb, Hg, Ni, and Zn); and
- Quality control one blind replicate and one split replicate samples analysed for nutrients, TRH, BTEX, PAHs, OCPs, OPPs and dissolved heavy metals.

7.9.2 Laboratory

CES used Envirolab Services Pty Ltd (Envirolab) as the primary lab and Australian Laboratory Services Pty Ltd (ALS) as the secondary or 'check' laboratory for all chemical testing. Both laboratories are NATA registered for the chemical testing.

7.9.2.1 Analytical Methods

The soil/fill was analysed in accordance with NEPC 1999 (2013) *Guideline on Laboratory Analysis of Potentially Contaminated Soils* using US EPA and APHA approved analytical methods and will provide analytical results consistent with the amended NEPM. That is to say the results for TRH will be presented as the four fraction bands (F1-F4) and speciated PAHs, including Benzo(a)pyrene toxicity equivalent quotient (TEQ). Asbestos was analysed in accordance with Australian Standard 4964-2004.

A list of soil and groundwater analytical parameters, laboratory Practical Quantitation	
Limits (PQLs) and laboratory methods are presented as Table 4 and Table 5 respectively	<i>.</i>

8 SITE ASSESSMENT CRITERIA

The selection of the most appropriate investigation levels for use with a site specific environmental setting and land use scenario is required to consider factors including the protection of human health and ecosystems.

Investigation and screening levels are provided in *Guideline on Investigation Levels for Soil and Groundwater* (Schedule B1, NEPC, 2013) for commonly encountered contaminants which are applicable to generic land use scenarios and include consideration of, where possible, the soil type and the depth of contamination. Investigation levels and screening levels are the concentrations of a contaminant above which further appropriate investigation and evaluation will be required. Investigation and screening levels provide the basis of Tier 1 risk assessment.

8.1 INVESTIGATION AND SCREENING LEVELS

Health investigation levels (HILs) have been developed for a broad range of metals and organic substances. The HILs are applicable for assessing human health risk via all relevant pathways of exposure. The HILs are generic to all soil types and apply generally up to a depth of 3 m below the surface.

Health screening levels (HSLs) have been developed for selected petroleum compounds and fractions and are applicable to assessing human health risk via the inhalation and direct contact pathways. The HSLs depend on specific soil physicochemical properties, land use scenarios, and the characteristics of building structures. They apply to different soil types, land uses, and depths below surface to >4 m.

Ecological investigation levels (EILs) have been developed for selected metals and organic substances and are applicable for assessing risk to terrestrial ecosystems. EILs depend on specific soil physicochemical properties and land use scenarios and generally apply to the top 2 m of soil.

Ecological screening levels (ESLs) have been developed for selected petroleum hydrocarbon compounds and total petroleum hydrocarbon (TPH) fractions and are applicable for assessing risk to terrestrial ecosystems. ESLs broadly apply to coarse- and fine-grained soils and various land uses. They are generally applicable to the top 2 m of soil.

Groundwater investigation levels (GILs) has been developed to assess human health risk and ecological risk from direct contact (including consumption) with groundwater. The investigation levels encompass the ANZECC (2000) *Australian and New Zealand Guidelines*

for Fresh and Marine Water Quality, NHMRC (2011) Australian Drinking Water Guidelines, and the NHMRC (2008) Guidelines for Managing Risks in Recreational Waters, and site specific derived criteria.

It is noted that ANZECC (2000) *Australian Water Quality Guidelines and NHMRC* (2011) *Australian Drinking Water Guidelines*, have been superseded by the Water Quality Guidelines, ANZG 2018, *Australian Drinking Water Guidelines* 6, 2011 Version 3.8 Updated September 2022, respectively.

A review of current Default Guideline Values (GDVs) reported in the *Water Quality Guidelines* (ANZG 2018) indicated that there were no changes to those values with the following exceptions:

- zinc (changed from 15 μ g/L to 8 μ g/L),
- nitrate (which was erroneous and in the absence of an ANZG (2018) default guideline value, refer to the "Grading" guideline values published in the report Updating nitrate toxicity effects on freshwater aquatic species, which were used to inform the current New Zealand nitrate toxicity attribute. Changed from 10,000 µg/L to 2,400 µg/L, which is the grading value reported in the guidelines for 95% protection)
- TRH (C6-C36) (not reported in the guideline)
- Ethylbenzene (changed from 5 μ g/L to 80 μ g/L)
- Total Xylenes (not reported in the guideline).

Acid sulfate Soil Action Criteria have been developed to determine the requirement for an ASS management plan. The Action criteria are based on the percentage of oxidisable sulfur (or equivalent TPA, TAA) for three broad categories of soil texture types, and the volume of material proposed to be disturbed. For projects that disturb more than 1,000 tonnes of soil with $\geq 0.03\%$ oxidisable sulfur or equivalent existing acidity, a detailed management plan and development consent will be required (Ahern *et al.*, 1998).

8.1.1 Soil

8.1.1.1 Human Health Assessment

To address potential health impacts at the site, CES compared the analytical testing results against a set of health based soil investigation criteria appropriate for the proposed land-use. That is, the HIL has been set at a level that provides confidence that contaminant concentrations below the HIL will not adversely affect human health. As described in Section 4.4, the future site land-use is Enterprise and Open Space; as such, the NEPM (2013) HIL C (Recreational/Open Space) and HIL D (Commercial/Industrial) and NEPM (2013) HSL

(Recreational/ Open Space) and HSL D (commercial/industrial) criteria has been adopted for the assessment of human health.

8.1.1.2 Ecological Assessment

NEPC (2013) indicates that while protection of human health often drives the first stages of assessment, ecological assessment will need consideration for all sites. The closest waterbody, Cooks River, is immediately bordering the site and may be considered a sensitive ecological receptor.

To address the potential ecological impacts at the site, CES compared the analytical testing results against a set of ecological investigation and screening levels appropriate for the proposed mixed land use. The NEPM (2013) EIL criteria adopted were generated using the CSIRO for *NEPM Ecological Investigation Level Calculation Spreadsheet* (CSIRO, 2010). Conservative values for pH (7.0 pH), cation exchange capacity (CEC) (20 cmolc/kg), organic content (1%) and clay content (>10%) were used in the absence of available data. Additionally, the NEPM (2013) ESL (coarse soil texture) was adopted for the ecological assessment.

8.1.1.3 Acid Sulfate Soils

Trigger Action Criteria are adopted from Table 4.4 of the Acid Sulfate Soils Advisory Committee (ASSMAC) *Acid Sulfate Soils Assessment Guidelines* (Ahern *et al.*, 1998). A conservative approach of determining action criteria was adopted by assuming more than 1,000 tonnes of soil is proposed to be disturbed across the site area. As such an action criteria value for the sulfur trail of 0.03% S and 18 mol H^+ /tonne for the acid trail has been adopted for all soil texture types encountered.

8.1.1.4 Asbestos

Health screening levels for asbestos in soils, which are based on scenario-specific likely exposure levels, are adopted from the Western Australia, Department of Health (WA DoH) guidelines as outlined in Table 7 of Schedule B1, NEPC, 2013. Based on the proposed mixed use development, the Recreational C exposure setting has been selected. As such, the HSL for bonded asbestos containing materials (ACM) is 0.02% w/w and 0.001% w/w for asbestos fines and fibrous asbestos.

8.1.2 Groundwater

To address the data gap of groundwater characterisation at the site, CES compared results of samples of groundwater to the NEPM (2013) HSL C & HSL D (Commercial/Industrialfor sand) and NEPM (2013) GIL criteria for Marine Waters which encompasses the Water Quality Guidelines, (ANZG 2018), the *NHMRC (2011) Australian Drinking Water Guidelines* and the NHMRC (2008) *Guidelines for Managing Risks in Recreational Waters*.

Trigger values for marine water were adopted for this investigation rather than fresh water guidelines on the basis that the ultimate receiving system for the groundwater at the site is the estuarine section of the Cooks River. Groundwater assessment criteria for relevant parameters are summarised in Table 6.

As indicated earlier, it is noted that ANZECC (2000) Australian Water Quality Guidelines and NHMRC (2011) Australian Drinking Water Guidelines, have been superseded by the Water Quality Guidelines, ANZG 2018, Australian Drinking Water Guidelines 6, 2011 Version 3.8 Updated September 2022, respectively. Refer to Section 8.1 for comments.

9 QAQC DATA EVALUATION

Field and laboratory QA/QC requirements compliant with National Environmental Protection Council (1999 updated 2013) requirements are outlined below. Laboratory certificates of analysis are attached as Appendix C.

9.1 DATA ACCEPTANCE CRITERIA

The QA/QC Data was assessed against the Data Acceptance Criteria (DAC) provided in Table 7.

9.1.1 Field QA/QC Programme

Soil samples were collected by an experienced Geotechnical Engineer and an experienced Environmental Scientist, under established CES protocols. CES personnel have been trained in sample collection and handling techniques.

For the purpose of assessing the quality of data presented in this report, CES collected and analysed Quality Control (QC) samples, while the laboratory completed their own QC. Tabulated QC data for soil and groundwater are provided in Table 8a and Table 8b respectively. The current section of this report is focused on the presentation of results of these QC samples and discussion of deviations from the Data Acceptance Criteria (DAC) (Table 7).

9.1.1.1 Blind Replicate Samples

As a minimum, the results of analyses on the blind replicate sample pair are assessed by calculating the Relative Percentage Differences (RPDs) between the results. The RPD is calculated as the difference between the results divided by their mean value and expressed as a percentage.

Soil

One blind replicate soil sample was collected from BH05 (Blind Replicate). The replicate sample was preserved, stored, transported, prepared and analysed in an identical manner to the primary environmental sample.

The RPD were all within the DAC listed in Table 7.

In summary, it is considered that the blind replicate sample confirms that the primary laboratory (Envirolab) analyses of the soil and groundwater samples are repeatable and accurate.

Groundwater

One blind replicate groundwater sample was collected from BH02 (QAQC 1). The replicate sample was preserved, stored, transported, prepared and analysed in an identical manner to the primary sample. As a minimum, the results of analyses on the blind replicate sample pair are assessed by calculating the Relative Percentage Differences (RPDs) between the results. The RPD is calculated as the difference between the results divided by their mean value and expressed as a percentage.

The RPDs were all within the DAC listed in Table 7, therefore it is considered that the blind replicate samples confirm that the primary laboratory (Envirolab) analyses of the soil and groundwater samples are repeatable and accurate.

9.1.1.2 Split Duplicate Samples

Split samples, otherwise known as 'inter-laboratory duplicates', provide a check on the analytical proficiency of the laboratories. Split samples are taken from the same location as the blind replicate, thus becoming a triplicate sample.

Soil

One split sample was collected from BH05 (Split Replicate), with the replicate sample preserved, stored, transported, prepared and analysed in an identical manner to the primary environmental sample.

The RPD were all within the DAC listed in Table 7. The results of the split sample analysis confirms the reliability of the laboratory analysis from Envirolab, since the all the RPD were compliant with the DAC. The results of the RPD analysis indicates the analytical proficiency of the laboratories.

Groundwater

One split sample was collected from BH05 (QAQC 2), with the replicate sample preserved, stored, transported, prepared and analysed in an identical manner to the primary environmental sample.

The RPD were all within the DAC listed in Table 7, therefore it is considered that the blind replicate samples confirm that the primary laboratory (Envirolab) analyses of the soil and groundwater samples are repeatable and accurate.

9.1.1.3 Laboratory Prepared Trip Blank

One trip blank was included in the sampling event. The trip blank conforms to the DAC listed in Table 7.

9.1.2 Laboratory QA/QC Programme

The reliability of test results from the analytical laboratories will be monitored according to the QA/QC procedures used by the NATA accredited laboratory. The QA/QC programme employed by Envirolab Services (Envirolab) (the primary laboratory) will specify holding times, extraction dates, method descriptions, Chain of Custody (COC) requirements, analysis, EQLs and acceptance criteria for the results. Laboratory QA/QC requirements undertaken by Australian Laboratory Services (ALS) are based on NEPM requirements and are outlined below (NEPC, 1999).

9.1.2.1 Laboratory Duplicate Samples

Laboratory duplicates provide data on analytical precision for each batch of samples. Where required and in order to provide sufficient sample for analysis of laboratory duplicates, two batches of samples are collected at the first site listed on the Chain of Custody form. This is done in order to ensure that sufficient sample is collected.

All laboratory duplicate samples' RPDs conformed to the DAC.

9.1.2.2 Laboratory Control Samples

Laboratory control samples consist of a clean matrix (de-ionised water or clean sand) spiked with a known concentration of the analyte being measured. These samples monitor method recovery in clean samples and can also be used to evaluate matrix interference by comparison with matrix spikes. Laboratory control samples may be certified reference materials.

All laboratory control samples conformed to the laboratory assessment criteria and therefore the DAC, with the exception of an exceedance of holding time for Nitrite in ALS laboratory report ES1806787.

9.1.2.3 Surrogates

A surrogate is added at the extraction stage of sample analysis in order to verify method effectiveness. The surrogate is then analysed with the batch of samples. Percent recovery is calculated.

All laboratory surrogate samples conformed to the laboratory assessment criteria and therefore the DAC.

9.1.2.4 Matrix Spike

A matrix spikes consist of samples spiked with a known concentration of the analyte measured, in order to identify properties of the matrix that may hinder method effectiveness.

Samples are spiked with concentrations equivalent to 5 to 10 times the PQL. Percent recovery is calculated.

All matrix spikes conformed to the laboratory assessment criteria and therefore to the DAC, with the exception of Total Kjeldahl Nitrogen in ALS laboratory report ES1806787, due to the background level being greater than four times the spike level.

9.1.2.5 Method Blanks

Method blanks are carried through all stages of sample preparation and analysis. Analyte concentrations in blanks should be less than the stated PQL. Reagent blanks are run if the method blank exceeds the EQL. The purpose of method blanks is to detect laboratory contamination.

All method blanks conformed to the laboratory assessment criteria and therefore to the DAC.

9.2 QAQC ASSESSMENT SUMMARY

CES has a high degree of confidence in the quality of the field data (that is to say that the soil samples were representative of the material sampled, the samples were collected by an experienced sampler and that the chain of custody documentation was accurate) and the laboratory data (that is to say that Envirolab and ALS are NATA accredited laboratories, and undertake strict internal QA/QC of the results issued, uses appropriate methodology and practical quantification limits (PQL) to analyse soil samples and has completed sample documentation).

In consideration of the QAQC assessment, it is the opinion of CES that the data collected is suitable for the assessment of the site.

10 INVESTIGATION RESULTS

10.1 SOIL

10.1.1 Fieldwork

Fieldwork was carried out on 22, 23, 24 and 25 January 2018. An underground services search was carried out and each borehole location was cleared for underground services prior to commencement of fieldwork.

Five boreholes mechanically drilled were advanced the first 2 mbgl using non-destructive drilling (NDD) techniques, before further advancement through fill to natural soils using SPT and wash bore drilling methods to a maximum depth of between 5 m and 30 m, or until refusal. The remaining five proposed boreholes, HA1 to HA5 inclusive, were advanced where possible using hand augers. Four locations of the proposed five sampling locations were unable to be advanced to the target depth due to unfavourable ground conditions. Where able to be retrieved, soil samples were collected every 1 m and screened for volatiles using a PID. Fill was encountered to a maximum depth of approximately 3 mbgl in borehole BH05.

A summary of borehole locations, termination depth, and sample depth is presented as Table 1. PID screening results are displayed in Table 11 and borehole logs are presented as Appendix B.

10.1.1.1 Acid Sulfate soil screening

Samples collected every 0.5 m to a target depth of 3 mbgl from boreholes BH01, BH02, BH03, and BH04 were screened for the presence of AASS and PASS.

The results of the ASS screening are displayed in Appendix D. The results of the screening indicate that the following samples suggest PASS:

- BH01-1.5;
- BH02-1.5; and
- BH02-3.25.

10.1.2 Laboratory Analytical Results

Soil analytical results are presented as Table 9. The laboratory Certificates of Analysis are presented in Appendix C.

10.1.2.1 TRH and BTEX

10.1.2.2 TRH and BTEX results for fill and soil samples were detected below the Site Assessment Criteria (SAC). PAHs

PAH results in fill and natural samples scheduled for analysis were below the SAC.

10.1.2.3 Heavy Metals

Heavy metal concentrations in fill and natural samples were below the SAC.

10.1.2.4 OCPs

OCP results in fill samples were below laboratory SAC and therefore the PQL.

10.1.2.5 OPPs

OPP results in fill samples were below laboratory SAC and therefore the PQL.

10.1.2.6 PCBs

PCB results in fill samples were below laboratory SAC and therefore the PQL.

10.1.2.7 Asbestos

No asbestos was detected in the fill samples analysed. In addition, no potential asbestos containing materials were observed within the site soils during the investigation.

10.1.2.8 Acid Sulfate Soil

Samples of fill and natural soil were collected for Acid Sulfate Soil (ASS) determinations. Two samples were submitted for sPOCAS testing as identified by the ASS field screening as PASS. The samples submitted for testing indicated that Acid Sulfate Soils were present in both locations as follows:

- BH01 at 1.5 mbgl, sulfur trail 0.36%, acid trail 120 mol H^+ /tonne; and
- BH02 at 3.25-3.45 mbgl, sulfur trail 0.35%, acid trail 190 mol H^+ /tonne.

10.2 GROUNDWATER

10.2.1 Fieldwork

One borehole drilled for the purposes of the preliminary geotechnical investigation, and two boreholes drilled for the purposes of the preliminary environmental investigation were converted to groundwater monitoring wells. Water samples were collected from all wells and tested for a range of analytes listed in Section 7.9.1.2.

10.2.1.1 Groundwater Quality Field Parameters

During purging of the groundwater wells, groundwater quality field parameters were measured using a multi-parameter water quality meter which measured temperature, pH, conductivity (EC), salinity, dissolved oxygen (DO) and oxidation-reduction potential (ORP). This equipment was calibrated by the equipment supplier prior to use on-site and did not require adjusting for redox measurements. Groundwater gauging data is presented in Table 2 and field data sheets and calibration certificates for the water quality meter is presented in Appendix E. Groundwater quality field parameters are presented in Table 10.2.1.1.

Well ID	Temperature (Degrees Celsius)	Electrical Conductivity (uS/cm)	рН	Dissolved Oxygen (mg/L)	Redox (mV)	Observations at time of sampling
BH01		7,220	6.72	0.09	-99	Dark grey, turbid, organic
	24.5					odour
BH02		21,030	6.89	0.15	-125	Pale brown, turbid, organic
	25.5					odour
BH05	23.6	2,960	6.78	0.40	-130	Grey, turbid, organic odour

 Table 10.2.1.1: Stabilised Field Measured Groundwater Parameters

Due to the turbid nature of the groundwater caused by surrounding silty materials, low-flow micropurge sampling techniques could not be utilised in sampling locations BH01 and BH02, therefore grab sample methods were used at the time of sample collection.

10.2.1.1.1 Groundwater Levels

Standing groundwater levels were measured in monitoring wells BH01, BH02 and BH05 following development. A summary of the groundwater readings is given in Table 10.2.1.1.1.

Borehole ID / Well ID	Groundw	vater Depth
	m (below the ground level)	m AHD
BH01	1.33*	0.33*
BH02	1.72	0.16
BH05	1.68	0.11

 Table 10.2.1.1.1: Summary of Groundwater Levels

*measurement considered anomalous.

Groundwater levels were expected to decline in the direction of the Cooks River, suggesting flow in that direction. That is to say, groundwater depth measured below ground level increasing from BH05 to BH01 and BH02. The groundwater level measured in BH01 is likely

an anomaly due to the silting of the well during the period of installation and monitoring. Natural groundwater level at this location is expected to be similar to that of borehole BH02.

10.2.2 Laboratory Analytical Results

Groundwater analytical results are presented as Table 10. The laboratory Certificates of Analysis are presented in Appendix C.

10.2.2.1 TRH and BTEX

TRH and BTEX results for groundwater samples were all below the SAC and therefore the laboratory PQL with the exception of the following concentrations:

- TRH C10-C14, TRH>C10-C16, and Fraction 2 (TRH>C10-C16 minus Naphthalene) in the sample collected from BH05 which had a concentrations of 74 μg/L, 53 μg/L, and 53 μg/L respectively.
- Ethylbenzene in the sample collected from BH05 which had a concentration of 2 μg/L;

• m+p xylene in the sample collected from BH05 which had a concentration of 3 μ g/L; O-xylene in the sample collected from BH05 which had a concentration of 1 μ g/L

10.2.2.2 PAH

PAH results in groundwater samples were below the SAC and therefore below laboratory PQL.

10.2.2.3 Heavy Metals

Dissolved heavy metal concentrations in groundwater samples were below the SAC, with the exception of Nickel with a concentration of 13 μ g/L measured in sample BH05 which exceeded the Groundwater Investigation Level (GIL) trigger value of 7 μ g/L.

10.2.2.4 OCPs

OCP results in groundwater samples were below the SAC and therefore below laboratory PQL..

10.2.2.5 OPPs

OPP results in groundwater samples were below the SAC and therefore below laboratory PQL..

10.2.2.6 Nutrients

Nutrient concentrations in groundwater samples exceeded the GIL trigger values adopted from the *Australian and New Zealand Guidelines for Fresh and Marine Water Quality* (ANZECC, 2000), and were as follows:

- Total Nitrogen concentration ranged from 9.1 mg/L in BH01 to 18 mg/L in BH02, the values within the range exceeding the GIL trigger criteria of 0.30 mg/L;
- Oxides of Nitrogen concentrations ranged from less than the PQL of 0.005 mg/L in BH05 to 0.3 mg/L in BH02, the values within the range exceeding the GIL trigger value of 0.015 mg/L;
- Ammonia concentrations ranged from 5.2 mg/L in BH01 to 12 mg/L in BH02, the values within the range exceeding the GIL trigger value of 4.55 mg/L;
- Phosphate concentrations ranged from 0.062 mg/L in BH05 to 0.23 mg/L in BH02, the values within the range exceeding the GIL trigger value of 0.005 mg/L; and
- Phosphorus concentrations ranged from 0.4 mg/L in BH01 to 1.2 mg/L in BH02, the values within the range exceeding the GIL trigger value of 0.03 mg/L.

11 DISCUSSION

11.1 SOIL

There were no exceedances of the adopted criteria and the vast majority of contaminants tested were below the laboratory detection limit.

Acid sulfate soils were confirmed in both samples submitted for laboratory sPOCAS testing, exceeding the trigger limits for the requirement of the preparation and implementation of a management plan and development consent. These results are unlikely to affect the proposed development due to the sampling locations being within the proposed riparian set-back area and therefore expected to not involve excavation of soils below one metre. Further testing may be required to determine the extent of the AASS in the areas of the site that are currently unmapped in the event of undertaking excavation activities within the footprint of the proposed development.

11.2 GROUNDWATER

Groundwater sampled at the site indicated concentrations of heavy metals and nutrients, including nickel, ammonia, total nitrogen, oxides of nitrogen (nitrate and nitrite), phosphorus, and phosphate in exceedance of GIL trigger values for marine waters. The nutrient concentrations identified in the ground water samples collected and analysed are similar to results received for groundwater previously sampled by CES in the Cooks Cove Development Zone . The exceedances identified at the site are unlikely to be significant to the proposed development as use of groundwater at the site during construction and occupancy is unlikely. Further assessment of groundwater quality may be required during dewatering activities to determine appropriate disposal of groundwater collected.

Review of the groundwater flow indicated a general direction of flow towards the Cooks River. This conclusion is consistent with groundwater flow previously assessed in other areas of the Cooks Cove Development Zone. It must be noted that the groundwater levels for monitoring well BH1 were not included in the review of groundwater flow direction due to results indicating anomalous measurements. These results are likely to be caused by the observed silting of the monitoring well installation between the periods of installation and sampling. Alternatively, neighbouring construction works within the vicinity of the site may have the capacity to affect groundwater levels on the site.

12 SUMMARY AND RECOMMENDATIONS

The DESA undertaken at the site comprised an initial intrusive assessment of the underlying soils and groundwater to investigate the site suitability for the proposed mix use Enterprise and Public Recreation land use development. Systematic sampling was undertaken to determine the existence and distribution of the COPC identified within the PESA (CES, 2017). The results of this DESA did not identify any contamination.

The site is therefore considered suitable for the intended future use of the site Enterprise and Open Space. In the event the construction activities will include dewatering of the site, further investigation of groundwater quality should be undertaken to determine the appropriate groundwater disposal method. Excavation works at the site should be managed in accordance with the *Acid Sulfate Soils Management Plan, Cooks Cove Development Zone, Arncliffe and Banksia, NSW* prepared by CES (Document Reference: CES130608-BP-AZ, dated 15 February 2023), in the event excavation is undertaken.

13 REFERENCES

Ahern CR, Stone Y, and Blunden B (1998), *Acid Sulfate Soils Assessment Guidelines*, Acid Sulfate Soils Management Advisory Committee, Wollongbar, NSW

ANZECC (2000). National Water Quality Management Strategy: Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Environment and Conservation Council

Consulting Earth Scientists (15 February 2023). Acid Sulfate Soils Management Plan, Cooks Cove Development, Arncliffe & Banksia, NSW.

Consulting Earth Scientists (2017), Environmental Site Assessment Report, Desk Study, 19 Marsh Street, Arncliffe, NSW.

Department of Primary Industries Office of Water Groundwater Bore Search http://allwaterdata.water.nsw.gov.au/water.stm.

Dial Before You Dig (2015). Accessed: <u>http://www.1100.com.au/default.aspx.</u>

Department of Mineral Resources (1983). Sydney 1:100000 Geological Series Map.

Environment Protection Authority NSW, 1995: *Contaminated Sites: Sampling Design Guidelines*, EPA 95/59, September 1995, 35 pp. Note that this sampling guidelines have been updated by NSW EPA (August 2022) *Contaminated Land Guidelines: Sampling design part 1 – application & Sampling design part 2 – interpretation.*

Environment Protection Authority NSW (1997): *Guidelines for Consultants Reporting on Contaminated Sites*. EPA 97/104, Environment Protection Authority of New South Wales, Chatswood, 22 pp. 2011. Note that this guidelines have been updated by NSW EPA (2020), *Contaminated Land Guidelines: Consultants Reporting on Contaminated Land*.

Environment Protection Authority (EPA) (2013). *Contaminated Sites: Guidelines for Consultants Reporting on Contaminated Sites*. State of NSW and Office of Environment and Heritage (OEH).

Geological Survey of New South Wales (1983). Sydney 1:100 Geological Sheet Series 9130. Edition I, New South Wales Department of Mineral Resources, Sydney.

NEPC 1999 (2013). National Environmental Protection Measure (NEPM) *Guideline On Site Characterisation* (Schedule B2) 1999, as amended 2013.National Environmental Protection Council.

NHMRC (2008). *Guidelines for Managing Risks in Recreational Waters*. National Health and Medical Research Council.

NHMRC (2011). *Australian Drinking Water Guidelines*. National Health and Medical Research Council. This guidelines have been superseded by Australian Drinking Water Guidelines 6, 2011 Version 3.8 Updated September 2022.

NSW EPA (2023). List of Contaminated Sites Notified to EPA. NSW Government.

Hassel (2023). Cooks Cove Urban Design Report

14 LIMITATIONS OF THIS REPORT

This report has been prepared for use by the client who commissioned the works in accordance with the project brief and based on information provided by the client. The advice contained in this report relates only to the current project and all results, conclusions and recommendations should be reviewed by a competent person with experience in geotechnical and environmental investigations before being used for any other purpose. CES accepts no liability for use or interpretation by any person or body other than the client. This report must not be reproduced except in full and must not be amended in any way without prior approval by the client and CES.

This report does not provide a complete assessment of the environmental status of the site and is limited to the scope defined therein. It is noted that areas of the site could not be investigated due to permissions for access. Should information become available regarding conditions at the site including previously unknown sources of contamination, CES reserves the right to review the report in the context of the additional information.

Figures

Tables

CES130608-BP 19 Marsh Street Detailed Site Investigation

Table 1: Summary of Borehole Information

Sample Point	Date Drilled/Sampled	Easting	Northing	Ground Level (mAHD)	Termination Depth (m)
BH1	13-Jul	329929.657	6243690.387	56	19
BH2	13-Jul	329957.972	6243670.305	56	12
BH3	14-Jul	*329886.504	*6243678.441	56	10.2
BH4	17-Jul	329903.191	6243657.056	56	7.5
BH5	18-Jul	329868.672	6243646.944	56	8
HA1	17-Jul	329907.434	6243698.008	56	8
HA2	17-Jul	329944.152	6243683.682	55	7.5
НАЗ	17-Jul	329938.768	6243664.503	55	8
HA4	17-Jul	329925.162	6243672.896	55	7.4
HA5	17-Jul	329870.804	6243654.033	55	8

Note: Borehole coordinates were surveyed by Lynton Surveys on 13& 16 January 2018.

* Location approximate - offset 1m northeast due to obstruction at 0.8m depth.

Table 2: Groundwater Gauging Data

		Coor	dinates	Top of Casing (TOC) Elevation	Ground Elevation	Groundwater elevation	Depth to Product	Thickness of product	Corrected Groundwater Elevation
Well ID	Date	Easting	Northing	m AHD	m AHD	m AHD	m BTOC	m	m AHD
BH1	1-Mar-18	329929.657	6243690.387	1.66	1.73	0.330	-	0	0.330
BH2	1-Mar-18	329957.972	6243670.305	1.877	1.877	0.157	-	0	0.157
BH5	20-Feb-18	329868.672	6243646.944	1.791	1.791	0.111	-	0	0.111

Note: Borehole coordinates and elevations were provided by Lynton Surveyors (Date of survey: 13/16 January 2018).

Table 3a: Containers, preservation requirements, holding times and samples analysed - s

Parameter	Container	Recommended Preservation	Maximum holding time	Number of samples analysed
Acid digestible metals and metalloids - Total (As,Cd,Cu,Cr,Ni,Pb,Zn)	Glass with Teflon lid	Cool to $< 6^{\circ}C$		15
Mercury	Glass with Teflon lid	Cool to <6°C	28 days	15
Asbestos	Bag	Nil	Indefinite	15
TPH/BTEX	Glass with Teflon lid	4oC, zero headspace	14 days	23
PAHs (total and TCLP)	Glass with Teflon lid	4oC	14 days ¹	15
OCPs	Glass with Teflon lid	Cool to <6°C	14 days	15
OPPs	Glass with Teflon lid	Cool to <6°C	14 days	15
PCBs	PCBs Glass with Teflon lid		28 days	15
Note 1	: Extraction within 14	days. Analysis within 40	days.	

Table 3b: Containers, preservation requirements, holding times and samples analysed -

Parameter	Container	Recommended Preservation	Maximum holding time	Number of samples analysed
Dissolved metals and metalloids (As,Cd,Cu,Cr,Ni,Pb,Zn)	Glass with Teflon lid	Cool to <6°C	6 months	3
Mercury	Glass with Teflon lid	Cool to <6°C	28 days	3
TPH/BTEX	Glass with Teflon lid	4oC, zero headspace	14 days	3
PAHs	Glass with Teflon lid	4oC	14 days	3
OCPs	Glass with Teflon lid	Cool to <6°C	7 days	3
OPPs	Glass with Teflon lid	Cool to <6°C	7days	3
Nutrients	Glass with Teflon lid	Cool to <6°C, dark	7days	3
Note 1	: Extraction within 14	days. Analysis within 40	days.	

Table 4: Analytical parameters, PQLs and methods - Soil

	Parameter	Unit	PQL	Method based on
	Metals	in Soil		
As ¹		mg kg ⁻¹	4	USEPA 200.7
Cd ¹		mg kg ⁻¹	0.4	USEPA 200.7
Cr ¹ Cu ¹ 4g ² Vi ¹ Pb ¹		mg kg ⁻¹	1	USEPA 200.7
Cu ¹		mg kg ⁻¹	1	USEPA 200.7
Ig ²		mg kg ⁻¹	0.1	USEPA 7471A
Ji ¹		mg kg ⁻¹	1	USEPA 200.7
		mg kg ⁻¹	1	USEPA 200.7
¹		mg kg ⁻¹	1	USEPA 200.7
	Total Petroleum Hydr	ocarbons (TPH) in Soil		
C ₆ -C ₉ fraction		mg kg ⁻¹	25	USEPA 8015B
C10-C14 fraction		mg kg ⁻¹	50	USEPA 8015B
C ₁₅ -C ₂₈ fraction		mg kg ⁻¹	100	USEPA 8015B
C ₂₉ -C ₃₆ fraction		mg kg ⁻¹	100	USEPA 8015B
	BTEX	in Soil		
Benzene		mg kg ⁻¹	0.2	USEPA 8021A
Toluene		mg kg ⁻¹	0.5	USEPA 8021A
Ethylbenzene		mg kg ⁻¹	1	USEPA 8021A
n&p-xylene		mg kg ⁻¹	2	USEPA 8021A
o-xylenes		mg kg ⁻¹	1	USEPA 8021A
	Organic Conta	minants in Soil		
PAHs		mg kg ⁻¹	0.1	USEPA 8270 SIM
	Organochlorine Pes	ticides (OPC) in Soil		
OCPs		mg kg-1	0.1	USEPA 8081
	Organophosphate Pe	sticides (OPP) in Soil		
OPPs		mg kg-1	0.1	USEPA 8270 or 8141
	Polychlorinated Bip			
PCBs		mg kg-1	0.1	USEPA 8082
	Asbesto			
Asbestos in Soil		g/kg	0.1	AS4964-2004

Table 5: Analytical parameters, PQLs and methods - Groundwater

Parameter	Unit	PQL	Method based on
	ed Metals in Groundwater		
As ¹	$mg L^{-1}$	1	USEPA 200.7
Cd ¹	$mg L^{-1}$	0.1	USEPA 200.7
h 1	$mg L^{-1}$	1	USEPA 200.7
Cu ¹	$mg L^{-1}$	1	USEPA 200.7
Ig ²	$mg L^{-1}$	0.05	USEPA 7471A
Ig ² Ji ¹	$mg L^{-1}$	1	USEPA 200.7
b ¹	$mg L^{-1}$	1	USEPA 200.7
n ¹	$mg L^{-1}$	1	USEPA 200.7
	Iydrocarbons (TPH) in Groundwater		
C_6 - C_9 fraction	$\mu g L^{-1}$	10	USEPA 8015B
C_{10} - C_{14} fraction	$\mu g L^{-1}$	50	USEPA 8015B
C_{15} - C_{28} fraction	$\mu g L^{-1}$	100	USEPA 8015B
C_{29} - C_{36} fraction	μg L ⁻¹	100	USEPA 8015B
	TEX in Groundwater	100	OBELITI GOIDE
Benzene	$\mu g L^{-1}$	1	USEPA 8021A
oluene	$\mu g L^{-1}$	1	USEPA 8021A
thylbenzene	$\mu g L^{-1}$	1	USEPA 8021A
h&p-xylene	$\mu g L^{-1}$	2	USEPA 8021A
-xylenes	$\mu g L^{-1}$	1	USEPA 8021A
	Contaminants in Groundwater		
AHs	$\mu g L^{-1}$	1	USEPA 8270 SIM
Organochloring	e Pesticides (OPC) in Groundwater		
DCPs	$\mu g L^{-1}$	0.2	USEPA 8081
Organophospha	te Pesticides (OPP) in Groundwater		
DPPs	$\mu g L^{-1}$	0.2	USEPA 8270 or 8141
Polychlorinated	l Biphenyls (PCB) in Groundwater		
PCBs	$\mu g L^{-1}$	2	USEPA 8082
Nut	trients in Groundwater		
litrate	mg L-1	0.005	APHA 4500-NH3 F
litrite		0.005	APHA 4500-NO2 B
Phosphate	mg L-1	0.005	APHA 4500
Ammonia	mg L-1	0.005	APHA 4500-NH3 F

Table 6: Site Assessment Criteria - Soil and Groundwater

	able 6: Site Asse	1				FIL (Ushan	1
Contaminant	HIL C ¹	HIL D ²	HSL C ³	HSL D ⁴	EIL (Commercial and Industrial) ⁵	EIL (Urban Residential and Open Public Space) ⁶	GIL (Marine Waters) ⁷
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)
TRH C6 - C9	(ing/ng)	(((((mg/ng)	(ug/2)
TRH C6 - C10							
FRACTION 1			NL	310	215	180	
TRH C10 - C14			THE .	510	215	100	
TRH C15 - C28							
TRH C29 - C36							
TRH total C10 - C36							
TRH C10-C36							
TRH>C10-C16							
FRACTION 2					170	120	
TRH>C16-C34					1/0	120	
TRH >C34-C40							1
TRH total >C10-C40	1						
Benzene		l	NL	4	75	50	500
Toluene			NL	NL	135	85	
Ethylbenzene		1			165	70	1
m+p-xylene		1	1	1	100	/9	
o-Xylene							
Xylenes			NI	NI	190	105	
Naphthalene			NL	NL	180	105	
Acenaphthylene			NL	NL	370	170	50
Acenaphthene							
Fluorene							
Phenanthrene							
Anthracene							
Fluoranthene							
Pyrene							
Benzo(a)anthracene							
Chrysene							
Benzo(b+k)fluoranthene							
Benzo(a)pyrene							
Indeno(1,2,3-c,d)pyrene					0.7	0.7	
Dibenzo(a,h)anthracene							
Benzo(g,h,i)perylene							<u> </u>
Benzo(g,n,1)perytene Benzo(a)pyrene TEQ							
Total +ve	3	40					
	300	4000					
HCB	10	80				ļ	
alpha-BHC							<u> </u>
gamma-BHC	1	<u> </u>	ļ	ļ		ļ	
beta-BHC	1					ļ	
Heptachlor	10	50					
delta-BHC							
Aldrin							
Heptachlor Epoxide							
gamma-Chlordane		 	ļ	ļ			
alpha-chlordane							

			nued) Table 6			EIL (Urban	
Contaminant	HIL C ¹	HIL D ²	HSL C ³	HSL D ⁴	EIL (Commercial and Industrial) ⁵	Residential and Public Open Space) ⁶	GIL (Marin Waters) ⁷
	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)
Endosulfan I		2000					0.005
pp-DDE							
Dieldrin							
Endrin							0.004
pp-DDD	-						
Endosulfan II						-	
pp-DDT					640	180	
Endrin Aldehyde							
Endosulfan Sulphate	1						
Methoxychlor	400	2500					
Endosulfan (Endosulfan I + Endosulfan 2 + Endosulfan sulphate)							
Azinphos-methyl (Guthion)	1						1
	1						1
Bromophos-ethyl	1						
Chlorpyriphos	250	2000					0.009
Chlorpyriphos-methyl	-						
Diazinon							
Dichlorvos							
Dimethoate							
Ethion							
Fenitrothion							
Malathion							
Parathion							
Ronnel							
Aroclor 1016							
Aroclor 1221	+	<u> </u>					<u> </u>
Aroclor 1232							
Aroclor 1242							
Aroclor 1248		L					
Aroclor 1254							
Aroclor 1260							
PCBs	1	7					
Arsenic	300	3000			160	100	
Cadmium				İ		100	0.7
Chromium (VI)	20000	900					0.7
Copper	300	3600					4.4
	17000	240000					1.3
Lead	600	1500					4.4

Note 2: NEPC (1999, as amended 2013) - Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, HIL D (Commercial/Industrial)

Note 3: NEPC (1999, as amended 2013) - Schedule B1 Guideline on Investigation Levels for Soil and Groundwater, HSL C (Clay, 0m to <1m)

Note 4: (NEPC< 1999, as amended 2013) - Schedule B1, Guideline on Investigation Levels For Soil and Groundwater, HSL D (Clay, 0m to <1m)

Note 5: (NEPC< 1999, as amended 2013) - Schedule B1, Guideline on Investigation Levels For Soil and Groundwater, EIL (Commercial/Industrial)

Note 6: (NEPC< 1999, as amended 2013) - Schedule B1, Guideline on Investigation Levels For Soil and Groundwater, EIL (Urban Residential/ Public Open Space)

Note 7: (NEPC< 1999, as amended 2013) - Schedule B1, Guideline on Investigation Levels For Soil and Groundwater, GIL (Marine Waters)

Table 7: QC Sample Data Acceptance Criteria

QC Sample Type	Method of Assessment	Acceptable Range
	Field QC	
Blind Replicates and Split Samples	The assessment of split replicate is undertaken by calculating the Relative of Percent Difference (RPD) of the replicate concentration compared with the original sample concentration. The RPD is defined as:	 The acceptable range depends upon the levels detected: 0 – 100% RPD (When the average concentration is < 5 times the LOR/EQL) 0 – 75% RPD (When the average concentration is 5 to 10 times the LOR/EQL)
	$RPD = 100 \text{ x} \qquad \frac{ X_1 - X_2 }{\text{Average}}$	• 0 – 50% RPD (When the average concentration is > 10 times the LOR/EQL)
	Where: X_1 and X_2 are the concentration of the original and replicate samples.	
Blanks (Rinsate and Trip Blanks)	Each blank is analysed as per the original samples.	Analytical Result < LOR/EQL
Laboratory-prepared Trip Spike	The trip spike is analysed after returning from the field and the % recovery of the known spike is calculated.	70% - 130%
	Laboratory QC	
Laboratory Duplicates	Assessment as per Blind Replicates and Split	 The acceptable range depends upon the levels detected: 0 - 100% RPD (When the average concentration is < 4 times the LOR/EQL)
		• $0 - 50\%$ RPD (When the average concentration is 4 to 10 times the LOR/EQL)
		 0 – 30% RPD (When the average concentration is > 10 times the LOR/EQL)
Surrogates	Assessment is undertaken by determining the percent recovery of the known spike or addition to the sample.	70% - 130% (General Analytes)
Matrix Spikes Laboratory Control Samples	C - A % Recovery = 100 x	50% - 130% (Phenols) 60% - 130% (OP Pesticides)
	determined in the original sample; B =	If the result is outside the above ranges, the result must be $< 3x$ Standard Deviation of the Historical Mean (calculated over past 12 months)
Method Blanks	Each blank is analysed as per the original	Analytical Result < LOR/EQL

	sil Soil Sample				BH05-3.0-3.45		<u>г</u>		
		Sample Type		Original	Average	Blind RPD	Average	Split RPD	
		Primary	Laborat Blind	ory report Split	183801				
Parameters	Unit	PQL	PQL	PQL			%		%
TRH C6 - C9	mg/kg	25	25	10	<25	N/A	N/A	N/A	N/A
TRH C6 - C10	mg/kg	25	25	10	<25	N/A	N/A	N/A	N/A
FRACTION 1 TRH C10 - C14	mg/kg	25	25	10	<25	N/A	N/A	N/A	N/A
TRH C10 - C14	mg/kg mg/kg	50 100	50 100	50 100	<50 <100	N/A N/A	N/A N/A	N/A N/A	N/A N/A
TRH C19 - C28	mg/kg	100	100	100	<100	N/A	N/A	N/A	N/A
TRH >C10-C16	mg/kg	50	50	50	<50	N/A	N/A	N/A	N/A
FRACTION 2	mg/kg	50	50	50	<50	N/A	N/A	N/A	N/A
TRH >C16-C34	mg/kg	100	100	100	<100	N/A	N/A	N/A	N/A
TRH >C34-C40	mg/kg	100	100	100	<100	N/A	N/A	N/A	N/A
2		0.2	0.2	0.2	<0.2	N/A	N/A	N/A	N/A
Benzene Foluene	mg/kg mg/kg	0.2	0.2	0.2	<0.2	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Ethylbenzene	mg/kg	1	1	0.5	<1	N/A	N/A	N/A	N/A
n+p-xylene	mg/kg	2	2	0.5	<2	N/A	N/A	N/A	N/A
-Xylene	mg/kg	1	1	0.5	<1	N/A	N/A	N/A	N/A
Naphthalene	mg/kg	0.1	0.1	0.5	<0.1	N/A	N/A	N/A	N/A
Acenaphthylene Acenaphthene	mg/kg mg/kg	0.1	0.1	0.5	<0.1 <0.1	N/A N/A	N/A N/A	N/A N/A	N/A N/A
luorene	mg/kg mg/kg	0.1	0.1	0.5	<0.1	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Phenanthrene	mg/kg	0.1	0.1	0.5	<0.1	N/A N/A	N/A N/A	N/A	N/A
Anthracene	mg/kg	0.1	0.1	0.5	<0.1	N/A	N/A	N/A	N/A
Fluoranthene	mg/kg	0.1	0.1	0.5	<0.1	N/A	N/A	N/A	N/A
Pyrene	mg/kg	0.1	0.1	0.5	<0.1	N/A	N/A	N/A	N/A
Benzo(a)anthracene	mg/kg	0.1	0.1	0.5	<0.1	N/A	N/A	N/A	N/A
Chrysene	mg/kg	0.1	0.1	0.5	<0.1	N/A	N/A	N/A	N/A
Benzo(b+k)fluoranthene Benzo(a)pyrene	mg/kg mg/kg	0.2	0.2 0.05	0.5	<0.2 <0.05	N/A N/A	N/A N/A	N/A N/A	N/A N/A
ndeno(1,2,3-c,d)pyrene	mg/kg	0.05	0.05	0.5	<0.1	N/A	N/A N/A	N/A	N/A N/A
Dibenzo(a,h)anthracene	mg/kg	0.1	0.1	0.5	<0.1	N/A	N/A	N/A	N/A
Benzo(g,h,i)perylene	mg/kg	0.1	0.1	0.5	<0.1	N/A	N/A	N/A	N/A
Benzo(a)pyrene TEQ	mg/kg	0.5	0.5	0.5	<0.5	N/A	N/A	N/A	N/A
Fotal +ve	mg/kg	-	-	0.5	< 0.05	N/A	N/A	N/A	N/A
ICB lpha-BHC	mg/kg	0.1	0.1 0.1	0.05	<0.1 <0.1	N/A	N/A	N/A	N/A
amma-BHC	mg/kg mg/kg	0.1	0.1	0.05	<0.1	N/A N/A	N/A N/A	N/A N/A	N/A N/A
peta-BHC	mg/kg	0.1	0.1	0.05	<0.1	N/A	N/A	N/A	N/A
Heptachlor	mg/kg	0.1	0.1	0.05	<0.1	N/A	N/A	N/A	N/A
lelta-BHC	mg/kg	0.1	0.1	0.05	<0.1	N/A	N/A	N/A	N/A
Aldrin	mg/kg	0.1	0.1	0.05	<0.1	N/A	N/A	N/A	N/A
Heptachlor Epoxide	mg/kg	0.1	0.1	0.05	<0.1	N/A	N/A	N/A	N/A
gamma-Chlordane	mg/kg	0.1	0.1	0.05	<0.1	N/A	N/A	N/A	N/A
lpha-chlordane	mg/kg	0.1	0.1	0.05	<0.1 <0.1	N/A	N/A	N/A	N/A
Endosulfan I op-DDE	mg/kg mg/kg	0.1	0.1	0.05	<0.1 <0.1	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Dieldrin	mg/kg	0.1	0.1	0.05	<0.1	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Endrin	mg/kg	0.1	0.1	0.05	<0.1	N/A	N/A	N/A	N/A
pp-DDD	mg/kg	0.1	0.1	0.05	<0.1	N/A	N/A	N/A	N/A
Endosulfan II	mg/kg	0.1	0.1	0.05	<0.1	N/A	N/A	N/A	N/A
pp-DDT	mg/kg	0.1	0.1	0.2	<0.1	N/A	N/A	N/A	N/A
Endrin Aldehyde	mg/kg	0.1	0.1	0.05	<0.1	N/A	N/A	N/A	N/A
Endosulfan Sulphate	mg/kg	0.1	0.1	0.05	<0.1	N/A N/A	N/A N/A	N/A	N/A N/A
Methoxychlor	mg/kg	0.1	0.1	0.2	<0.1	N/A	N/A	N/A	N/A
Azinphos-methyl (Guthion)	mg/kg	0.1	0.1	0.05	<0.1	N/A	N/A	N/A	N/A
Bromophos-ethyl	mg/kg	0.1	0.1	0.05	<0.1	N/A N/A	N/A N/A	N/A	N/A N/A
Chlorpyriphos	mg/kg	0.1	0.1	0.05	<0.1	N/A	N/A	N/A	N/A
Chlorpyriphos-methyl	mg/kg	0.1	0.1	0.05	<0.1	N/A	N/A	N/A	N/A
Diazinon	mg/kg	0.1	0.1	0.05	<0.1	N/A	N/A	N/A	N/A
Dichlorvos	mg/kg	0.1	0.1	0.05	<0.1	N/A	N/A	N/A	N/A
Dimethoate	mg/kg	0.1	0.1	0.05	<0.1	N/A	N/A	N/A	N/A
Ethion Fenitrothion	mg/kg	0.1	0.1 0.1	0.05 0.05	<0.1 <0.1	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Valathion	mg/kg mg/kg	0.1	0.1	0.05	<0.1	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Parathion	mg/kg	0.1	0.1	0.03	<0.1	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Ronnel	mg/kg	0.1	0.1	0.05	<0.1	N/A	N/A	N/A	N/A
Aroclor 1016	mg/kg	0.1	0.1	0.1	<0.1	N/A	N/A	N/A	N/A
Aroclor 1221	mg/kg	0.1	0.1	0.1	<0.1	N/A	N/A	N/A	N/A
Aroclor 1232	mg/kg	0.1	0.1	0.1	<0.1	N/A	N/A	N/A	N/A
Aroclor 1242	mg/kg	0.1	0.1	0.1	<0.1	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Aroclor 1248 Aroclor 1254	mg/kg	0.1	0.1 0.1	0.1 0.1	<0.1 <0.1	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Aroclor 1254 Aroclor 1260	mg/kg mg/kg	0.1	0.1	0.1	<0.1	N/A N/A	N/A N/A	N/A N/A	N/A N/A
100101 1200	ing/kg	0.1	0.1	0.1	NV.1	11/11	11/A	11/1	11/11
	1		1				27/4		
Arsenic	mg/kg	4	4	5	<4	N/A	N/A	N/A	N/A
Arsenic	mg/kg mg/kg	4 0.4	4 0.4	5 1	<4 <0.4	N/A N/A	N/A N/A	N/A N/A	N/A N/A
				5 1 2					

CES130608-BP 19 Marsh Street Detailed Site Investigation

Table 8b: QA/QC tabulated results - Groundwater

Table 8b: QA/QC tabulated resu	ults - Ground	lwater	Soi	l Sample	BH2	QAQC 1	QAQC 2	<u> </u>	1		1
				ple Type	Original	Blind replicate	Split replicate	Average	Blind RPD	Average	Blind RPD
			Laborato		186375	186375	ES1806787	, , , , , , , , , , , , , , , , , , ,			
Parameters	Unit	Primary PQL	Blind PQL	Split PQL				μg/L	%	μg/L	%
TRH C6 - C9	μg/L	10	10	20	<10	<10	<20	N/A	N/A	N/A	N/A
TRH C6 - C10	μg/L	10	10	10	<10	<10	<10	N/A	N/A	N/A	N/A
FRACTION 1	μg/L	10	10	10	<10	<10	<10	N/A	N/A	N/A	N/A
TRH C10 - C14	μg/L	50	50	50	<50	<50	<50	N/A	N/A	N/A	N/A
TRH C15 - C28	μg/L	100	100	100	<100	<100	<100	N/A	N/A	N/A	N/A
TRH C29 - C36 TRH >C10-C16	µg/L	100 50	100 50	50 100	<100 <50	<100 <50	<50 <100	N/A N/A	N/A N/A	N/A N/A	N/A N/A
FRACTION 2	μg/L μg/L	50	50	100	<50	<50	<100	N/A N/A	N/A N/A	N/A N/A	N/A N/A
TRH >C16-C34	μg/L μg/L	100	100	100	<100	<100	<100	N/A N/A	N/A N/A	N/A N/A	N/A N/A
TRH >C34-C40	μg/L	100	100	100	<100	<100	<100	N/A	N/A	N/A	N/A
	10									N/A	N/A
Benzene	μg/L	1	1	1	<1	<1	<1	N/A	N/A	N/A	N/A
Toluene	μg/L	1	1	2	<1	<1	<2	N/A	N/A	N/A	N/A
Ethylbenzene	μg/L	1	1	2	<1	<1	<2	N/A	N/A	N/A	N/A
m+p-xylene o-Xylene	μg/L μg/L	2	2	2	<2 <1	<2 <1	<2 <2	N/A N/A	N/A N/A	N/A N/A	N/A N/A
0-Aylelle	µg/L	1	1	2	<u>\</u> 1	<1	~2	IN/A	IN/A	N/A N/A	N/A N/A
Naphthalene	μg/L	1	1	1	<1	<1	<1	N/A	N/A	N/A	N/A
Acenaphthylene	μg/L	1	1	1	<1	<1	<1	N/A	N/A	N/A	N/A
Acenaphthene	μg/L	1	1	1	<1	<1	<1	N/A	N/A	N/A	N/A
Fluorene	μg/L	1	1	1	<1	<1	<1	N/A	N/A	N/A	N/A
Phenanthrene	μg/L	1	1	1	<1	<1	<1	N/A	N/A	N/A	N/A
Anthracene	µg/L	1	1	1	<1	<1	<1	N/A	N/A	N/A	N/A
Fluoranthene	μg/L μg/L	1	1	1	<1	<1 <1	<1 <1	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Pyrene Benzo(a)anthracene	μg/L μg/L	1	1	1	<1	<1 <1	<1	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Chrysene	μg/L μg/L	1	1	1	<1	<1	<1	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Benzo(b+k)fluoranthene	μg/L	2	2	1	<2	<2	<2	N/A	N/A	N/A	N/A
Benzo(a)pyrene	μg/L	1	1	0.5	<1	<1	<0.5	N/A	N/A	N/A	N/A
Indeno(1,2,3-c,d)pyrene	μg/L	1	1	1	<1	<1	<1	N/A	N/A	N/A	N/A
Dibenzo(a,h)anthracene	μg/L	1	1	1	<1	<1	<1	N/A	N/A	N/A	N/A
Benzo(g,h,i)perylene	μg/L	1	1	1	<1	<1	<1	N/A	N/A	N/A	N/A
Benzo(a)pyrene TEQ	μg/L	5	5	0.5	<5	<5	<0.5	N/A	N/A	N/A	N/A
Total +ve	µg/L	1	1	0.5	NIL (+)VE	NIL (+)VE	<0.5	N/A	N/A	N/A N/A	N/A
HCB	μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A N/A	N/A N/A
alpha-BHC	μg/L μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A	N/A
gamma-BHC	μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A	N/A
beta-BHC	μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A	N/A
Heptachlor	μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A	N/A
delta-BHC	μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A	N/A
Aldrin	µg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A	N/A
Heptachlor Epoxide gamma-Chlordane	μg/L μg/L	0.2	0.2	0.5	<0.2 <0.2	<0.2 <0.2	<0.5 <0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
alpha-chlordane	μg/L μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Endosulfan I	μg/L μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A	N/A
pp-DDE	μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A	N/A
Dieldrin	μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A	N/A
Endrin	μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A	N/A
pp-DDD	μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A	N/A
Endosulfan II	μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A	N/A
pp-DDT	µg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A	N/A
Endrin Aldehyde Endosulfan Sulphate	μg/L μg/L	0.2	0.2	0.5	<0.2 <0.2	<0.2 <0.2	<0.5 <0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Methoxychlor	μg/L μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
	M6/12		0.2	0.0			~~~~			N/A N/A	N/A N/A
Azinphos-methyl (Guthion)	μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A	N/A
Bromophos-ethyl	μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A	N/A
Chlorpyriphos	μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A	N/A
Chlorpyriphos-methyl	μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A	N/A
Diazinon	µg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A	N/A
Dichlorvos Dimethoate	μg/L μg/I	0.2	0.2	0.5	<0.2 <0.2	<0.2 <0.2	<0.5 <0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Dimethoate Ethion	μg/L μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Fenitrothion	μg/L μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A N/A	N/A N/A	N/A N/A	N/A N/A
Malathion	μg/L μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A	N/A
Parathion	μg/L	0.2	0.2	2	<0.2	<0.2	<2	N/A	N/A	N/A	N/A
Ronnel	μg/L	0.2	0.2	0.5	<0.2	<0.2	<0.5	N/A	N/A	N/A	N/A
										N/A	N/A
Total Nitrogen in water	mg/L	0.1	0.1	0.1	18	18	18.1	18	0.0%	18.05	N/A
NOx as N in water	mg/L	0.005	0.005	0.01	0.3	0.3	0.33	0.3	0.0%	0.315	N/A
Ammonia as N in water	mg/L	0.005	0.005	0.01	12	0.21	11.7	11.5	8.7%	11.85	N/A
Phosphate as P in water Phosphorus - Total	mg/L mg/L	0.005	0.005	0.01	0.23	0.21	nt 0.51	0.22	9.1% 8.0%	0.23 0.855	N/A N/A
i nospilorus - rotal	mg/L	0.05	0.05	0.01	1.2	1.3	0.31	1.23	0.0%	0.855 N/A	N/A N/A
Arsenic	μg/L	1	1	1	5	5	5	5	0.0%	5	N/A N/A
Cadmium	μg/L μg/L	0.1	0.1	0.1	<0.1	<0.1	<0.1	N/A	N/A	N/A	N/A
Chromium	μg/L	1	1	1	7	7	6.00	7	0.0%	6.5	N/A
Copper	μg/L	1	1	1	<1	2	<1	2	N/A	N/A	N/A
Lead	μg/L	1	1	1	<1	<1	<1	N/A	N/A	N/A	N/A
Mercury	μg/L	0.05	0.05	0.1	< 0.05	< 0.05	<0.1	N/A	N/A	N/A	N/A

			BH1			BH2			BH3	BI	H4			BH5			HA4					
	De	pth (m)	3.0	4.5- 4.95	4.5- 4.95	7.5- 7.9	10.5- 10.95	16.5- 16.95	0.5	1.0	5-5.45	3.0- 3.45	12.0- 12.45	15.0- 15.45	19.5- 19.95	22.5- 22.95	1.0- 1.1			NEPM		
	Date S	ampled	22- Jan-	25-	25-	25-	25-	25-	25-	25-	25-	23- Jan-	23- Jan-	23- Jan-	24-	24-	22- Jan-	NED14 (2012)	NEPM (2013) HIL	(2013) HSL - D:	NEPM (2013)	NEPM (2013)
	Dutes	_	18	Jan-18	Jan-18	Jan-18	Jan-18	Jan-18	Jan-18	Jan-18	Jan-18	18	18	18	Jan-18	Jan-18	18	NEPM (2013) HIL – Public Open Space C	Commercial	Low - Commerc ial	EIL : Commercial	HSL Asbestos (commercial/in
		Unit	1836	Natural 18400	Natural 18400	Natural	Natural 18400	Natural 18400	Fill 18400	Fill 18400	Natural	Fill 1838	Natural 1838	Natural 1838	Natural	Natural 18390	Fill 1836	Open Space C	/Industrial D	/Industria l - sand; 0	/Industrial	dustrial)
	Laboratory	-	77	0-A	0-A	0-A	0-A	0-A	0-A	0-A	0-A	01	01	01	5-A	5-A	77			- <1m		
	Samp	le Type	N	N	R	Ν	Ν	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	N	Ν					
Parameters	Unit	PQL											1	1								
TRH C6 - C9	mg/kg	25	<25	37	<25	<25	<25	<25	<25	<25	<25	<25	<25	6	<25	72	<25					
TRH C6 - C10	mg/kg	25	<25	120	88	<25	<25	43	<25	<25	<25	<25	34	<25	<25	240	<25					
FRACTION 1	mg/kg	25	<25	120	86	<25	<25	43	<25	<25	<25	<25	34	<25	<25	220	<25			310	215	
TRH C10 - C14	mg/kg	50	<50	89	110	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	180	<50					
TRH C15 - C28	mg/kg	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100					
TRH C29 - C36	mg/kg	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100					
TRH C10-C36	mg/kg	100	<100	89	110	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	180	<100					
TRH >C10-C16	mg/kg	50	<50	<50	56	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	94	<50					
FRACTION 2	mg/kg	50	<50	<50	56	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	94	<50			NL	170	
TRH >C16-C34	mg/kg	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	-	<100	<100	<100					
TRH >C34-C40	mg/kg	100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	30	<100	<100	<100					
	-1	1	1	1	1	1			1	1	1	1	1	1	1	1						
Benzene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2			4	75	
Toluene	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5			NL	35	
Ethylbenzene	mg/kg	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	NL	<1	1	<1			NL	165	
m+p-xylene	mg/kg	2	<2	3	2	<2	<2	<2	<2	<2	<2	<2	<2	<2	<2	11	<2					
o-Xylene	mg/kg	1	<1	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	-	<1	4	<1					
Xylenes	mg/kg	2	<1	4	2	<1	<1	<1	<1	<1	<1	<2	<2	<2	<2	16	<1					
			1										1	1								
Naphthalene	mg/kg	0.1	<0.1	0.3	0.2	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.4	<0.1			NL	370	
Acenaphthylene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Acenaphthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Fluorene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Phenanthrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Anthracene	mg/kg	0.1	< 0.1	< 0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1					

Sample Locatio Depth (n			BH1			BH2			BH3	Bl	H4			BH5			HA4					
	Dej	pth (m)	3.0	4.5- 4.95	4.5- 4.95	7.5- 7.9	10.5- 10.95	16.5- 16.95	0.5	1.0	5-5.45	3.0- 3.45	12.0- 12.45	15.0- 15.45	19.5- 19.95	22.5- 22.95	1.0- 1.1			NEPM		
	Data S	ampled	22- Jan-	25-	25-	25-	25-	25-	25-	25-	25-	23- Jan-	23- Jan-	23- Jan-	24-	24-	22- Jan-		NEPM (2013) HIL	(2013) HSL - D:	NEPM (2013)	NEPM (2013)
	Date 5.		18	Jan-18	Jan-18	Jan-18	Jan-18	Jan-18	Jan-18	Jan-18	Jan-18	18	18	18	Jan-18	Jan-18	18	NEPM (2013) HIL – Public	Commercial	Low - Commerc ial	EIL : Commercial	HSL Asbestos (commercial/in
		Unit	1026	Natural	Natural	Natural	Natural	Natural	Fill	Fill	Natural	Fill	Natural	Natural	Natural	Natural	Fill	Open Space C	/Industrial D	iai /Industria l - sand; 0	/Industrial	dustrial)
	Laboratory	report	1836 77	18400 0-A	18400 0-A	18400 0-A	18400 0-A	18400 0-A	18400 0-A	18400 0-A	18400 0-A	1838 01	1838 01	1838 01	18390 5-A	18390 5-A	1836 77			- <1m		
	Samp	le Type	Ν	Ν	R	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν					
Parameters	Unit	PQL																				
Fluoranthene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1					
Pyrene	mg/kg	0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	< 0.1	0.2	< 0.1	< 0.1	< 0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1					
Benzo(a)anthracen e	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	0.1	< 0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1					
Chrysene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1					
Benzo(b+k)fluora nthene	mg/kg	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2					
Benzo(a)pyrene	mg/kg	0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	0.1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05				0.7	
Indeno(1,2,3- c,d)pyrene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1					
Dibenzo(a,h)anthr acene	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1					
Benzo(g,h,i)peryle ne	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	< 0.1	< 0.1					
Benzo(a)pyrene TEQ	mg/kg	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3	40			
Total +ve	mg/kg	-	< 0.05	0.3	0.2	<0.05	< 0.05	< 0.05	1	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.4	< 0.05	300	4,000			
НСВ	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	10	80			
alpha-BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
gamma-BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
beta-BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1					
Heptachlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	10	50			
delta-BHC	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1					
Aldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Heptachlor Epoxide	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1					
gamma-Chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
alpha-chlordane	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Endosulfan I	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	340	2,000			
pp-DDE	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Dieldrin	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1					

	Sample L	ocation	BH1			BH2			BH3	В	H4			BH5			HA4					
	De	pth (m)	3.0	4.5- 4.95	4.5- 4.95	7.5- 7.9	10.5- 10.95	16.5- 16.95	0.5	1.0	5-5.45	3.0- 3.45	12.0- 12.45	15.0- 15.45	19.5- 19.95	22.5- 22.95	1.0- 1.1			NEPM		
	Date S	ampled	22- Jan- 18	25- Jan-18	25- Jan-18	25- Jan-18	25- Jan-18	25- Jan-1	25- Jan-18	25- Jan-18	25- Jan-18	23- Jan- 18	23- Jan- 18	23- Jan- 18	24- Jan-18	24- Jan-18	22- Jan- 18	NEPM (2013)	NEPM (2013) HIL	(2013) HSL - D: Low -	NEPM (2013) EIL :	NEPM (2013) HSL Asbestos
		Unit	10	Natural	Natural	Natural	Natural	Natura	Fill	Fill	Natural	Fill	Natural	Natural	Natural	Natural	Fill	HIL – Public Open Space C	Commercial /Industrial	Commerc ial /Industria	Commercial /Industrial	(commercial/in dustrial)
	Laboratory	report	1836 77	18400 0-A	18400 0-A	18400 0-A	18400 0-A	18400 0-A	18400 0-A	18400 0-A	18400 0-A	1838 01	1838 01	1838 01	18390 5-A	18390 5-A	1836 77		D	l - sand; 0 - <1m		
	Samp	le Type	N	N	R	N	N	N	N	N	N	N	N	N	N	N	N					
Parameters	Unit	PQL								1	1											
Endrin	mg/kg	0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	<0.1					
pp-DDD	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Endosulfan II	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1					
pp-DDT	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1				640	
Endrin Aldehyde	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Endosulfan Sulphate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Methoxychlor	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	<0.1	<0.1	400	2,500			
A - in a hard and	1	1	1			1				1						1						
Azinphos-methyl (Guthion)	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Bromophos-ethyl	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Chlorpyriphos	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	250	2000			
Chlorpyriphos- methyl	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Diazinon	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1					
Dichlorvos	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Dimethoate	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Ethion	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Fenitrothion	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Malathion	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Parathion	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
Ronnel	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1					
	maller	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	<0.1	< 0.1	< 0.1	<0.1	<0.1	<0.1	<0.1					
Aroclor 1016	mg/kg					<0.1		_	-					<0.1								
Aroclor 1232	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1					
Aroclor 1242	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1					
Aroclor 1248	mg/kg	0.1	<i>\</i> 0.1	<i>\</i> 0.1	<u>\0.1</u>	<u>\0.1</u>	<u>\</u> 0.1	<0.1	\0.1	<i>∽</i> 0.1	<u>∽0.1</u>	<u>∽0.1</u>	<u>∽0.1</u>	-	<u>\0.1</u>	<u>\0.1</u>	<i>\</i> 0.1					

	Sample L	ocation	BH1			BH2			BH3	BI	-14			BH5			HA4					
	Dej	pth (m)	3.0	4.5- 4.95	4.5- 4.95	7.5- 7.9	10.5- 10.95	16.5- 16.95	0.5	1.0	5-5.45	3.0- 3.45	12.0- 12.45	15.0- 15.45	19.5- 19.95	22.5- 22.95	1.0- 1.1			NEPM		
	Date S	ampled	22- Jan- 18	25- Jan-18	25- Jan-18	25- Jan-18	25- Jan-18	25- Jan-18	25- Jan-18	25- Jan-18	25- Jan-18	23- Jan- 18	23- Jan- 18	23- Jan- 18	24- Jan-18	24- Jan-18	22- Jan- 18	NEPM (2013) HIL – Public	NEPM (2013) HIL -	(2013) HSL - D: Low - Commerc	NEPM (2013) EIL :	NEPM (2013) HSL Asbestos
		Unit		Natural	Natural	Natural	Natural	Natural	Fill	Fill	Natural	Fill	Natural	Natural	Natural	Natural	Fill	Open Space C	Commercial /Industrial D	ial /Industria	Commercial /Industrial	(commercial/in dustrial)
	Laboratory	report	1836 77	18400 0-A	18400 0-A	18400 0-A	18400 0-A	18400 0-A	18400 0-A	18400 0-A	18400 0-A	1838 01	1838 01	1838 01	18390 5-A	18390 5-A	1836 77		D	l - sand; 0 - <1m		
	Samp	le Type	N	N	R	Ν	Ν	Ν	Ν	Ν	Ν	N	Ν	N	N	N	Ν					
Parameters	Unit	PQL													•	•						
Arsenic	mg/kg	4	7	<4	<4	<4	<4	10	<4	<4	<4	<4	<4	-	73	<4	<4	300	3,000		160	
Cadmium	mg/kg	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	-	<0.4	<0.4	<0.4	20,000	900			
Chromium	mg/kg	1	11	5	5	2	1	13	3	2	3	5	5	-	13	2	4	300	3,600		320	
Copper	mg/kg	1	3	<1	<1	<1	<1	3	9	4	<1	<1	2	-	<1	<1	2	17,000	240,000		330	
Lead	mg/kg	1	5	3	2	<1	1	6	16	5	<1	3	5	-	6	<1	3	600	1,500		1800	
Mercury	mg/kg	0.1	<0.1	<0.1	<0.1	<0.1	< 0.1	< 0.1	0.2	<0.1	<0.1	<0.1	<0.1	-	<0.1	<0.1	<0.1	80	730			
Nickel	mg/kg	1	4	<1	1	<1	<1	1	3	1	1	2	<1	-	<1	<1	4	1,200	6,000		460	
Zinc	mg/kg	1	10	<1	<1	1	<1	13	41	23	<1	2	<1	<1	3	<1	36	30,000	400,000		1,200	
		_																				
Asbestos ID	g/kg	0.1	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected	nt	No asbestos detected at reporting limit of 0.1g/kg: Organic fibres detected					0.05											
¹ Groundwater investigation levels for Marine Waters (Schedule B1, NEPM)	-	-	No asbestos detected	No asbestos detected	nt	No asbestos detected					0.001											

na- not analysed

Bold - indicates exceedance of criteria value

Health investigation levels for Public Space land use (Schedule B1, NEPM)

Health investigation levels for Commercial/Industrial land use (Schedule B1, NEPM)

Health screening levels for Commercial/Industrial land use for sand 0 m - <1m (Schedule B1, NEPM)

Ecological Investigation Level for Commercial/Industrial land use (Schedule B1, NEPM/ CSIRO EIL Calculation Spreadsheet))

		Table	10: Ground	lwater Ana	lytical Results		
S	ample L	ocation	BF		BH02		
	Date S	ampled	1-Mar- 18	1-Mar- 18	1-Mar-18	NEPM (2013) GIL - Marine Waters ¹	NEPM (2013) HSL - Commercial/Industrial
La	boratory	report	186375	186375	186375	Marine waters	2 m to <4 m
	Samp	le Type	Ν	REP	Ν		
Parameters	Unit	PQL					
TRH C6 - C9	μg/L	10	<10	<10	<10	-	-
TRH C6 - C10	μg/L	10	<10	<10	<10	-	-
FRACTION 1	μg/L	10	<10	<10	<10	-	6
TRH C10 - C14	μg/L	50	<50	<50	<50	-	-
TRH C15 - C28	μg/L	100	<100	<100	<100	-	-
TRH C29 - C36	μg/L	100	<100	<100	<100	-	-
TRH total C10 - C36	μg/L	100	<100	<100	<100	-	-
TRH >C10-C16	μg/L	50	<50	<50	<50	-	-
FRACTION 2	μg/L	50	<50	<50	<50	-	NL
TRH >C16-C34	μg/L	100	<100	<100	<100	-	-
TRH >C34-C40	μg/L	100	<100	<100	<100	-	-
TRH total >C10-C40	μg/L	100	<100	<100	<100	-	-
							-
Benzene	μg/L	1	<1	<1	<1	500 ^{MR}	30
Toluene	μg/L	1	<1	<1	<1	-	NL
Ethylbenzene	μg/L	1	<1	<1	<1	-	NL
m+p-xylene	μg/L	2	<2	<2	<2	-	-
o-Xylene	μg/L	1	<1	<1	<1	-	-
Xylenes	μg/L	2	<2	<2	<2	-	NL
			-2				
Naphthalene	μg/L	1	<1	<1	<1	50 ^{MR}	-
Acenaphthylene	μg/L					-	_
Acenaphthene	μg/L	1	<1	<1	<1	-	-
Fluorene	μg/L	1	<1	<1	<1	-	_
Phenanthrene	μg/L	1	<1	<1	<1	-	-
Anthracene	μg/L	1	<1	<1	<1	-	-
Fluoranthene	μg/L	1	<1	<1	<1	-	-
Pyrene	μg/L	1	<1	<1	<1	-	-
Benzo(a)anthracene	μg/L	1	<1	<1	<1	-	-
Chrysene	μg/L	1	<1	<1	<1	-	-
Benzo(b+k)fluoranthene	μg/L	2	<2	<2	<2	-	-
Benzo(a)pyrene	μg/L	1	<1	<1	<1	-	-
Indeno(1,2,3-c,d)pyrene	μg/L	1	<1	<1	<1	-	-
Dibenzo(a,h)anthracene	μg/L	1	<1	<1	<1	-	-
Benzo(g,h,i)perylene	μg/L	1	<1	<1	<1	-	-
Benzo(a)pyrene TEQ	μg/L	5	<5	<5	<5	-	-
Total +ve	μg/L		NIL	NIL		-	-
		1	(+)VE	(+)VE	NIL (+)VE		
цер		0.2	<0.2	<0.2	<0.2		
HCB	µg/L	0.2	<0.2	<0.2	<0.2	-	
alpha-BHC	μg/L	0.2	<0.2	<0.2	<0.2	-	
gamma-BHC	μg/L	0.2	<0.2	<0.2	<0.2		
beta-BHC	µg/L	0.2	<0.2	<0.2	<0.2		
Heptachlor	μg/L	0.2	< 0.2	< 0.2	<0.2	-	-

Table 10: Groundwater Analytical Results

			10: Groun	dwater Ana	lytical Results - c	ontinued	
	Sample L	ocation		101	BH02		
		ampled	1-Mar- 18	1-Mar- 18	1-Mar-18	NEPM (2013) GIL - Marine Waters ²	NEPM (2013) HSL - Commercial/Industrial
La	boratory	-	186375	186375	186375		2 m to <4 m
	Samp	le Type	N	REP	N		
delta-BHC	μg/L	0.2	<0.2	<0.2	<0.2	-	-
Aldrin	μg/L	0.2	<0.2	<0.2	<0.2	-	-
Heptachlor Epoxide	μg/L	0.2	<0.2	<0.2	<0.2	-	-
gamma-Chlordane	μg/L	0.2	<0.2	<0.2	<0.2	-	-
alpha-chlordane	μg/L	0.2	<0.2	<0.2	<0.2	-	-
Endosulfan I	μg/L	0.2	<0.2	<0.2	<0.2	0.005 ^{MR}	-
pp-DDE	μg/L	0.2	<0.2	<0.2	<0.2	-	-
Dieldrin	μg/L	0.2	<0.2	<0.2	<0.2	-	-
Endrin	μg/L	0.2	<0.2	<0.2	<0.2	0.004 ^{MR}	-
pp-DDD	μg/L	0.2	<0.2	<0.2	<0.2	-	-
Endosulfan II	μg/L	0.2	<0.2	<0.2	<0.2	-	-
pp-DDT	μg/L	0.2	<0.2	< 0.2	<0.2	-	-
Endrin Aldehyde	μg/L	0.2	<0.2	<0.2	<0.2	-	-
Endosulfan Sulphate	μg/L	0.2	<0.2	<0.2	<0.2	-	-
Methoxychlor	μg/L	0.2	<0.2	<0.2	<0.2	-	-
Azinphos-methyl (Guthion)	μg/L	0.2	<0.2	<0.2	<0.2	-	-
Bromophos-ethyl	μg/L	0.2	<0.2	<0.2	<0.2	-	-
Chlorpyriphos	μg/L	0.2	<0.2	<0.2	<0.2	0.009 ^{HR}	-
Chlorpyriphos-methyl	μg/L	0.2	<0.2	<0.2	<0.2	-	-
Diazinon	μg/L	0.2	<0.2	<0.2	<0.2	-	-
Dichlorvos	μg/L	0.2	<0.2	<0.2	<0.2	-	-
Dimethoate	μg/L	0.2	<0.2	<0.2	<0.2	-	-
Ethion	μg/L	0.2	<0.2	<0.2	<0.2	-	-
Fenitrothion	μg/L	0.2	<0.2	<0.2	<0.2	-	-
Malathion	μg/L	0.2	<0.2	<0.2	<0.2	-	-
Parathion	μg/L	0.2	<0.2	<0.2		-	-
Ronnel	μg/L	0.2	<0.2	<0.2	<0.2	-	-
Total Nitrogen in water	mg/L	0.1	9.1	nt	18	0.30 ^a	-
NOx as N in water	mg/L	0.005	0.05	nt	0.3	0.015 ^a	-
Ammonia as N in water	mg/L	0.005	5.2	nt	12	4.55 ^b	-
Arsenic	μg/L	0.1	<0.1	nt	<0.1	0.7	-
Cadmium	μg/L	1	<1	nt	7	27	-
Chromium	μg/L	1	2	nt	<1	1.3	-
Lead	μg/L	1	<1	nt	<1	4.4	-
Mercury	μg/L	0.05	< 0.05	< 0.05	< 0.05	0.1	-
Nickel	μg/L	1	2	nt	2	7	-
Zinc	μg/L	1	6	nt	4	15	-
		-					

(continued) Table 10: Groundwater Analytical Results - continued

Notes:

nt- not tested

NL- not limiting

¹Groundwater investigation levels for Marine Waters (Schedule B1, NEPM) CES130608-BP 19 Marsh Street Detailed Site Investigation

Table 11: Photoionisaton Detecter (PID) Screening Results

Depth (mbgl)	0.5	1.0	1.5	2.0	2.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0	10.5	11.0	11.5	12.0	12.5	13.0
Borehole Location ID										Pl	D Sci	reenin	g Resul	ts (ppi	m)									
BH1	-	0.2	-	< 0.1	-	< 0.1	-	< 0.1	-	< 0.1	-	< 0.1	-	< 0.1	1	-	-	-	-	-	-	-	-	-
BH2	-	2.2	-	0.3	-	-	78.4	-	1	45.4	-	-	103.2	-	-	7.9	-	-	7.0	-	-	7.6	-	-
BH3	26.6	-	-	-	1	-	-	I	I	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH4	-	6.7	-	1.9	-	0.6	-	1.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
BH5	-					-	253.1	-	-	45.5	-	-	3.2	-	-	14.8	-	-	5.2	-	-	230.2	-	-
HA4	0.3	0.2	0.3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Depth (mbgl)	12.5	14.0	14.7	15.0	15 5	17.0	17.5	10.0	10.5	10.0	10 5	20.0	20.5	01.0	01.5	22.0	22.5	22.0	22.5	240	<u></u>		25.5	
Deptii (inogi)	13.5	14.0	14.5	15.0	15.5	17.0	17.5	18.0	18.5	19.0	19.5	20.0	20.5	21.0	21.5	22.0	22.5	23.0	23.5	24.0	24.5	25.0	25.5	
Borehole Location ID		14.0	14.5	15.0	15.5	17.0	17.5	18.0					20.5 (ppm)				22.5	23.0	23.5	24.0	24.5	25.0	25.5	
		-	-	-	-	-	-	-									- 22.5	-	-	-	-	- 25.0	-	
Borehole Location ID	-	•	•			•	•		PID	Screer	ning R	Results	(ppm)	(conti	nued)			•		-	-			
Borehole Location ID BH1	- 5.7	•	-	-		-	-	-	PID	Screer -	ning R -	Results	(ppm) -	(conti -	nued) -		-	•	-	- - -	- - -			
Borehole Location ID BH1 BH2	- 5.7 -		-	- 40.6	-	-	-	- 4.9	PID - -	Screer - -	- 0.7	Results - -	(ppm) - -	(conti - 1.0	nued) - -	-	- 353.5	•	-	- - - -	- - - -			
Borehole Location ID BH1 BH2 BH3 BH3 BH4	- 5.7 -	-	-	- 40.6	-	-		- 4.9 -	PID - - -	Screen - - -	- 0.7 -	Results	(ppm) - - -	(contin - 1.0 -	nued) - - -		- 353.5 -	•		- - - - -	- - - - -			

Table 12: Soil analytical results - sPOCAS													
Parameters	Parameters												
Sample	Date	Borehole	Material	(mol H+/tonne)	(mol H+/tonne)	S-POS (%)	(mol H+/tonne)	(kg CaCO ₃ /tonne)					
BH02-1.5	23-Jan-18	BH02	Gravelly sand	<5	120	0.36	120	12					
BH02-3.25-3.45	23-Jan-18	BH02	Clayey sand	<5	190	0.35	190	15					
Aution Criteria		Sands to loamy sands		-	18	0.03	-	-					
Action Criteria (1 - 1000 tonnes)		Sandy loams to light clays	3	-	36	0.06	-	-					
(1 - 1000 tomics)		Medium to heavy clays		-	62	0.1	-	-					
		Sands to loamy sands		-	18	0.03	-	-					
Action Criteria (>1000 tonnes)		Sandy loams to light clays	3	-	18	0.03	-	-					
(>1000 tonnes)		Medium to heavy clays		-	18	0.03	-	-					
Note: Concentrations over action criteria are highlighted and shown in bold text.								_					

Appendix A Proposed Development Plans

Appendix B Borehole Logs

Clie Pro Loc	oject ent: oject: catio Coord	: n:		Lot 10	ropert Detail sh Str	BP ties Pty Ltd led Site Investigation eet, Arncliffe			PH: (02) 856	EART SCIEN S view Street, Pym 59 2200 FAX: (www.consultin	uite 3, Level 1 ble NSW 2073 02) 9983 0582 gearth.com.au	F	G ID: BH01 Sheet: 1/1 EM	
Y-0	Coord	l:	tion	624369 (R.L) :	0.387	GDA 94 MGA 56 m AHD	Date Completed: 22/01/2018 Checked by:							
Drill	ing Ir	form	ation			LITHOLOGY	Y	Samples			Test	Tests		
Depth (mBGL)	R.L. (m)	Method (Support)	Water	Symbol	USCS Symbol	Description SOIL TYPE: plasticity or partick colour, moisture, secondary and m		Consistency / Density	Sample ID	Type	SPT	100 Pocket 200 Penetrometer 400 (kPa)	Well Installation Detail	
0 1 1 2 3 4 5 7 7	-0 1 2 3 4 5 6					FILL: Gravelly sand, brown medium grained sand, so to sub-rounded gravels v fragments and fines (silt organics / roots. FILL: Silty sand, brown medium grained sand, w and shell fragments. At 2.5m becoming dark	ub-angular with shell). With , fine to rith gravels		BH01-1.0 BH01-2.0 BH01-3.0 BH01-4.0 BH01-5.0 BH01-5.0 BH01-7.0					
8	-8					End of borehole at target	depth		BH01-8.0				8	
		mpan e Typ		Hagstron Fruck mo		ing Opera rig Opera	tor Name: tors Licen	ce No.	Shane Smi	ith			Standard Sheets of abbreviations	

Cli Pr	oject ient: oject:	:		Lot 10	roper Detail	ies Pty Lt ed Site Investigation		55 Grandview S	EART SCIEN Street, Pym	UTIS TS Suite 3, Level 1 ble NSW 2073		G ID: BH02
X-0 Y-0	catio Coord Coord	l: l:		329958 624567	0.3	eet, Arncliffe GDA 94 MGA 56 Date Con Date Con	nplete	ed: 23/01/20 d: 25/01/20	w.consultin	igearth.com.au Logg	ed by: ked by:	Sheet: 1/1 EM : IW
Su	rface	Eleva	tion	(R.L) :	1.877	m AHD Hole Dia	meter	(mm): 200				1
Dril	ling Ir		ation			LITHOLOGY	1	Samples	1	Tests	-	
Depth (mBGL)	R.L. (m)	Method (Support)	Water	Symbol	USCS Symbol	Description SOIL TYPE: plasticity or particle characteristics colour, moisture, secondary and minor components	Consistency / Density	Sample ID	Type	SPT	100 Pocket 200 Penetrometer 400 (kPa)	Well Installation Detail
11-	-1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11					 Topsoil: Silty sand, fine to coarse grained, sub-angular to sub-rounded sand, low plasticity, organics and roots. FILL: Silty clayey sand, medium to coarse grained sub-angular to sub-rounded sand, medium plasticity clay, with shells and fine grained trace gravels. Gravel and Sand: Brown grey, fine to coarse grained sub-angular to sub-rounded gravels, with shells and fines (silt), gravels comprise cementation. Silty CLAY: Dark grey, medium plasticity clay, marine sediment odour. Silty SAND: Brown, fine to medium grained, sub-angular to sub-rounded sand, low plasticity silts. Clayey Sand: Dark grey, fine to medium grained sub-angular to sub-rounded sand, medium plasticity clay. Clayey Sand: Pale grey to dark grey, fine to medium grained sub-angular to sub-rounded sand, with fines. Sand: Pale grey to green grey, fine to medium grained sub-angular to sub-rounded sand, with fines. Sand: Pale grey with yellow grey streaks, Clayey Sand: Pale grey/white, fine to medium grained sub-angular to sub-rounded sand, with fines. Sand: Pale grey with yellow grey streaks, Clayey Sand: Pale grey with yellow grey streaks, 		BH2-1.0 BH2-2.0 BH2-3.25 BH2-3.25-3.45 BH2-4.5-4.95 BH2-6-6.27 BH2-6-6.27 BH2-7.5-7.9 BH2-9-9.45 BH2-10.5-10.95		SPT 1 @ 3-3.45 m 2,1,0 N=1 SPT 2 @ 4.45-4.95m 0,0,3 N=3 SPT 3 @ 6-6.45m 14,30/120mm N=R SPT 4 @ 7.5-7.9m 17,36,18/100 N=R SPT 5 @ 9-9.45m 2,0,6 N=6 SPT 6 @ 10.5-10.95m 8,1,15 N=26		
	ill Con			Hagstron Fruck me			e No.:	Shane Smith	1			12 - Standard Sheets of abbreviations

Clie Pro	oject ent: oject: catio	:		Lot 10	ropert Detail	BP ies Pty Lt ed Site Investigation eet, Arncliffe	n		PH: (02) 8569 2	EART SCIEN SCIEN Street, Pym 200 FAX: (UTIS TS Suite 3, Level 1 Ible NSW 2073 (02) 9983 0582	B	G ID: 3H02 Sheet: 1/1
X-C Y-C	Coord Coord	l: l:		329958 624567 (R.L) :	0.3	GDA 94 MGA 56 m AHD	Date Cor Date Cor Hole Dia	nplete	ed: 23/01/2	018		ed by: ked by:	EM
Drilli	ing Ir	nforma	tion			LITHOLOGY	Y		Sample	5	Test	5	
Depth (mBGL)	R.L. (m)	Method (Support)	Water	Symbol	USCS Symbol	Description SOIL TYPE: plasticity or particle colour, moisture, secondary and m		Consistency / Density	Sample ID	Type	SPT	 Pocket Penetrometer Penetrometer 	Well Installation Detail
12						Silty CLAY: Pale grey, plasticity clay, very stiff	high , dry.		BH2-12-12.45		SPT 7 @ 12-12.45m 7,13,15 N=28		12
13	— -13 — -14					Sandy CLAY: Pale grey plasticity clay, fine to m grained sub-angular to si	edium	-	BH2-13.5-13.95	_	SPT 8 @ 13.5-13.95m 6,10,9	-	13
15	— -15					sand.			BH2-15-15.45		N=19 SPT 9 @		15
16	— -16										15-15.45m 7,8,11 N=19		16
17	-17					Sand: Red brown, fine to grained sub-angular to su sand with low plasticity	ub-rounded		BH2-16.5-16.95	-	SPT 10 @ 16.5-16.95m N=R		17
18									BH2-18-18.45	_	SPT 11 @ 18-18.45m 30-50mm (HB)		18
19	19							-		_	N=R	-	19
20						Sandstone: White/pale g coarse grained sub-angu rounded sand, compact [as sand].	lar to sub-		BH2-19.5-19.95		SPT 12 @ 19.5-19.95m 11,17,23 N=40	/	20
21						Sandstone: Red brown / to coarse grained sub-an rounded sand, with fines as sand].	gular to sub-	-	BH2-21-21.45	-	SPT 13 @ 21-21.35m 28,30,14/50n N=R		21
22						Terminated at 22.58m			\ BH2-22.5-22.58		SPT 14 @		22
23]			22.5-22.58m 20/80mm (HB)		
		mpan e Type		Hagstron Fruck me			tor Name: tors Licen	ce No.:	Shane Smith				Standard Sheets of abbreviation

Project ID:	CES1	30608	-BP	Easti	ng:	329886.5	04			NSULTIN	IG
Project:	Lot 10) Detail	ed Site Investigation	North	ning:	6243678.4	441	₹	1	RTH IENTISTS	
Client:	Boyd	Proper	ties Pty Ltd	Eleva	ation:	1.349			view Street, Pyr	nble NSW 2073 X: (02) 9983 058	2
Location:	19 Ma	arsh Str	eet, Arncliffe	Env	vironi	mental Lo	og:	Bŀ	103		
DRILLING I	NFO.		LITHOLOGY			SAMPL	ING INF			WELL	DETAIL
Depth Method	Water	Symbol	Description		Sa	mple ID	Туре	0 2.5	PID (ppm) ^{2.2}		DETAIL
			Topsoil: Cement stabilised soil roadbase Silty sand, fine to coarse graine angular to sub-rounded sand, to plasticity, medium grained sub- rounded gravels, with shells	W	E	3H3-0.5					
1.0			Obstruction (concrete pipe) (End of borehole.	⊉ 0.8m							
Drill Comp Drill Model	Drill Company:Hagstrom DrillingDrill Model:Hydrapower ScoutHole Diameter (mm):200				Date Commenced: Date Completed: Logged/checked by:			25/01 EM /	25/01/2018 25/01/2018 EM / IW Sheet: 1/1		

Clio Pro	oject ent: oject: catio	:		Lot 10	roper Detail	BP ies Pty Lt ed Site Investigatio eet, Arncliffe	n		55 Grandview PH: (02) 8569 22 W	EART SCIEN Street, Pym 200 FAX: (uite 3, Level 1 ble NSW 2073	B	G ID: H04
Y-C	Coord Coord face	l:		329903 624367 (R.L) :	0.3	GDA 94 MGA 56 m AHD	Date Cor Date Cor Hole Dia	nplete				ed by: ked by:	6243657.056 IW
Drill	ing Ir	nformat	tion			LITHOLOG	Y		Samples		Test	8	
Depth (mBGL)	R.L. (m)	Method (Support)	Water	Symbol	USCS Symbol	Description SOIL TYPE: plasticity or particle colour, moisture, secondary and m		Consistency / Density	Sample ID	Type	SPT	¹⁰⁰ Pocket ²⁰⁰ Penetrometer ⁴⁰⁰ (kPa)	Well Installation Detail
						Topsoil: Sand, fine to m grained, sub-angular to s sand, trace fines. Sand: Brown to dark gre medium grained, sub-an rounded sand, with fines At 1.0m becoming brow Sand: Dark grey, fine to grained sub-angular to s sand, with fines (clay), r plasticity clay.	wy, fine to gular to sub- s. m. medium ub-rounded		BH4-1.0 BH4-2.0 BH4-3-3.45				0 1- 2-
3 4	—-3 —-4					Sand: Dark grey-brown, coarse grained, sub-angu rounded sand, trace seas	ular to sub-		BH4-4-4.45	-	SPT 1 @3-3.45 m 3.2.3 N=5 SPT 2 @ 4-4.45m 3.3.4 N=7		3-
5 						Terminated at 5.45m			BH4-5-5.45	-	SPT 3 @ 5-5.45m 6,9,14 N=23		5-
		mpany		Hagstron Fruck mo		ing Opera	tor Name:		Shane Smith				6 Standard Sheets of abbreviations

	ject	ID:		CES13						CONS	ULTING H	LC	OG ID:
Clie Dro				•	-	ies Pty Lt				SCIEN	ITIS TS uite 3, Level 1	F	BH05
	ject: catio					ed Site Investigation eet, Arncliffe			55 Grandview \$ PH: (02) 8569 220	Street, Pym	ble NSW 2073		CI . 1/1
									ww	w.consultin	gearth.com.au		Sheet: 1/1
	Coord			329868.		GDA 94 MGA 56	te Con					ed by:	EM
	Coord			624364			te Con	-	l: 23/01/20 (mm): 200	18	Chec	ked by	: IW
				(R.L) :	1./91		ne Dia	neter	· · ·		I _		
Drill	ing Ir	nform	ation			LITHOLOGY			Samples		Tests		-
Depth (mBGL)	R.L. (m)	Method (Support)	Water	Symbol	USCS Symbol	Description SOIL TYPE: plasticity or particle charac colour, moisture, secondary and minor co		Consistency / Density	Sample ID	Type	SPT	 Pocket Pocket Penetrometer Penetrometer 	Well Installation Detail
07	-0							1		1			
1	—-1 —-2					Roadbase: Silty Sandy Gravel grey to grey, fine to coarse gr sub-angular to angular gravels to coarse grained sub-angular with clay, compact, dry. FILL: Sandy gravel fill / wast comprising timber block >200 aluminium cans. At 0.8m boulder encountered	ained s, fine sand, mes.						
3 	—-3 —-4					Silty SAND: dark grey / brow fine to coarse grained sub-an sub-rounded sand, low plastic silt.	glar to	-	BH5-3.0-3.45	-	SPT 1 @3-3.45 m 2,3,3 N=6		
5	—-5 —-6		\square			Sand: Dark grey / brown grey to coarse grained sub-anglar rounded sand, trace fines, (bes sand)	to sub-		BH5-4.5-4.95 BH5-6.0-6.45	-	SPT 2 @ 4.5-4.95m 10,14,21 N=35		
7-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	-7										6-6.45m 9,18,40 N=R		7-
8						Silty CLAY: Dark grey, high plasticity, firm to stiff, with sl fragments, hydrocarbon odou:			BH5-7.5-7.95		SPT 4 @ 7.5-7.95m 2,3,4 N=7	(8-
9	— -10					Silty CLAY: Grey/black/dark grey/green grey, firm to stiff, hydrocarbon odour			BH5-9.0-9.45		SPT 5 @ 9-9.45m 3,3,3 N=6		10-
11						Sandy CLAY: Mottled pale g yellow/green grey (stain), hig plasticity clay, fine to mediun grained sub-angular to sub-ro sand, strong hydrocarbon odo to very stiff, moist.	h n unded		BH5-10.5-10.95	-	SPT 6 @ 10.5-10.95m 5,6,9 N=15		11-
12 13						Clayey Sand: Pale grey, fine t coarse grained, sub-angular to rounded sand, medium plastic clay.	sub-		BH5-12-12.45		SPT 7 @ 12-12.45m 4,6,14 N=20		12— 13—
		mpan e Typ		Hagstron Fruck me				ce No.:	Shane Smith				Standard Sheets of abbreviations

Clie Pro	oject ent: oject: catio	:		Lot 10	ropert Detail	BP ies Pty Lt ed Site Investigation eet, Arncliffe			PH: (02) 8569 2	EART SCIEN Street, Pym 200 FAX: (UTIS TS Suite 3, Level 1 ble NSW 2073	B	G ID: H05
Y-C	Coord Coord face 1	l:	ation	329868 624364 (R.L) :	6.94	GDA 94 MGA 56	Date Con Date Con Hole Dia	npleteo				ed by: ked by:	EM IW
Drilli	ing In	form	ation			LITHOLOGY			Samples	;	Tests	5	
Depth (mBGL)	R.L. (m)	Method (Support)	Water	Symbol	USCS Symbol	Description SOIL TYPE: plasticity or particle ch colour, moisture, secondary and mino		Consistency / Density	Sample ID	Type	SPT	$_{200}^{100}$ Pocket $_{300}^{200}$ Penetrometer $_{400}^{100}$ (kPa)	Well Installation Detail
4						Sandy CLAY: Grey to gree with yellow streaks, high p fine to medium grained sub to sub-rounded sand, very s hydrocarbon odour	lasticity, -angular		BH5-13.5-13.95	_	SPT 8 @ 13.5-13.95m 7,12,16 N=28		14
5	— -15 — -16								BH5-15-15.45	-	SPT 9 @ 15-15.45m 4,5,6 N=11		1
	17					Sandy CLAY: Pale grey, h plasticity, fine to medium g sub-angular to sub-rounded odourless.	grained		BH5-16.5-16.95	-	SPT 10 @ 16.5-16.95m 10,4,2 N=6	- /	1
	— -18 — -19					Silty CLAY: Pale grey, hig plasticity.	;h		BH5-18-18.45	-	SPT 11 @ 18-18.45m 5,5,5 N=10		1
						Silty CLAY: Red brown, h plasticity, with fine to med coarse grained sub-angular rounded sand, stiff.	ium to	-	BH5-19.5-19.95	-	SPT 12 @ 19.5-19.95m 4,5,5 N=10	- /	2
	21 22					Silty CLAY: Pale grey, hig plasticity, very stiff, moist.			BH5-21-21.45	-	SPT 13 @ 21-21.45m 6,7,9 N=16		2
	23					Clayey Sand: Pale grey, fir coarse grained sub-angular rounded sand, high plastici very dense / compact.	to sub-		BH5-22.5-22.95	-	SPT 14 @ 22.5-22.95m 21,30,40 N=70 HB		2
	24 25										SPT 15 @ 24-24.07m 18/70mm HB		2
	— -26					Silty CLAY: Mottled brow pale grey, high plasticity, v Terminated at 25.65m			BH5-25.5-25.65		SPT 16 @ 25.5-25.65m 16, 18/50mm HB		2
		mpar e Typ		Hagstron Fruck me			or Name: ors Licene	ce No.:	Shane Smith				Standard Sheet of abbreviation

Cli Pro Loo	oject ent: oject: catio	: n:		Lot 10 19 Mar	ropert Detail sh Str	ies Pty Lt ed Site Investigation eet, Arncliffe				EART SCIEN Street, Pymb 00 FAX: (0 w.consultin	TIS TS uite 3, Level 1 ble NSW 2073 02) 9983 0582 gearth.com.au	H	G ID: IA04 Sheet: 1/1
Y-(Coord Coord face	l:	ation	329925 624367 (R.L):	2.896	GDA 94 MGA 56 Dat	te Com te Com le Dian	pleteo				ed by: ked by:	EM IW
Drill	ing Ir	nform	ation			LITHOLOGY			Samples		Tests	5	
Depth (mBGL)	R.L. (m)	Method (Support)	Water	Symbol	USCS Symbol	Description SOIL TYPE: plasticity or particle character colour, moisture, secondary and minor com		Consistency / Density	Sample ID	Type	SPT	 Pocket Pocket Penetrometer Pockat 	Well Installation Detail
0						Topsoil: Silty sand, dark brown to medium grained sub-angular sub-rounded sand, low plasticit organics and roots, trace shells loose, dry. Silty SAND: Brown, fine to me grained sub-angular to sub-rou sand, low plasticity, with shell fragments, trace rootlets, loose Sand: Pale brown, medium to or grained, sub-angular to sub-rou sand, loose, dry. Sand: At 0.68m becoming yelle brown. Shell fragments observe Sand: At 1.68m becoming da brown. Sand: At 1.19m becoming da brown.	r to ty, , edium nded , dry. coarse unded ow ed. rtk		НА4-0.45-0.5				1
_						Terminated at 1.5m (borehole collapse)							
	ll Co chine			Hagstron	n Drill	ing Operator N Operators 1		e No.:					Standard Sheet of abbreviation

Appendix C Laboratory Certificates of Analysis

CERTIFICATE OF ANALYSIS 183677

Client Details	
Client	Consulting Earth Scientists Pty Ltd
Attention	Mark Challoner, Erin Millar
Address	Suite 3, Level 1, 55 Grandview Street, Pymble, NSW, 2073

Sample Details	
Your Reference	<u>CES130608-BP</u>
Number of Samples	17 Soil
Date samples received	22/01/2018
Date completed instructions received	22/01/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 30/01/2018

 Date of Issue
 29/01/2018

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Paul Ching

Results Approved By

Dragana Tomas, Senior Chemist Leon Ow, Chemist Paul Ching, Senior Analyst Steven Luong, Senior Chemist

Authorised By

David Springer, General Manager

vTRH(C6-C10)/BTEXN in Soil					
Our Reference		183677-3	183677-13	183677-15	183677-16
Your Reference	UNITS	BH01-3.0	HA4-1.0-1.1	TS	ТВ
Date Sampled		22/01/2018	22/01/2018	22/01/2018	22/01/2018
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	23/01/2018	23/01/2018	23/01/2018	23/01/2018
Date analysed	-	24/01/2018	24/01/2018	24/01/2018	24/01/2018
TRH C ₆ - C ₉	mg/kg	<25	<25	[NA]	<25
TRH C6 - C10	mg/kg	<25	<25	[NA]	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	[NA]	<25
Benzene	mg/kg	<0.2	<0.2	98%	<0.2
Toluene	mg/kg	<0.5	<0.5	99%	<0.5
Ethylbenzene	mg/kg	<1	<1	98%	<1
m+p-xylene	mg/kg	<2	<2	100%	<2
o-Xylene	mg/kg	<1	<1	100%	<1
naphthalene	mg/kg	<1	<1	[NA]	<1
Total +ve Xylenes	mg/kg	<1	<1	[NT]	<1
Surrogate aaa-Trifluorotoluene	%	107	107	111	123

svTRH (C10-C40) in Soil			
Our Reference		183677-3	183677-13
Your Reference	UNITS	BH01-3.0	HA4-1.0-1.1
Date Sampled		22/01/2018	22/01/2018
Type of sample		Soil	Soil
Date extracted	-	23/01/2018	23/01/2018
Date analysed	-	24/01/2018	24/01/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100
TRH >C10 -C16	mg/kg	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50
Surrogate o-Terphenyl	%	92	89

PAHs in Soil			
Our Reference		183677-3	183677-13
Your Reference	UNITS	BH01-3.0	HA4-1.0-1.1
Date Sampled		22/01/2018	22/01/2018
Type of sample		Soil	Soil
Date extracted	-	23/01/2018	23/01/2018
Date analysed	-	23/01/2018	23/01/2018
Naphthalene	mg/kg	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	121	121

Organochlorine Pesticides in soil			
Our Reference		183677-3	183677-13
Your Reference	UNITS	BH01-3.0	HA4-1.0-1.1
Date Sampled		22/01/2018	22/01/2018
Type of sample		Soil	Soil
Date extracted	-	23/01/2018	23/01/2018
Date analysed	-	23/01/2018	23/01/2018
НСВ	mg/kg	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	126	119

Organophosphorus Pesticides			
Our Reference		183677-3	183677-13
Your Reference	UNITS	BH01-3.0	HA4-1.0-1.1
Date Sampled		22/01/2018	22/01/2018
Type of sample		Soil	Soil
Date extracted	-	23/01/2018	23/01/2018
Date analysed	-	23/01/2018	23/01/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Surrogate TCMX	%	126	119

PCBs in Soil			
Our Reference		183677-3	183677-13
Your Reference	UNITS	BH01-3.0	HA4-1.0-1.1
Date Sampled		22/01/2018	22/01/2018
Type of sample		Soil	Soil
Date extracted	-	23/01/2018	23/01/2018
Date analysed	-	23/01/2018	23/01/2018
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCLMX	%	126	119

Acid Extractable metals in soil			
Our Reference		183677-3	183677-13
Your Reference	UNITS	BH01-3.0	HA4-1.0-1.1
Date Sampled		22/01/2018	22/01/2018
Type of sample		Soil	Soil
Date prepared	-	23/01/2018	23/01/2018
Date analysed	-	23/01/2018	23/01/2018
Arsenic	mg/kg	7	<4
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	11	4
Copper	mg/kg	3	2
Lead	mg/kg	5	3
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	4	4
Zinc	mg/kg	10	36

Moisture			
Our Reference		183677-3	183677-13
Your Reference	UNITS	BH01-3.0	HA4-1.0-1.1
Date Sampled		22/01/2018	22/01/2018
Type of sample		Soil	Soil
Date prepared	-	23/01/2018	23/01/2018
Date analysed	-	24/01/2018	24/01/2018
Moisture	%	33	24

Asbestos ID - soils			
Our Reference		183677-3	183677-13
Your Reference	UNITS	BH01-3.0	HA4-1.0-1.1
Date Sampled		22/01/2018	22/01/2018
Type of sample		Soil	Soil
Date analysed	-	29/01/2018	29/01/2018
Sample mass tested	g	Approx. 30g	Approx. 85g
Sample Description	-	Brown fine- grained soil	Beige sandy soil
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.

Method ID	Methodology Summary
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" are="" at="" conservative<br="" is="" most="" pql.="" the="" this="">approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present. 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and<br="" approach="" are="" conservative="" is="" least="" the="" this="" zero.="">is more susceptible to false negative TEQs when PAHs that contribute to the TEQ calculation are present but below PQL. 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" are="" half="" hence="" mid-point<br="" pql.="" stipulated="" the="">between the most and least conservative approaches above. Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			23/01/2018	[NT]		[NT]	[NT]	23/01/2018	
Date analysed	-			24/01/2018	[NT]		[NT]	[NT]	24/01/2018	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	110	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	110	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	96	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	111	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	115	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	115	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	111	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	124	[NT]		[NT]	[NT]	126	

QUALITY CONTROL: svTRH (C10-C40) in Soil					Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			23/01/2018	[NT]		[NT]	[NT]	23/01/2018	
Date analysed	-			23/01/2018	[NT]		[NT]	[NT]	23/01/2018	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	116	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	110	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	92	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	116	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	110	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	92	
Surrogate o-Terphenyl	%		Org-003	89	[NT]		[NT]	[NT]	96	

QUAL	TY CONTROL: PAHs in Soil					Du	Duplicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]	
Date extracted	-			23/01/2018	[NT]		[NT]	[NT]	23/01/2018		
Date analysed	-			23/01/2018	[NT]		[NT]	[NT]	23/01/2018		
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	93		
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]		
Acenaphthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluorene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	101		
Phenanthrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	104		
Anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]		
Fluoranthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	96		
Pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	119		
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]		
Chrysene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	95		
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	[NT]		[NT]	[NT]	[NT]		
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]		[NT]	[NT]	90		
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]		
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]		
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate p-Terphenyl-d14	%		Org-012	115	[NT]		[NT]	[NT]	131		

QUALITY CO	NTROL: Organo	chlorine I	Pesticides in soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]	
Date extracted	-			23/01/2018	[NT]		[NT]	[NT]	23/01/2018		
Date analysed	-			23/01/2018	[NT]		[NT]	[NT]	23/01/2018		
НСВ	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	96		
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	104		
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	106		
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	104		
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	105		
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	105		
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	106		
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	104		
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	107		
Endosulfan II	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	124		
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-005	113	[NT]		[NT]	[NT]	122		

QUALITY CONT	ROL: Organ	ophospho	orus Pesticides			Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			23/01/2018	[NT]		[NT]	[NT]	23/01/2018	
Date analysed	-			23/01/2018	[NT]		[NT]	[NT]	23/01/2018	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	[NT]	
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	82	
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	[NT]	
Dichlorvos	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	84	
Dimethoate	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	92	
Fenitrothion	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	106	
Malathion	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	82	
Parathion	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	116	
Ronnel	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	92	
Surrogate TCMX	%		Org-008	113	[NT]		[NT]	[NT]	107	

QUALIT	Y CONTRO	L: PCBs	in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date extracted	-			23/01/2018	[NT]		[NT]	[NT]	23/01/2018	
Date analysed	-			23/01/2018	[NT]		[NT]	[NT]	23/01/2018	
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	101	
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCLMX	%		Org-006	113	[NT]		[NT]	[NT]	107	

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-3	[NT]
Date prepared	-			23/01/2018	[NT]		[NT]	[NT]	23/01/2018	
Date analysed	-			23/01/2018	[NT]		[NT]	[NT]	23/01/2018	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	108	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	105	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	109	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	109	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	103	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	111	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	102	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	104	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform. Faecal Enterococci. & E.Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples 183677-3 & 13 were sub-sampled from jars provided by the client.

ENVIRO	JLHB			And the second second second second		- Client		1 Sydney Lab - Envirolab Se 12 Ashley St, Chatswood, N Ph 02 9910 6200 / sydney@ Perth Lab - MPL Laborator	NSW 2067 Denvirolab.com.au						
Client: C	EES		a the set		Client	Project Name / Num	ber / Site etc (ie report title):		16-18 Hayden Crt Myaree, WA 6154 Ph 08 9317 2505 / lab@mpl.com.au						
Contact Pers	ON: ERIN MILLAR	2	The seal				0608-89	Ph 08 9317 25057 lab@mp	i.com.au						
	M. CHALLONG		1998 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -		PO No.				Melbourne Lab - Envirolab Services						
	E. MILLAR		1 alerter		Enviro	lab Quote No. :		Ph 03 9763 2500 / melbour	A Dalmore Drive Scoresby VIC 3179 Ph 03 9763 2500 / melbourne@envirolab.com.au						
Address: PIMBLE Phone: Mob: 0439261637							ne day / 1 day / 2 day / 3 day ent turnaround is required - surcharges apply	<u>Brisbane Lab</u> - Envirolab S 20a, 10-20 Depot St, Banyc Ph 07 3266 9532 / brisbane	<u>Brisbane Lab</u> - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 4014 Ph 07 3266 9532 / brisbane@envirolab.com.au						
						mments:	ent turnaround is required - surcharges appry	Adelaide Lab - Envirolab S 7 Palmerton Road Windsor							
Fax: erin:mille @ consulfingerth.com.au Email: well.challone @ consulfingerth.co						initicitty.		Ph 0406 350 706 / adelaide							
Email:		nformation	And the second se	mgaeth. con	1-00		Tests Required		Comments						
	Sample i	Inormation							Comments						
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	combo 64	Hero			Provide as much information about the sample as you can						
1	BH01 - 1.0	1.0	22701	Soil		X									
2	BH01 - 2.0	2.0	1	NI 11.		×		Envirolah Serv	ings						
3	BH01 - 30	3.0			X			ENVIROLAS 12 Ashle	ey \$t						
4	BH01 - 4.0	4.0				X		Ph: (02) 9910	6200						
5	BH01 - 50	5.0		A Star Martin		X		JOO NO: 183677							
6	13401 - 6.0	6.0				×		Date Received: 22. 1.1	8						
7	BH01 - 7.0	7.0				X		Time Received: 17:40							
8	BH01 - 8.0	80		ALC: NO.	1.1	X		Received by:							
9	HA1-0.22-023	0.22				X		Temp. CollAmbent							
10	HA2 - 0.20 - 0.21	0.20	Sec. Const			X		Security: intact/Broken/None							
11	HA3 - 0.06 - 0.0	150.06	12 22.2			X			and the second second						
12	HA4 - 0.45-0.5	-		1	100	X									
13	HA4. 1.0-1.1	1.0	V	V	X				All and a second second						
Relinguished	by (company):			and the state	Receiv	ed by (company):	IELS	Lab use only:	Salling Street						
Print Name:	Blin MILLAR				Print N	and the second	1-	Samples Received: CooDor Am	bient (circle one)						
Date & Time:	in the second	1	and the second		Date &		8 17:40		Temperature Received at: /8.8 (if applicable)						
Signature:	0					ure:	The		Transported by: Hand delivered / courier						

	Client: CES Contact Person: ERIN MIRCAR					Client Project Name / Number / Site etc (ie report title):							-		ayden C 317 2505	rt Myare		
		and the second sec			CES 130508-BP						-	Melbourne Lab - Envirolab Services						
	Mgr: M. CHALLONER r: E-MILLAR / Z. WONG				PO No.: Envirolab Quote No. :						- Startes	IA Dalm	nore Driv	e Score	sby VI	C 3179		
Address:	Address: pymble					Date results required: Or choose: standard / same day / 1 day / 2 day / 3 day							1	Ph 03 9763 2500 / melbourne@envirolab.com.au Brisbane Lab - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 4014 Ph 07 3266 9532 / brisbane@envirolab.com.au				
Phone: Fax: Email:	in mill Consult work challone @							ce if urgent	turnaroun	d is require	red - surcl	harges apply		Adelaide Lab - Envirolab Services 7 Palmerton Road Windsor Gardens, SA 5087 Ph 0406 350 706 / adelaide@envirolab.com.au			rdens, SA 5087	
	Sample information									Test	ts Req	uired		Comments				
Envirola Sample I		Depth	Date sampled	Type of sample	LOWED 64	TREA	troub											Provide as much information about the sample as you can
14	HA4 - 14-1.5	1.4-1.5	22.01	SOIL	1		X								30.7			Service Strates
15,16 n= 17	т <u>с</u> / т в В 404 - 1.0		22.01	SOIL		×												
					1000													
Print Nan Date & Ti	hed by (company): CES ne: ERIN MILLAR me: 22.01.18 : Eity De	>			Print	Name: & Time	(compa JL : 22.	5	us .				Samp		eived: (-		ent (circle one) () (if applicable)

Form: 302 - Chain of Custody-Client, Issued 22/05/12, Version 5, Page 1 of 1.

72

CERTIFICATE OF ANALYSIS 183801

Client Details	
Client	Consulting Earth Scientists Pty Ltd
Attention	Mark Challoner, Erin Millar
Address	Suite 3, Level 1, 55 Grandview Street, Pymble, NSW, 2073

Sample Details	
Your Reference	<u>CES130608-BP</u>
Number of Samples	13 Soil
Date samples received	23/01/2018
Date completed instructions received	29/01/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 05/02/2018

 Date of Issue
 05/02/2018

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lulu Scott

Results Approved By

Dragana Tomas, Senior Chemist Long Pham, Team Leader, Metals Lulu Scott, Asbestos Supervisor Steven Luong, Senior Chemist

Authorised By

David Springer, General Manager

vTRH(C6-C10)/BTEXN in Soil					
Our Reference		183801-1	183801-7	183801-9	183801-12
Your Reference	UNITS	BH05 3.0-3.45	BH05 12.0-12.45	BH05 15.0-15.45	BLIND REPLICATE
Date Sampled		23/01/2018	23/01/2018	23/01/2018	23/01/2018
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	31/01/2018	31/01/2018	31/01/2018	31/01/2018
TRH C6 - C9	mg/kg	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	34	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	34	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	102	116	111	100

svTRH (C10-C40) in Soil					
Our Reference		183801-1	183801-7	183801-9	183801-12
Your Reference	UNITS	BH05 3.0-3.45	BH05 12.0-12.45	BH05 15.0-15.45	BLIND REPLICATE
Date Sampled		23/01/2018	23/01/2018	23/01/2018	23/01/2018
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50
Surrogate o-Terphenyl	%	82	81	83	82

PAHs in Soil					
Our Reference		183801-1	183801-7	183801-9	183801-12
Your Reference	UNITS	BH05 3.0-3.45	BH05 12.0-12.45	BH05 15.0-15.45	BLIND REPLICATE
Date Sampled		23/01/2018	23/01/2018	23/01/2018	23/01/2018
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	31/01/2018	31/01/2018	31/01/2018	31/01/2018
Date analysed	-	31/01/2018	31/01/2018	31/01/2018	31/01/2018
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	112	113	113	111

Organochlorine Pesticides in soil					
Our Reference		183801-1	183801-7	183801-9	183801-12
Your Reference	UNITS	BH05 3.0-3.45	BH05 12.0-12.45	BH05 15.0-15.45	BLIND REPLICATE
Date Sampled		23/01/2018	23/01/2018	23/01/2018	23/01/2018
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	02/02/2018	02/02/2018	02/02/2018	02/02/2018
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	98	100	98

Organophosphorus Pesticides					
Our Reference		183801-1	183801-7	183801-9	183801-12
Your Reference	UNITS	BH05 3.0-3.45	BH05 12.0-12.45	BH05 15.0-15.45	BLIND REPLICATE
Date Sampled		23/01/2018	23/01/2018	23/01/2018	23/01/2018
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	02/02/2018	02/02/2018	02/02/2018	02/02/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	98	98	100	98

PCBs in Soil					
Our Reference		183801-1	183801-7	183801-9	183801-12
Your Reference	UNITS	BH05 3.0-3.45	BH05 12.0-12.45	BH05 15.0-15.45	BLIND REPLICATE
Date Sampled		23/01/2018	23/01/2018	23/01/2018	23/01/2018
Type of sample		Soil	Soil	Soil	Soil
Date extracted	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	02/02/2018	02/02/2018	02/02/2018	02/02/2018
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	98	98	100	98

Acid Extractable metals in soil					
Our Reference		183801-1	183801-7	183801-9	183801-12
Your Reference	UNITS	BH05 3.0-3.45	BH05 12.0-12.45	BH05 15.0-15.45	BLIND REPLICATE
Date Sampled		23/01/2018	23/01/2018	23/01/2018	23/01/2018
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Arsenic	mg/kg	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	5	5	3	3
Copper	mg/kg	<1	2	4	<1
Lead	mg/kg	3	5	3	2
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	<1	<1	1
Zinc	mg/kg	2	<1	<1	2

Moisture					
Our Reference		183801-1	183801-7	183801-9	183801-12
Your Reference	UNITS	BH05 3.0-3.45	BH05 12.0-12.45	BH05 15.0-15.45	BLIND REPLICATE
Date Sampled		23/01/2018	23/01/2018	23/01/2018	23/01/2018
Type of sample		Soil	Soil	Soil	Soil
Date prepared	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	31/01/2018	31/01/2018	31/01/2018	31/01/2018
Moisture	%	19	15	12	18

Asbestos ID - soils					
Our Reference		183801-1	183801-7	183801-9	183801-12
Your Reference	UNITS	BH05 3.0-3.45	BH05 12.0-12.45	BH05 15.0-15.45	BLIND REPLICATE
Date Sampled		23/01/2018	23/01/2018	23/01/2018	23/01/2018
Type of sample		Soil	Soil	Soil	Soil
Date analysed	-	01/02/2018	01/02/2018	01/02/2018	01/02/2018
Sample mass tested	g	Approx. 45g	Approx. 35g	Approx. 40g	Approx. 35g
Sample Description	-	Brown sandy soil	Brown sandy soil	Brown sandy soil	Brown sandy soil
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected			
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.

Method ID	Methodology Summary
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" are="" at="" conservative<br="" is="" most="" pql.="" the="" this="">approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present. 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and<br="" approach="" are="" conservative="" is="" least="" the="" this="" zero.="">is more susceptible to false negative TEQs when PAHs that contribute to the TEQ calculation are present but below PQL. 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" are="" half="" hence="" mid-point<br="" pql.="" stipulated="" the="">between the most and least conservative approaches above. Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Rec	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			30/01/2018	[NT]		[NT]	[NT]	30/01/2018	
Date analysed	-			31/01/2018	[NT]		[NT]	[NT]	31/01/2018	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	92	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	92	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	72	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	88	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	98	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	101	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	101	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	117	[NT]		[NT]	[NT]	118	

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date extracted	-			30/01/2018	[NT]		[NT]	[NT]	30/01/2018	
Date analysed	-			30/01/2018	[NT]		[NT]	[NT]	30/01/2018	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	121	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	111	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	108	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	121	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	111	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	108	
Surrogate o-Terphenyl	%		Org-003	85	[NT]		[NT]	[NT]	92	

QUAL	ITY CONTRO	L: PAHs	in Soil			Du	plicate		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]		
Date extracted	-			31/01/2018	[NT]		[NT]	[NT]	31/01/2018			
Date analysed	-			31/01/2018	[NT]		[NT]	[NT]	31/01/2018			
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	89			
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Acenaphthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Fluorene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	94			
Phenanthrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	100			
Anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Fluoranthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	97			
Pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	121			
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Chrysene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	91			
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	[NT]		[NT]	[NT]	[NT]			
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]		[NT]	[NT]	86			
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]			
Surrogate p-Terphenyl-d14	%		Org-012	112	[NT]		[NT]	[NT]	105			

QUALITY CON	NTROL: Organo	chlorine l	Pesticides in soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			30/01/2018	[NT]		[NT]	[NT]	30/01/2018	
Date analysed	-			02/02/2018	[NT]		[NT]	[NT]	02/02/2018	
НСВ	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]	
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	124	
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]	
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	124	
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	129	
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]	
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	135	
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	131	
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]	
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan I	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	133	
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	125	
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	130	
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	125	
Endosulfan II	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]	
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]	
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]	
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	102	
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCMX	%		Org-005	102	[NT]		[NT]	[NT]	100	

QUALITY CONT	ROL: Organ	ophospho	orus Pesticides		Duplicate Spike Recc						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]	
Date extracted	-			30/01/2018	[NT]		[NT]	[NT]	30/01/2018		
Date analysed	-			02/02/2018	[NT]		[NT]	[NT]	02/02/2018		
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	[NT]		
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	[NT]		
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	100		
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	[NT]		
Diazinon	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	[NT]		
Dichlorvos	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	108		
Dimethoate	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	[NT]		
Ethion	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	116		
Fenitrothion	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	96		
Malathion	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	120		
Parathion	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	96		
Ronnel	mg/kg	0.1	Org-008	<0.1	[NT]		[NT]	[NT]	98		
Surrogate TCMX	%		Org-008	102	[NT]		[NT]	[NT]	100		

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date extracted	-			30/01/2018	[NT]		[NT]	[NT]	30/01/2018	
Date analysed	-			02/02/2018	[NT]		[NT]	[NT]	02/02/2018	
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	102	
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCLMX	%		Org-006	102	[NT]		[NT]	[NT]	100	

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date prepared	-			30/01/2018	[NT]		[NT]	[NT]	30/01/2018	
Date analysed	-			30/01/2018	[NT]		[NT]	[NT]	30/01/2018	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	107	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	96	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	103	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	107	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	102	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	108	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	105	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	97	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples 183801-1, 7, 9, 12 were sub-sampled from jars provided by the client.

Simon Song

From: Sent: To: Subject: Erin Millar <erin.millar@consultingearth.com.au> Monday, 29 January 2018 6:25 PM Simon Song CES130608-BP - Analysis

Hi Simon,

Apologies for the delayed instructions. Could I please have the following samples tested for the Combo 6A suite.

Report 183801:

- BH5-15.00-15.45 🤈
- BH5-12-12.45 7
- BH5-3.0-3.45
- BLIND REPLICATE 12_

Report 183905:

- BH05-22.5-22.95
- BH5-19.5-19.95

Report 184000:

- BH2-16.5-16.95
- BH2-22.5-22.58
- BH03-0.5
- BH4-1.0
- BH4-5-5.45
- BH2-4.5-4.95
- BH2-7.5-7.9
- BH2-10.5-10.95

If you require any further information, please do not hesitate to contact me.

Kind Regards,

Erin Millar Environmental Scientist

www.consultingearth.com.au

Suite 3, Level 1 55, Grandview Street Pymble, NSW, 2073 Tel: +61 2 8569 2200 Fax: +61 2 9983 0582 M: +61 439 261 637 ABN 67 151 524 757

Confidentiality Notice

This email, including any attachments, is intended for the use of the addressee and is **confidential**. If you are not the addressee it may be **unlawful** for you to read, copy, distribute, disclose or otherwise use the information contained in or attached to this email. If you are not the addressee please **delete** this email and any attachments and **inform us** immediately by return email. Thank you.

Virus Disclaimer

CES has systems in place to maintain a virus-free computing environment. However, we cannot guarantee that products and emails sent to us electronically are virus-free. We therefore recommend that files sent by CES are checked prior to use on the receiving system. CES will make every effort to ensure that we do not re-transmit infected software but we are not liable for any loss or damage which may occur as a result of electronically transmitted material, nor for any distortion or changes made to the information contained in the transmission during transfer or following receipt by the addressee. At the discretion of CES we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version will take precedence.

ELS Ref: 183801 Sday TATI Dire! 050218.

ENVIR	JLHB					1.000					12 43 4		9773	1 F	2 Ashle Ph 02 99	ey St, C 910 620	Chatswo 00 / syd		SW 2067 envirolab.com.au
Client:	CES	1	N.			Client	Projec	ct Nan	ne / Nu	mber /	Site etc (ie report	title):	1 1	6-18 Ha	ayden	Crt Mya		/A 6154
	SON: ERIN MILLAR	-	Stephen 19								58-BI		1.1		n 08 93	317 250	J5 / Iab	@mpi.c	com.au
Project Mgr	M. CHALLONE	R				PO No).:												Services
Sampler:	EIMILIAN				All in	Enviro	olab Qu	uote N	o. :			-	1. A. S.						VIC 3179 e@envirolab.com.au
Address:	PYMBLE					Date r	results	requi	red:				1.20 3.20	٦.			Farin	lab Ca	
	and press and being				645,00]	/	1	-									blab Ser Banyo, (QLD 4014
		S. A. S. S.	S. Control			Or cho	oose: :	standa	ard / se	ame day	/ 1 day /	2 day /	3 day	F	Ph 07 32	266 953	32 / bris	sbane@	envirolab.com.au
Phone:	Part Participation		39 26			Note: In	nform lat	b in adva	ance if u	rgent turna	round is rea	quired - surc	harges apply	A	delaid	e Lab	- Enviro	olab Ser	rvices
Fax: evi	ax: evinmiller@ Consultingenth' con . au mail: mark, challas @ consultingenth, con . au				aster P	Lab co	ommen	nts:					5 7 8 B						Bardens, SA 5087
Email: Ma					·a	1.1									11 0406	350 7	Jo / ade	laide@	envirolab.com.au
	Sample i	nformatio	n			1			1		Т	ests Req	uired						Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of	f sample	Stort			T.	~							1		Provide as much information about the sample as you can
10	BHOS - 2.00- 3.45	2-245	23.01	50	12	×		1.00											
2	BHS. 4.50 - 4.95	Sec. 2			1.5	X			1		1.00	100				5.00			
3	1345-6100-6.45			10000	Lassa	X	See. 1	1	- 194	10.20					1	0	E	virolah	Services
4.	BHS - 7.90 - 7.95		1	ale des		X		-						1 12/1	EIIV		Char	12 /	Ashley St
5	BH5.9.00-9.45	1. 10	S. San	and the second		×			1.20			1			Joh	No:	P	: (02) 9	3910 6200
Ģ	18H5-10.56-10.98			1.1.1		X		1910			Sec. 2			1.523	1	140.			183 80 (
1	BHS-12.00-12.45			1.6		×			- Car		n	1 Heren			Date	Recei	ved:		23/1/2018
8	BHS- 13-56-12,95			1.1.1		X					2.54	Sec. 1.		1.00	Rec	Recei	Ved:		17.30
9	BH5-1500-15.45	14.000		1.0		X					1.11	W. Margare		1 125	Tem	(2001	Ambier	dt	A
10	DH5-16:50-16.95					×	and the second		Page 1			-1		1.5	Cool	nyte	Cepac	*	11-1
[]	345-18.00-18.45				1.000	X		100	100			1	and the second	a and	Secu	rity: (m	actBro	ken/Nor	n <mark>e</mark>
12	BLIND ROPLICATE				1-100	X			A. A.			6 6 2	Call and					1 Array	
13	SPLIT REPLICASE		V		/	X						-					4	No.	
Relinquishe	d by (company):	5				Receiv	ved by	(comp	bany):	ES				Lab u	se only	<i>"</i> :	1		
Print Name: Date & Time		R		1945 - A		Print I Date 8	Name: & Time			Ray 1018	1:	7.30					: Cool o		ient (circle one) (if applicable)
Signature:	Elinie		1	and the second		Signat	ture:		5.4			R		Trans	ported	by: H	and de	livered	d / courier

Form: 302 - Chain of Custody-Client, Issued 22/05/12, Version 5, Page 1 of 1.

White - Lab copy / Blue - Client copy / Pink - Retain in Book Page No:

CERTIFICATE OF ANALYSIS 183905

Client Details	
Client	Consulting Earth Scientists Pty Ltd
Attention	Mark Challoner, Erin Millar
Address	Suite 3, Level 1, 55 Grandview Street, Pymble, NSW, 2073

Sample Details	
Your Reference	<u>CES130608-BP</u>
Number of Samples	7 Soil
Date samples received	24/01/2018
Date completed instructions received	24/01/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details	
Date results requested by	01/02/2018
Date of Issue	01/02/2018
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.
Accredited for compliance with	ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

<u>Results Approved By</u> Nick Sarlamis, Inorganics Supervisor

Authorised By

کھ

David Springer, General Manager

sPOCAS + %S w/w		
Our Reference		183905-7
Your Reference	UNITS	BH02
Depth		1.5
Date Sampled		23/01/2018
Type of sample		Soil
Date prepared	-	25/01/2018
Date analysed	-	25/01/2018
рН ка	pH units	7.2
TAA pH 6.5	moles H+/t	<5
s-TAA pH 6.5	%w/w S	<0.01
pH _{Ox}	pH units	3.2
TPA pH 6.5	moles H+/t	120
s-TPA pH 6.5	%w/w S	0.20
TSA pH 6.5	moles H+/t	120
s-TSA pH 6.5	%w/w S	0.20
ANCE	% CaCO ₃	<0.05
a-ANC _E	moles H+/t	<5
s-ANC _E	%w/w S	<0.05
Skci	%w/w S	0.04
Sp	%w/w	0.40
Spos	%w/w	0.36
a-S _{POS}	moles H+/t	230
Саксі	%w/w	0.10
Ca⊳	%w/w	0.14
Сад	%w/w	0.038
Мдксі	%w/w	0.073
Mg₽	%w/w	0.086
Mg _A	%w/w	0.013
Shci	%w/w S	<0.005
Snas	%w/w S	<0.005
a-Snas	moles H+/t	<5
s-Snas	%w/w S	<0.01
Fineness Factor	-	1.5
a-Net Acidity	moles H+/t	160
s-Net Acidity	%w/w S	0.25
Liming rate	kg CaCO₃ /t	12
s-Net Acidity without -ANCE	%w/w S	0.25
a-Net Acidity without ANCE	moles H+/t	160
Liming rate without ANCE	kg CaCO₃ /t	12

Method ID	Methodology Summary
Inorg-064	sPOCAS determined using titrimetric and ICP-AES techniques. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.

QUALIT	Y CONTROL: s	POCAS -	⊦ %S w/w			Du	ıplicate		Spike Re	covery <u>%</u>
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			25/01/2018	[NT]		[NT]	[NT]	25/01/2018	
Date analysed	-			25/01/2018	[NT]		[NT]	[NT]	25/01/2018	
pH _{kcl}	pH units		Inorg-064	[NT]	[NT]		[NT]	[NT]	91	
TAA pH 6.5	moles H+/t	5	Inorg-064	<5	[NT]		[NT]	[NT]	115	
s-TAA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
pH _{Ox}	pH units		Inorg-064	[NT]	[NT]		[NT]	[NT]	101	
TPA pH 6.5	moles H+/t	5	Inorg-064	<5	[NT]		[NT]	[NT]	90	
s-TPA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
TSA pH 6.5	moles H ⁺ /t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
s-TSA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
ANCE	% CaCO ₃	0.05	Inorg-064	< 0.05			[NT]	[NT]	[NT]	
a-ANC _E	moles H ⁺ /t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
s-ANC _E	%w/w S	0.05	Inorg-064	<0.05	[NT]		[NT]	[NT]	[NT]	
SKCI	%w/w S	0.005	Inorg-064	<0.005	INT		[NT]	[NT]	[NT]	
SP	%w/w	0.005	Inorg-064	<0.005			[NT]	[NT]	[NT]	
Spos	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
a-S _{POS}	moles H+/t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
Саксі	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Ca _P	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Ca _A	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Мдксі	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Mg _P	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Mg _A	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
S _{HCI}	%w/w S	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
SNAS	%w/w S	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
a-S _{NAS}	moles H ⁺ /t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
s-Snas	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
Fineness Factor	-	1.5	Inorg-064	<1.5	[NT]		[NT]	[NT]	[NT]	
a-Net Acidity	moles H* /t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
s-Net Acidity	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
Liming rate	kg CaCO₃/t	0.75	Inorg-064	<0.75	[NT]		[NT]	[NT]	[NT]	
s-Net Acidity without -ANCE	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
a-Net Acidity without ANCE	moles H ⁺ /t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
		Ŭ					Level 1	[]	1 J	

QUALITY CONTROL: sPOCAS + %S w/w						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-064	<0.75	[NT]		[NT]	[NT]	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	Quality Control Definitions							
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.							
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.							
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.							
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.							
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.							
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than							

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

ENVIRO	JLHB			CUSTC ROUP - Natio					43 44	19774	Ph 02	y Lab - Envirolab Ser nley St, Chatswood, N 9910 6200 / sydney@ Lab - MPL Laboratori	SW 2067)envirolab.com.au		
Client: CES Contact Person: ERIN MILLAR						Client Project Name / Number / Site etc (ie report title): CES 130608-BP						16-18 Hayden Crt Myaree, WA 6154 Ph 08 9317 2505 / lab@mpl.com.au			
Project Mgr: Sampler:		CHA	LLONE	FR AN Wowl	PO No.	.:					1A Da	urne Lab - Envirolab Imore Drive Scoresby 9763 2500 / melbourr			
Address:	PYMBLE				Date re	esults ree	quired:	me day / 1	L day / 2	day / 3 day	20a, 1	ane Lab - Envirolab S 0-20 Depot St, Banyo 3266 9532 / brisbane	, QLD 4014		
Phone: Fax: Email:	enin millar Mark chal	to Con	sultin	273626 gearth a	Lab co	mments:	advance if un	gent turnaroui	nd is require	ed - surcharges apply	7 Palm	i <mark>de Lab</mark> - Envirolab So nerton Road Windsor 06 350 706 / adelaide	Gardens, SA 5087		
	Sample i	nformatior	1	0					Test	s Required			Comments		
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	Horb	Stocks							Provide as much information about the sample as you can		
JARE	BHOZ -1.0 BHOZ -2.0 BHO5-19.5-19	2	23.01.48 23.01.18 24.01.18	5014	× × ×										
	BH05-21-21.4 BH05-22.5 BH05-25.5-2	-22.955			×××							6000000	Enviroleb Services 72 Asthey Si Instanced NSW 2067 Ph: (02) 9910 6200		
BAG	BH02 - 1.5		23.01.48			X						Date Received Time Received	183905 24/1/108 17:55		
												Temp: Cool/An Centing: Ice/(Ce Security: Intact	pack 18-1		
Relinquished Print Name: Date & Time Signature:	I by (company): CES IVAN WON : 24.01. Gue	19	}		Receive Print N Date & Signate	lame: Time:	P	E15 Ray other		535	Temperatu Transporte	eceived: Cool or Am re Received at: d by: Hand deliver	(if applicable) ed / courier		

Form: 302 - Chain of Custody-Client, Issued 22/05/12, Version 5, Page 1 of 1.

White - Lab copy / Blue - Client copy / Pink - Retain in Book Page No:

Simon Song

From: Sent: To: Subject: Erin Millar <erin.millar@consultingearth.com.au> Monday, 29 January 2018 6:25 PM Simon Song CES130608-BP - Analysis

Hi Simon,

Apologies for the delayed instructions. Could I please have the following samples tested for the Combo 6A suite.

Report 183801:

- BH5-15.00-15.45 •
- BH5-12-12.45
- BH5-3.0-3.45 •
- **BLIND REPLICATE**

Report 183905:-- A

- 5 BH05-22.5-22.95
- **3** BH5-19.5-19.95

Report 184000:

- BH2-16.5-16.95
- BH2-22.5-22.58
- BH03-0.5 •
- BH4-1.0
- BH4-5-5.45 .
- BH2-4.5-4.95 •
- BH2-7.5-7.9
- BH2-10.5-10.95 .

If you require any further information, please do not hesitate to contact me.

Kind Regards,

Erin Millar **Environmental Scientist**

CONSULTING SCIENTISTS

www.consultingearth.com.au

Suite 3, Level 1 55, Grandview Street Pymble, NSW, 2073 Tel: +61 2 8569 2200 Fax: +61 2 9983 0582 M: +61 439 261 637 ABN 67 151 524 757

Confidentiality Notice

This email, including any attachments, is intended for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information contained in or attached to this email. If you are not the addressee please delete this email and any attachments and inform us immediately by return email. Thank you.

Virus Disclaimer

CES has systems in place to maintain a virus-free computing environment. However, we cannot guarantee that products and emails sent to us electronically are virus-free. We therefore recommend that files sent by CES are checked prior to use on the receiving system. CES will make every effort to ensure that we do not re-transmit infected software but we are not liable for any loss or damage which may occur as a result of electronically transmitted material, nor for any distortion or changes made to the information contained in the transmission during transfer or following receipt by the addressee. At the discretion of CES we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version will take precedence.

ELS: 183905-A Rec. 29/1/18 TAT: 5 days Atta

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 183905-A

Client Details	
Client	Consulting Earth Scientists Pty Ltd
Attention	Erin Millar
Address	Suite 3, Level 1, 55 Grandview Street, Pymble, NSW, 2073

Sample Details	
Your Reference	<u>CES130608-BP</u>
Number of Samples	7 Soil
Date samples received	24/01/2018
Date completed instructions received	29/01/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 05/02/2018

 Date of Issue
 01/02/2018

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Paul Ching

Results Approved By

Dragana Tomas, Senior Chemist Long Pham, Team Leader, Metals Paul Ching, Senior Analyst Steven Luong, Senior Chemist

Authorised By

David Springer, General Manager

vTRH & BTEXN in Soil			
Our Reference		183905-A-3	183905-A-5
Your Reference	UNITS	BH05	BH05
Depth		19.5-19.95	22.5-22.95
Date Sampled		24/01/2018	24/01/2018
Type of sample		Soil	Soil
Date extracted	-	30/01/2018	30/01/2018
Date analysed	-	31/01/2018	31/01/2018
TRH C6 - C9	mg/kg	<25	72
TRH C6 - C10	mg/kg	<25	240
vTPH C_6 - C_{10} less BTEX (F1)	mg/kg	<25	220
Benzene	mg/kg	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5
Ethylbenzene	mg/kg	<1	1
m+p-xylene	mg/kg	<2	11
o-Xylene	mg/kg	<1	4
naphthalene	mg/kg	<1	<1
Total +ve Xylenes	mg/kg	<1	16
Surrogate aaa-Trifluorotoluene	%	91	89

svTRH (C10-C40) in Soil			
Our Reference		183905-A-3	183905-A-5
Your Reference	UNITS	BH05	BH05
Depth		19.5-19.95	22.5-22.95
Date Sampled		24/01/2018	24/01/2018
Type of sample		Soil	Soil
Date extracted	-	30/01/2018	30/01/2018
Date analysed	-	31/01/2018	31/01/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50	180
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100
TRH >C10 -C16	mg/kg	<50	94
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	94
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	90
Surrogate o-Terphenyl	%	76	76

PAHs in Soil			
Our Reference		183905-A-3	183905-A-5
Your Reference	UNITS	BH05	BH05
Depth		19.5-19.95	22.5-22.95
Date Sampled		24/01/2018	24/01/2018
Type of sample		Soil	Soil
Date extracted	-	30/01/2018	30/01/2018
Date analysed	-	30/01/2018	30/01/2018
Naphthalene	mg/kg	<0.1	0.4
Acenaphthylene	mg/kg	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	0.4
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	104	104
Organochlorine Pesticides in soil			
-----------------------------------	-------	------------	------------
Our Reference		183905-A-3	183905-A-5
Your Reference	UNITS	BH05	BH05
Depth		19.5-19.95	22.5-22.95
Date Sampled		24/01/2018	24/01/2018
Type of sample		Soil	Soil
Date extracted	-	30/01/2018	30/01/2018
Date analysed	-	30/01/2018	30/01/2018
НСВ	mg/kg	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1
Surrogate TCMX	%	91	91

Organophosphorus Pesticides			
Our Reference		183905-A-3	183905-A-5
Your Reference	UNITS	BH05	BH05
Depth		19.5-19.95	22.5-22.95
Date Sampled		24/01/2018	24/01/2018
Type of sample		Soil	Soil
Date extracted	-	30/01/2018	30/01/2018
Date analysed	-	30/01/2018	30/01/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1
Surrogate TCMX	%	91	91

PCBs in Soil			
Our Reference		183905-A-3	183905-A-5
Your Reference	UNITS	BH05	BH05
Depth		19.5-19.95	22.5-22.95
Date Sampled		24/01/2018	24/01/2018
Type of sample		Soil	Soil
Date extracted	-	30/01/2018	30/01/2018
Date analysed	-	30/01/2018	30/01/2018
Aroclor 1016	mg/kg	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1
Surrogate TCLMX	%	91	91

Acid Extractable metals in soil			
Our Reference		183905-A-3	183905-A-5
Your Reference	UNITS	BH05	BH05
Depth		19.5-19.95	22.5-22.95
Date Sampled		24/01/2018	24/01/2018
Type of sample		Soil	Soil
Date prepared	-	30/01/2018	30/01/2018
Date analysed	-	30/01/2018	30/01/2018
Arsenic	mg/kg	73	<4
Cadmium	mg/kg	<0.4	<0.4
Chromium	mg/kg	13	2
Copper	mg/kg	<1	<1
Lead	mg/kg	6	<1
Mercury	mg/kg	<0.1	<0.1
Nickel	mg/kg	<1	<1
Zinc	mg/kg	3	<1

Moisture			
Our Reference		183905-A-3	183905-A-5
Your Reference	UNITS	BH05	BH05
Depth		19.5-19.95	22.5-22.95
Date Sampled		24/01/2018	24/01/2018
Type of sample		Soil	Soil
Date prepared	-	30/01/2018	30/01/2018
Date analysed	-	31/01/2018	31/01/2018
Moisture	%	16	11

Asbestos ID - soils			
Our Reference		183905-A-3	183905-A-5
Your Reference	UNITS	BH05	BH05
Depth		19.5-19.95	22.5-22.95
Date Sampled		24/01/2018	24/01/2018
Type of sample		Soil	Soil
Date analysed	-	01/02/2018	01/02/2018
Sample mass tested	g	Approx. 40g	Approx. 25g
Sample Description	-	Red coarse- grained soil	Beige coarse- grained soil
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibre	No asbestos detected at reporting limit of 0.1g/kg Organic fibre
		detected	detected
Trace Analysis	-	No asbestos detected	No asbestos detected

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.

Method ID	Methodology Summary
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" are="" at="" conservative<br="" is="" most="" pql.="" the="" this="">approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present. 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and<br="" approach="" are="" conservative="" is="" least="" the="" this="" zero.="">is more susceptible to false negative TEQs when PAHs that contribute to the TEQ calculation are present but below PQL. 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" are="" half="" hence="" mid-point<br="" pql.="" stipulated="" the="">between the most and least conservative approaches above. Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH & BTEXN in Soil						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			30/01/2018	[NT]		[NT]	[NT]	30/01/2018	
Date analysed	-			31/01/2018	[NT]		[NT]	[NT]	31/01/2018	
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	87	
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	[NT]		[NT]	[NT]	87	
Benzene	mg/kg	0.2	Org-016	<0.2	[NT]		[NT]	[NT]	82	
Toluene	mg/kg	0.5	Org-016	<0.5	[NT]		[NT]	[NT]	89	
Ethylbenzene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	82	
m+p-xylene	mg/kg	2	Org-016	<2	[NT]		[NT]	[NT]	90	
o-Xylene	mg/kg	1	Org-016	<1	[NT]		[NT]	[NT]	86	
naphthalene	mg/kg	1	Org-014	<1	[NT]		[NT]	[NT]	[NT]	
Surrogate aaa-Trifluorotoluene	%		Org-016	92	[NT]		[NT]	[NT]	84	

QUALITY CO	QUALITY CONTROL: svTRH (C10-C40) in Soil								Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			30/01/2018	[NT]		[NT]	[NT]	30/01/2018	
Date analysed	-			30/01/2018	[NT]		[NT]	[NT]	30/01/2018	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	109	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	106	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	92	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	[NT]		[NT]	[NT]	109	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	106	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	[NT]		[NT]	[NT]	92	
Surrogate o-Terphenyl	%		Org-003	79	[NT]		[NT]	[NT]	86	

QUAL	TY CONTROL: PAHs in Soil					Du	Duplicate			overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			30/01/2018	[NT]		[NT]	[NT]	30/01/2018	
Date analysed	-			30/01/2018	[NT]		[NT]	[NT]	30/01/2018	
Naphthalene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	92	
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Acenaphthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluorene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	96	
Phenanthrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	103	
Anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Fluoranthene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	98	
Pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	121	
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Chrysene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	95	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	[NT]		[NT]	[NT]	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	[NT]		[NT]	[NT]	98	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate p-Terphenyl-d14	%		Org-012	104	[NT]		[NT]	[NT]	100	

QUALITY COM	QUALITY CONTROL: Organochlorine Pesticides in soil								Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]	
Date extracted	-			30/01/2018	[NT]		[NT]	[NT]	30/01/2018		
Date analysed	-			30/01/2018	[NT]		[NT]	[NT]	30/01/2018		
НСВ	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
alpha-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	93		
gamma-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
beta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	102		
Heptachlor	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	100		
delta-BHC	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Aldrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	100		
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	101		
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan I	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDE	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	103		
Dieldrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	102		
Endrin	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	102		
pp-DDD	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	108		
Endosulfan II	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
pp-DDT	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	107		
Methoxychlor	mg/kg	0.1	Org-005	<0.1	[NT]		[NT]	[NT]	[NT]		
Surrogate TCMX	%		Org-005	94	[NT]		[NT]	[NT]	111		

QUALITY CONT	ROL: Organ	ophospho	orus Pesticides			Duj	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			30/01/2018	[NT]	[NT]	[NT]	[NT]	30/01/2018	
Date analysed	-			30/01/2018	[NT]	[NT]	[NT]	[NT]	30/01/2018	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NT]	[NT]	[NT]	
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NT]	[NT]	[NT]	
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NT]	[NT]	81	
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NT]	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NT]	[NT]	[NT]	
Dichlorvos	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NT]	[NT]	85	
Dimethoate	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NT]	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NT]	[NT]	93	
Fenitrothion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NT]	[NT]	86	
Malathion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NT]	[NT]	80	
Parathion	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NT]	[NT]	91	
Ronnel	mg/kg	0.1	Org-008	<0.1	[NT]	[NT]	[NT]	[NT]	91	
Surrogate TCMX	%		Org-008	94	[NT]	[NT]	[NT]	[NT]	91	

QUALIT	QUALITY CONTROL: PCBs in Soil								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	[NT]
Date extracted	-			30/01/2018	[NT]		[NT]	[NT]	30/01/2018	
Date analysed	-			30/01/2018	[NT]		[NT]	[NT]	30/01/2018	
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	102	
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	[NT]		[NT]	[NT]	[NT]	
Surrogate TCLMX	%		Org-006	94	[NT]		[NT]	[NT]	91	

QUALITY CONTROL: Acid Extractable metals in soil						Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-20	[NT]
Date prepared	-			30/01/2018	3	30/01/2018	30/01/2018		30/01/2018	
Date analysed	-			30/01/2018	3	30/01/2018	30/01/2018		30/01/2018	
Arsenic	mg/kg	4	Metals-020	<4	3	73	87	18	93	
Cadmium	mg/kg	0.4	Metals-020	<0.4	3	<0.4	<0.4	0	101	
Chromium	mg/kg	1	Metals-020	<1	3	13	14	7	101	
Copper	mg/kg	1	Metals-020	<1	3	<1	<1	0	98	
Lead	mg/kg	1	Metals-020	<1	3	6	7	15	96	
Mercury	mg/kg	0.1	Metals-021	<0.1	3	<0.1	<0.1	0	104	
Nickel	mg/kg	1	Metals-020	<1	3	<1	1	0	97	
Zinc	mg/kg	1	Metals-020	<1	3	3	2	40	97	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	Quality Control Definitions									
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.									
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.									
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.									
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.									
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.									
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than									

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples 183905-A-3 & 5 were sub-sampled from jars provided by the client.

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 184000

Client Details	
Client	Consulting Earth Scientists Pty Ltd
Attention	Mark Challoner, Erin Millar
Address	Suite 3, Level 1, 55 Grandview Street, Pymble, NSW, 2073

Sample Details	
Your Reference	<u>CES130608-BP</u>
Number of Samples	21 Soil
Date samples received	25/01/2018
Date completed instructions received	25/01/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details		
Date results requested by	02/02/2018	
Date of Issue	01/02/2018	
NATA Accreditation Number 2901	This document shall not be reproduced except in full.	
Accredited for compliance with ISC	D/IEC 17025 - Testing. Tests not covered by NATA are denoted with *	

<u>Results Approved By</u> Nick Sarlamis, Inorganics Supervisor

Authorised By

کھ

David Springer, General Manager

sPOCAS + %S w/w		
Our Reference		184000-2
Your Reference	UNITS	BH2
Depth		3.25-3.45
Type of sample		Soil
Date prepared	-	25/01/2018
Date analysed	-	25/01/2018
рН ка	pH units	6.7
TAA pH 6.5	moles H+/t	<5
s-TAA pH 6.5	%w/w S	<0.01
pH _{ox}	pH units	2.5
TPA pH 6.5	moles H+/t	190
s-TPA pH 6.5	%w/w S	0.31
TSA pH 6.5	moles H+/t	190
s-TSA pH 6.5	%w/w S	0.31
ANCE	% CaCO ₃	<0.05
a-ANC _E	moles H+/t	<5
s-ANC _E	%w/w S	<0.05
S _{KCI}	%w/w S	0.02
S₽	%w/w	0.37
Spos	%w/w	0.35
a-S _{POS}	moles H+ /t	220
Саксі	%w/w	0.02
Сар	%w/w	0.03
Сад	%w/w	<0.005
Мдксі	%w/w	0.026
MgP	%w/w	0.039
Mg _A	%w/w	0.012
Shci	%w/w S	<0.005
Snas	%w/w S	<0.005
a-S _{NAS}	moles H+/t	<5
s-Snas	%w/w S	<0.01
Fineness Factor	-	1.5
a-Net Acidity	moles H ⁺ /t	200
s-Net Acidity	%w/w S	0.32
Liming rate	kg CaCO₃ /t	15
s-Net Acidity without -ANCE	%w/w S	0.32
a-Net Acidity without ANCE	moles H+ /t	200
Liming rate without ANCE	kg CaCO₃ /t	15

Method ID	Methodology Summary
Inorg-064	sPOCAS determined using titrimetric and ICP-AES techniques. Based on Acid Sulfate Soils Laboratory Methods Guidelines, Version 2.1 - June 2004.

QUALITY	CONTROL: s	POCAS -	+ %S w/w			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]
Date prepared	-			25/01/2018	[NT]		[NT]	[NT]	25/01/2018	
Date analysed	-			25/01/2018	[NT]		[NT]	[NT]	25/01/2018	
pH _{kcl}	pH units		Inorg-064	[NT]	[NT]		[NT]	[NT]	91	
TAA pH 6.5	moles H+/t	5	Inorg-064	<5	[NT]		[NT]	[NT]	115	
s-TAA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
pH _{Ox}	pH units		Inorg-064	[NT]	[NT]		[NT]	[NT]	101	
TPA pH 6.5	moles H+/t	5	Inorg-064	<5	[NT]		[NT]	[NT]	90	
s-TPA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
TSA pH 6.5	moles H+/t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
s-TSA pH 6.5	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
ANC _E	% CaCO ₃	0.05	Inorg-064	<0.05	[NT]		[NT]	[NT]	[NT]	
a-ANC _E	moles H ⁺ /t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
s-ANC _E	%w/w S	0.05	Inorg-064	<0.05	[NT]		[NT]	[NT]	[NT]	
Skci	%w/w S	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Sp	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
S _{POS}	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
a-S _{POS}	moles H+/t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
Са _{ксі}	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Ca _P	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Ca _A	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Мдксі	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Mg _P	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
Mg _A	%w/w	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
S _{HCI}	%w/w S	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
S _{NAS}	%w/w S	0.005	Inorg-064	<0.005	[NT]		[NT]	[NT]	[NT]	
a-S _{NAS}	moles H*/t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
S-Snas	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
Fineness Factor	-	1.5	Inorg-064	<1.5	[NT]		[NT]	[NT]	[NT]	
a-Net Acidity	moles H*/t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	
s-Net Acidity	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
Liming rate	kg CaCO₃/t	0.75	Inorg-064	<0.75	[NT]		[NT]	[NT]	[NT]	
s-Net Acidity without -ANCE	%w/w S	0.01	Inorg-064	<0.01	[NT]		[NT]	[NT]	[NT]	
a-Net Acidity without ANCE	moles H+/t	5	Inorg-064	<5	[NT]		[NT]	[NT]	[NT]	

QUALITY CONTROL: sPOCAS + %S w/w					Duplicate				Spike Recovery %	
Test Description Units PQL Method Blank			#	Base	Dup.	RPD	LCS-1	[NT]		
Liming rate without ANCE	kg CaCO₃/t	0.75	Inorg-064	<0.75	[NT]		[NT]	[NT]	[NT]	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

ENVIRO	JI HB		1 1 2 1 2 2 3 3		CUSTC					42 43		775	12 / Ph	Ashley S 02 9910	it, Chatsv 6200 / s	olab Serv wood, NS ydney@e boratorie	SW 2067 envirolab.com.au
Client: C	LES		1			Client	t Proje	t Name / N	umber /	Site e	etc (ie report tit	le):	16-	18 Hayd	en Crt M	yaree, W	/A 6154
	ON: ERIN MILLAR				COLUMN AND			5 1306					Ph	08 9317	2505 / la	ab@mpl.	com.au
Project Mgr:		JER	1.18			PO N		2				the state				nvirolab S	
Sampler:	IVAN WONG		144 - 21				2.222	ote No. :	1. 1. M.								VIC 3179 e@envirolab.com.au
Address:	55 GRANDULEW ST	,PYMB	LE					required:					1				
						Or ch	oose:	standard Ls	ame day	/ 1 d	lay / 2 day / 3 d	day	20a	, 10-20	Depot St		Prvices QLD 4014 @envirolab.com.au
Phone:	In the second second	Mob: ¢	4032	736	26						is required - surchar		Ade	l ohiele	ah - Envi	irolab Se	nvices
Fax: @	in millare consu	altingeo	arth. Lo	n a	ч	Lab c	omme	its:			1.84 St. 18 St.		7 P	almertor	Road W	Vindsor G	Gardens, SA 5087
	Mark. challoner @c					1.8							Ph	0406 35	0706/a	delaide@	genvirolab.com.au
		nformatio	Statement of the local division of the local		1974524						Tests Requi	red					Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sample	d T	ype of sample	HoLD	SPOCAS										Provide as much information about the sample as you can
Bag	BH2-3-3.25	1	25 01	18	Soil	X	1.0			11.27							
11	BH2 - 3.25-3.45	2			1		X			1		Sec. 19. 19					
Jar	BH 2- 4.5-4.95	3				X	1.00%					1.20 8.3.39		Em	irolab Sel	vices	
	BH2 - 6-6.27	4		1		X	in the second			Test light		E	W.OLAB		12 Ash	ley St	
1. 1 K.	BHZ 7.5-7.9	S				X	-								(02) 9910		190 100 100
	BH2 9-9.45	6			and the same	X						-	ob No: [8400	10		
	BH2 -10.5-10.95					X							ate Recei	-	1/18		
	BH2-12-12.45					X						1	me Rece	ived: 1	1:70		
	BH2-13.5-13.95					X						F	eceived b	y:AB			
	BH2-15-15.45					X				1			emp: Cpo cooling: IC	Ampier	k		
Bag	BH2 -16.5-16,95		+		soil	X	1						security in			8	
10	BH2 - 18-18.45				1	X											11. 10. 10. 10.
1	BH 2-19.5-19.95		1			X						1. 1. 1.		370			
Relinquished	by (company): CES			1.10		Recei	ved by	(company):	EL	S 1	ANB	1.1.1.1.1	Lab use	only:		-	
Print Name:	IVAN WONG	1 th			Carles Mr.		Name	AB							ed: Coo	l or Amb	pient (circle one)
Date & Time:						Date	& Time	126	1/18		18:30		Tempera				(if applicable)
Signature:	At	1				Signa	ture:		1				Transpo	rted by:	Hand	delivere	d / courier

Form: 302 - Chain of Custody-Client, Issued 22/05/12, Version 5, Page 1 of 1.

White - Lab copy / Blue - Client copy / Pink - Retain in Book Page No:

	ES		Sec. 25		Client Project Name / Number / Site etc (ie report title): こそらいろのも一日ア PO No.:					1		yden Crt M 17 2505 / la	yaree, W	/A 6154		
Contact Perso																
Project Mgr:	MARK CHAL			San Andrews								ne Lab - En bre Drive S				
Sampler: Address:	JUAN WONG 55 GRANDVIE		00.			ab Quote I sults requ			A line		Arthur 188	_	Ph 03 97	63 2500 / n	nelbourne	e@envirolab.com.au
Phone:			40327		Or choo	ose: stand	ard sa						20a, 10-2 Ph 07 32	66 9532 / b	, Banyo, risbane@	QLD 4014]envirolab.com.au
Fax:	erin.millar@u	onsulti	ng porth .	3666 'ah Gu	- Contraction of the local division of the l	nments:	vance ir urg	gent turnaro		eu - suro	nargee apply			Lab - Env		rvices Gardens, SA 5087
	nark, challoner C c	ion sultin	georth,	com.au	-							Contraction of the second second				genvirolab.com.au
		nformation	()						Test	ts Req	uired					Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample												Provide as much information about th sample as you can
Bag	BH 2-21-21.3		25/01/18	Soil	1.16				St. March	40.0				0.00		State and
P	BH2-22.5-2	-2.58	T.						5.							
	BH3-0.5		1						Star Lawrence	1244	100 M		2			
	BH4 -1.0			·					and the second			a literation			in and	and the second second
	BH4-2.0 BH4-3.00-	245							100 100 100 100 100 100 100 100 100 100			1		<u></u>		
	BH+ - 4.00												10000	11 11		
V	BH7 - 5	-		J		36 64				1.3						
	Diri J	517	V	•	1.00	2.4	190							1		
	Part Street				128			1.00	1.1					3		
							1000	1	A State					San Fre		and the second second
					1		1.1.1.1.1		1.							
Relinquished	by (company): CES IVAN, WI				C. 100.000.000	d by (com	pany):	ELS		181	1000	Lab u	se only:			
	1. VAL WIL	DNG			Print Na	me:	P	TV				Samn	les Pere	ived: Coo	lor Amb	pient (circle one)
Print Name: Date & Time:	25 61	18			Date &	-	SILT	10	18:	202	1	-		Received		(if applicable)

Form: 302 - Chain of Custody-Client, Issued 22/05/12, Version 5, Page 1 of 1.

White - Lab copy / Blue - Client copy / Pink - Retain in Book

Page No:

Simon Song

From: Sent: To: Subject: Erin Millar <erin.millar@consultingearth.com.au> Monday, 29 January 2018 6:25 PM Simon Song CES130608-BP - Analysis

Hi Simon,

Apologies for the delayed instructions. Could I please have the following samples tested for the Combo 6A suite.

Report 183801:

- BH5-15.00-15.45
- BH5-12-12.45
- BH5-3.0-3.45
- BLIND REPLICATE

Report 183905:

- BH05-22.5-22.95
- BH5-19.5-19.95
- Report 184000: A II • BH2-16.5-16.95 IS • BH2-22.5-22.58 IG • BH03-0.5 IF • BH4-1.0 2.1 • BH4-5-5.45 3 • BH2-4.5-4.95 5 • BH2-7.5-7.9 F • BH2-10.5-10.95

If you require any further information, please do not hesitate to contact me.

Kind Regards,

Erin Millar Environmental Scientist

www.consultingearth.com.au

Suite 3, Level 1 55, Grandview Street Pymble, NSW, 2073 Tel: +61 2 8569 2200 Fax: +61 2 9983 0582 M: +61 439 261 637 ABN 67 151 524 757

Confidentiality Notice

This email, including any attachments, is intended for the use of the addressee and is **confidential**. If you are not the addressee it may be **unlawful** for you to read, copy, distribute, disclose or otherwise use the information contained in or attached to this email. If you are not the addressee please **delete** this email and any attachments and **inform us** immediately by return email. Thank you.

Virus Disclaimer

CES has systems in place to maintain a virus-free computing environment. However, we cannot guarantee that products and emails sent to us electronically are virus-free. We therefore recommend that files sent by CES are checked prior to use on the receiving system. CES will make every effort to ensure that we do not re-transmit infected software but we are not liable for any loss or damage which may occur as a result of electronically transmitted material, nor for any distortion or changes made to the information contained in the transmission during transfer or following receipt by the addressee. At the discretion of CES we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version will take precedence.

ELS: 184-0000-A Rec: 29/1/18 TAT: 5 days AAT

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 184000-A

Client Details	
Client	Consulting Earth Scientists Pty Ltd
Attention	Erin Millar
Address	Suite 3, Level 1, 55 Grandview Street, Pymble, NSW, 2073

Sample Details	
Your Reference	<u>CES130608-BP</u>
Number of Samples	21 Soil
Date samples received	25/01/2018
Date completed instructions received	29/01/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 05/02/2018

 Date of Issue
 01/02/2018

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lulu Scott

Results Approved By

Dragana Tomas, Senior Chemist Long Pham, Team Leader, Metals Lulu Scott, Asbestos Supervisor Steven Luong, Senior Chemist

Authorised By

David Springer, General Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		184000-A-3	184000-A-5	184000-A-7	184000-A-11	184000-A-15
Your Reference	UNITS	BH2	BH2	BH2	BH2	BH2
Depth		4.5-4.95	7.5-7.9	10.5-10.95	16.5-16.95	22.5-22.58
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	31/01/2018	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	01/02/2018	31/01/2018	31/01/2018	31/01/2018	31/01/2018
TRH C ₆ - C ₉	mg/kg	37	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	120	<25	<25	43	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	120	<25	<25	43	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	3	<2	<2	<2	<2
o-Xylene	mg/kg	1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	4	<1	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	106	78	81	89	109

vTRH(C6-C10)/BTEXN in Soil				
Our Reference		184000-A-16	184000-A-17	184000-A-21
Your Reference	UNITS	BH3	BH4	BH4
Depth		0.5	1	5-5.45
Type of sample		Soil	Soil	Soil
Date extracted	-	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	31/01/2018	31/01/2018	31/01/2018
TRH C ₆ - C ₉	mg/kg	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1
Total +ve Xylenes	mg/kg	<1	<1	<1
Surrogate aaa-Trifluorotoluene	%	76	88	82

svTRH (C10-C40) in Soil						
Our Reference		184000-A-3	184000-A-5	184000-A-7	184000-A-11	184000-A-15
Your Reference	UNITS	BH2	BH2	BH2	BH2	BH2
Depth		4.5-4.95	7.5-7.9	10.5-10.95	16.5-16.95	22.5-22.58
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	30/01/2018	30/01/2018	31/01/2018	31/01/2018	31/01/2018
TRH C ₁₀ - C ₁₄	mg/kg	89	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10-C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	77	75	75	70	71

svTRH (C10-C40) in Soil				
Our Reference		184000-A-16	184000-A-17	184000-A-21
Your Reference	UNITS	BH3	BH4	BH4
Depth		0.5	1	5-5.45
Type of sample		Soil	Soil	Soil
Date extracted	-	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	31/01/2018	31/01/2018	31/01/2018
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50
TRH C15 - C28	mg/kg	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100
TRH >C34 -C40	mg/kg	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50
Surrogate o-Terphenyl	%	75	74	68

PAHs in Soil						
Our Reference		184000-A-3	184000-A-5	184000-A-7	184000-A-11	184000-A-15
Your Reference	UNITS	BH2	BH2	BH2	BH2	BH2
Depth		4.5-4.95	7.5-7.9	10.5-10.95	16.5-16.95	22.5-22.58
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Naphthalene	mg/kg	0.3	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	0.3	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	122	105	105	94	97

PAHs in Soil				
Our Reference		184000-A-16	184000-A-17	184000-A-21
Your Reference	UNITS	BH3	BH4	BH4
Depth		0.5	1	5-5.45
Type of sample		Soil	Soil	Soil
Date extracted	-	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	30/01/2018	30/01/2018	30/01/2018
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	0.2	<0.1	<0.1
Pyrene	mg/kg	0.2	<0.1	<0.1
Benzo(a)anthracene	mg/kg	0.1	<0.1	<0.1
Chrysene	mg/kg	0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	0.1	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	1.0	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	102	103	100

Organochlorine Pesticides in soil						
Our Reference		184000-A-3	184000-A-5	184000-A-7	184000-A-11	184000-A-15
Your Reference	UNITS	BH2	BH2	BH2	BH2	BH2
Depth		4.5-4.95	7.5-7.9	10.5-10.95	16.5-16.95	22.5-22.58
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018	30/01/2018
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	93	91	92	90	84

Organochlorine Pesticides in soil				
Our Reference		184000-A-16	184000-A-17	184000-A-21
Your Reference	UNITS	BH3	BH4	BH4
Depth		0.5	1	5-5.45
Type of sample		Soil	Soil	Soil
Date extracted	-	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	30/01/2018	30/01/2018	30/01/2018
НСВ	mg/kg	<0.1	<0.1	<0.1
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	91	109	88

Organophosphorus Pesticides						
Our Reference		184000-A-3	184000-A-5	184000-A-7	184000-A-11	184000-A-15
Your Reference	UNITS	BH2	BH2	BH2	BH2	BH2
Depth		4.5-4.95	7.5-7.9	10.5-10.95	16.5-16.95	22.5-22.58
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	93	91	92	90	84

Organophosphorus Pesticides						
Our Reference		184000-A-16	184000-A-17	184000-A-21		
Your Reference	UNITS	BH3	BH4	BH4		
Depth		0.5	1	5-5.45		
Type of sample		Soil	Soil	Soil		
Date extracted	-	30/01/2018	30/01/2018	30/01/2018		
Date analysed	-	30/01/2018	30/01/2018	30/01/2018		
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1		
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1		
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1		
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1		
Diazinon	mg/kg	<0.1	<0.1	<0.1		
Dichlorvos	mg/kg	<0.1	<0.1	<0.1		
Dimethoate	mg/kg	<0.1	<0.1	<0.1		
Ethion	mg/kg	<0.1	<0.1	<0.1		
Fenitrothion	mg/kg	<0.1	<0.1	<0.1		
Malathion	mg/kg	<0.1	<0.1	<0.1		
Parathion	mg/kg	<0.1	<0.1	<0.1		
Ronnel	mg/kg	<0.1	<0.1	<0.1		
Surrogate TCMX	%	91	109	88		
PCBs in Soil						
----------------------------	-------	------------	------------	------------	-------------	-------------
Our Reference		184000-A-3	184000-A-5	184000-A-7	184000-A-11	184000-A-15
Your Reference	UNITS	BH2	BH2	BH2	BH2	BH2
Depth		4.5-4.95	7.5-7.9	10.5-10.95	16.5-16.95	22.5-22.58
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCLMX	%	93	91	92	90	84

PCBs in Soil				
Our Reference		184000-A-16	184000-A-17	184000-A-21
Your Reference	UNITS	BH3	BH4	BH4
Depth		0.5	1	5-5.45
Type of sample		Soil	Soil	Soil
Date extracted	-	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	30/01/2018	30/01/2018	30/01/2018
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCLMX	%	91	109	88

Acid Extractable metals in soil				_		
Our Reference		184000-A-3	184000-A-5	184000-A-7	184000-A-11	184000-A-15
Your Reference	UNITS	BH2	BH2	BH2	BH2	BH2
Depth		4.5-4.95	7.5-7.9	10.5-10.95	16.5-16.95	22.5-22.58
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Arsenic	mg/kg	<4	<4	<4	10	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	5	2	1	13	12
Copper	mg/kg	<1	<1	<1	3	8
Lead	mg/kg	3	<1	1	6	64
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	<1	1	<1
Zinc	mg/kg	<1	1	<1	13	<1

Acid Extractable metals in soil				
Our Reference		184000-A-16	184000-A-17	184000-A-21
Your Reference	UNITS	BH3	BH4	BH4
Depth		0.5	1	5-5.45
Type of sample		Soil	Soil	Soil
Date prepared	-	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	30/01/2018	30/01/2018	30/01/2018
Arsenic	mg/kg	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	3	2	3
Copper	mg/kg	9	4	<1
Lead	mg/kg	16	5	<1
Mercury	mg/kg	0.2	<0.1	<0.1
Nickel	mg/kg	3	1	1
Zinc	mg/kg	41	23	<1

Moisture						
Our Reference		184000-A-3	184000-A-5	184000-A-7	184000-A-11	184000-A-15
Your Reference	UNITS	BH2	BH2	BH2	BH2	BH2
Depth		4.5-4.95	7.5-7.9	10.5-10.95	16.5-16.95	22.5-22.58
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	30/01/2018	30/01/2018	30/01/2018	30/01/2018	30/01/2018
Moisture	%	23	15	12	8.9	14

Moisture				
Our Reference		184000-A-16	184000-A-17	184000-A-21
Your Reference	UNITS	BH3	BH4	BH4
Depth		0.5	1	5-5.45
Type of sample		Soil	Soil	Soil
Date prepared	-	30/01/2018	30/01/2018	30/01/2018
Date analysed	-	30/01/2018	30/01/2018	30/01/2018
Moisture	%	14	16	18

Asbestos ID - soils						
Our Reference		184000-A-3	184000-A-5	184000-A-7	184000-A-11	184000-A-15
Your Reference	UNITS	BH2	BH2	BH2	BH2	BH2
Depth		4.5-4.95	7.5-7.9	10.5-10.95	16.5-16.95	22.5-22.58
Type of sample		Soil	Soil	Soil	Soil	Soil
Date analysed	-	01/02/2018	01/02/2018	01/02/2018	01/02/2018	01/02/2018
Sample mass tested	g	Approx. 40g	Approx. 60g	Approx. 55g	Approx. 40g	Approx. 45g
Sample Description	-	Brown sandy soil	Brown sandy soil	Brown sandy soil	Brown sandy soil	Beige sandy soi
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg				
		Organic fibres detected				
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected	No asbestos detected

Asbestos ID - soils				
Our Reference		184000-A-16	184000-A-17	184000-A-21
Your Reference	UNITS	BH3	BH4	BH4
Depth		0.5	1	5-5.45
Type of sample		Soil	Soil	Soil
Date analysed	-	01/02/2018	01/02/2018	01/02/2018
Sample mass tested	g	Approx. 55g	Approx. 45g	Approx. 40g
Sample Description	-	Brown sandy soil	Brown sandy soil	Brown sandy soil
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres
Trace Analysis		detected	detected	detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-006	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.

Method ID	Methodology Summary
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" are="" at="" conservative<br="" is="" most="" pql.="" the="" this="">approach and can give false positive TEQs given that PAHs that contribute to the TEQ calculation may not be present. 2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and<br="" approach="" are="" conservative="" is="" least="" the="" this="" zero.="">is more susceptible to false negative TEQs when PAHs that contribute to the TEQ calculation are present but below PQL. 3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" are="" half="" hence="" mid-point<br="" pql.="" stipulated="" the="">between the most and least conservative approaches above. Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-014	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	184000-A-5
Date extracted	-			30/01/2018	3	31/01/2018	30/01/2018		30/01/2018	30/01/2018
Date analysed	-			31/01/2018	3	01/02/2018	31/01/2018		31/01/2018	31/01/2018
TRH C ₆ - C ₉	mg/kg	25	Org-016	<25	3	37	<25	39	87	77
TRH C ₆ - C ₁₀	mg/kg	25	Org-016	<25	3	120	88	31	87	77
Benzene	mg/kg	0.2	Org-016	<0.2	3	<0.2	<0.2	0	82	73
Toluene	mg/kg	0.5	Org-016	<0.5	3	<0.5	<0.5	0	89	75
Ethylbenzene	mg/kg	1	Org-016	<1	3	<1	<1	0	82	71
m+p-xylene	mg/kg	2	Org-016	<2	3	3	2	40	90	82
o-Xylene	mg/kg	1	Org-016	<1	3	1	<1	0	86	79
naphthalene	mg/kg	1	Org-014	<1	3	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-016	92	3	106	79	29	84	77

QUALITY CO	QUALITY CONTROL: svTRH (C10-C40) in Soil						plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	184000-A-5
Date extracted	-			30/01/2018	3	30/01/2018	30/01/2018		30/01/2018	30/01/2018
Date analysed	-			30/01/2018	3	30/01/2018	30/01/2018		30/01/2018	31/01/2018
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-003	<50	3	89	110	21	109	101
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-003	<100	3	<100	<100	0	106	97
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-003	<100	3	<100	<100	0	92	92
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-003	<50	3	<50	56	11	109	101
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-003	<100	3	<100	<100	0	106	97
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-003	<100	3	<100	<100	0	92	92
Surrogate o-Terphenyl	%		Org-003	79	3	77	77	0	86	75

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	184000-A-5
Date extracted	-			30/01/2018	3	30/01/2018	30/01/2018		30/01/2018	30/01/2018
Date analysed	-			30/01/2018	3	30/01/2018	30/01/2018		30/01/2018	30/01/2018
Naphthalene	mg/kg	0.1	Org-012	<0.1	3	0.3	0.2	40	92	82
Acenaphthylene	mg/kg	0.1	Org-012	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-012	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Fluorene	mg/kg	0.1	Org-012	<0.1	3	<0.1	<0.1	0	96	88
Phenanthrene	mg/kg	0.1	Org-012	<0.1	3	<0.1	<0.1	0	103	91
Anthracene	mg/kg	0.1	Org-012	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-012	<0.1	3	<0.1	<0.1	0	98	86
Pyrene	mg/kg	0.1	Org-012	<0.1	3	<0.1	<0.1	0	121	106
Benzo(a)anthracene	mg/kg	0.1	Org-012	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-012	<0.1	3	<0.1	<0.1	0	95	89
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-012	<0.2	3	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-012	<0.05	3	<0.05	<0.05	0	98	88
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-012	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-012	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-012	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012	104	3	122	104	16	100	99

QUALITY CONTR	ROL: Organo	chlorine I	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	184000-A-5
Date extracted	-			30/01/2018	3	30/01/2018	30/01/2018		30/01/2018	30/01/2018
Date analysed	-			30/01/2018	3	30/01/2018	30/01/2018		30/01/2018	30/01/2018
НСВ	mg/kg	0.1	Org-005	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
alpha-BHC	mg/kg	0.1	Org-005	<0.1	3	<0.1	<0.1	0	93	90
gamma-BHC	mg/kg	0.1	Org-005	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-005	<0.1	3	<0.1	<0.1	0	102	98
Heptachlor	mg/kg	0.1	Org-005	<0.1	3	<0.1	<0.1	0	100	97
delta-BHC	mg/kg	0.1	Org-005	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-005	<0.1	3	<0.1	<0.1	0	100	97
Heptachlor Epoxide	mg/kg	0.1	Org-005	<0.1	3	<0.1	<0.1	0	101	98
gamma-Chlordane	mg/kg	0.1	Org-005	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-005	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-005	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-005	<0.1	3	<0.1	<0.1	0	103	100
Dieldrin	mg/kg	0.1	Org-005	<0.1	3	<0.1	<0.1	0	102	99
Endrin	mg/kg	0.1	Org-005	<0.1	3	<0.1	<0.1	0	102	98
pp-DDD	mg/kg	0.1	Org-005	<0.1	3	<0.1	<0.1	0	108	105
Endosulfan II	mg/kg	0.1	Org-005	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-005	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Endrin Aldehyde	mg/kg	0.1	Org-005	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-005	<0.1	3	<0.1	<0.1	0	107	101
Methoxychlor	mg/kg	0.1	Org-005	<0.1	3	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-005	94	3	93	97	4	111	110

QUALITY CONT	ROL: Organ	ophospho	orus Pesticides			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	184000-A-5	
Date extracted	-			30/01/2018	3	30/01/2018	30/01/2018		30/01/2018	30/01/2018	
Date analysed	-			30/01/2018	3	30/01/2018	30/01/2018		30/01/2018	30/01/2018	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-008	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Bromophos-ethyl	mg/kg	0.1	Org-008	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Chlorpyriphos	mg/kg	0.1	Org-008	<0.1	3	<0.1	<0.1	0	81	81	
Chlorpyriphos-methyl	mg/kg	0.1	Org-008	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Diazinon	mg/kg	0.1	Org-008	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Dichlorvos	mg/kg	0.1	Org-008	<0.1	3	<0.1	<0.1	0	85	83	
Dimethoate	mg/kg	0.1	Org-008	<0.1	3	<0.1	<0.1	0	[NT]	[NT]	
Ethion	mg/kg	0.1	Org-008	<0.1	3	<0.1	<0.1	0	93	97	
Fenitrothion	mg/kg	0.1	Org-008	<0.1	3	<0.1	<0.1	0	86	84	
Malathion	mg/kg	0.1	Org-008	<0.1	3	<0.1	<0.1	0	80	74	
Parathion	mg/kg	0.1	Org-008	<0.1	3	<0.1	<0.1	0	91	86	
Ronnel	mg/kg	0.1	Org-008	<0.1	3	<0.1	<0.1	0	91	90	
Surrogate TCMX	%		Org-008	94	3	93	97	4	91	92	

QUALIT	Y CONTRO	L: PCBs	in Soil			Du	olicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	184000-A-5
Date extracted	-			30/01/2018	3	30/01/2018	30/01/2018		30/01/2018	30/01/2018
Date analysed	-			30/01/2018	3	30/01/2018	30/01/2018		30/01/2018	30/01/2018
Aroclor 1016	mg/kg	0.1	Org-006	<0.1	3	<0.1	<0.1	0		[NT]
Aroclor 1221	mg/kg	0.1	Org-006	<0.1	3	<0.1	<0.1	0		[NT]
Aroclor 1232	mg/kg	0.1	Org-006	<0.1	3	<0.1	<0.1	0		[NT]
Aroclor 1242	mg/kg	0.1	Org-006	<0.1	3	<0.1	<0.1	0		[NT]
Aroclor 1248	mg/kg	0.1	Org-006	<0.1	3	<0.1	<0.1	0		[NT]
Aroclor 1254	mg/kg	0.1	Org-006	<0.1	3	<0.1	<0.1	0	102	100
Aroclor 1260	mg/kg	0.1	Org-006	<0.1	3	<0.1	<0.1	0		[NT]
Surrogate TCLMX	%		Org-006	94	3	93	97	4	91	92

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-4	184000-A-5
Date prepared	-			30/01/2018	3	30/01/2018	30/01/2018		30/01/2018	30/01/2018
Date analysed	-			30/01/2018	3	30/01/2018	30/01/2018		30/01/2018	30/01/2018
Arsenic	mg/kg	4	Metals-020	<4	3	<4	<4	0	110	96
Cadmium	mg/kg	0.4	Metals-020	<0.4	3	<0.4	<0.4	0	98	102
Chromium	mg/kg	1	Metals-020	<1	3	5	5	0	105	101
Copper	mg/kg	1	Metals-020	<1	3	<1	<1	0	111	102
Lead	mg/kg	1	Metals-020	<1	3	3	2	40	104	98
Mercury	mg/kg	0.1	Metals-021	<0.1	3	<0.1	<0.1	0	104	104
Nickel	mg/kg	1	Metals-020	<1	3	<1	1	0	107	98
Zinc	mg/kg	1	Metals-020	<1	3	<1	<1	0	98	99

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

Asbestos: A portion of the supplied sample was sub-sampled for asbestos analysis according to Envirolab procedures. We cannot guarantee that this sub-sample is indicative of the entire sample. Envirolab recommends supplying 40-50g of sample in its own container.

Note: Samples 184000-A-3, 5, 7, 11, 15 to 17, 21 were sub-sampled from jars provided by the client.

CERTIFICATE OF ANALYSIS

Work Order	ES1803139	Page	: 1 of 7	
Client	CONSULTING EARTH SCIENTISTS	Laboratory	: Environmental Division S	sydney
Contact	: MARK CHALLONER	Contact	: Customer Services ES	
Address	Suite 3, Level 1 55-65 Grandview Street PYMBLE NSW, AUSTRALIA 2073	Address	: 277-289 Woodpark Road	Smithfield NSW Australia 2164
Telephone	+61 02 8569 2200	Telephone	: +61-2-8784 8555	
Project	: CES130608-BP	Date Samples Received	: 25-Jan-2018 18:30	ANIIIII.
Order number	:	Date Analysis Commenced	: 30-Jan-2018	
C-O-C number	:	Issue Date	: 05-Feb-2018 15:35	
Sampler	: ERIN MILLAR			HAC-MRA NATA
Site	:			
Quote number	: SYBQ/521/16			Accreditation No. 825
No. of samples received	: 1			Accredited for compliance with
No. of samples analysed	: 1			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW
Shaun Spooner	Asbestos Identifier	Newcastle - Asbestos, Mayfield West, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests
- ~ = Indicates an estimated value.
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Negative results for vinyl tiles should be confirmed by an independent analytical technique.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- EA200: 'Yes' Asbestos detected by polarised light microscopy including dispersion staining.
- EA200: 'No*' No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.
- EA200: 'No' No asbestos found at the reporting limit 0.1g/kg, by polarised light microscopy including dispersion staining.

Page : 3 of 7 Work Order : ES1803139 Client : CONSULTING EARTH SCIENTISTS Project : CES130608-BP

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SPLIT REPLICATE	 	
	Cli	ent samnlii	ng date / time	23-Jan-2018 00:00	 	
Compound		LOR	Unit	ES1803139-001		
Compound	CAS Number	LON	Onn	Result	 	
EADEE: Mainture Content (Dried @ 10	E 440°C)			Result	 	
EA055: Moisture Content (Dried @ 10 Moisture Content	5-110°C) 	1.0	%	24.8	 	
			70	24.0		
EA200: AS 4964 - 2004 Identification of Asbestos (Trace)		5 5	Fibres	No	 	
	1332-21-4	5	Tibles	NO	 	
EA200: AS 4964 - 2004 Identification of		0.4	a/// a	N		
Asbestos Detected	1332-21-4	0.1	g/kg	No	 	
Asbestos Type	1332-21-4	-		-	 	
Sample weight (dry)		0.01	g	35.9	 	
APPROVED IDENTIFIER:		-		S.SPOONER	 	
EG005T: Total Metals by ICP-AES						
Arsenic	7440-38-2	5	mg/kg	<5	 	
Cadmium	7440-43-9	1	mg/kg	<1	 	
Chromium	7440-47-3	2	mg/kg	4	 	
Copper	7440-50-8	5	mg/kg	<5	 	
Lead	7439-92-1	5	mg/kg	<5	 	
Nickel	7440-02-0	2	mg/kg	<2	 	
Zinc	7440-66-6	5	mg/kg	<5	 	
EG035T: Total Recoverable Mercury	by FIMS					
Mercury	7439-97-6	0.1	mg/kg	<0.1	 	
EP066: Polychlorinated Biphenyls (P0	CB)					
Total Polychlorinated biphenyls		0.1	mg/kg	<0.1	 	
EP068A: Organochlorine Pesticides (OC)					
alpha-BHC	319-84-6	0.05	mg/kg	<0.05	 	
Hexachlorobenzene (HCB)	118-74-1	0.05	mg/kg	<0.05	 	
beta-BHC	319-85-7	0.05	mg/kg	<0.05	 	
gamma-BHC	58-89-9	0.05	mg/kg	<0.05	 	
delta-BHC	319-86-8	0.05	mg/kg	<0.05	 	
Heptachlor	76-44-8	0.05	mg/kg	<0.05	 	
Aldrin	309-00-2	0.05	mg/kg	<0.05	 	
Heptachlor epoxide	1024-57-3	0.05	mg/kg	<0.05	 	
^ Total Chlordane (sum)		0.05	mg/kg	<0.05	 	
trans-Chlordane	5103-74-2	0.05	mg/kg	<0.05	 	
alpha-Endosulfan	959-98-8	0.05	mg/kg	<0.05	 	
cis-Chlordane	5103-71-9	0.05	mg/kg	<0.05	 	
Dieldrin	60-57-1	0.05	mg/kg	<0.05	 	

Page : 4 of 7 Work Order : ES1803139 Client : CONSULTING EARTH SCIENTISTS Project : CES130608-BP

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SPLIT REPLICATE	 	
(Cl	ient sampli	ng date / time	23-Jan-2018 00:00	 	
Compound	CAS Number	LOR	Unit	ES1803139-001	 	
Compound				Result	 	
EP068A: Organochlorine Pesticio	des (OC) - Continued					
4.4`-DDE	72-55-9	0.05	mg/kg	<0.05	 	
Endrin	72-20-8	0.05	mg/kg	<0.05	 	
beta-Endosulfan	33213-65-9	0.05	mg/kg	<0.05	 	
^ Endosulfan (sum)	115-29-7	0.05	mg/kg	<0.05	 	
4.4`-DDD	72-54-8	0.05	mg/kg	<0.05	 	
Endrin aldehyde	7421-93-4	0.05	mg/kg	<0.05	 	
Endosulfan sulfate	1031-07-8	0.05	mg/kg	<0.05	 	
4.4`-DDT	50-29-3	0.2	mg/kg	<0.2	 	
Endrin ketone	53494-70-5	0.05	mg/kg	<0.05	 	
Methoxychlor	72-43-5	0.2	mg/kg	<0.2	 	
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.05	mg/kg	<0.05	 	
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.05	mg/kg	<0.05	 	
	0-2					
EP068B: Organophosphorus Pes	sticides (OP)					
Dichlorvos	62-73-7	0.05	mg/kg	<0.05	 	
Demeton-S-methyl	919-86-8	0.05	mg/kg	<0.05	 	
Monocrotophos	6923-22-4	0.2	mg/kg	<0.2	 	
Dimethoate	60-51-5	0.05	mg/kg	<0.05	 	
Diazinon	333-41-5	0.05	mg/kg	<0.05	 	
Chlorpyrifos-methyl	5598-13-0	0.05	mg/kg	<0.05	 	
Parathion-methyl	298-00-0	0.2	mg/kg	<0.2	 	
Malathion	121-75-5	0.05	mg/kg	<0.05	 	
Fenthion	55-38-9	0.05	mg/kg	<0.05	 	
Chlorpyrifos	2921-88-2	0.05	mg/kg	<0.05	 	
Parathion	56-38-2	0.2	mg/kg	<0.2	 	
Pirimphos-ethyl	23505-41-1	0.05	mg/kg	<0.05	 	
Chlorfenvinphos	470-90-6	0.05	mg/kg	<0.05	 	
Bromophos-ethyl	4824-78-6	0.05	mg/kg	<0.05	 	
Fenamiphos	22224-92-6	0.05	mg/kg	<0.05	 	
Prothiofos	34643-46-4	0.05	mg/kg	<0.05	 	
Ethion	563-12-2	0.05	mg/kg	<0.05	 	
Carbophenothion	786-19-6	0.05	mg/kg	<0.05	 	
Azinphos Methyl	86-50-0	0.05	mg/kg	<0.05	 	
EP075(SIM)B: Polynuclear Aroma	atic Hydrocarbons					
Naphthalene	91-20-3	0.5	mg/kg	<0.5	 	

Page : 5 of 7 Work Order : ES1803139 Client : CONSULTING EARTH SCIENTISTS Project : CES130608-BP

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SPLIT REPLICATE	 	
	Cli	ent sampli	ng date / time	23-Jan-2018 00:00	 	
Compound	CAS Number	LOR	Unit	ES1803139-001	 	
				Result	 	
EP075(SIM)B: Polynuclear Aromatic I	Hvdrocarbons - Cont	inued				
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	 	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	 	
Fluorene	86-73-7	0.5	mg/kg	<0.5	 	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	 	
Anthracene	120-12-7	0.5	mg/kg	<0.5	 	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	 	
Pyrene	129-00-0	0.5	mg/kg	<0.5	 	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	 	
Chrysene	218-01-9	0.5	mg/kg	<0.5	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	 	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	 	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	 	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	 	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	 	
^ Sum of polycyclic aromatic hydrocarbo	ns	0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	 	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	 	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	 	
EP080/071: Total Petroleum Hydrocar	rbons					
C6 - C9 Fraction		10	mg/kg	<10	 	
C10 - C14 Fraction		50	mg/kg	<50	 	
C15 - C28 Fraction		100	mg/kg	<100	 	
C29 - C36 Fraction		100	mg/kg	<100	 	
[^] C10 - C36 Fraction (sum)		50	mg/kg	<50	 	
EP080/071: Total Recoverable Hydrod	carbons - NEPM 201	3 Fractio	ns			
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	 	
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	 	
(F1)						
>C10 - C16 Fraction		50	mg/kg	<50	 	
>C16 - C34 Fraction		100	mg/kg	<100	 	
>C34 - C40 Fraction		100	mg/kg	<100	 	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	 	
^ >C10 - C16 Fraction minus Naphthalene (F2)	,	50	mg/kg	<50	 	

Page : 6 of 7 Work Order : ES1803139 Client : CONSULTING EARTH SCIENTISTS Project : CES130608-BP

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	SPLIT REPLICATE			
	Cli	ient sampli	ng date / time	23-Jan-2018 00:00			
Compound	CAS Number	LOR	Unit	ES1803139-001			
				Result			
EP080/071: Total Recoverable H	ydrocarbons - NEPM 201	3 Fractio	ns - Continued				
EP080: BTEXN							
Benzene	71-43-2	0.2	mg/kg	<0.2			
Toluene	108-88-3	0.5	mg/kg	<0.5			
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5			
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5			
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5			
^ Sum of BTEX		0.2	mg/kg	<0.2			
^ Total Xylenes		0.5	mg/kg	<0.5			
Naphthalene	91-20-3	1	mg/kg	<1			
EP066S: PCB Surrogate							
Decachlorobiphenyl	2051-24-3	0.1	%	128			
EP068S: Organochlorine Pestici	de Surrogate						
Dibromo-DDE	21655-73-2	0.05	%	122			
EP068T: Organophosphorus Pes	sticide Surrogate						
DEF	78-48-8	0.05	%	71.4			
EP075(SIM)S: Phenolic Compou							
Phenol-d6	13127-88-3	0.5	%	81.0			
2-Chlorophenol-D4	93951-73-6	0.5	%	84.6			
2.4.6-Tribromophenol	118-79-6	0.5	%	77.5			
EP075(SIM)T: PAH Surrogates							
2-Fluorobiphenyl	321-60-8	0.5	%	81.4			
Anthracene-d10	1719-06-8	0.5	%	81.7			
4-Terphenyl-d14	1718-51-0	0.5	%	98.1			
EP080S: TPH(V)/BTEX Surrogate							
1.2-Dichloroethane-D4	17060-07-0	0.2	%	86.5			
Toluene-D8	2037-26-5	0.2	%	80.9			
4-Bromofluorobenzene	460-00-4	0.2	%	83.7			
Analytical Results					1	1	1
Descriptive Results							

Descriptive Results

Sub-Matrix: SOIL

Method: Compound	Client sample ID - Client sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identification of Asbestos	in Soils	
EA200: Description	SPLIT REPLICATE - 23-Jan-2018 00:00	Mid grey sandy soil.

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	39	149
EP068S: Organochlorine Pesticide Surr	ogate		
Dibromo-DDE	21655-73-2	49	147
EP068T: Organophosphorus Pesticide	Surrogate		
DEF	78-48-8	35	143
EP075(SIM)S: Phenolic Compound Surr	ogates		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130

		HAII	LON	CHAIN OF CUSTODY	ť	Client 19773	-	es 1 2067
		NVIROI	_AB GF	ENVIROLAB GROUP - National Ph	nal Phone	one number 1300 42 43 44	Pri UZ 991U bzuu / syuney@emvitolao.com.au <u>Perth Lab</u> - MPL Laboratories	vitolab.com.au
Client:	S.				Client Projec	Client Project Name / Number / Site etc (ie report title):	16-18 Hayden Crt Myaree, WA 6154 Ph 08 9317 2505 / Jah@mpt com.au	6154 m.au
Contact Person:	SON ERN WILLAR					CESIZOEDE. BP		
Project Mgr:	H. CHALLOWER	S.			PO No.:		Melbourne Lab - Envirolab Services 1A Dalmore Drive Scoresby VIC 3179	VICeS
Sampler:	E WILLING				Envirolab Quote No. :	ote No. :	Ph 03 9763 2500 / melbourne@envirolab.com.au	Jenvirotab.com.au
Address:	54 LANS				Date results required:	required:	Brishana Lath Envirolations	
					and the second s		20a, 10-20 Depot St, Banyo, QLD 4014	.D 4014
					Or choose: standard /	standard / Same day / 1 day / 2 day / 3 day	Ph 07 3266 9532 / brisbane@envirolab.com.au	nvîrolab.com.au
Phone:		Mob: Ex	50 J. J.	te 3 - -	Note: Inform lab	Note: Inform lab in advance if urgent turnaround is required - surcharges apply		ces
Fax: evê	winnilled availing	Hinganter		¢	Lab comments:	its:	7 Palmerton Road Windsor Gardens, SA 5087 Bh. 0406 250 706 / Addition	dens, SA 5087
	K. Challan 2	Constraint former	year the	Cor			PTI U4U0 330 / U0 / adeialde@envirolab.com.au	nvirolab.com.au
12423		Sample information				Tests Required		Comments
					3		ter castle	Províde as much
Envirolad Sample ID	Client Sample 10 of information	Depth	vate sampled	Type of sample	, co/~	Sis-		information about the sample as you can
			- <u> </u>		+	24		
•••••	SH12 - 2.00- 2 - 2043		10. 10. 10.	Jo C	الله	Relinquished By / Late:		
7	100 X		hrau		>	Connote / Courier:		
R	245-6-00-6-40		Envi	Environmental Division	icn	WON Statement and the second s		Dimethology
Ľ.	1		Sydney	ney Ar Order Britter		Attack Type Internal Sh	Sheet: unwa. 38 12 28	shley St Darioar
5,	2H6 - 3 - 63 - 3 - 12		EUL 	FS1803130	, S	-	101 No: 11 (32) 3813 5200	13 52ub
Ċ	③●なーの、気 - 10、35		<u>!</u>		2			182 80 1
5	Rue 12.00.12 5						Date Received:	23/1 ho18
හ	FHS - 13-56 - 12,33						- 1999 - 1999 - 1997 -	17,30
9							Terre C.C. We down t	¢
01	21-21-16-50 - 16-55							11-1
j	345-18 00 18 45		Telepho	Telephone : + 61-2-8784 8555	. 1		- Anno-	
12			24	4 1				
	WALT PEN CAR	6	>	Ŵ	Compo (106A TEM /BIGKIPAN/OCION	pop/xw//weeke>	KUS -
Relinquishe	Relinquished by (company): CS	6	ELS.		Received by (company):		Lab use only:	
Print Name:	ERN MILLAR		IACK EN	EMBLEN	Print Name:		Samples Received: Cool or Ambient (circle one)	nt (circle ane)
Date & Time:	e: 23.01 2018		25.118	12:30	Date & Time:	: 23/1/1018 17.30	Temperature Received at:	(if applicable)
Signature:	the second		hard	T.	Signature:	Z		/ courier
u.	Form: 302 - Chain of Custody-Client, Issued 22/05/12, Version 5, Page 1 of 1.	Xient, Issued	22/05/12, W	ersion 5, Page 1 of 1		Rec- Source 25/11/8 12	copy / Blue - Client copy / Pink - Retain in Book	Page No:

CERTIFICATE OF ANALYSIS 186281

Client Details	
Client	Consulting Earth Scientists Pty Ltd
Attention	Mark Challoner, Erin Millar
Address	Suite 3, Level 1, 55 Grandview Street, Pymble, NSW, 2073

Sample Details	
Your Reference	<u>CES130608-BP</u>
Number of Samples	1 Water
Date samples received	01/03/2018
Date completed instructions received	07/03/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	09/03/2018
Date of Issue	09/03/2018
NATA Accreditation Number 29	01. This document shall not be reproduced except in full.
Accredited for compliance with	ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Jeremy Faircloth, Organics Supervisor Long Pham, Team Leader, Metals Steven Luong, Senior Chemist

Authorised By

David Springer, General Manager

vTRH(C6-C10)/BTEXN in Water		
Our Reference		186281-1
Your Reference	UNITS	BH5
Date Sampled		01/03/2018
Type of sample		Water
Date extracted	-	02/03/2018
Date analysed	-	02/03/2018
TRH C ₆ - C ₉	µg/L	<10
TRH C ₆ - C ₁₀	µg/L	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10
Benzene	µg/L	<1
Toluene	µg/L	<1
Ethylbenzene	µg/L	2
m+p-xylene	µg/L	3
o-xylene	µg/L	1
Naphthalene	µg/L	<1
Surrogate Dibromofluoromethane	%	101
Surrogate toluene-d8	%	97
Surrogate 4-BFB	%	97

svTRH (C10-C40) in Water		
Our Reference		186281-1
Your Reference	UNITS	BH5
Date Sampled		01/03/2018
Type of sample		Water
Date extracted	-	07/03/2018
Date analysed	-	07/03/2018
TRH C ₁₀ - C ₁₄	µg/L	74
TRH C ₁₅ - C ₂₈	µg/L	<100
TRH C ₂₉ - C ₃₆	µg/L	<100
TRH >C ₁₀ - C ₁₆	µg/L	53
TRH >C10 - C16 less Naphthalene (F2)	µg/L	53
TRH >C ₁₆ - C ₃₄	µg/L	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100
Surrogate o-Terphenyl	%	88

PAHs in Water		
Our Reference		186281-1
Your Reference	UNITS	BH5
Date Sampled		01/03/2018
Type of sample		Water
Date extracted	-	08/03/2018
Date analysed	-	08/03/2018
Naphthalene	μg/L	<1
Acenaphthylene	µg/L	<1
Acenaphthene	µg/L	<1
Fluorene	μg/L	<1
Phenanthrene	µg/L	<1
Anthracene	µg/L	<1
Fluoranthene	µg/L	<1
Pyrene	µg/L	<1
Benzo(a)anthracene	μg/L	<1
Chrysene	µg/L	<1
Benzo(b,j+k)fluoranthene	μg/L	<2
Benzo(a)pyrene	µg/L	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1
Dibenzo(a,h)anthracene	µg/L	<1
Benzo(g,h,i)perylene	µg/L	<1
Benzo(a)pyrene TEQ	µg/L	<5
Total +ve PAH's	µg/L	NIL (+)VE
Surrogate p-Terphenyl-d14	%	106

OCP in water		
Our Reference		186281-1
Your Reference	UNITS	BH5
Date Sampled		01/03/2018
Type of sample		Water
Date extracted	-	08/03/2018
Date analysed	-	08/03/2018
НСВ	µg/L	<0.2
alpha-BHC	µg/L	<0.2
gamma-BHC	µg/L	<0.2
beta-BHC	µg/L	<0.2
Heptachlor	µg/L	<0.2
delta-BHC	µg/L	<0.2
Aldrin	µg/L	<0.2
Heptachlor Epoxide	µg/L	<0.2
gamma-Chlordane	µg/L	<0.2
alpha-Chlordane	µg/L	<0.2
Endosulfan I	µg/L	<0.2
pp-DDE	µg/L	<0.2
Dieldrin	µg/L	<0.2
Endrin	µg/L	<0.2
pp-DDD	µg/L	<0.2
Endosulfan II	µg/L	<0.2
pp-DDT	µg/L	<0.2
Endrin Aldehyde	µg/L	<0.2
Endosulfan Sulphate	µg/L	<0.2
Methoxychlor	µg/L	<0.2
Surrogate TCMX	%	99

OP Pesticides in water		
Our Reference		186281-1
Your Reference	UNITS	BH5
Date Sampled		01/03/2018
Type of sample		Water
Date extracted	-	08/03/2018
Date analysed	-	08/03/2018
Azinphos-methyl (Guthion)	µg/L	<0.2
Bromophos ethyl	µg/L	<0.2
Chlorpyriphos	µg/L	<0.2
Chlorpyriphos-methyl	µg/L	<0.2
Diazinon	µg/L	<0.2
Dichlorovos	µg/L	<0.2
Dimethoate	µg/L	<0.2
Ethion	µg/L	<0.2
Fenitrothion	µg/L	<0.2
Malathion	µg/L	<0.2
Parathion	µg/L	<0.2
Ronnel	µg/L	<0.2
Surrogate TCMX	%	99

HM in water - dissolved				
Our Reference		186281-1		
Your Reference	UNITS	BH5		
Date Sampled		01/03/2018		
Type of sample		Water		
Date prepared	-	08/03/2018		
Date analysed	-	08/03/2018		
Arsenic-Dissolved	μg/L	2		
Cadmium-Dissolved	μg/L	<0.1		
Chromium-Dissolved	μg/L	1		
Copper-Dissolved	µg/L	<1		
Lead-Dissolved	μg/L	<1		
Mercury-Dissolved	µg/L	<0.05		
Nickel-Dissolved	μg/L	13		
Zinc-Dissolved	µg/L	1		

Miscellaneous Inorganics		
Our Reference		186281-1
Your Reference	UNITS	BH5
Date Sampled		01/03/2018
Type of sample		Water
Date prepared	-	07/03/2018
Date analysed	-	07/03/2018
Total Nitrogen in water	mg/L	14
NOx as N in water	mg/L	<0.005
Ammonia as N in water	mg/L	11
Phosphate as P in water	mg/L	0.062

Metals in Waters - Total		
Our Reference		186281-1
Your Reference	UNITS	BH5
Date Sampled		01/03/2018
Type of sample		Water
Date prepared	-	08/03/2018
Date analysed	-	08/03/2018
Phosphorus - Total	mg/L	0.5

Method ID	Methodology Summary
Inorg-055	Nitrate - determined colourimetrically. Soils are analysed following a water extraction.
Inorg-055/062	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Soils are analysed following a KCI extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Soils are analysed following a water extraction.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTI	ROL: vTRH((C6-C10)/E	BTEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			02/03/2018	1	02/03/2018	02/03/2018		02/03/2018	
Date analysed	-			02/03/2018	1	02/03/2018	02/03/2018		02/03/2018	
TRH C ₆ - C ₉	μg/L	10	Org-016	<10	1	<10	<10	0	106	
TRH C ₆ - C ₁₀	μg/L	10	Org-016	<10	1	<10	<10	0	106	
Benzene	µg/L	1	Org-016	<1	1	<1	<1	0	103	
Toluene	µg/L	1	Org-016	<1	1	<1	<1	0	105	
Ethylbenzene	µg/L	1	Org-016	<1	1	2	2	0	107	
m+p-xylene	µg/L	2	Org-016	<2	1	3	3	0	107	
o-xylene	µg/L	1	Org-016	<1	1	1	1	0	107	
Naphthalene	µg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-016	102	1	101	102	1	101	
Surrogate toluene-d8	%		Org-016	97	1	97	97	0	102	
Surrogate 4-BFB	%		Org-016	96	1	97	96	1	101	
QUALITY CON	ITROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
--	-------------	-----------	---------------	------------	------	------	---------	------	------------	----------
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			07/03/2018	[NT]		[NT]	[NT]	07/03/2018	
Date analysed	-			07/03/2018	[NT]		[NT]	[NT]	07/03/2018	
TRH C ₁₀ - C ₁₄	µg/L	50	Org-003	<50	[NT]		[NT]	[NT]	115	
TRH C ₁₅ - C ₂₈	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	112	
TRH C ₂₉ - C ₃₆	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	93	
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-003	<50	[NT]		[NT]	[NT]	115	
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	112	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-003	<100	[NT]		[NT]	[NT]	93	
Surrogate o-Terphenyl	%		Org-003	85	[NT]		[NT]	[NT]	105	

QUALIT	Y CONTROL	.: PAHs ir	Water			Du	plicate	Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]		
Date extracted	-			08/03/2018	[NT]		[NT]	[NT]	08/03/2018			
Date analysed	-			08/03/2018	[NT]		[NT]	[NT]	08/03/2018			
Naphthalene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	98			
Acenaphthylene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]			
Acenaphthene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]			
Fluorene	µg/L	1	Org-012	<1	[NT]		[NT]	[NT]	120			
Phenanthrene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	125			
Anthracene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]			
Fluoranthene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	118			
Pyrene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	125			
Benzo(a)anthracene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]			
Chrysene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	124			
Benzo(b,j+k)fluoranthene	μg/L	2	Org-012	<2	[NT]		[NT]	[NT]	[NT]			
Benzo(a)pyrene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	108			
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]			
Dibenzo(a,h)anthracene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]			
Benzo(g,h,i)perylene	μg/L	1	Org-012	<1	[NT]		[NT]	[NT]	[NT]			
Surrogate p-Terphenyl-d14	%		Org-012	84	[NT]		[NT]	[NT]	94			

QUA	LITY CONTRO	L: OCP in	water			Du	ıplicate		Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]		
Date extracted	-			08/03/2018	[NT]		[NT]	[NT]	08/03/2018			
Date analysed	-			08/03/2018	[NT]		[NT]	[NT]	08/03/2018			
НСВ	µg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	[NT]			
alpha-BHC	µg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	100			
gamma-BHC	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	[NT]			
beta-BHC	µg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	94			
Heptachlor	µg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	96			
delta-BHC	µg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	[NT]			
Aldrin	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	93			
Heptachlor Epoxide	µg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	97			
gamma-Chlordane	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	[NT]			
alpha-Chlordane	µg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	[NT]			
Endosulfan I	µg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	[NT]			
pp-DDE	µg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	102			
Dieldrin	µg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	109			
Endrin	µg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	98			
pp-DDD	µg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	106			
Endosulfan II	µg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	[NT]			
pp-DDT	µg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	[NT]			
Endrin Aldehyde	µg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	[NT]			
Endosulfan Sulphate	μg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	105			
Methoxychlor	µg/L	0.2	Org-005	<0.2	[NT]		[NT]	[NT]	[NT]			
Surrogate TCMX	%		Org-005	81	[NT]		[NT]	[NT]	90			

QUALITY CO	ONTROL: OF	P Pesticid	les in water			Spike Red	covery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			08/03/2018	[NT]		[NT]	[NT]	08/03/2018	
Date analysed	-			08/03/2018	[NT]		[NT]	[NT]	08/03/2018	
Azinphos-methyl (Guthion)	µg/L	0.2	Org-008	<0.2	[NT]		[NT]	[NT]	[NT]	
Bromophos ethyl	µg/L	0.2	Org-008	<0.2	[NT]		[NT]	[NT]	[NT]	
Chlorpyriphos	µg/L	0.2	Org-008	<0.2	[NT]		[NT]	[NT]	105	
Chlorpyriphos-methyl	µg/L	0.2	Org-008	<0.2	[NT]		[NT]	[NT]	[NT]	
Diazinon	µg/L	0.2	Org-008	<0.2	[NT]		[NT]	[NT]	[NT]	
Dichlorovos	µg/L	0.2	Org-008	<0.2	[NT]		[NT]	[NT]	75	
Dimethoate	µg/L	0.2	Org-008	<0.2	[NT]		[NT]	[NT]	[NT]	
Ethion	µg/L	0.2	Org-008	<0.2	[NT]		[NT]	[NT]	100	
Fenitrothion	µg/L	0.2	Org-008	<0.2	[NT]		[NT]	[NT]	106	
Malathion	µg/L	0.2	Org-008	<0.2	[NT]		[NT]	[NT]	99	
Parathion	µg/L	0.2	Org-008	<0.2	[NT]		[NT]	[NT]	108	
Ronnel	µg/L	0.2	Org-008	<0.2	[NT]		[NT]	[NT]	116	
Surrogate TCMX	%		Org-008	81	[NT]		[NT]	[NT]	84	

QUALITY CC	NTROL: HN	1 in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			08/03/2018	[NT]		[NT]	[NT]	08/03/2018	
Date analysed	-			08/03/2018	[NT]		[NT]	[NT]	08/03/2018	
Arsenic-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	105	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	[NT]		[NT]	[NT]	103	
Chromium-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	103	
Copper-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	96	
Lead-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	105	
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	[NT]		[NT]	[NT]	98	
Nickel-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	103	
Zinc-Dissolved	µg/L	1	Metals-022	<1	[NT]		[NT]	[NT]	101	

QUALITY COI	QUALITY CONTROL: Miscellaneous Inorganics								Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]		
Date prepared	-			07/03/2018	[NT]	[NT]	[NT]	[NT]	07/03/2018			
Date analysed	-			07/03/2018	[NT]	[NT]	[NT]	[NT]	07/03/2018			
Total Nitrogen in water	mg/L	0.1	Inorg-055/062	<0.1	[NT]	[NT]	[NT]	[NT]	92			
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	[NT]	[NT]	[NT]	[NT]	99			
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	[NT]	[NT]	[NT]	[NT]	99			
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	[NT]	[NT]	[NT]	[NT]	108			

QUALITY CC	NTROL: Me	tals in Wa		Du		Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			08/03/2018	[NT]		[NT]	[NT]	08/03/2018	
Date analysed	-			08/03/2018	[NT]		[NT]	[NT]	08/03/2018	
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	[NT]	[NT]	[NT]	[NT]	104	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45 μ m filter at the lab. Note: there is a possibility some elements may be underestimated.

ENVIR		-		CUSTO		_	_		00 42	24 34	4				12 . Ph: <u>Per</u> 16-	Ashley : 02 99 : <u>th Lat</u> : 18 Ha	y St, Cł 10 620 2- MPL yden C	virolab S atswood IO / sydi Laborat rt Myard IS / lab(d, NSW : ney@en cories ce, WA (2067 wirolab.com.a 6154	u
Client: Consu	Iting Earth Scientists						ct Nam				_	report	title):					•	•••		
	ion; Erin Millar							-,	-	130608	-	-			Melbourne Lab Enviroiab Services 1A Dalmore Drive Scoresby VIC 3179						
Project Mgr:	Mark Challoner		· · ·		PO No.:								Ph: 03 9763 2500 / melbourne@envirolab.com.au								
Sampler: Erin	n Millar				Envirolab Quote No. :									7a '	The Pa	arade,	- Enviro Norwoo	d, SA 50	067		
Address:		-			•		requir		-						Ph:	: 08 70	87 680	0/ade	laide@e	envirolab.com.	.au
	Level 55-65 Grandview St	1, Suite 3 reet, Pymble NSV	N 2073		Or choose: Standard / same day / 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required - surcharges									202	a, 10-2	0 Dep	- Envirol ot St, Bai 2 / bris	nyo, QLI		.au	
Phone:	(02)85 692 200	Mob:	0439 261 637		Additi	ional re	eport f	ormat:	esdat	/ equi	is /	-	_		Dar	rwin C	ffice -	Envirola	b Servic	es	
Email:	mail: erin.millar@consultingearth.com.au					ommei	nts:				_				ปก	it 7, 17	7 Wille	s Rd, Bei	rimah,	NT 0820 virolab.com.au	ı
	Sample	information								_	т	ests Re	equire	ı						Ca	omments
	olab Client Sample ID or Depth Date e ID information Type of sampled Type of sample						BTEX	0Cb	ddO	dissolved 8 metals	РАН	HOLD	-							informa	ide as much ition about the le as you can
	BH1	<u></u>	-1-Mar-	Water	-×-	x	X	x		X	-x-	-									
	BH2~			Water		x	-x-	_X-	-x-	X	~		_								
$\hat{\Omega}$	BH5	-	1-Mar	Water	·×		X	¥		~×	X	X						1	1		•
	QAQEL		1-Mar	Water	X		-x-	X	x	-x	x	ļ									
	OAQ62		-1-Mar-		Please forward to ALS for all analytes above											-		1			
	TB/TS		1-Mar	Water		<u>×</u>		\frown												-	
						<u> </u>															
			-				<u> </u>				<u> </u>			 		6	-		7-1dr	- Ansondar	
			-					_		_				├── ├		<u> </u>	rational area /	· · ·		A. 143 1498 5	56-
												<u> </u>		<u>├</u>		_		- 64	Rh. 10	(2), 991Q, 620	
												<u> </u>	İ			<u> </u>	, NO,		1		× 281
												1				[The st	12.0	livade			ab Ab
		<u> </u>			t	1					1							awad:			1430
						<u>+</u>		-						├──── ╎			aived		+		<u>430</u> Z
			<u> </u>		1									├────					lent		1-6
				· · · · · · · · · · · · · · · · · · ·										<u>├</u> {		C	'nŔ	in Fail	ant.	-1	
					 							├─-			Section Company and					<u> </u>	
						╺╂╍╉╶╋╾╋╶┼╼╆╼┿╶╄╾╎╍╇╴╼╸											+	+			
Relinguisber	telinquished by (Company): CES Received by (Com				mpany): 545						<u> </u>	<u>/</u>	Lah I	lse O	niv	<u> </u>	<u> </u>				
	nt Name: Erin Millar Print Name:			P. Ray Job number:						Lab Use Only Cooling: Ice / Ice pack / None											
Date & Time		118		Date & Time: //	1/3/2018 / 14:30 Temperature:						Security seal: Intact / Broken / None										
Signature2				Signature:			e: 27 A							E day / 1					Page 1 of 1		

Simon Song

From:	Erin Millar <erin.millar@consultingearth.com.au></erin.millar@consultingearth.com.au>
Sent:	Wednesday, 7 March 2018 9:40 AM
То:	Aileen Hie
Cc:	Simon Song
Subject:	RE: Sample Receipt for 186281 CES130608-BP

Hi Aileen / Simon,

This one appears to have slipped past me! Can I have this sample tested for the following:

- Nutrients
- TRH /BTEX
- OCP
- OPP
- Dissolved 8 heavy metals
- PAH

If you require any further information, please do not hesitate to contact me.

Kind Regards,

Erin Millar Environmental Scientist

www.consultingearth.com.au

Suite 3, Level 1 55, Grandview Street Pymble, NSW, 2073 Tel: +61 2 8569 2200 Fax: +61 2 9983 0582 M: +61 439 261 637 ABN 67 151 524 757

Confidentiality Notice

This email, including any attachments, is intended for the use of the addressee and is confidential. If you are not the addressee it may be unlawful for you to read, copy, distribute, disclose or otherwise use the information contained in or attached to this email. If you are not the addressee please delete this email and any attachments and inform us immediately by return email. Thank you.

Virus Disclaimer

CES has systems in place to maintain a virus-free computing environment. However, we cannot guarantee that products and emails sent to us electronically are virus-free. We therefore recommend that files sent by CES are checked prior to use on the receiving system. CES will make every effort to ensure that we do not re-transmit infected software but we are not liable for any loss or damage which may occur as a result of electronically transmitted material, nor for any distortion or changes made to the information contained in the transmission during transfer or following receipt by the addressee. At the discretion of CES we may send a paper copy for confirmation. In the event of any discrepancy between paper and electronic versions the paper version will take precedence.

From: Aileen Hie [mailto:AHie@envirolab.com.au] Sent: Thursday, 1 March 2018 6:07 PM To: erin.millar@consultingearth.com.au Subject: Sample Receipt for 186281 CES130608-BP

Please refer to attached for: a copy of our Sample Receipt Advice (SRA) Please open and read the SRA as it contains important information. Please let the lab know immediately if there are any issues.

S.X. T

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 186375

Client Details	
Client	Consulting Earth Scientists Pty Ltd
Attention	Mark Challoner, Tristan Goodbody, Samuel Inameti, Erin Millar
Address	Suite 3, Level 1, 55 Grandview Street, Pymble, NSW, 2073

Sample Details	
Your Reference	<u>CES130608-BP</u>
Number of Samples	3 Water
Date samples received	02/03/2018
Date completed instructions received	02/03/2018

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Report Details				
Date results requested by	09/03/2018			
Date of Issue	09/03/2018			
NATA Accreditation Number 2901. This document shall not be reproduced except in full.				
Accredited for compliance with ISO/I	EC 17025 - Testing. Tests not covered by NATA are denoted with *			

Results Approved By

Diego Bigolin, Team Leader, Inorganics Dragana Tomas, Senior Chemist Jaimie Loa-Kum-Cheung, Senior Chemist Jeremy Faircloth, Organics Supervisor Leon Ow, Chemist Steven Luong, Senior Chemist

Authorised By

David Springer, General Manager

vTRH(C6-C10)/BTEXN in Water				
Our Reference		186375-1	186375-2	186375-3
Your Reference	UNITS	BH01	BH2	QAQC1
Date Sampled		01/03/2018	01/03/2018	01/03/2018
Type of sample		Water	Water	Water
Date extracted	-	05/03/2018	05/03/2018	05/03/2018
Date analysed	-	05/03/2018	05/03/2018	05/03/2018
TRH C ₆ - C ₉	µg/L	<10	<10	<10
TRH C ₆ - C ₁₀	µg/L	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	<10	<10
Benzene	µg/L	<1	<1	<1
Toluene	µg/L	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2
o-xylene	μg/L	<1	<1	<1
Naphthalene	µg/L	<1	<1	<1
Surrogate Dibromofluoromethane	%	100	99	99
Surrogate toluene-d8	%	98	97	96
Surrogate 4-BFB	%	94	96	98

svTRH (C10-C40) in Water				
Our Reference		186375-1	186375-2	186375-3
Your Reference	UNITS	BH01	BH2	QAQC1
Date Sampled		01/03/2018	01/03/2018	01/03/2018
Type of sample		Water	Water	Water
Date extracted	-	05/03/2018	05/03/2018	05/03/2018
Date analysed	-	05/03/2018	05/03/2018	06/03/2018
TRH C ₁₀ - C ₁₄	µg/L	<50	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100	<100
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	µg/L	<50	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100
Surrogate o-Terphenyl	%	75	81	86

PAHs in Water				_
Our Reference		186375-1	186375-2	186375-3
Your Reference	UNITS	BH01	BH2	QAQC1
Date Sampled		01/03/2018	01/03/2018	01/03/2018
Type of sample		Water	Water	Water
Date extracted	-	05/03/2018	05/03/2018	05/03/2018
Date analysed	-	05/03/2018	05/03/2018	05/03/2018
Naphthalene	µg/L	<1	<1	<1
Acenaphthylene	µg/L	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1
Fluorene	µg/L	<1	<1	<1
Phenanthrene	µg/L	<1	<1	<1
Anthracene	µg/L	<1	<1	<1
Fluoranthene	µg/L	<1	<1	<1
Pyrene	µg/L	<1	<1	<1
Benzo(a)anthracene	µg/L	<1	<1	<1
Chrysene	µg/L	<1	<1	<1
Benzo(b,j+k)fluoranthene	µg/L	<2	<2	<2
Benzo(a)pyrene	µg/L	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1
Benzo(g,h,i)perylene	µg/L	<1	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5	<5
Total +ve PAH's	µg/L	NIL (+)VE	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	106	112	112

OCP in water				
Our Reference		186375-1	186375-2	186375-3
Your Reference	UNITS	BH01	BH2	QAQC1
Date Sampled		01/03/2018	01/03/2018	01/03/2018
Type of sample		Water	Water	Water
Date extracted	-	05/03/2018	05/03/2018	05/03/2018
Date analysed	-	05/03/2018	05/03/2018	05/03/2018
нсв	µg/L	<0.2	<0.2	<0.2
alpha-BHC	µg/L	<0.2	<0.2	<0.2
gamma-BHC	µg/L	<0.2	<0.2	<0.2
beta-BHC	µg/L	<0.2	<0.2	<0.2
Heptachlor	µg/L	<0.2	<0.2	<0.2
delta-BHC	µg/L	<0.2	<0.2	<0.2
Aldrin	µg/L	<0.2	<0.2	<0.2
Heptachlor Epoxide	µg/L	<0.2	<0.2	<0.2
gamma-Chlordane	µg/L	<0.2	<0.2	<0.2
alpha-Chlordane	µg/L	<0.2	<0.2	<0.2
Endosulfan I	µg/L	<0.2	<0.2	<0.2
pp-DDE	µg/L	<0.2	<0.2	<0.2
Dieldrin	µg/L	<0.2	<0.2	<0.2
Endrin	µg/L	<0.2	<0.2	<0.2
pp-DDD	µg/L	<0.2	<0.2	<0.2
Endosulfan II	µg/L	<0.2	<0.2	<0.2
pp-DDT	µg/L	<0.2	<0.2	<0.2
Endrin Aldehyde	µg/L	<0.2	<0.2	<0.2
Endosulfan Sulphate	µg/L	<0.2	<0.2	<0.2
Methoxychlor	µg/L	<0.2	<0.2	<0.2
Surrogate TCMX	%	70	73	77

OP Pesticides in water				
Our Reference		186375-1	186375-2	186375-3
Your Reference	UNITS	BH01	BH2	QAQC1
Date Sampled		01/03/2018	01/03/2018	01/03/2018
Type of sample		Water	Water	Water
Date extracted	-	05/03/2018	05/03/2018	05/03/2018
Date analysed	-	05/03/2018	05/03/2018	05/03/2018
Azinphos-methyl (Guthion)	µg/L	<0.2	<0.2	<0.2
Bromophos ethyl	µg/L	<0.2	<0.2	<0.2
Chlorpyriphos	µg/L	<0.2	<0.2	<0.2
Chlorpyriphos-methyl	µg/L	<0.2	<0.2	<0.2
Diazinon	µg/L	<0.2	<0.2	<0.2
Dichlorovos	µg/L	<0.2	<0.2	<0.2
Dimethoate	µg/L	<0.2	<0.2	<0.2
Ethion	µg/L	<0.2	<0.2	<0.2
Fenitrothion	µg/L	<0.2	<0.2	<0.2
Malathion	µg/L	<0.2	<0.2	<0.2
Parathion	μg/L	<0.2	<0.2	<0.2
Ronnel	µg/L	<0.2	<0.2	<0.2
Surrogate TCMX	%	70	73	77

HM in water - dissolved				
Our Reference		186375-1	186375-2	186375-3
Your Reference	UNITS	BH01	BH2	QAQC1
Date Sampled		01/03/2018	01/03/2018	01/03/2018
Type of sample		Water	Water	Water
Date prepared	-	05/03/2018	05/03/2018	05/03/2018
Date analysed	-	05/03/2018	05/03/2018	05/03/2018
Arsenic-Dissolved	µg/L	6	5	5
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	7	7
Copper-Dissolved	µg/L	2	<1	2
Lead-Dissolved	µg/L	<1	<1	<1
Mercury-Dissolved	µg/L	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	2	2	2
Zinc-Dissolved	µg/L	6	4	7

Miscellaneous Inorganics				_
Our Reference		186375-1	186375-2	186375-3
Your Reference	UNITS	BH01	BH2	QAQC1
Date Sampled		01/03/2018	01/03/2018	01/03/2018
Type of sample		Water	Water	Water
Date prepared	-	02/03/2018	02/03/2018	02/03/2018
Date analysed	-	02/03/2018	02/03/2018	02/03/2018
Total Nitrogen in water	mg/L	9.1	18	18
NOx as N in water	mg/L	0.05	0.3	0.3
Ammonia as N in water	mg/L	5.2	12	11
Phosphate as P in water	mg/L	0.10	0.23	0.21

Metals in Waters - Total				
Our Reference		186375-1	186375-2	186375-3
Your Reference	UNITS	BH01	BH2	QAQC1
Date Sampled		01/03/2018	01/03/2018	01/03/2018
Type of sample		Water	Water	Water
Date prepared	-	06/03/2018	06/03/2018	06/03/2018
Date analysed	-	07/03/2018	07/03/2018	07/03/2018
Phosphorus - Total	mg/L	0.4	1.2	1.3

Method ID	Methodology Summary
Inorg-055	Nitrate - determined colourimetrically. Soils are analysed following a water extraction.
Inorg-055/062	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Soils are analysed following a KCI extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Soils are analysed following a water extraction.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-003	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-005	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-008	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC with dual ECD's.
Org-012	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-013	Water samples are analysed directly by purge and trap GC-MS.
Org-016	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTI	ROL: vTRH((C6-C10)/E	BTEXN in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			05/03/2018	1	05/03/2018	05/03/2018		05/03/2018	
Date analysed	-			05/03/2018	1	05/03/2018	05/03/2018		05/03/2018	
TRH C ₆ - C ₉	μg/L	10	Org-016	<10	1	<10	<10	0	118	
TRH C ₆ - C ₁₀	μg/L	10	Org-016	<10	1	<10	<10	0	118	
Benzene	μg/L	1	Org-016	<1	1	<1	<1	0	114	
Toluene	μg/L	1	Org-016	<1	1	<1	<1	0	119	
Ethylbenzene	μg/L	1	Org-016	<1	1	<1	<1	0	119	
m+p-xylene	μg/L	2	Org-016	<2	1	<2	<2	0	119	
o-xylene	μg/L	1	Org-016	<1	1	<1	<1	0	120	
Naphthalene	μg/L	1	Org-013	<1	1	<1	<1	0	[NT]	
Surrogate Dibromofluoromethane	%		Org-016	102	1	100	100	0	103	
Surrogate toluene-d8	%		Org-016	96	1	98	97	1	100	
Surrogate 4-BFB	%		Org-016	95	1	94	97	3	99	

QUALITY CON	QUALITY CONTROL: svTRH (C10-C40) in Water								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	186375-2
Date extracted	-			05/03/2018	1	05/03/2018	05/03/2018		05/03/2018	05/03/2018
Date analysed	-			05/03/2018	1	05/03/2018	05/03/2018		05/03/2018	05/03/2018
TRH C ₁₀ - C ₁₄	µg/L	50	Org-003	<50	1	<50	<50	0	110	107
TRH C ₁₅ - C ₂₈	µg/L	100	Org-003	<100	1	<100	<100	0	111	121
TRH C ₂₉ - C ₃₆	µg/L	100	Org-003	<100	1	<100	<100	0	86	107
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-003	<50	1	<50	<50	0	110	107
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-003	<100	1	<100	<100	0	111	121
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-003	<100	1	<100	<100	0	86	107
Surrogate o-Terphenyl	%		Org-003	80	1	75	66	13	93	81

QUALIT	Y CONTROL	.: PAHs ir	Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	186375-2
Date extracted	-			05/03/2018	1	05/03/2018	05/03/2018		05/03/2018	05/03/2018
Date analysed	-			05/03/2018	1	05/03/2018	05/03/2018		05/03/2018	05/03/2018
Naphthalene	µg/L	1	Org-012	<1	1	<1	<1	0	96	70
Acenaphthylene	µg/L	1	Org-012	<1	1	<1	<1	0	[NT]	[NT]
Acenaphthene	μg/L	1	Org-012	<1	1	<1	<1	0	[NT]	[NT]
Fluorene	μg/L	1	Org-012	<1	1	<1	<1	0	105	82
Phenanthrene	μg/L	1	Org-012	<1	1	<1	<1	0	105	81
Anthracene	μg/L	1	Org-012	<1	1	<1	<1	0	[NT]	[NT]
Fluoranthene	μg/L	1	Org-012	<1	1	<1	<1	0	114	101
Pyrene	μg/L	1	Org-012	<1	1	<1	<1	0	120	109
Benzo(a)anthracene	μg/L	1	Org-012	<1	1	<1	<1	0	[NT]	[NT]
Chrysene	μg/L	1	Org-012	<1	1	<1	<1	0	109	88
Benzo(b,j+k)fluoranthene	μg/L	2	Org-012	<2	1	<2	<2	0	[NT]	[NT]
Benzo(a)pyrene	μg/L	1	Org-012	<1	1	<1	<1	0	125	97
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-012	<1	1	<1	<1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	μg/L	1	Org-012	<1	1	<1	<1	0	[NT]	[NT]
Benzo(g,h,i)perylene	μg/L	1	Org-012	<1	1	<1	<1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-012	130	1	106	96	10	98	126

QUA	LITY CONTRO	L: OCP ir	water			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	186375-2	
Date extracted	-			05/03/2018	1	05/03/2018	05/03/2018		05/03/2018	05/03/2018	
Date analysed	-			05/03/2018	1	05/03/2018	05/03/2018		05/03/2018	05/03/2018	
НСВ	µg/L	0.2	Org-005	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
alpha-BHC	µg/L	0.2	Org-005	<0.2	1	<0.2	<0.2	0	108	85	
gamma-BHC	µg/L	0.2	Org-005	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
beta-BHC	µg/L	0.2	Org-005	<0.2	1	<0.2	<0.2	0	111	111	
Heptachlor	µg/L	0.2	Org-005	<0.2	1	<0.2	<0.2	0	110	110	
delta-BHC	µg/L	0.2	Org-005	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Aldrin	µg/L	0.2	Org-005	<0.2	1	<0.2	<0.2	0	108	112	
Heptachlor Epoxide	µg/L	0.2	Org-005	<0.2	1	<0.2	<0.2	0	120	124	
gamma-Chlordane	µg/L	0.2	Org-005	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
alpha-Chlordane	µg/L	0.2	Org-005	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Endosulfan I	µg/L	0.2	Org-005	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
pp-DDE	µg/L	0.2	Org-005	<0.2	1	<0.2	<0.2	0	129	123	
Dieldrin	µg/L	0.2	Org-005	<0.2	1	<0.2	<0.2	0	128	131	
Endrin	µg/L	0.2	Org-005	<0.2	1	<0.2	<0.2	0	123	118	
pp-DDD	µg/L	0.2	Org-005	<0.2	1	<0.2	<0.2	0	128	122	
Endosulfan II	µg/L	0.2	Org-005	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
pp-DDT	µg/L	0.2	Org-005	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Endrin Aldehyde	µg/L	0.2	Org-005	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Endosulfan Sulphate	µg/L	0.2	Org-005	<0.2	1	<0.2	<0.2	0	121	74	
Methoxychlor	µg/L	0.2	Org-005	<0.2	1	<0.2	<0.2	0	[NT]	[NT]	
Surrogate TCMX	%		Org-005	70	1	70	71	1	77	86	

QUALITY CO	ONTROL: OF	P Pesticid	les in water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	186375-3
Date extracted	-			05/03/2018	1	05/03/2018	05/03/2018		05/03/2018	05/03/2018
Date analysed	-			05/03/2018	1	05/03/2018	05/03/2018		05/03/2018	05/03/2018
Azinphos-methyl (Guthion)	µg/L	0.2	Org-008	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Bromophos ethyl	µg/L	0.2	Org-008	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Chlorpyriphos	µg/L	0.2	Org-008	<0.2	1	<0.2	<0.2	0	91	92
Chlorpyriphos-methyl	µg/L	0.2	Org-008	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Diazinon	µg/L	0.2	Org-008	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Dichlorovos	µg/L	0.2	Org-008	<0.2	1	<0.2	<0.2	0	96	102
Dimethoate	µg/L	0.2	Org-008	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Ethion	µg/L	0.2	Org-008	<0.2	1	<0.2	<0.2	0	100	111
Fenitrothion	µg/L	0.2	Org-008	<0.2	1	<0.2	<0.2	0	111	88
Malathion	µg/L	0.2	Org-008	<0.2	1	<0.2	<0.2	0	112	85
Parathion	µg/L	0.2	Org-008	<0.2	1	<0.2	<0.2	0	106	95
Ronnel	µg/L	0.2	Org-008	<0.2	1	<0.2	<0.2	0	101	99
Surrogate TCMX	%		Org-008	70	1	70	71	1	73	74

QUALITY CC	NTROL: HN	1 in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	186375-2
Date prepared	-			05/03/2018	1	05/03/2018	05/03/2018		05/03/2018	05/03/2018
Date analysed	-			05/03/2018	1	05/03/2018	05/03/2018		05/03/2018	05/03/2018
Arsenic-Dissolved	µg/L	1	Metals-022	<1	1	6	[NT]		100	[NT]
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	<0.1	[NT]		103	[NT]
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	<1	[NT]		96	[NT]
Copper-Dissolved	µg/L	1	Metals-022	<1	1	2	[NT]		95	[NT]
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	[NT]		104	[NT]
Mercury-Dissolved	µg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	100	92
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	2	[NT]		97	[NT]
Zinc-Dissolved	µg/L	1	Metals-022	<1	1	6	[NT]		99	[NT]

QUALITY COI	QUALITY CONTROL: Miscellaneous Inorganics								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			02/03/2018	[NT]	[NT]		[NT]	02/03/2018	
Date analysed	-			02/03/2018	[NT]	[NT]		[NT]	02/03/2018	
Total Nitrogen in water	mg/L	0.1	Inorg-055/062	<0.1	[NT]	[NT]		[NT]	96	
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	[NT]	[NT]		[NT]	101	
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	[NT]	[NT]		[NT]	101	
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	[NT]	[NT]		[NT]	108	

QUALITY CC	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date prepared	-			06/03/2018	1	06/03/2018	06/03/2018		06/03/2018	[NT]
Date analysed	-			07/03/2018	1	07/03/2018	07/03/2018		07/03/2018	[NT]
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	1	0.4	0.4	0	106	[NT]

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform Eaecal Enterococci. & E Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: <5xPQL - any RPD is acceptable; >5xPQL - 0-50% RPD is acceptable.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals; 60-140% for organics (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

CERTIFICATE OF ANALYSIS

Work Order	ES1806787	Page	: 1 of 7
Client	: CONSULTING EARTH SCIENTISTS	Laboratory	Environmental Division Sydney
Contact	: MARK CHALLONER	Contact	: Customer Services ES
Address	Suite 3, Level 1 55-65 Grandview Street PYMBLE NSW, AUSTRALIA 2073	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone	+61 02 8569 2200	Telephone	: +61-2-8784 8555
Project	: CES130608-BP	Date Samples Received	: 05-Mar-2018 14:10
Order number	:	Date Analysis Commenced	: 05-Mar-2018
C-O-C number	:	Issue Date	: 12-Mar-2018 15:28
Sampler	: SAM INAMETI		IZ-MAR-2018 15:28
Site	:		
Quote number	: SYBQ/521/16		Accreditation No. 825
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	: 1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Celine Conceicao	Senior Spectroscopist	Sydney Inorganics, Smithfield, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

• EK059G: result for sample 1 reported from natural bottle (refer run 2424003)

Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.

Page : 3 of 7 Work Order : ES1806787 Client : CONSULTING EARTH SCIENTISTS Project : CES130608-BP

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	QAQC2				
	Cl	ient sampli	ng date / time	01-Mar-2018 00:00				
Compound	CAS Number	LOR	Unit	ES1806787-001				
				Result				
EG020F: Dissolved Metals by ICP-M	S							
Arsenic	7440-38-2	0.001	mg/L	0.005				
Cadmium	7440-43-9	0.0001	mg/L	<0.0001				
Chromium	7440-47-3	0.001	mg/L	0.006				
Copper	7440-50-8	0.001	mg/L	<0.001				
Lead	7439-92-1	0.001	mg/L	<0.001				
Nickel	7440-02-0	0.001	mg/L	0.002				
Zinc	7440-66-6	0.005	mg/L	<0.005				
EG035F: Dissolved Mercury by FIMS	S							
Mercury	7439-97-6	0.0001	mg/L	<0.0001				
EK055G: Ammonia as N by Discrete								
Ammonia as N	7664-41-7	0.01	mg/L	11.7				
EK057G: Nitrite as N by Discrete Ar	nalvser							
Nitrite as N	14797-65-0	0.01	mg/L	0.26				
EK058G: Nitrate as N by Discrete A								
Nitrate as N	14797-55-8	0.01	mg/L	0.07				
EK059G: Nitrite plus Nitrate as N (N		lvser	_					
Nitrite + Nitrate as N		0.01	mg/L	0.33				
EK061G: Total Kjeldahl Nitrogen By			3					
Total Kjeldahl Nitrogen as N	Discrete Analysei	0.1	mg/L	17.8				
EK062G: Total Nitrogen as N (TKN +								
^ Total Nitrogen as N	- NOX) by Discrete Al	0.1	mg/L	18.1				
_								
EK067G: Total Phosphorus as P by Total Phosphorus as P	Discrete Analyser	0.01	mg/L	0.51				
-		0.01	iiig/2	0.01				
EP068A: Organochlorine Pesticides alpha-BHC	319-84-6	0.5	μg/L	<0.5				
Hexachlorobenzene (HCB)	118-74-1	0.5	μg/L	<0.5				
beta-BHC	319-85-7	0.5	μg/L	<0.5				
gamma-BHC	58-89-9	0.5	μg/L	<0.5				
delta-BHC	319-86-8	0.5	μg/L	<0.5				
Heptachlor	76-44-8	0.5	μg/L	<0.5				
Aldrin	309-00-2	0.5	μg/L	<0.5				
Heptachlor epoxide	1024-57-3	0.5	μg/L	<0.5				
trans-Chlordane	5103-74-2	0.5	μg/L	<0.5				
alpha-Endosulfan	959-98-8	0.5	µg/L	<0.5				
• • • • • •			r 5		1	1	1	

Page : 4 of 7 Work Order : ES1806787 Client : CONSULTING EARTH SCIENTISTS Project : CES130608-BP

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	QAQC2	 	
	Cli	ent samplii	ng date / time	01-Mar-2018 00:00	 	
Compound	CAS Number	LOR	Unit	ES1806787-001	 	
				Result	 	
EP068A: Organochlorine Pestic	ides (OC) - Continued					
cis-Chlordane	5103-71-9	0.5	µg/L	<0.5	 	
Dieldrin	60-57-1	0.5	µg/L	<0.5	 	
4.4`-DDE	72-55-9	0.5	μg/L	<0.5	 	
Endrin	72-20-8	0.5	µg/L	<0.5	 	
beta-Endosulfan	33213-65-9	0.5	µg/L	<0.5	 	
4.4`-DDD	72-54-8	0.5	μg/L	<0.5	 	
Endrin aldehyde	7421-93-4	0.5	μg/L	<0.5	 	
Endosulfan sulfate	1031-07-8	0.5	µg/L	<0.5	 	
4.4`-DDT	50-29-3	2.0	µg/L	<2.0	 	
Endrin ketone	53494-70-5	0.5	μg/L	<0.5	 	
Methoxychlor	72-43-5	2.0	μg/L	<2.0	 	
^ Total Chlordane (sum)		0.5	μg/L	<0.5	 	
^ Sum of DDD + DDE + DDT	72-54-8/72-55-9/5	0.5	µg/L	<0.5	 	
	0-2					
^ Sum of Aldrin + Dieldrin	309-00-2/60-57-1	0.5	µg/L	<0.5	 	
EP068B: Organophosphorus Pe	esticides (OP)					
Dichlorvos	62-73-7	0.5	µg/L	<0.5	 	
Demeton-S-methyl	919-86-8	0.5	µg/L	<0.5	 	
Monocrotophos	6923-22-4	2.0	µg/L	<2.0	 	
Dimethoate	60-51-5	0.5	µg/L	<0.5	 	
Diazinon	333-41-5	0.5	µg/L	<0.5	 	
Chlorpyrifos-methyl	5598-13-0	0.5	µg/L	<0.5	 	
Parathion-methyl	298-00-0	2.0	µg/L	<2.0	 	
Malathion	121-75-5	0.5	µg/L	<0.5	 	
Fenthion	55-38-9	0.5	µg/L	<0.5	 	
Chlorpyrifos	2921-88-2	0.5	µg/L	<0.5	 	
Parathion	56-38-2	2.0	µg/L	<2.0	 	
Pirimphos-ethyl	23505-41-1	0.5	µg/L	<0.5	 	
Chlorfenvinphos	470-90-6	0.5	µg/L	<0.5	 	
Bromophos-ethyl	4824-78-6	0.5	µg/L	<0.5	 	
Fenamiphos	22224-92-6	0.5	µg/L	<0.5	 	
Prothiofos	34643-46-4	0.5	µg/L	<0.5	 	
Ethion	563-12-2	0.5	µg/L	<0.5	 	
Carbophenothion	786-19-6	0.5	µg/L	<0.5	 	
Azinphos Methyl	86-50-0	0.5	µg/L	<0.5	 	

Page : 5 of 7 Work Order : ES1806787 Client : CONSULTING EARTH SCIENTISTS Project : CES130608-BP

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	QAQC2	 	
	Cl	ient sampli	ng date / time	01-Mar-2018 00:00	 	
Compound	CAS Number	LOR	Unit	ES1806787-001	 	
				Result	 	
EP075(SIM)B: Polynuclear Aromatic I	Hydrocarbons					
Naphthalene	91-20-3	1.0	µg/L	<1.0	 	
Acenaphthylene	208-96-8	1.0	µg/L	<1.0	 	
Acenaphthene	83-32-9	1.0	µg/L	<1.0	 	
Fluorene	86-73-7	1.0	µg/L	<1.0	 	
Phenanthrene	85-01-8	1.0	µg/L	<1.0	 	
Anthracene	120-12-7	1.0	µg/L	<1.0	 	
Fluoranthene	206-44-0	1.0	μg/L	<1.0	 	
Pyrene	129-00-0	1.0	μg/L	<1.0	 	
Benz(a)anthracene	56-55-3	1.0	μg/L	<1.0	 	
Chrysene	218-01-9	1.0	µg/L	<1.0	 	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	1.0	µg/L	<1.0	 	
Benzo(k)fluoranthene	207-08-9	1.0	µg/L	<1.0	 	
Benzo(a)pyrene	50-32-8	0.5	µg/L	<0.5	 	
Indeno(1.2.3.cd)pyrene	193-39-5	1.0	µg/L	<1.0	 	
Dibenz(a.h)anthracene	53-70-3	1.0	µg/L	<1.0	 	
Benzo(g.h.i)perylene	191-24-2	1.0	µg/L	<1.0	 	
^ Sum of polycyclic aromatic hydrocarbo	ns	0.5	µg/L	<0.5	 	
^ Benzo(a)pyrene TEQ (zero)		0.5	µg/L	<0.5	 	
EP080/071: Total Petroleum Hydroca	rbons					
C6 - C9 Fraction		20	µg/L	<20	 	
C10 - C14 Fraction		50	µg/L	<50	 	
C15 - C28 Fraction		100	µg/L	<100	 	
C29 - C36 Fraction		50	µg/L	<50	 	
^ C10 - C36 Fraction (sum)		50	µg/L	<50	 	
EP080/071: Total Recoverable Hydrod	carbons - NEPM 201	3 Fractio	ns			
C6 - C10 Fraction	C6_C10	20	µg/L	<20	 	
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	20	µg/L	<20	 	
(F1)						
>C10 - C16 Fraction		100	µg/L	<100	 	
>C16 - C34 Fraction		100	µg/L	<100	 	
>C34 - C40 Fraction		100	µg/L	<100	 	
^ >C10 - C40 Fraction (sum)		100	µg/L	<100	 	
^ >C10 - C16 Fraction minus Naphthalene	,	100	µg/L	<100	 	
(F2)						
EP080: BTEXN						

Page : 6 of 7 Work Order : ES1806787 Client : CONSULTING EARTH SCIENTISTS Project : CES130608-BP

Sub-Matrix: WATER (Matrix: WATER)		Clie	ent sample ID	QAQC2	 	
	Cli	ent sampli	ng date / time	01-Mar-2018 00:00	 	
Compound	CAS Number	LOR	Unit	ES1806787-001	 	
				Result	 	
EP080: BTEXN - Continued						
Benzene	71-43-2	1	μg/L	<1	 	
Toluene	108-88-3	2	μg/L	<2	 	
Ethylbenzene	100-41-4	2	μg/L	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	 	
ortho-Xylene	95-47-6	2	μg/L	<2	 	
^ Total Xylenes		2	μg/L	<2	 	
^ Sum of BTEX		1	μg/L	<1	 	
Naphthalene	91-20-3	5	μg/L	<5	 	
EP068S: Organochlorine Pesticide	e Surrogate					
Dibromo-DDE	21655-73-2	0.5	%	108	 	
EP068T: Organophosphorus Pest	icide Surrogate					
DEF	78-48-8	0.5	%	96.4	 	
EP075(SIM)S: Phenolic Compound	d Surrogates					
Phenol-d6	13127-88-3	1.0	%	20.8	 	
2-Chlorophenol-D4	93951-73-6	1.0	%	57.3	 	
2.4.6-Tribromophenol	118-79-6	1.0	%	80.5	 	
EP075(SIM)T: PAH Surrogates						
2-Fluorobiphenyl	321-60-8	1.0	%	85.5	 	
Anthracene-d10	1719-06-8	1.0	%	86.2	 	
4-Terphenyl-d14	1718-51-0	1.0	%	94.9	 	
EP080S: TPH(V)/BTEX Surrogates	;					
1.2-Dichloroethane-D4	17060-07-0	2	%	129	 	
Toluene-D8	2037-26-5	2	%	104	 	
4-Bromofluorobenzene	460-00-4	2	%	110	 	

Surrogate Control Limits

Sub-Matrix: WATER		Deserver	(Limite (9/)
		Recovery	y Limits (%)
Compound	CAS Number	Low	High
EP068S: Organochlorine Pesticide Surrogat	e		
Dibromo-DDE	21655-73-2	67	111
EP068T: Organophosphorus Pesticide Surro	ogate		
DEF	78-48-8	67	111
EP075(SIM)S: Phenolic Compound Surrogat	es		
Phenol-d6	13127-88-3	10	44
2-Chlorophenol-D4	93951-73-6	14	94
2.4.6-Tribromophenol	118-79-6	17	125
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	20	104
Anthracene-d10	1719-06-8	27	113
4-Terphenyl-d14	1718-51-0	32	112
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	71	137
Toluene-D8	2037-26-5	79	131
4-Bromofluorobenzene	460-00-4	70	128

ENVIRO			N OF CU	-				0 42	4 344	L					12 Asi Ph: 02 <u>Perth</u> 16-18	iley St, (9910 62 <u>Lab</u> - Mi Hayden	Chatswo 200 / sy PL Labor: Crt Mya	atories ree, WA 6	virolab.com.au
Client: CES					Client	: Projec	t Nam	e / Nu	mber ,	/ Site e	tc (ie r	eport t	itle):	7	Ph: 08 9317 2505 / lab@mpl.com.au				
Contact Perso	ın: E. Millar 🛛 🛞								CES13	0608-B	P							olab Servi	
Project Mgr: I	Mark Challoner				PO No).: 												resby VIC : elbourne@	3179 @envirolab.com.au
Sampler: S. I	nameti					olab Qu			_						<u>Adelaide Office</u> - Envirolab Services 7a The Parade, Norwood, SA 5067 Ph: 08 7087 6800 / adelaide@envirolab.com.au <u>Brisbane Office</u> - Envirolab Services				
Address					Ór ch Note:		standai <i>lab-in-a</i> r	rd√ sa		y / 1 d i nt turna	ay / 2 c			i.					
Phone:	413601751	Mob:		· · · · · · · · · · · · · · · · · · ·				ormat:	esdat	t / equi	s /	· · · ·							
Email:	mark.challoner@consult samu	ingearth.com. l.inameti@con	sultingearth.com.au	tingearth.com.au	Lab C	ommer									20a, 10-20 Depot St, Banyo, QLD 4014 Ph: 07 3266 9532 / brisbane@envirolab.com.au <u>Darwin Office</u> - Envirolab Services Unit 7, 17 Willes Rd, Berrimah, NT 0820 Ph: 08 8967 1201 / darwin@envirolab.com.au				
Mary 1994	Sa	mple informat	ion			N 9 9			5. N. C. (A	Ki Ka	Test	s Requ	Ired			6- 103			Comments
Envirolab Sample ID	Client Sample ID or information	Depth	Date sampled	Type of sample	8 Dissolved HM	Nutrients	TRH/BTEX	РАН	OCP	dдо									Provide as mu information abou sample as you o
) (4	3+01	-	01-03-18	Water	×	×	×	×	\times	X									
	BH2	-	01-03-18	Water	×	×	×	x	×	X									1
• 3	QAQCI	~~~~		/1	$\overline{\star}$	X		×	~	A									· ·
		ditta.	11		$+ \tilde{-}$, [~]		<u> </u>	+						_	'\	<u> </u>	send to A
<u>y </u>	QAQUZ	201 201	ň	1,									•		nivisia	30	<u> </u>	+-2	
<u> </u>	TS		Contralate Sort	d			· · · ·		ļ			Env	ironme	ntai	0		\		
	TB	prov.		v St		ļ				1949a		Sy₫	ney Vork Ord	ler Re	ference	57	ŀ		-
	••••••••••••••••••••••		Chatswood NSW <u> </u>	5200	ļ				ļ	ļ		1	ES1	80	610) [ł		
		L. Joh No.	196375	<u></u>						ļ	1			-		n 111	1	·	
			07-03-18			ļ			ļ	ļ		1		2.000	1 Wales			ì.	
		le Re			<u> </u>							ł						\ -	
		P/H site / 19 Bridger	sby: JE		 	ļ				<u> </u>	NS -			W.W	1.11			\	
		- up 6	Ambient			<u> </u>			 	<u> </u>	L			\mathbf{n}_{i}	1.10		÷	\	
		200	on/Ambient		ļ	ļ			<u> </u>	<u> </u>		¥	relephone	+ 61-2	8784 8556			<u> </u>	
		C cathy		(10) 100 年代 (10) 年後日	ļ				ļ			<u> </u>	elehnone		,				
			L		 			L	<u> </u>			L							<u> </u>
Relinquished	by (Company):	CES	/·	215	1	ved by		any):	ELC						ab use o	-	1		
Print Name:		S. Inameti		5/3/18	1	Name:			TE	£ -			<u> </u>						ient (circle one)
Date & Time:		01_03-18	A4-1-		1	& Time		2.03			500			Te	emperat	are Rec	eived a	at:16.	* ^C (if applicable) t / courier
			and the second sec			ture: N													

Appendix D Acid Sulfate Soil Screening Results

CES130608-BP 19 Marsh Street Detailed Site Investigation

Appendix D: ASS Field Screening Results

Sample Location	Depth (m)	Soil Description	рН _f	pH _{fox}	Effervesence	Odour	Colour change	pH change	PASS?	Submitted to laboratory
BH01	0.5	Gravelly sand, pale brown, F-M	8.33	5.82	XX	N	Ν	2.51	N	Ν
BH01	1.0	Gravelly sand, pale brown, F-M	6.97	5.81	XX	N	Ν	1.16	N	Ν
BH01	1.5	Gravelly sand, pale brown, F-M, shell fragments, wet	6.13	2.48	XXX	N	N	3.65	Y	Y
BH01	2.0	Gravelly sand, pale brown, F-M, shell fragments, wet	5.72	3.66	XX	N	N	2.06	N	N
BH01	2.5	Silty sand, dark brown, F-M	6.60	5.30	XXX	N	Ν	1.3	N	Ν
BH01	3.0	Silty sand, dark brown, F-M	7.15	4.27	XXX	N	Ν	2.88	N	Ν
BH02	0.5	Silty sand, brown, wet	5.91	5.60	N/A	N	Ν	0.31	N	Ν
BH02	1.0	Gravelly, silty sand, red/brown, wet	5.76	5.46	Х	N	N	0.30	N	N
BH02	1.5	Silty clay, dark grey	6.11	2.93	XXX	N	rk grey to pale brow	3.18	Y	Y
BH02	2.0	Silty clay, dark grey	5.71	4.09	XXX	N	rk grey to pale brow	1.62	Ν	Ν
BH02	3.0	Clayey sand, dark grey	6.40	5.36	XX	N	Ν	1.04	N	Ν
BH02	3.25	Clayey sand, dark grey	6.56	0.81	XXX	Ν	Ν	5.75	Y	Ν
BH03	0.5	Silty sand, brown, shell fragments.	7.31	6.70	XX	N	Ν	0.61	N	Ν
BH04	0.5	Gravelly sand, pale brown, F-M, wet	6.22	5.65	Х	N	Ν	0.57	N	N
BH04	1.0	Clay, pale grey/brown, high plasticity	7.08	5.62	Х	Ν	Ν	1.46	N	N

Appendix E Field Data Sheets

GROUNDWATER FIELD DATA SHEET

Client: Boyd Properties Pty Ltd		CES Project Code:	CES130608-BP
Project: 19 Marsh St_DESA		Location: 19 Marsh St,	Arncliffe
Sampler (s): EM	Signature(s): "EM	Project Manager:	M. Challoner
BHID: BNOI		Sample ID: BHOI	
Purging Date: 20/2 /18		Sampling Date: 1/3/18	Ś
, ,			
Well Status			
Well damaged:	YESNO	Well locked:	YES/NO
Cement footing damaged:	YESTNO	Cap on PVC casing:	YES/NO
Internal obstructions in casing:	YESINO	Well ID visible:	YES/NO
Standing water, vegetation around monument:	YES/NO	Monument damaged:	YES/NO SAL
Water between PVC and protective casing:	YESINO	Odours from groundwater	YES/NO 0
Comments:	YES/NO		
0	4.30 Weather C	onditions	
g ().	(mBTOC)	Temperature:	°C
	(L)		
	(mBTOC)	Clear Partly Cloudy	Overcast
	(mBTOC) 2.9) . http://	3/18)	
Volume of water purged: 60	(L)		Moderate Breeze
Purging equipment:	Pump / micro-Purging /	Windy	
4	Bailer / Foot Valve		
Sampling equipment:	Pump / Bailer	Fine Showers	Rain
	Project:19 Marsh St_DESASampler (s): EMBH ID:BH ID: $O > Purging Date:20/2/16Well StatusWell damaged:Cement footing damaged:Internal obstructions in casing:Standing water, vegetation around monument:Water between PVC and protective casing:Comments:O = 7 - b = 0.Standing Water Level (SWL):Vell volume:Vater level after purging:1.95Vater level after purging:1.95Volume of water purged:Purging equipment:$	Project: 19 Marsh St_DESA Sampler (s): EM Signature(s): BH ID: Stop Purging Date: 20/2 Its Well Status YES(NO) Well damaged: YES(NO) Cement footing damaged: YES(NO) Internal obstructions in casing: YES(NO) Standing water, vegetation around monument: YES(NO) Water between PVC and protective casing: YES(NO) Comments: YES(NO) O GATION 4-30 Weather C Standing Water Level (SWL): 1 2L (mBTOC) Well volume: 12 (L) Water level after purging: 1-95 135 (mBTOC) Weather level at time of sampling: 1-95 135 (mBTOC) Water level at time of sampling: 1-95 135 (mBTOC) Water level at time of sampling: 1-95 135 (mBTOC) Water level at time of sampling: 1-95 135 (mBTOC) Water level at time of sampling: 1-95 135 (mBTOC) Water level at time of sampling: 1-95 135 (m	Project: 19 Marsh St_DESA Location: 19 Marsh St, Sampler (s): EM Sampler (s): EM Signature(s): Project Manager: BH ID: Signature(s): Sample ID: Signature(s): Purging Date: 20/2 /1% Sampling Date: 1/3 Well Status Sample ID: Signature(s): Sampling Date: 1/3 Well damaged: YESNO Well locked: Cement footing damaged: YESNO Cap on PVC casing: Internal obstructions in casing: YESNO Well ID visible: Standing water, vegetation around monument: YESNO Monument damaged: Water between PVC and protective casing: YESNO Odours from groundwater Comments: YESNO Odours from groundwater Comments: YESNO Veather Conditions Standing Water Level (SWL): 126 (mBTOC) Temperature: Well volume: 12 (L) Vater level after purging: 4-95 74 (mBTOC) Vater level after purging: 4-95 135 (mBTOC) Clear Partly Cloudy Water level at time of sampling: 1-95 135 (mBTOC)

Purging Details

Elapsed time (min)	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	рН -	Eh mV	Temp. (°C)	Comments
-	1	0.09	7.22	6.72	-99	24.5	Dook grey Very trobid.
							Dask grey, Verytabia, Organic odons.
							0
	0		-				
				2			
	24						

Groundwater field parameters at the end of purging to be marked "Field Measurements".

At this of development Diegory, tribod, oragin oclour

At fre of simpling: oppor. 200 mil abie to be cellested - well silled up 1.38 -Since denly

14

GROUNDWATER FIELD DATA SHEET

Client:	Boyd Properties Pty Ltd		CES Project Code:	CES130608-BP
Project:	19 Marsh St _DESA		Location: 19 Marsh S	t, Arncliffe
Sampler (s): EM	Signature(s): EM	Project Manager:	M. Challoner
BH ID:	BHOZ		Sample ID: SHQ /	QAQU /QAQC
Purging D	ate: 20/2] 18		Sampling Date: 1/3	18
	î î		<	

	Well Status	\frown				
	Well damaged:	YES/NO		Well locke	d: (YES/NO
	Cement footing damaged:	YES/NO		Cap on PV	U	YES/NO
	Internal obstructions in casing:	YESNO		Well ID vis	sible:	YES(NO)
	Standing water, vegetation around mon		1	Monument	damaged:	YES/NO galic
	Water between PVC and protective cas	ng: YES/NO		Odours fro	m groundwater	YES/NO
	Comments:	YES/NO				
		5.35 m	bloc Wea	ther Conditions	226	
1.72	Standing Water Level (SWL):	1.51 (mBTOC)		Temperatu	re:	°C
	Well volume:	15 (L)				
	Water level after purging: 4.95	2.34(mBTOC)		Clear	Partly Cloudy	Overcast
	Water level at time of sampling: 1.95	1.78(mBTOC)				\smile
	Volume of water purged:	75 (L)		Calm	Slight breeze	Moderate Breeze
	Purging equipment:	Pump / mi	cro-Purging /	Windy		
		Bailer /	Foot Valve	\sim		
	Sampling equipment:	Pump / Ba	iler	(Fine)	Showers	Rain
				\sim		<i>n</i>

Purging Details

2.

Elapsed time (min)	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (µS.cm ⁻¹)	рН -	Eh // mV	Temp. (°C)	Comments
)	1	0.15	21.03	6.89	-125	25.5	Relebourne Anshid, Organic odons
							Organic odons
						5	5
ě.							a de la companya de la compa
2		·* 3					
57		e 					а.
		÷		14			
					*		

Groundwater field parameters at the end of purging to be marked "Field Measurements".

Dr. July Lutral, 3. Orgen adour

GROUNDWATER FIELD DATA SHEET

Client:	Boyd Properties Pty Ltd		CES Project Code:	CES130608-BP	
Project: 19 Marsh St_DESA			Location: 19 Marsh St, Arncliffe		
Sampler (s): EM Signature(s): "Em			Project Manager:	M. Challoner	
BH ID:	BAS,	е 	Sample ID:	BHS	
Purging Date: 20/2/18			Sampling Date: 1/3)18		

Well Status	\sim				
Well damaged:	YESANO	Well locked:	YES/NO		
Cement footing damaged:	YES/NO	Cap on PVC casing: YES/NO			
Internal obstructions in casing:	YESKNO	Well ID visible: YES/NO			
Standing water, vegetation around monument:	YES/NO ²	Monument damaged: YES/NO gabic			
Water between PVC and protective casing:	YESNO	Odours from groundwater YE\$/NO			
Comments:	YES/NO>		\smile		
	Depth 5.48 Weather	Conditions			
Standing Water Level (SWL): 1.74	(mBTOC)	Temperature:	°C		
Well volume: 15	(L)				
Water level after purging: 1.95 2.03	(mBTOC)	Clear Partly Cloudy	Overcast		
Water level at time of sampling: 1.95	(mBTOC)				
Volume of water purged: 75	(L)	Calm Slight breeze	Moderate Breeze		
Purging equipment:	Pump / micro-Purging /	Windy			
Sampling equipment:	Bailer Foot Valve Pump Bailer	Fine Showers	Rain		

Purging Details

Elapsed time (min)	Cumulative volume (L)	DO (mg.L ⁻¹)	EC (uS.cm ⁻¹)	рН -	Eh mV	Temp. (°C)	Comments Story
11:29	-	1.93	3320	6.79	31	25.6	Grey, Indid, orgenic office
2	Υ	0.90	3270	6.78	-18	24.8	1. n
4	2	0.80	3240	6.77	- 58	24.1	X. V
6	ß	0.63	3120	6.77	- 83	23.8	Хх. ¹ t.
8	4	0.47	3080	6.77	- 107	23.7	χ.~υ υ
10	5	0.43	3020	6.72	-122	23.8	i
い	6	0.40	2760	6.78	-130	23.6	* Scripto

Groundwater field parameters at the end of purging to be marked "Field Measurements".

At time of development Dr. Corey Boour, hutid, oxy odar