

DIRECTORS MATTHEW PALAVIDIS VICTOR FATTORETTO MATTHEW SHIELDS

5 Parkview Drive, Sydney Olympic Park

Acoustic Assessment Report

SYDNEY A: 9 Sarah St MASCOT 2020 T: (02) 8339 8000 SYDNEY MELBOURNE BRISBANE CANBERRA LONDON DUBAI SINGAPORE GREECE

ABN: 11 068 954 343

The information in this document is the property of Acoustic Logic Consultancy Pty Ltd ABN 11 068 954 343 and shall be returned on demand. It is issued on the condition that, except with our written permission, it must not be reproduced, copied or communicated to any other party nor be used for any purpose other than that stated in particular enquiry, order or contract with which it is issued.

I:\Jobs\2018\20181377\20181377.1\20190125MFA_R5_Acoustic Assessment Report.docx

DOCUMENT CONTROL REGISTER

Project Number	20181377.1	
Project Name	5 Parkview Drive, Sydney Olympic Park	
Document Title	Acoustic Assessment Report	
Document Reference	20181377.1/2501A/R5/MF	
Issue Type	Email	
Attention To	The Data Exchange Network Limited	

Revision	Date	Document Reference	Prepared	Checked	Approved
			Ву	Ву	Ву
0	24/10/2018	20181377.1/2410A/R0/MF	MF		GW
1	5/11/2018	20181377.1/0511A/R1/MF	MF		GW
2	12/11/2018	20181377.1/1211A/R2/MF	MF		GW
3	22/11/2018	20181377.1/2211A/R3/MF	MF		MF
4	20/12/2018	20181377.1/2012A/R4/MF	MF		MF
5	25/01/2019	20181377.1/2501A/R5/MF	MF		MF

TABLE OF CONTENTS

1 INTRODUCTION	
2 SITE DESCRIPTION / PROPOSED REDEVELOPMENT	5
3 EXISTING ACOUSTIC ENVIRONMENT	
3.1 ENVIRONMENTAL NOISE DESCRIPTORS	8
3.2 BACKGROUND NOISE LEVELS	8
3.2.1 Measurement Equipment	8
3.2.2 Measurement Location	
3.2.3 Measurement Period	
3.2.4 Measured Background Noise Levels	
3.2.4.1 Unattended Noise Measurements	
3.2.4.2 Summarised Rating Background Noise Levels	
4 NOISE EMISSION ASSESSMENT	
4.1 NOISE EMISSION CRITERIA	
4.1.1 General Operations	
4.1.1.1 NSW Environmental Protection Authority (EPA) document – $'$	
Industry (NPfI) 2017'	
4.1.1.2 Summarised Plant Noise Emission Criteria for General Operation.	
4.1.2 Backup Power Plant (Power Generators)	
4.2 ASSESSMENT	
4.2.1 Assessment Noise Data	
4.2.1.1 Cooling Towers	
4.2.1.2 Power Generators	16
4.2.1.3 Vehicles	
4.2.2 Assumed Façade Constructions	
4.2.3 Predicted Noise Levels	
4.2.3.1 General Operation	16
4.2.3.2 Backup Power Plant	
4.2.3.3 Maximum Noise Level Assessment	
4.2.4 Recommended Treatments	
5 CONCLUSION	
APPENDIX A – UNATTENDED NOISE MONITORING DATA – LOGGER LOCATION 1 –	
DRIVE, SYDNEY OLYMPIC PARK	
APPENDIX B – CALIBRATION CERTIFICATE OF NOISE MONITOR	
APPENDIX C – NOISE MONITOR INSTALLATION PHOTO	
APPENDIX D – MANUFACTURER'S DATA SHEETS	35

1 INTRODUCTION

Acoustic Logic Consultancy (ALC) have been engaged to conduct an acoustic assessment of potential noise impacts associated with the proposed data exchange centre to be constructed at 5 Parkview Drive, Sydney Olympic Park.

This document addresses noise impacts associated with the following:

- Noise emissions from mechanical plant to service the development; and
- Vibration emissions from the operation of mechanical plant to service the development.

ALC have utilised the NSW Environmental Protection Authority (EPA) document – 'Noise Policy for Industry (NPfl) 2017'.

This assessment has been conducted using the POC+P Architects architectural drawings for D.A Submission, see details below.

Drawing Owner	Drawing No.	Drawing Title	Revision	Date
POC+P Architects	06	Site Plan Proposed	E	20-11-2018

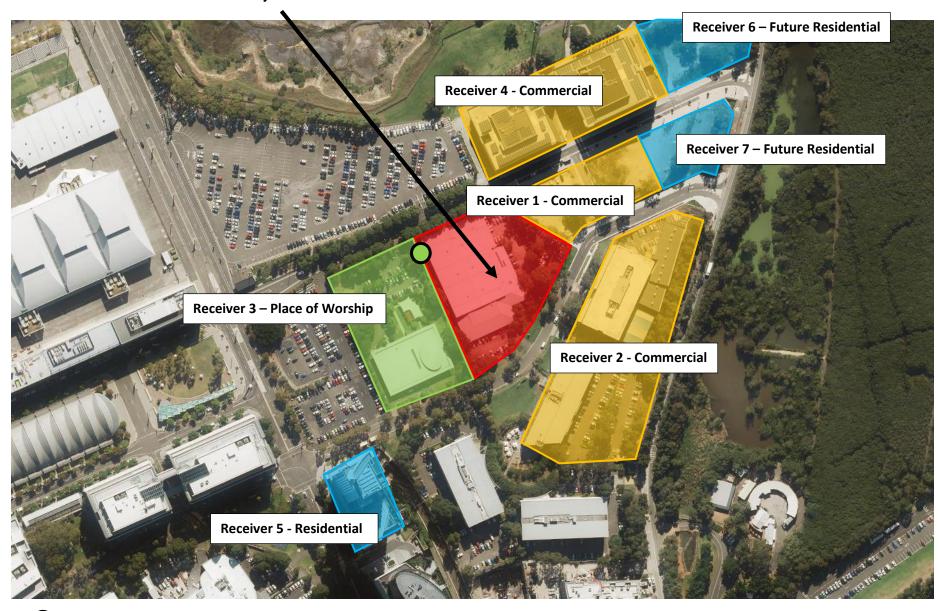
Table 1-1 – Architectural Sheet Information

2 SITE DESCRIPTION / PROPOSED REDEVELOPMENT

Onsite acoustic investigation has been carried out by this office in regard to the surrounding acoustic environment around the proposed development, which has been detailed below:

- Murray Rose Avenue along the northern boundary of the site with an open plan car park located along the northern side of Murray Rose Avenue;
- NSW Rural Fire Service headquarters (currently under construction) located to the east of the site;
- South/south east of the site is Parkview Drive with existing commercial buildings located across Parkview Drive; and
- Soka Gakkai international Australia Buddhist Centre located along the western boundary of the site.

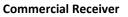
In addition to the above, we note that as part of the Sydney Olympic Park Master Plan 2030 (2018 Review) residential development may potentially be located to the east, south and west of the site.


The proposed development consists of alterations and additions to the existing warehouse / office buildings at the site for use as a Data Centre and associated offices. The existing office areas of the building shall be refitted to cater for the requirements of the proposed Data Centre use. The existing warehouse shall be used as the server storage areas (the data hall). Prefabricated server containers shall be installed within the data hall, with chillers above. External plant proposed to be located outside the data hall (north-eastern corner of the building) includes up to eleven (11) cooling tower units to service the server containers, to be installed in stages. Located between the cooling tower units is a loading dock. External plant proposed to be located within the south-western carpark of the site includes up to seven (7) backup power generators, to be installed in stages. Typically, there would be 10-15 staff members employed at the facility.

The nearest noise receivers around the project site include:

- Receiver 1 NSW Rural Fire Service Headquarters (Currently under construction) located to the east of the site situated at 4 Murray Rose Avenue Sydney Olympic Park;
- Receiver 2 Commercial buildings located to the south east of the site, situated at 8-10 Parkview Avenue, Sydney Olympic Park;
- Receiver 3 Soka Gakkai international Australia Buddhist Centre located to the west of the site situated at 3 Parkview Avenue, Sydney Olympic Park;
- Receiver 4 Commercial buildings located at 3-5 Murray Rose Avenue, Sydney Olympic Park, situated to the north east of the site.
- Receiver 5 Residential apartment building located at 11 Australia Avenue, Sydney Olympic Park situated to the south west of the site.
- Receiver 6 Future residential building to be located at 1 Murray Rose Avenue, Sydney Olympic Park situated to the north east of the site. This is under the Sydney Olympic Park 2030 Masterplan.
- Receiver 7 Future residential building to be located at 2 Murray Rose Avenue, Sydney Olympic Park situated to the east of the site. This is under the Sydney Olympic Park 2030 Masterplan.

A site map, measurement description and surrounding receivers are presented in Figure 2-1 below.


Subject Site

Unattended Noise Monitor

Figure 2-1: Site Survey and Monitoring Positions Sourced from SixMaps NSW

Residential Receiver

Place of Worship

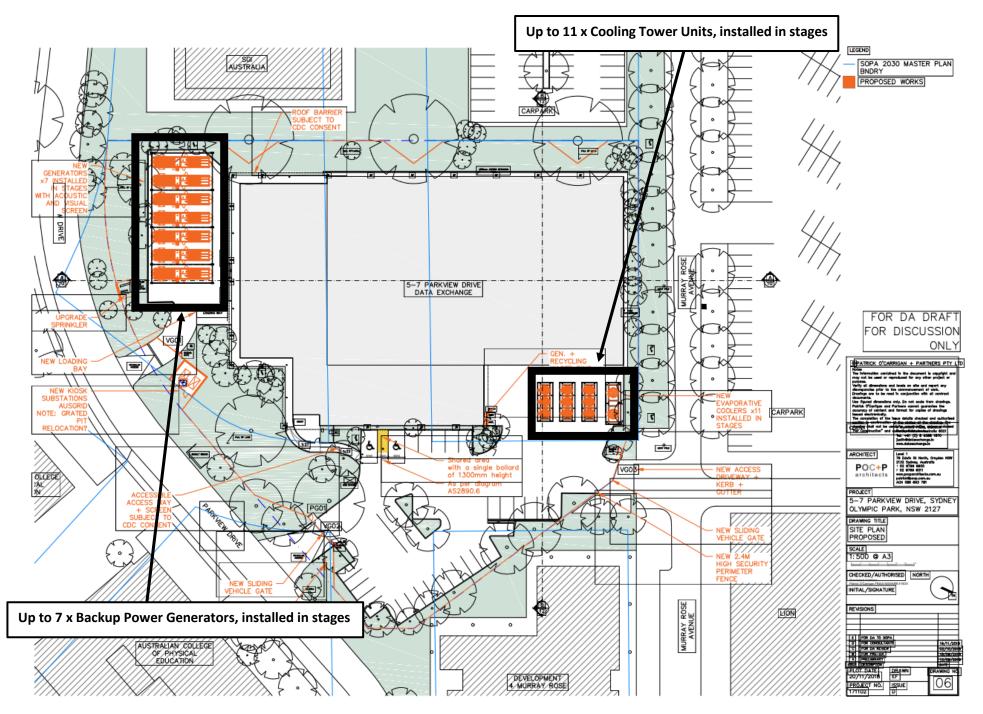


Figure 2-2: Site Layout Plan

3 EXISTING ACOUSTIC ENVIRONMENT

Acoustic monitoring was conducted near the site to establish the background noise levels which will be used as basis for this assessment.

3.1 ENVIRONMENTAL NOISE DESCRIPTORS

Environmental noise constantly varies. Accordingly, it is not possible to accurately determine prevailing environmental noise conditions by measuring a single, instantaneous noise level.

To accurately determine the environmental noise a 15-minute measurement interval is utilised. Over this period, noise levels are monitored on a continuous basis and statistical and integrating techniques are used to determine noise description parameters.

In analysing environmental noise, three-principle measurement parameters are used, namely $L_{10},$ L_{90} and $L_{eq}.$

The L_{10} and L_{90} measurement parameters are statistical levels that represent the average maximum and average minimum noise levels respectively, over the measurement intervals.

The L₁₀ parameter is commonly used to measure noise produced by a particular intrusive noise source since it represents the average of the loudest noise levels produced by the source.

Conversely, the L_{90} level (which is commonly referred to as the background noise level) represents the noise level heard in the quieter periods during a measurement interval. The L_{90} parameter is used to set the allowable noise level for new, potentially intrusive noise sources since the disturbance caused by the new source will depend on how audible it is above the pre-existing noise environment, particularly during quiet periods, as represented by the L_{90} level.

The L_{eq} parameter represents the average noise energy during a measurement period. This parameter is derived by integrating the noise levels measured over the 15-minute period. L_{eq} is important in the assessment of environmental noise impact as it closely corresponds with human perception of a changing noise environment; such is the character of environmental noise.

3.2 BACKGROUND NOISE LEVELS

Background noise levels which will be used as a basis for this assessment are detailed in the following sections.

3.2.1 Measurement Equipment

Unattended noise monitoring was conducted using one Rion NL42 noise logger. The logger was programmed to store 15-minute statistical noise levels throughout the monitoring period. The equipment was calibrated at the beginning and the end of each measurement using a Rion NC-73 calibrator; no significant drift was detected. All measurements were taken on A-weighted fast response mode. Calibration certificate has been provided in Appendix B.

3.2.2 Measurement Location

An unattended noise monitor was installed along the north western boundary of the project site (5 Parkview Avenue, Sydney Olympic Park), as indicated by Figure 2-1 above. A noise monitor installation photo has been provided in Appendix C.

This location was selected as it would provide shielding from the 4 Murray Rose construction site, as well as shielding from Parkview drive which carries a higher level of traffic which would increase the background noise level.

3.2.3 Measurement Period

Unattended noise monitoring was conducted from Friday 21st September 2018 to Friday 28th September 2018.

3.2.4 Measured Background Noise Levels

The background noise levels established from the unattended noise monitoring are detailed in the Table below.

3.2.4.1 Unattended Noise Measurements

NSW EPA's RBL assessment procedure requires determination of background noise level for each day (the ABL) then the median of the individual days as set out for the entire monitoring period.

Appendix A – Unattended Noise Monitoring Data provides detailed results of the unattended noise monitoring. Weather affected data was excluded from the assessment. The processed Rating Background Noise Levels (lowest 10th percentile noise levels during operation time period) are presented in Table below.

Table 3-1 – Unattended Noise Monitor – Logger Location 1 – Rating Background Noise Level

	dB(A)L _{90(Period)}			
Date	Day (7am-6pm)	Evening (6pm-10pm)	Night (10pm-7am Next Day)	
Friday, 21 st September, 2018		44	42	
Saturday, 22 nd September, 2018	44	44	41	
Sunday, 23 rd September, 2018	47	46	42	
Monday, 24 th September, 2018	48	43	38	
Tuesday, 25 th September, 2018	44	42	40	
Wednesday, 26 th September, 2018	46	44	40	
Thursday, 27 th September, 2018	44	44	42	
Friday, 28 th September, 2018	44	-	-	
Median	44	44	41	

3.2.4.2 Summarised Rating Background Noise Levels

Site investigations, attended and unattended noise measurements indicate that the acoustic environment for the project site are as below.

Location	Time of day	Rating Background Noise Level (dB(A)L _{90(Period)})
	Day (7:00am-6:00pm)	44
5 Parkview Drive, Sydney Olympic Park (See Figure 2-1)	Evening (6:00pm-10:00pm)	44
(See Figure 2-1)	Night (10:00pm-7:00am)	41

Table 3-2 – Summarised Rating Background Noise Level

4 NOISE EMISSION ASSESSMENT

A noise emission assessment has been carried out to ensure noise emitted from the use of the site is in accordance with the requirements outlined below.

4.1 NOISE EMISSION CRITERIA

Noise emission criteria have been summarised into two areas; general operation and backup power plant. General operations cover the noise from vehicle activities and mechanical services. backup power plant is the operation of the seven proposed power generators located in the south west of the site.

4.1.1 General Operations

General operation of the site (loading dock, vehicles and mechanical plant) must comply with the requirements of the NSW Environmental Protection Authority (EPA) document – *'Noise Policy for Industry (NPfI)'*. This has been outlined below. **(Note this excludes the operation of backup power plant – refer to section 4.1.2).**

4.1.1.1 NSW Environmental Protection Authority (EPA) document – 'Noise Policy for Industry (NPfI) 2017'

The NPfI provides guidelines for assessing noise impacts from developments. The recommended assessment objectives vary depending on the potentially affected receivers, the time of day, and the type of noise source. The NPfI has two requirements which both have to be complied with, namely an amenity criterion and an intrusiveness criterion.

4.1.1.1.1 Intrusiveness Criterion

The guideline is intended to limit the audibility of noise emissions at residential receivers and requires that noise emissions measured using the L_{eq} descriptor not exceed the background noise level by more than 5 dB(A).

Receiver	Time of day	Background Noise Level dB(A)L _{90(Period)}	Intrusiveness Criteria (Background + 5dB(A)L _{eq(Period)})
	Day (7am-6pm)	44	49
Residential	Evening (6pm-10pm)	44	49
	Night (10pm-7am)	41	46

Table 4-1 – NPfl Intrusiveness Criteria

4.1.1.1.2 Amenity Criterion

The guideline is intended to limit the absolute noise level from all noise sources to a level that is consistent with the general environment.

The Industrial Noise Policy sets out acceptable noise levels for various land uses. Table 2.2 on page 11 of the policy has four categories to distinguish different residential areas. They are rural, suburban, urban and urban/industrial interface.

For the purposes of a conservative assessment, ALC will assess noise emissions in accordance with the 'Urban' category.

Type of Receiver	Time of day	Recommended Project Acceptable Noise Level dB(A)L _{eq(15minutes)} *
	Day (7am-6pm)	58
Residential (Urban)	Evening (6pm-10pm)	48
	Night (10pm-7am)	46
Commercial	When in Use	65
Place of Worship	When in Use	40 <u>(Internal Noise Level Only)</u>

Table 4-2 – NPfI Project Amenity Criteria

*Adjusted based on amenity noise levels as a 15-minute interval.

4.1.1.1.3 Sleep Arousal Assessment

Potential sleep arousal impacts should be considered for noise generated after 10pm.

Sleep arousal is a function of both the noise level and the duration of the noise.

As recommended in the NPfI, to assess potential sleep arousal impacts, a two-stage test is carried out:

• Step 1 – Section 2.5 *Maximum noise level event assessment* from the NPfl states the following:

Where the subject development/premises night-time noise levels at a residential location exceed:

- *L_{Aeq,15min}* 40dB(A) or the prevailing RBL plus 5 dB, whichever is the greater, and/or
- *L_{AFmax}* 52 dB(A) or the prevailing RBL plus 15 dB, whichever is greater,

a detailed maximum noise level event assessment should be undertaken.

Based on the above the following noise objectives apply:

Location	Rating Background Level dB(A)L _{90(Period)}	Rating Background Level + 5dB(A)	Governing Criteria dB(A)L _{eq(15mins)}
Residential Receivers	41	46	46

Table 4-3 – Sleep Arousal Criteria (Average/Leq Noise Levels)

Table 4-4 – Sleep Arousal Criteria (Maximum/L_{Max} Noise Events)

Location	Rating Background Level dB(A)L _{90(Period)}	Rating Background Level + 15dB(A)	Governing Criteria dB(A)L _(Max)
Residential Receivers	41	56	56

Step 2 - If there are noise events that could exceed the average/maximum criteria detailed in the tables above, then an assessment of sleep arousal impact is required to be carried out taking into account the level and frequency of noise events during the night, existing noise sources, etc. This test takes into account the noise level and number of occurrences of each event with the potential to create a noise disturbance. As is recommended in the explanatory notes of the EPA NPfI, this more detailed sleep arousal test is conducted using the guidelines in the EPA Road Noise Policy (RNP). Most relevantly, the Road Noise Policy (RNP) states:

For the research on sleep disturbance to date it can be concluded that:

- Maximum internal noise levels below 50-55dB(A) are unlikely to awaken people from sleep.
- One to two noise events per night with maximum internal noise levels of 65-70dB(A) are not likely to affect health and wellbeing significantly.

4.1.1.2 Summarised Plant Noise Emission Criteria for General Operation.

Summary for noise emission criteria for all plant associated with the development has been summarised below.

Receiver	Time of day	Background Noise Level dB(A)L _{90(Period)}	Project Amenity Criteria dB(A)L _{eq(Period)}	Intrusiveness Criteria (Background + 5dB(A)L _{eq(period)})
	Day (7am-6pm)	44	58	49
Residential Receivers	Evening (6pm-10pm)	44	48	49
	Night (10pm-7am)	41	43	46
Commercial Receivers	When in use	-	65	-
Place of Worship	When in Use	-	40 <u>(Internal Noise</u> Level Only)	-

Table 4-5 – Summary of Noise Emission Criteria – General Operation

Table 4-6 – Sleep Arousal Criteria (Average/Leq Noise Levels)

Location	Rating Background Level dB(A)L _{90(Period)}	Rating Background Level + 5dB(A)	Governing Criteria dB(A)L _{eq(15mins)}
Residential Receivers	41	46	46

Table 4-7 – Sleep Arousal Criteria (Maximum/L_{Max} Noise Events)

Location	Rating Background Level dB(A)L _{90(Period)}	Rating Background Level + 15dB(A)	Governing Criteria dB(A)L _(Max)
Residential Receivers	41	56	56

4.1.2 Backup Power Plant (Power Generators)

As part of the development proposal seven (7) power generators are proposed to be installed in the existing south west car park.

The operation of these generators to residential receivers must comply with the following.

Rating Background Level + 10dB(A)L_{eq(15-minute)}.

The operation of these generators to commercial receivers must comply with 65dB(A)Leq(15-minute).

The operation of these generators to Place of Worship receivers must comply with $45dB(A)L_{eq(15-minute)}$.

This criterion has been adopted based on other previously projects. Summary of applicable criteria for the operation of power generators.

Receiver	Time of day	Background Noise Level dB(A)L _{90(Period)}	Criteria (Background + 10dB(A)L _{eq(period)})	
	Day (7am-6pm)	44	54	
Residential Receivers	Evening (6pm-10pm)	44	54	
	Night (10pm-7am)	41	51	
Commercial Receivers	When in use	-	65	
Place of Worship	Place of Worship When in Use		40 (Internal Noise Level Only)	

Table 4-8 – Summary of Noise Emission Criteria – Backup Power Plant

4.2 ASSESSMENT

Operational noise impacts of the site have been assessed below, these include the operation of the following:

- Mechanical Noise;
 - Mechanical noise from the operation of the eleven (11) external cooling towers.
 - Mechanical noise from the operation of the seven (7) backup power generators.
- Vehicle Noise;
 - Vehicle noise from the loading dock.
 - Vehicle noise from the staff car park.

4.2.1 Assessment Noise Data

The following table presented the adopted Sound Power Levels (SWL) for each of the assessment items identified above. Also refer to Appendix D.

4.2.1.1 Cooling Towers

The proposal includes the installation and operation of eleven cooling towers located just outside the main warehouse near the loading dock. Associated noise levels for the cooling towers are shown below, this has been provided to this office from the proposed manufacturers. There are two types of cooling towers proposed; two Evapco USS17-3K12 and nine Evapco USS 19218. Also see Appendix D.

Model	Hz	63	125	250	500	1k	2k	4k	8k
Evapco USS17-3K12 (100%)	Sound Power	97	92	83	80	81	77	74	73
Evapco USS19-218 (100%)	Level (SWL)	91	86	79	77	77	75	72	71

Table 9 – Sound Power Level of Cooling Towers

4.2.1.2 Power Generators

The proposal includes the installation and operation of seven power generators located in the existing south west car park. Associated noise levels for the power generators are shown below, this has been provided to this office from proposed manufacturers. Also see Appendix D.

Table 10 – Sound Power Level of Power Generators

Model	Hz	63	125	250	500	1k	2k	4k	8k
Cummins KTA50G3 (100%)	Sound Power Level (SWL)	99	102	101	89	83	97	102	106

4.2.1.3 Vehicles

Sound power levels for vehicles on the site are:

- 84 dB(A) for a car engine, idling/driving at 5km/h.
- 94 dB(A) for a small rigid truck engine, idling/driving at 5km/h

4.2.2 Assumed Façade Constructions

For receiver 3 (Soka Gakkai International Australia Buddhist Centre) we have assumed a 10mm single fixed glazing for the façade construction of the main hall. This information has been adopted from acoustic report prepared by *The Acoustic Group, titled Review of Acoustic Logic Assessment, dated* 11th January 2019 by a Mr Steven Cooper.

4.2.3 Predicted Noise Levels

Based on the proposed locations of plant, vehicles, surrounding receivers and sound power levels above, the following predicted noise levels have been calculated.

4.2.3.1 General Operation

Predicted noise levels for the general operation of the site are outlined below. Predicted noise levels below include the operation of cooling towers and vehicle noise.

For internal noise predictions we have assumed a noise reduction of R_w 33 for a 10mm glass.

Receiver	Predicted Noise Level dB(A)L _{eq(15minute)}	Criteria dB(A)L _{eq(15minute)}	Additional Acoustic Treatments	Compliance
Receiver 1 - NSW RFS Headquarters	62	65		Yes
Receiver 2 - 8-10 Parkview Avenue	52	65		Yes
Receiver 3 - Soka Gakkai International Australia Buddhist Centre	<30	45 (Internal)		Yes
Receiver 4 - Commercial 3-5 Murray Rose Avenue	59	65	No additional treatments required.	Yes
Receiver 5 - Residential 11 Australia Avenue	42	43		Yes
Receiver 6 Residential – 1 Murray Rose Avenue	38	42		Yes
Receiver 7 Residential – 1 Murray Rose Avenue	41	43		Yes

Table 11 – Predicted Noise Levels – General Operation

4.2.3.2 Backup Power Plant

Predicted noise levels for the Backup Power Plant are outlined below. Manufacturers Data Sheets can be found in Appendix D of this report.

Receiver	Predicted Noise Level dB(A)L _{eq(15minute)}	Criteria dB(A)L _{eq(15minute)}	Additional Acoustic Treatments	Compliance
Receiver 1 - NSW RFS Headquarters	45	65		Yes
Receiver 2 - 8-10 Parkview Avenue	60	65	Indicative Acoustic <u>Treatment</u> Enclose the power plant	Yes
Receiver 3 - Soka Gakkai International Australia Buddhist Centre	39 (Including a 5- point penalty for low frequency)	45 (Internal)	on all sides including the top with 1 x 9mm Fibre Cement Sheeting <u>OR</u> where ventilation is required a 300mm deep	Yes
Receiver 4 - Commercial 3- 5 Murray Rose Avenue	43	65	High Performance Acoustic Louvre. (see insertion loss below)	Yes
Receiver 5 - Residential 11 Australia Avenue	51	51	(In the event an alternate solution can be determined for reducing the noise impacts from the Backup Power Plant to the	Yes
Receiver 6 Residential – 1 Murray Rose Avenue	41	51	neighbouring properties. It would need to achieve the noise emission objectives as outlined in section 4.1.2	Yes
Receiver 7 Residential – 1 Murray Rose Avenue	42		of this report.)	Yes

Table 12 – Predicted Noise Levels – Backup Power Plant

4.2.3.3 Maximum Noise Level Assessment

Maximum noise level assessment for the operation of the cooling towers and power generators have been presented below.

Receiver	Predicted Noise Level dB(A)L _{Max}	Criteria dB(A)L _{Max}	Compliance
Receiver 5 - Residential 11 Australia Avenue	42		Yes
Receiver 6 Residential – 1 Murray Rose Avenue	38	56	Yes
Receiver 7 Residential – 1 Murray Rose Avenue	41		Yes

Table 13 – Predicted Noise Levels – Cooling Towers - L_{Max}

Table 14 – Predicted Noise Levels – Power Generator - L_{Max}

Receiver	Predicted Noise Level dB(A)L _{Max}	Criteria dB(A)L _{Max}	Compliance
Receiver 5 - Residential 11 Australia Avenue	51		Yes
Receiver 6 Residential – 1 Murray Rose Avenue	41	56	Yes
Receiver 7 Residential – 1 Murray Rose Avenue	42		Yes

4.2.4 Recommended Treatments

Based on the predicted noise levels above, acoustic treatments are required. These have been outlined below.

- All mechanical plant and backup power plant are to be vibration isolated to minimise vibration transmission to receivers.
- The power generators will need to be enclosed on all sides (including the top), this enclosure should be constructed from either 1 x 9mm Fibre Cement Sheeting lined by Martini Absorb HD 50 facing equipment where non-ventilation openings are required <u>**OR**</u> where ventilation openings are required a 300mm deep High Performance Acoustic Louvre with the following insertion loss. Also see picture below.

Hz	63	125	250	500	1k	2k	4k	8k
Insertion Loss	4	7	10	12	15	15	15	14

Table 15 – 300mm Deep Acoustic Louvre Insertion Loss

Please note: In the event an alternate solution can be determined for reducing the noise impacts from the Backup Power Plant to the neighbouring properties. It would need to achieve the noise emission objectives as outlined in section 4.1.2 of this report.

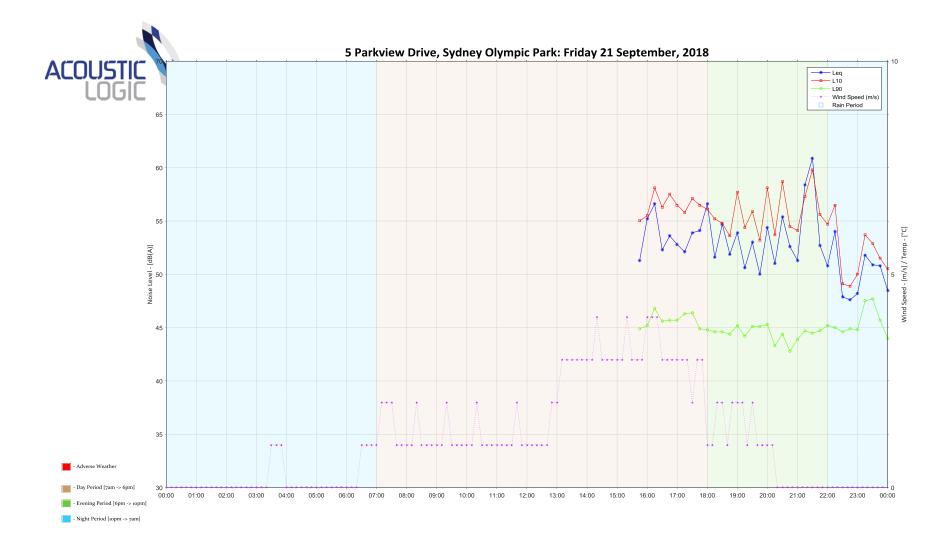
Figure 4-1: Section View of the Indicative Backup Power Plant Enclosure

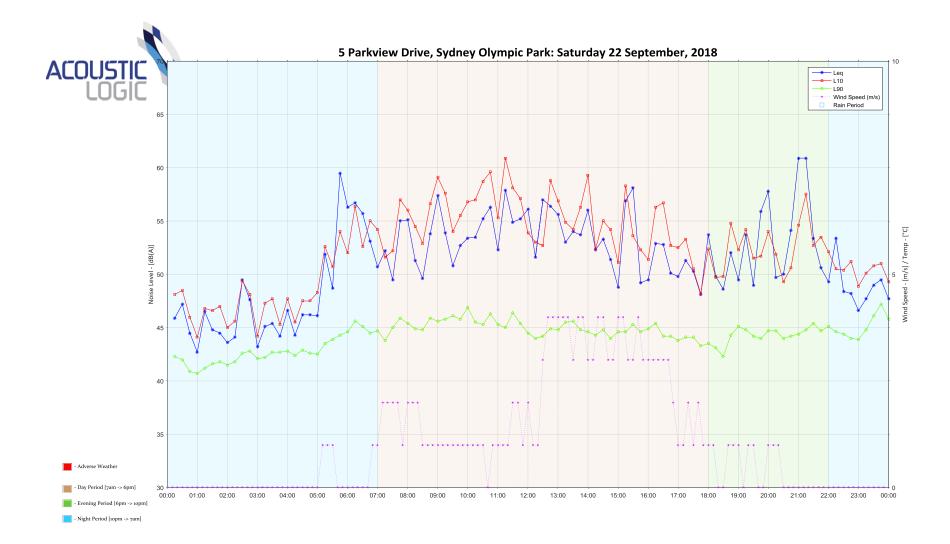
- Ongoing maintenance of all machinery is to be undertaken to ensure all plant are operating within the manufacturers design.
- During the detailed design we would expect other mechanical systems will be required for the operation of the data hall. It is recommended that a mechanical services review is undertaken to ensure compliance with the criteria outlined in section 4.1.1 of this report.

5 CONCLUSION

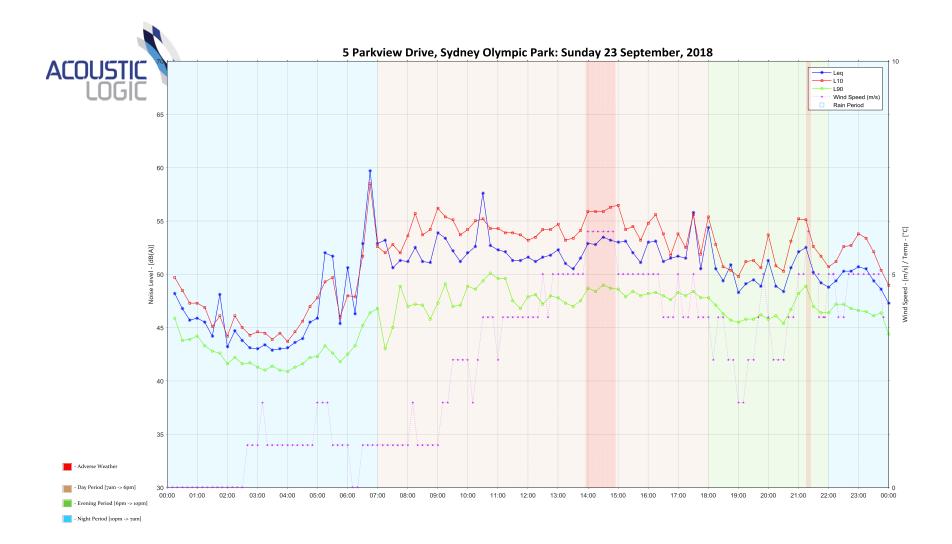
This report presents an acoustic assessment of noise impacts associated with the proposed data centre to be located at 5 Parkview Drive, Sydney Olympic Park. Based on the information provided above we conclude the following;

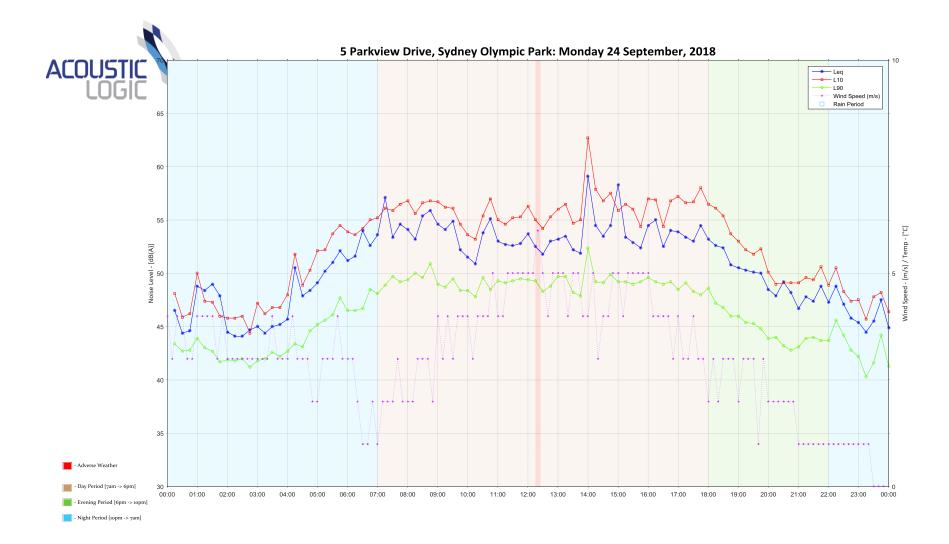
Provided that the treatments set out in section 4 of this report are employed, noise emissions from the site will comply with the requirements of the NSW Environmental Protection Authority (EPA) document – 'Noise Policy for Industry (NPfI) 2017'.

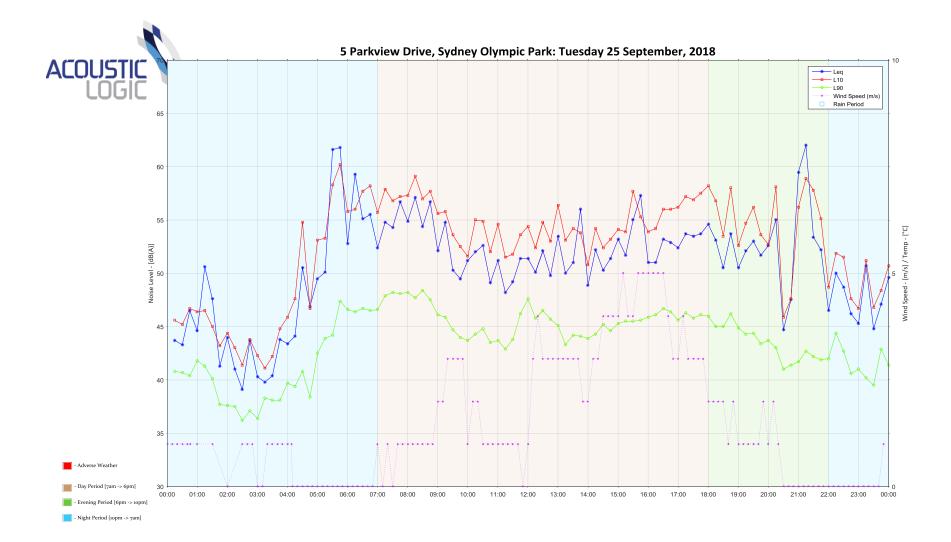

A detailed review of all mechanical services is recommended prior to installation.

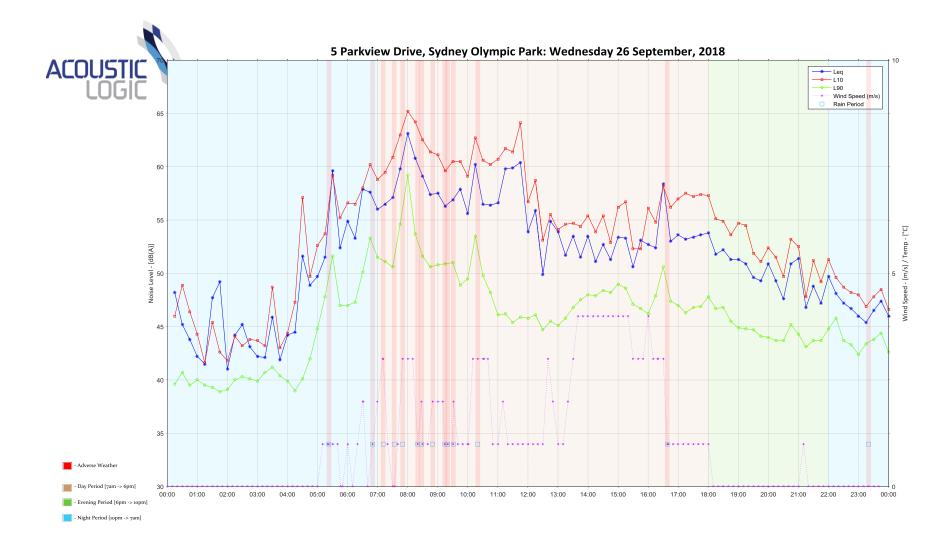

We trust this information is satisfactory. Please contact us should you have any further queries.

Yours faithfully,

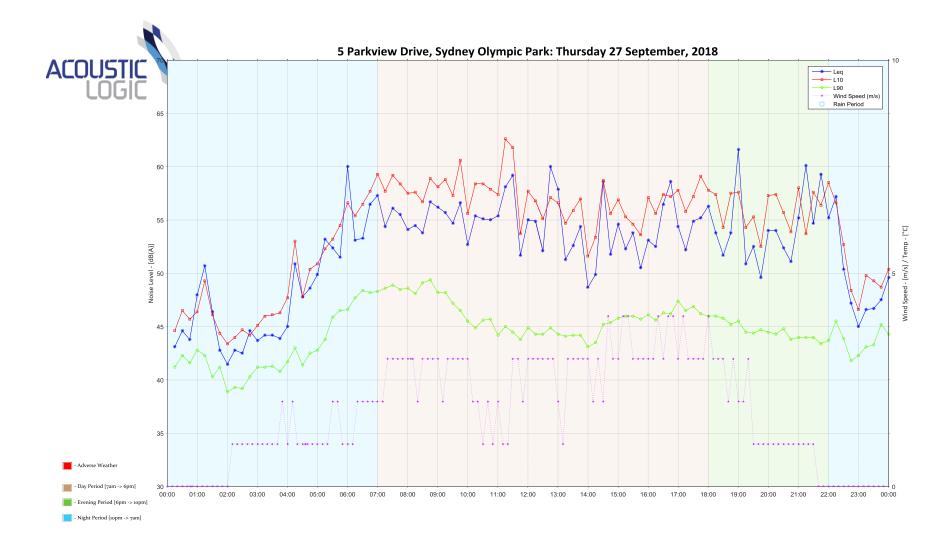

Acoustic Logic Consultancy Pty Ltd Matthew Furlong

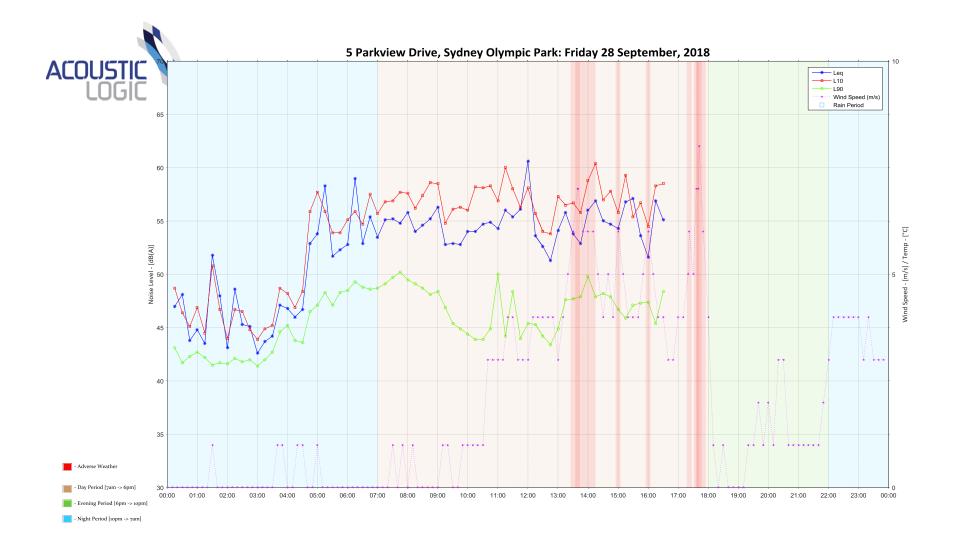

APPENDIX A – UNATTENDED NOISE MONITORING DATA – LOGGER LOCATION 1 – 5 PARKVIEW DRIVE, SYDNEY OLYMPIC PARK





I:\Jobs\2018\20181377\20181377.1\20190125MFA_R5_Acoustic Assessment Report.docx





I:\Jobs\2018\20181377\20181377.1\20190125MFA_R5_Acoustic Assessment Report.docx

APPENDIX B – CALIBRATION CERTIFICATE OF NOISE MONITOR

Acoustic Research H: +61 2 9484 0800 A.B.N. 65 160 399 119 Labs Pty Ltd www.acousticresearch.com.au

Sound Level Meter IEC 61672-3.2013

Calibration Certificate

Calibration Number C17027

Client Details	Acoustic Logic Consultancy Pty Ltd 9 Sarah Street Mascot NSW 2020
Equipment Tested/ Model Number :	Rion NL-42EX
Instrument Serial Number :	00734230
Microphone Serial Number :	162587
Pre-amplifier Serial Number :	34380
Pre-Test Atmospheric Conditions Ambient Temperature : 24.1°C	Post-Test Atmospheric Conditions Ambient Temperature : 22°C

Relative Humidity: 49.4% Barometric Pressure: 98.77kPa		Relative Humidity :	49.1% 99.92kPa
Calibration Technician : Vicky Jaiswal Calibration Date : 25/01/2017 Approved Signate	ory :	Secondary Check: Riley Cooper Report Issue Date : 30/01/2017	Juan Aguero
Clause and Characteristic Tested	Result	Clause and Characteristic Tested	Result
12: Acoustical Sig. tests of a frequency weighting13: Electrical Sig. tests of frequency weightings	Pass	17: Level linearity incl. the level range contr	rol Pass
14: Frequency and time weightings at 1 kHz	Pass	18: Toneburst response	Pass
15: Long Term Stability	Pass	19: C Weighted Peak Sound Level	Pass
16: Level linearity on the reference level range	Pass	20: Overload Indication	Pass
and the reference level range	Pass	21: High Level Stability	Pass

The sound level meter submitted for testing has successfully completed the class 2 periodic tests of IEC 61672-3:2006, for the environmental conditions under which the tests were performed.

However, no general statement or conclusion can be made about conformance of the sound level meter to the full requirements of IEC 61672-1:2002 because evidence was not publicly available, from an independent testing organisation responsible for pattern approvals, to demonstrate that the model of sound level meter fully conformed to the requirements in IEC 61672-1:2002 and because the periodic tests of IEC 61672-3:2006 cover only a limited subset of the specifications in IEC 61672-1:2002.

Acoustic Tests 31.5 Hz to 8kHz 12.5kHz 16kHz Electrical Tests	±0.12dB ±0.18dB ±0.31dB	Least Uncertainties of Measurement - Environmental Conditions <i>Temperature</i> <i>Relative Humidity</i> <i>Barometric Pressure</i>	±0.05°C ±0.46% ±0.017kPa
31.5 Hz to 20 kHz	±0.12dB		

All uncertainties are derived at the 95% confidence level with a coverage factor of 2. This calibration certificate is to be read in conjunction with the calibration test report.

Acoustic Research Labs Pty Ltd is NATA Accredited Laboratory Number 14172. Accredited for compliance with ISO/IEC 17025.

The results of the tests, calibrations and/or measurements included in this document are traceable to Australian/national standards.

NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration and inspection reports.

PAGE 1 OF 1

Figure B-1 – Calibration Certificate of Noise Monitor (Rion NL-42)

APPENDIX C – NOISE MONITOR INSTALLATION PHOTO

Figure C-1 – Unattended Noise Monitor Installation Photo.

APPENDIX D – MANUFACTURER'S DATA SHEETS

GENERATORS WELDERS AIR COMPRESSORS LIGHTING TOWERS

Sound Data Cummins KTA50G3 Stamford P1734D Alternator 50 Hz 40 Foot Sound Attenuated Enclosure Free Field

					Pressure Level dB(A) @ 1M - 110% Load									
F		Standby	Prime	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)			
Engine	Alternator kVA k	kVA	SPL F	SPL F	SPL F	SPL F	SPL F	SPL F	SPL F	SPL F				
				63 Hz	125 Hz	250 Hz	500 Hz	1k Hz	2k Hz	4k Hz	8k Hz			
KTA50	P734	1675	1400	76.7	79.5	79.1	66.4	61	74.5	80.1	84			

					Pressure Level dB(A) @ 1M - 100% Load									
Family		Standby	Prime	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)			
Engine	Alternator kVA	kVA	SPL F	SPL F	SPL F	SPL F	SPL F	SPL F	SPL F	SPL F				
				63 Hz	125 Hz	250 Hz	500 Hz	1k Hz	2k Hz	4k Hz	8k Hz			
KTA50	P734	1675	1400	75.9	78.7	78.3	65.6	60.2	73.7	79.3	83.2			

					Pressure Level dB(A) @ 1M - 75% Load									
F		or Standby kVA	Prime kVA	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)	dB(A)			
Engine	Alternator			SPL F	SPL F	SPL F	SPL F	SPL F	SPL F	SPL F	SPL F			
				63 Hz	125 Hz	250 Hz	500 Hz	1k Hz	2k Hz	4k Hz	8k Hz			
KTA50	P734	1675	1400	76.8	79.6	79.2	66.5	61.1	74.6	80.2	84.1			

POWER YOU CAN RELY ON

 HEAD OFFICE: 24 Perrin Place, Salisbury QLD 4107 • P0 Box 115 Archerfield QLD 4108 • ABN 40 095 032 385

 BRISBANE
 PERTH
 PORT HEDLAND

 Phone: (07) 3277 8626 • Fax: (07) 3277 8627
 Phone: (08) 9300 6168 • Fax: (08) 9300 6471
 Phone: 1300 305 912

 Email: info@genelite.com.au • www.genelite.com.au

Figure D-1 – Power Generator Noise Data – Cummins KTA50G3

Full Speed Complete Sound Data

Kevin Irudaya Balan TBD

.....

AU kbalan@evapco.com.au

Sound Pressure Levels (SPL) in dB RE 0.0002 Microbar Sound Power Levels (PWL) in dB RE 10-12 Watt

Model	USS 17-3K12
Motor	15.00 kW
# Motors	1
Speed	Full Speed

1 Cell Data

		Sound Pressure Level (dB)									
	En	d	Motor	Side	Орр	End	Opp Mtr. Side		Тор		Sound
	5 ft	50 ft	5 ft	50 ft	5 ft	50 ft	5 ft	50 ft	5 ft	50 ft	Power
Band	(1.5m)	(15m)	(1.5m)	(15m)	(1.5m)	(15m)	(1.5m)	(15m)	(1.5m)	(15m)	Level (db)
63 HZ	74	61	73	67	74	61	77	68	74	61	97
125 HZ	68	60	74	60	68	60	70	57	75	61	92
250 HZ	65	50	66	51	65	50	64	51	63	53	83
500 HZ	62	48	67	49	62	48	64	48	57	48	80
1 KHZ	63	49	66	50	63	49	63	50	57	45	81
2 KHZ	61	44	65	47	61	44	61	47	53	43	77
4 KHZ	63	41	62	41	63	41	61	41	54	43	74
8 KHZ	64	41	64	39	64	41	64	39	56	44	73
Calc dBA	70	53	72	55	70	53	70	54	64	53	86

Sound option(s) selected:

Discharge Attenuation, Super Low Sound Fan, Water Silencers

1. Sound Pressure Levels are according to CTI Standard ATC-128

2. Sound Power Levels are calculated according to the Small Units Section 8

3. Sound from free-field conditions over a reflecting plane with +/-2 db(A) tolerance

4. Noise levels can increase with variable frequency drives depending on the drive manufacturer and the drive configuration

configuration

5. Complete unit sound data with all fans operating

Spectrum Version: 2.2018.905.2

Page 1 of 3

October 4, 2018

Figure D-2 – Cooling Tower Noise Data – Evapco USS 17-3K12

Remarks:

66% Speed Complete Sound Data

Kevin Irudaya Balan TBD

AU

kbalan@evapco.com.au

Sound Pressure Levels (SPL) in dB RE 0.0002 Microbar Sound Power Levels (PWL) in dB RE 10-12 Watt

Model	USS 17-3K12
Motor	15.00 kW
# Motors	1
Speed	2/3 Speed

1 Cell Data

		Sound Pressure Level (dB)									
	En	d	Moto	Side	Орр	Opp End		Opp Mtr. Side		р	Sound
	5 ft	50 ft	5 ft	50 ft	5 ft	50 ft	5 ft	50 ft	5 ft	50 ft	Power
Band	(1.5m)	(15m)	(1.5m)	(15m)	(1.5m)	(15m)	(1.5m)	(15m)	(1.5m)	(15m)	Level (db)
63 HZ	65	52	65	58	65	52	68	59	65	53	88
125 HZ	60	52	66	52	60	52	62	49	66	52	83
250 HZ	59	44	60	45	59	44	59	45	56	46	77
500 HZ	59	44	63	44	59	44	62	43	56	44	76
1 KHZ	62	45	63	46	62	45	62	46	57	44	77
2 KHZ	60	42	62	43	60	42	61	43	51	42	74
4 KHZ	63	40	61	40	63	40	61	40	54	43	73
8 KHZ	64	41	64	39	64	41	64	39	56	44	73
Calc dBA	69	50	69	50	69	50	69	50	62	51	82

Sound option(s) selected:

Discharge Attenuation, Super Low Sound Fan, Water Silencers

1. Sound Pressure Levels are according to CTI Standard ATC-128

2. Sound Power Levels are calculated according to the Small Units Section 8

3. Sound from free-field conditions over a reflecting plane with +/-2 db(A) tolerance

A Noise levels can increase with variable frequency drives depending on the drive manufacturer and the drive

configuration

5. Complete unit sound data with all fans operating

Spectrum Version: 2.2018.905.2

Page 2 of 3

October 4, 2018

Figure D-2 – Cooling Tower Noise Data – Evapco USS 17-3K12 (Cont.)

Remarks:

50% Speed Complete Sound Data

Kevin Irudaya Balan TBD

AU kbalan@evapco.com.au

Sound Pressure Levels (SPL) in dB RE 0.0002 Microbar Sound Power Levels (PWL) in dB RE 10-12 Watt

USS 17-3K12
15.00 kW
1
50% Speed

1 Cell Data

		Sound Pressure Level (dB)									
	En	d	Motor	Side	Орр	Opp End		Opp Mtr. Side		р	Sound
	5 ft	50 ft	5 ft	50 ft	5 ft	50 ft	5 ft	50 ft	5 ft	50 ft	Power
Band	(1.5m)	(15m)	(1.5m)	(15m)	(1.5m)	(15m)	(1.5m)	(15m)	(1.5m)	(15m)	Level (db)
63 HZ	60	48	59	52	60	48	63	54	59	48	83
125 HZ	56	47	60	47	56	47	57	45	60	46	78
250 HZ	57	43	58	43	57	43	58	43	53	44	75
500 HZ	59	43	62	43	59	43	62	42	55	44	75
1 KHZ	62	45	62	45	62	45	62	45	57	44	77
2 KHZ	60	42	61	42	60	42	61	42	51	42	74
4 KHZ	63	40	61	39	63	40	61	39	54	43	73
8 KHZ	64	41	64	39	64	41	64	39	56	44	73
Calc dBA	69	49	69	49	69	49	69	49	61	50	82

Sound option(s) selected:

Discharge Attenuation, Super Low Sound Fan, Water Silencers

1. Sound Pressure Levels are according to CTI Standard ATC-128 2. Sound Power Levels are calculated according to the Small Units Section 8

3. Sound from free-field conditions over a reflecting plane with +/-2 db(A) tolerance

Noise levels can increase with variable frequency drives depending on the drive manufacturer and the drive configuration

configuration

5. Complete unit sound data with all fans operating

Spectrum Version: 2.2018.905.2

Page 3 of 3

October 4, 2018

Figure D-2 - Cooling Tower Noise Data - Evapco USS 17-3K12 (Cont.)

Remarks:

Sound Pressure Levels (SPL) in dB RE 0.0002 Microbar Sound Power Levels (PWL) in dB RE 10-12 Watt

MODEL	USS 19-218
MOTOR	7.50 kW
# MOTORS	1
SPEED	Full Speed

CELL DATA

1

		SOUND PRESSURE LEVEL (dB)									
	Ei	nd	Moto	r Side	Орр	End	Орр М	tr. Side	То	ор	SOUND
	5 ft	50 ft	5 ft	50 ft	5 ft	50 ft	5 ft	50 ft	5 ft	50 ft	POWER
BAND	(1.5m)	(15.2m	(1.5m)	(15.2m	(1.5m)	(15.2m	(1.5m)	(15.2m	(1.5m)	(15.2m	LEVEL (dB)
	I)))))	I I
63 HZ	69	55	68	61	69	55	72	62	69	56	91
125 HZ	63	54	69	54	63	54	65	51	70	55	86
250 HZ	60	45	62	46	60	45	60	45	59	48	78
500 HZ	59	45	63	46	59	45	61	45	56	45	77
1 KHZ	59	45	62	46	59	45	59	46	57	44	77
2 KHZ	57	41	60	44	57	41	57	44	52	42	75
4 KHZ	58	37	57	39	58	37	56	39	54	43	72
8 KHZ	58	36	59	36	58	36	58	36	56	44	71
CALC dBA	65	49	67	51	65	49	65	50	62	51	82

Sound option(s) selected: Super Low Sound Fan Water Silencers Discharge Sound Attenuation HDG

REMARKS: 1. Sound Pressure Levels are according to CTI Standard ATC-128

2. Sound Power Levels are calculated according to the Small Units Section 8

3. Sound from free-field conditions over a reflecting plane with +/-2 db(A) tolerance

4. Noise levels can increase with variable frequency drives depending on the drive manufacturer and the drive configuration

5. Complete unit sound data with all fans operating

Figure D-3 – Cooling Tower Noise Data – Evapco USS 19-218

Sound Pressure Levels (SPL) in dB RE 0.0002 Microbar Sound Power Levels (PWL) in dB RE 10-12 Watt

MODEL	USS 19-218
MOTOR	7.50 kW
# MOTORS	1
SPEED	2/3 Speed

CELL DATA

1

	SOUND PRESSURE LEVEL (dB)										
	End		Motor Side		Opp End		Opp Mtr. Side		Тор		SOUND
	5 ft	50 ft	5 ft	50 ft	5 ft	50 ft	5 ft	50 ft	5 ft	50 ft	POWER
BAND	(1.5m)	(15.2m)	(1.5m)	(15.2m)	(1.5m)	(15.2m)	(1.5m)	(15.2m)	(1.5m)	(15.2m)	LEVEL (dB)
63 HZ	61	47	60	52	61	47	64	54	60	48	82
125 HZ	55	46	61	47	55	46	57	45	61	47	78
250 HZ	55	41	57	41	55	41	56	41	54	44	74
500 HZ	57	43	60	43	57	43	60	43	55	44	75
1 KHZ	58	42	59	44	58	42	58	44	57	44	75
2 KHZ	57	40	57	42	57	40	57	42	51	42	73
4 KHZ	57	36	56	38	57	36	56	38	54	43	71
8 KHZ	58	36	58	35	58	36	58	35	56	44	71
CALC dBA	65	47	65	49	65	47	65	49	61	50	81

Sound option(s) selected: Super Low Sound Fan Water Silencers

Discharge Sound Attenuation HDG

REMARKS:

1. Sound Pressure Levels are according to CTI Standard ATC-128

2. Sound Power Levels are calculated according to the Small Units Section 8

3. Sound from free-field conditions over a reflecting plane with +/-2 db(A) tolerance

 ${\bf 4}.$ Noise levels can increase with variable frequency drives depending on the drive manufacturer and the drive configuration

5. Complete unit sound data with all fans operating

Figure D-3 – Cooling Tower Noise Data – Evapco USS 19-218 (Cont.)

Sound Pressure Levels (SPL) in dB RE 0.0002 Microbar Sound Power Levels (PWL) in dB RE 10-12 Watt

MODEL	USS 19-218
MOTOR	7.50 kW
# MOTORS	1
SPEED	50% Speed

CELL DATA

1

	SOUND PRESSURE LEVEL (dB)										
	End		Motor Side		Opp End		Opp Mtr. Side		Тор		SOUND
	5 ft	50 ft	5 ft	50 ft	5 ft	50 ft	5 ft	50 ft	5 ft	50 ft	POWER
BAND	(1.5m)	(15.2m	(1.5m)	(15.2m	(1.5m)	(15.2m	(1.5m)	(15.2m	(1.5m)	(15.2m	LEVEL (dB)
		,		,		,		,		,	
63 HZ	55	43	55	46	55	43	58	48	56	44	77
125 HZ	52	42	56	43	52	42	53	42	56	42	74
250 HZ	54	41	56	40	54	41	56	40	52	43	73
500 HZ	57	43	60	43	57	43	60	43	55	43	75
1 KHZ	58	42	58	44	58	42	58	44	57	44	75
2 KHZ	57	40	57	42	57	40	57	42	51	42	73
4 KHZ	57	36	56	38	57	36	56	38	54	43	71
8 KHZ	58	36	58	35	58	36	58	35	56	44	71
CALC dBA	64	47	65	48	64	47	65	48	61	50	80

Sound option(s) selected: Super Low Sound Fan Water Silencers Discharge Sound Attenuation HDG

REMARKS:

1. Sound Pressure Levels are according to CTI Standard ATC-128

2. Sound Power Levels are calculated according to the Small Units Section 8

3. Sound from free-field conditions over a reflecting plane with +/-2 db(A) tolerance

4. Noise levels can increase with variable frequency drives depending on the drive manufacturer and the drive configuration

5. Complete unit sound data with all fans operating

Figure D-3 – Cooling Tower Noise Data – Evapco USS 19-218 (Cont.)