

14 April 2025

Bevian Road, Rosedale Concept Plan Approval Modification Walker Rosedale Transport Impact Assessment

## document control;

| lssue: | Date       | Issue details              | Author  | Reviewed |
|--------|------------|----------------------------|---------|----------|
| 1      | 09/02/2024 | Draft                      | PB / SM | AM       |
| 2      | 05/04/2024 | Draft                      | PB      | AM       |
| 3      | 08/05/2024 | Draft                      | PB      | AM       |
| 4      | 29/05/2024 | Final                      | PB      | AM       |
| 5      | 03/07/2024 | Final (Minor updates)      | PB      | AM       |
| 5      | 07/01/2025 | Final (TfNSW RFI comments) | PB      | AM       |
| 6      | 14/04/2025 | Final (TfNSW RFI comments) | PB      | AM       |

ptc.

For the attention of:

Zoe Kavanagh Development Manager Walker Corporation

Contact:

| Andrew Morse                   | Priya Baaskaraun                   |
|--------------------------------|------------------------------------|
| +61 2 8920 0800                | +61 2 8920 0800                    |
| +61 414 618 002                | +61 499 165 038                    |
| andrew.morse@ptcconsultants.co | priya.baaskaraun@ptcconsultants.co |

#### COMMERCIAL IN CONFIDENCE

The information contained in this document, including any intellectual property rights arising from designs developed and documents created, is confidential and proprietary to **ptc.** This document may only be used by the person/organisation to whom it is addressed for the stated purpose for which it is provided and must not be imparted to or reproduced, in whole or in part, by any third person without the prior written approval of a **ptc.** authorised representative. **ptc.** reserves all legal rights and remedies in relation to any infringement of its rights in respect of its intellectual property and/or confidential information. © 2024

#### ptc.

Suite 502, 1 James Place, North Sydney NSW 2060 info@ptcconsultants.co | (+61) 2 8920 0800 | ptcconsultants.co ABN 85 114 561 223

| 1.Intro | Dauction                                    | 1  |
|---------|---------------------------------------------|----|
| 1.1.    | Project Background and Summary              | 1  |
| 1.2.    | Development Proposal                        | 3  |
| 1.3.    | Road Hierarchy Plan of the Development Site | 5  |
|         | Context                                     | 6  |
| 2.1.    | Site Location                               | 6  |
| 2.2.    | Surrounding Land Use                        | 7  |
| 3.Exist | ting Transport Conditions                   | 8  |
| 3.1.    | Road Hierarchy                              | 8  |
| 3.2.    | Public Transport                            | 12 |
| 3.3.    | Active Transport                            | 13 |
| 3.3.1.  | Walking                                     | 13 |
| 3.3.2.  | Cycling                                     | 13 |
| 4.Cons  | sultation Process                           | 15 |
| 5.Traff | fic Impact Assessment                       | 17 |
| 5.1.    | Key Intersections                           | 17 |
| 5.2.    | Traffic Surveys                             | 19 |
| 5.3.    | Traffic Generation                          | 21 |
| 5.3.1.  | Existing Traffic Generation                 | 21 |
| 5.3.2.  | Development Traffic Generation              | 21 |
| 5.4.    | Development Traffic Distribution            | 21 |
| 5.4.1.  | Proposed inbound trip distribution          | 21 |
| 5.4.2.  | Proposed outbound trip distribution         | 23 |
| 5.5.    | Future background traffic growth            | 24 |
| 5.6.    | SIDRA Modelling                             | 24 |
| 5.7.    | Base Model Development                      | 25 |
| 5.8.    | Modelling Scenarios                         | 27 |
| 5.9.    | SIDRA Results                               | 27 |
|         | ess Design Assessment                       | 31 |
| 6.1.    | Central Island Radius                       | 32 |
| 6.2.    | Entry path radius                           | 32 |
| 6.3.    | Construction of the entry path              | 32 |
|         |                                             |    |

| 7.Prelim                                                  | ninary                                     | Construction Traffic Management Plan              | 34 |
|-----------------------------------------------------------|--------------------------------------------|---------------------------------------------------|----|
| 7.1.                                                      | Key S                                      | tandards and Guidelines                           | 34 |
| 7.2.                                                      | Obje                                       | ctive                                             | 34 |
| 7.3.                                                      | Gene                                       | ral Requirements                                  | 34 |
| 7.4.                                                      | •                                          | ng and Program                                    | 35 |
| 7.5.                                                      | Hours                                      | s of Work                                         | 35 |
| 7.6.                                                      | Const                                      | truction Vehicle Types                            | 35 |
| 7.7.                                                      |                                            | ative Construction Vehicle Routes                 | 36 |
| 7.7.1.                                                    |                                            | ss Route for Construction Vehicles                | 37 |
| 7.7.1.1.                                                  | Ingre                                      | ss Route                                          | 37 |
| 7.7.1.2.                                                  | Egres                                      | s Route                                           | 37 |
| 7.8.                                                      |                                            | Access Arrangements                               | 38 |
| 7.9.                                                      |                                            | strian Access                                     | 38 |
| 7.10.                                                     | Speci                                      | al Deliveries                                     | 38 |
| 7.11.                                                     | Staff                                      | Parking                                           | 38 |
| 7.12.                                                     |                                            | Site Security                                     | 38 |
| 7.13.                                                     |                                            | Induction                                         | 38 |
| 7.14.                                                     | Emergency Vehicle Access                   |                                                   | 39 |
| 7.15.                                                     | Acces                                      | 39                                                |    |
| 7.16.                                                     | Occupational Health and Safety             |                                                   | 39 |
| 7.17.                                                     | Method of Communicating Traffic Changes    |                                                   | 39 |
| 7.18.                                                     | Conta                                      | act Details for On-site Enquiries and Site Access | 39 |
| 8.Concl                                                   | usion                                      |                                                   | 40 |
| Append                                                    | ix 1.                                      | Subdivision Drawing including Road Hierarchy Plan |    |
| Append                                                    | ix 2.                                      | Consultation with relevant authorities            |    |
| Appendix 3. Existing and Post-Development Traffic Volumes |                                            |                                                   |    |
| Append                                                    | Appendix 4. Full SIDRA Results             |                                                   |    |
| Append                                                    | ndix 5. Proposed Access Roundabout Drawing |                                                   |    |
| Table 1                                                   | – Inter                                    | nal Road Layout of the proposed development       | 5  |

Table 2 - Road network characteristics - George Bass Drive

ptc.

9

| Table 3 - Road network characteristics - Bullock Road                                        | 9  |
|----------------------------------------------------------------------------------------------|----|
| Table 4 - Road network characteristics - Saltwood Drive                                      | 10 |
| Table 5- Road network characteristics – Road 01                                              | 10 |
| Table 6 - Road network characteristics – Princes Highway                                     | 11 |
| Table 7 - Road network characteristics – Tomakin Road                                        | 11 |
| Table 8 - Local bus operation summary                                                        | 12 |
| Table 9 – Record of Consultation                                                             | 15 |
| Table 10 – Key Intersections                                                                 | 17 |
| Table 11 – Development Trip Generation                                                       | 21 |
| Table 12 - Development trip inbound / outbound distribution                                  | 24 |
| Table 13 – Traffic volumes and Backround growth rates on George Bass Drive provided by TfNSW | 24 |
| Table 14 - Intersection performance - Levels of Service                                      | 25 |
| Table 15 – Modelling Scenarios                                                               | 27 |
| Table 16 - SIDRA traffic modelling results summary                                           | 27 |
| Table 17 – Geometric Design Elements as per Austroads guidelines                             | 31 |
| Table 18 – Indicative Construction vehicle size and Estimated Volumes                        | 36 |
|                                                                                              |    |
| Figure 1 - Site Location (Source: Nearmap)                                                   | 1  |
| Figure 2 – 2008 Concept Plan Approval Layout                                                 | 2  |
| Figure 3 - Proposed Modified Concept Plan                                                    | 4  |
| Figure 4 - Aerial view of the subject site (Source: Nearmap)                                 | 6  |
| Figure 5 - Land Use Zoning for the proposed development (Source: NSW Planning Viewer)        | 7  |
| Figure 6 - Surrounding Road Network (Source: TfNSW)                                          | 8  |

| Figure 7 - George Bass Drive near site frontage (Source: Google Map)                                                          | 9       |
|-------------------------------------------------------------------------------------------------------------------------------|---------|
| Figure 8 - Bullock Road near George Bass Drive (Source: Google Map)                                                           | 9       |
| Figure 9 - Saltwood Drive near George Bass Drive (Source: Near Map)                                                           | 10      |
| Figure 10 – Princes Highway towards north (Source: Google Map)                                                                | 11      |
| Figure 11 – Tomakin Road towards South (Source: Google Map)                                                                   | 11      |
| Figure 12 - Local public transport options                                                                                    | 12      |
| Figure 13 – Pedestrian Circulation and Accessibility Map (Source : PDS)                                                       | 14      |
| Figure 14 - Key Intersections (Map source: Near map)                                                                          | 18      |
| Figure 15 - Tube Count Survey Locations (Source: Nearmap)                                                                     | 19      |
| Figure 16 - 7-day total traffic volume profile of George Bass Drive                                                           | 20      |
| Figure 17 - Aerial view of the local residential trip generation tube count location at Forest Parade                         | 20      |
| Figure 18 – Proposed inbound trip distribution                                                                                | 22      |
| Figure 19 – Proposed outbound trip distribution                                                                               | 23      |
| Figure 20 – Base SIDRA model                                                                                                  | 26      |
| Figure 21 – Proposed George Bass Drive / Road 01 roundabout design                                                            | 31      |
| Figure 22 – Central Island Radius requirements at single lane roundabouts (Source : Austroads Guid<br>to Road Design Part 4B) | e<br>32 |
| Figure 23 – Maximum entry path radii for one lane roundabouts (Source : Austroads Guide to Road Design Part 4B)               | 32      |
| Figure 24 – Steps to construct the entry path (Source : Austroads Guide to Road Design Part 4B)                               | 33      |
| Figure 25 – Construction of the entry path of a single-lane entry (Source : Austroads Guide to Road Design Part 4B)           | 33      |
| Figure 26 – Construction Vehicle Routes                                                                                       | 37      |

## 1. Introduction

### 1.1. Project Background and Summary

**ptc.** has been engaged by Walker Rosedale Pty Ltd (the Proponent) to prepare a Traffic Impact Assessment (TIA) report to support a modification of the 2008 Concept Plan Approval proposing a residential development at Bevian Road, Rosedale (the Proposal) on the south coast of New South Wales (NSW).

The modification sought is from the Part 3A Concept Approval for a Community Title Subdivision for residential development and ancillary commercial and community facilities, ecological stewardship, public roads and open space areas yielding a total of 792 residential lots (reference number 05\_0199), to a Torrens title development that includes residential development and ancillary commercial facilities, public roads, public open areas and residual rural lot yielding a total of 792 residential lots inclusive of the 51 Torrens title residential lots recently constructed and registered as part of stage 1 (DA305/18).

Pursuant to the Planning Secretary's Environmental Assessment Requirements (SEARs) from the Department of Planning, Housing and Infrastructure (DPHI), Eurobodalla Shire Council (ESC) and Transport for NSW (TfNSW), a Traffic Impact Assessment report is required that has been prepared in consultation with Authorities. This report presents our assessment of the traffic implications associated with the proposed subdivision including documentation of all consultation and accompanies the application submission.

The location of the site that is the subject of the Proposal is outlined in Figure 1.

The 2008 Concept Plan Approval can be found at Figure 2.



Figure 1 - Site Location (Source: Nearmap)



Figure 2 – 2008 Concept Plan Approval Layout

### 1.2. Development Proposal

The modification sought is from the Part 3A Concept Approval for a Community Title Subdivision for residential development and ancillary commercial and community facilities, ecological stewardship, public roads and open space areas yielding a total of 792 residential lots (reference number 05\_0199), to a Torrens title development that includes residential development and ancillary commercial facilities, public roads, public open areas and residual rural lot yielding a total of 792 residential lots inclusive of the 51 Torrens title residential lots recently constructed and registered as part of stage 1 (DA305/18).

The layout of the proposed subdivision drawing is attached in **Appendix 1** including road hierarchy and typical road cross sections.



Figure 3 - Proposed Modified Concept Plan

### 1.3. Road Hierarchy Plan of the Development Site

The internal road network within the proposed development incorporates a logical road hierarchy of road functions and appropriate design to prioritise and facilitate pedestrian and cycle activity which involves the Table 1 roads / streets in accordance with the principles set out in Eurobodalla Shire Council's Infrastructure Design Standards and Rural Fire Service's Planning For Bush Fire Protection 2019.

| Road /<br>Street          | Width of the carriageway | Capacity<br>of the<br>carriageway                                | Type of<br>carriageway<br>Parking                                                                                              | Pedestrian<br>Footpath                         | Cycling<br>activities                                                                                       |
|---------------------------|--------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| Access<br>Street          | 8m                       | Two traffic<br>lanes, one in<br>each<br>direction                | Parking on<br>carriageway                                                                                                      | 1.5m footpath<br>on one side of<br>the road    | Provided on-<br>street                                                                                      |
| Local Street              | 8m                       | Two traffic<br>lanes, one in<br>each<br>direction                | Parking on<br>carriageway                                                                                                      | 2.5m shared<br>path on one side<br>of the road | 2.5m shared<br>path on one side<br>of the road                                                              |
| Collector<br>Street       | 13m                      | Two traffic<br>lanes and<br>two<br>kerbside<br>parking<br>lanes. | Intended<br>Parking - On-<br>street parking<br>provided<br>within<br>kerbside<br>parking lane<br>on both sides<br>of the road. | 1.5m footpath<br>on one side of<br>the road    | 2.5m cycle path<br>on the other<br>side of the road                                                         |
| Perimeter<br>Street       | 10.5m                    | Two traffic<br>lanes and<br>one<br>kerbside<br>parking<br>lane.  | Intended<br>Parking - On-<br>street parking<br>provided<br>within<br>kerbside<br>parking lane<br>on one side of<br>the road.   | 2.5m shared<br>path on one side<br>of the road | 2.5m shared<br>path on one side<br>of the road                                                              |
| Distributor<br>Road       | 12m                      | Two traffic<br>lanes, one in<br>each<br>direction                | Parking on<br>carriageway                                                                                                      | 2.5m shared<br>path on one side<br>of the road | Dedicated cycle<br>paths on both<br>sides of the road<br>and 2.5m shared<br>path on one side<br>of the road |
| Evacuation<br>Access Road | 5.5m                     | Two traffic<br>lanes, one in<br>each<br>direction                | No parking on<br>carriageway                                                                                                   | NA                                             | 2.5m cycle path<br>on one side of<br>the road.                                                              |

Table 1 – Internal Road Layout of the proposed development

The full description of the roads, typical cross sections and the road hierarchy plan is attached in **Appendix 1**.

# 2. Site Context

### 2.1. Site Location

The site is located at Bevian Road, Rosedale, on the south coast of NSW. The site is situated between the townships of Rosedale and Tomakin, in the local government area of Eurobodalla Shire Council.

The site is bounded by George Bass Drive and the Bevian Wetland to the south, Mogo State Forest and rural residential lots along the west, rural residential lots, Bullock Road (labelled on Google maps as 'Bevian Road' but to be renamed 'Bullock Road', already renamed in six maps), and Burri Road to the north, and another residential development known as 'Saltwood' and rural residential lots to the east.

The site forms part of the Rosedale Urban Expansion Area, which has been identified for residential subdivision to enable a range of dwelling type within the estate. The subdivision will incorporate residential development ranging from standard residential lots to large rural lots and is considered suitable for urban development within the South Coast Sensitive Urban Lands Review report (dated October 2006).

Buri Rad
Bullock Rad

Horgo State Forest

Tomakin Rod

Breaking But State Parade

Development

Breaking But State Parade
Breaking But State Parade</

The aerial view of the site location is shown in Figure 4.

Figure 4 - Aerial view of the subject site (Source: Nearmap)

### 2.2. Surrounding Land Use

The development site at Bevian Road, Rosedale comprises several lots and occupies an area of approximately 180ha.

The majority of the site falls within the Residential R2 (Low Density Residential) zone, with Environmental Conservation (C2) situated to the south. In the north-western area, there is a section designated as Primary Production (RU1) and Environmental Living (C4) in the south-west. Additionally, to the east, along the coastal side, there are numerous C2 and C4 zones in the vicinity of the site.

The existing land zoning in the locality suggests that the existing traffic volumes are expected to be generally low. Traffic activities are largely associated with regional properties, primary industries, tourism activities and passing people and freight movements.

The zonings in the vicinity of the site are presented in Figure 5.



Figure 5 - Land Use Zoning for the proposed development (Source: NSW Planning Viewer)

# 3. Existing Transport Conditions

The proposal has been assessed for its adequacy on connectivity by various modes of transport by studying the existing transport conditions in the surroundings.

### 3.1. Road Hierarchy

The NSW administrative road hierarchy comprises the following road classifications, which align with the generic road hierarchy as follows:

- State Roads Freeways and Primary Arterials (RMS managed)
- Regional Roads Secondary or Sub Arterials (Council managed, partly funded by the State)
- Local Roads Collector and Local Access Roads (Council managed)

The development site is located on the south coast of New South Wales and is serviced by a mix of regional and local roads as presented in Figure 6.

The site offers direct entry through three local access points: two located in the east and one in the south, linking the site to the regional road. The Bullock Road access point is already in place and Saltwood Drive connects the remaining two access points, extending from the established roundabout in the east to the proposed intersection in the south, linking George Bass Drive.

There is a functioning fire trail road (unsealed) constructed to RFS standards that connects existing stage one Council Road network (sealed) to the existing Council Roads Burri Road (unsealed) and Bullock Road (sealed). The fire trail is proposed to be replaced with sealed Council roads in stages during construction.

A summary of the current roads near the site is presented in Figure 6.



Figure 6 - Surrounding Road Network (Source: TfNSW)

### ptc.

Table 2 - Road network characteristics - George Bass Drive

| George Bass Drive   |                                            |
|---------------------|--------------------------------------------|
| Road Classification | Regional Road                              |
| Alignment           | Generally north - south through the region |
| Number of Lanes     | 1 lane in each direction                   |
| Carriageway Type    | Undivided                                  |
| Carriageway Width   | 8.5 metres                                 |
| Speed Limit         | 100 km/h                                   |
| School Zone         | No                                         |
| Parking Controls    | Nil                                        |
| Forms Site Frontage | Yes                                        |
|                     |                                            |

Figure 7 - George Bass Drive near site frontage (Source: Google Map)

| Table 3 - Road | l network | characteristics | - Bullock Road |
|----------------|-----------|-----------------|----------------|
|----------------|-----------|-----------------|----------------|

**Bullock Road** (labelled on Google maps as 'Bevian Road' but to be renamed 'Bullock Road', already renamed in six maps)

| Road Classification | Local Road                                                |
|---------------------|-----------------------------------------------------------|
| Alignment           | East - West                                               |
| Number of Lanes     | 1 lane in each direction                                  |
| Carriageway Туре    | Undivided                                                 |
| Carriageway Width   | 8 metres                                                  |
| Speed Limit         | 50 km/h (assuming the same as Saltwood Drive speed limit) |
| School Zone         | No                                                        |
| Parking Controls    | Nil                                                       |
| Forms Site Frontage | Yes                                                       |



Figure 8 - Bullock Road near George Bass Drive (Source: Google Map)

Table 4 - Road network characteristics - Saltwood Drive

| Saltwood Drive      |                          |
|---------------------|--------------------------|
| Road Classification | Local Road               |
| Alignment           | East - West              |
| Number of Lanes     | 1 lane in each direction |
| Carriageway Type    | Undivided                |
| Carriageway Width   | 9.5 metres               |
| Speed Limit         | 50 km/h                  |
| School Zone         | No                       |
| Parking Controls    | Nil                      |
| Forms Site Frontage | No                       |
|                     |                          |

Figure 9 - Saltwood Drive near George Bass Drive (Source: Near Map)

Table 5- Road network characteristics – Road 01

| Road 01             |                                                               |
|---------------------|---------------------------------------------------------------|
| Road Classification | Local Road                                                    |
| Alignment           | Generally north - south through the site                      |
| Number of Lanes     | Assuming 1 lane in each direction (Roads not yet constructed) |
| Carriageway Type    | Undivided                                                     |
| Carriageway Width   | 6 metres                                                      |
| Speed Limit         | 50 km/h (assuming the same as Saltwood Drive speed limit)     |
| School Zone         | No                                                            |
| Parking Controls    | Nil                                                           |
| Forms Site Frontage | Yes                                                           |

Table 6 - Road network characteristics – Princes Highway

| Princes Highway     |                          |
|---------------------|--------------------------|
| Road Classification | State Road               |
| Alignment           | North - South            |
| Number of Lanes     | 1 lane in each direction |
| Carriageway Type    | Undivided                |
| Carriageway Width   | 7 metres                 |
| Speed Limit         | 100 km/h                 |
| School Zone         | Yes                      |
| Parking Controls    | Varies                   |
| Forms Site Frontage | No                       |
|                     |                          |

Figure 10 – Princes Highway towards north (Source: Google Map)

| Table 7 - Road network characteristics – Tomakin Road |
|-------------------------------------------------------|
|-------------------------------------------------------|

| Tomakin Road        |                          |
|---------------------|--------------------------|
| Road Classification | Local Road               |
| Alignment           | Generally, north - south |
| Number of Lanes     | 1 lane in each direction |
| Carriageway Type    | Undivided                |
| Carriageway Width   | 7 metres                 |
| Speed Limit         | 100 km/h                 |
| School Zone         | No                       |
| Parking Controls    | Nil                      |
| Forms Site Frontage | No                       |
|                     |                          |

Figure 11 – Tomakin Road towards South (Source: Google Map)

### 3.2. Public Transport

A review of the public transport options has been undertaken within approximately 800m (a 10-minute walk) of the proposed development site boundary. When defining accessibility, the NSW Guidelines to Walking and Cycling (2004) suggests that 400m to 800m is a comfortable walking distance. As the proposed development site is located in a regional low-density area, existing public transport is limited to bus services only, which operate at low frequencies.

Local bus services are operated by the private bus services named Priors Bus Company. Two bus stops are located within 800m walk from the site boundary. Currently, these stops are served by routes 860 and MCS, as illustrated in Figure 12. Their operation frequency is summarised in Table 8.

| Table 8 - Local bus operation summary |
|---------------------------------------|
|---------------------------------------|

| Bus Routes                  | Service Coverage                     | Operation Summary                         |
|-----------------------------|--------------------------------------|-------------------------------------------|
| 860 (Private bus services)  | Batemans Bay to Weekdays: 8 services |                                           |
|                             | Moruya via Surf Beach &              | Saturdays and Public Holidays: 3 services |
|                             | Broulee                              | Sundays: no service                       |
| MCS (Private coach          | South Coast to                       | Mondays, Fridays, Saturdays, and Sundays  |
| services, booking required) | Canberra                             | only, 1 service per day.                  |

The proposed residential subdivision is close to bus services, which link Rosedale with Batemans Bay in the north and Moruya in the south, as well as Canberra in the west. These services offer alternatives to travel by modes other than car. The proposed subdivision, with its increase in residential population, will strengthen demand for public transport services in the area.



Figure 12 - Local public transport options

The public transport aspects of the proposed residential subdivision have been developed with consideration given to integrating bus services through the site with public transport in the surrounding area. The main internal collector road passing through the site has been designed to accommodate potential future bus services.

A public transport strategy for the residential development will be provided to establish an integrated bus route that ensures a high proportion of dwellings within 400 metres of a bus stop.

### 3.3. Active Transport

A review of the existing walking and cycling infrastructure has been undertaken in proximity of the proposed development site and can be referenced from Section 1.3.

With consideration to the nature of being a regional road and its 100km/h speed limit, George Bass Drive is considered not suitable for active transport.

### 3.3.1. Walking

Walking is a viable transport option for distances under one kilometre (approximately 15-20min) and is often quicker for short trips door to door. Walking is also the most space efficient mode of transport for short trips and presents the highest benefits. Co-benefits, where walking replaces a motorised trip include improved health for the individual, reduced congestion on the road network and reduced noise and emission pollution.

The residential development proposes a 1.5m paved footpath on one side of the carriageway throughout the secondary routes near access roads and open spaces. The paths will connect residential areas to key destinations and public transport corridors.

Pedestrian infrastructure has been well developed in the vicinity of the subject site. Given the lowdensity residential character of the area, the pedestrian infrastructure is considered appropriate.

### 3.3.2. Cycling

Cycle facilities have been developed to encourage cycling for recreational movements. These facilities will be integrated with the existing landscape to promote their use when accessing open spaces and public transport.

A cycle network has been developed within the site, linking to George Bass Drive, and featuring commuter, local, and recreational routes to incorporate cycling within larger road widths or contemplate shared use of carriageway on the minor roads.

The cycle network has been developed with 2.5m shared cycle paths provided along most of the developed road network, including the main internal road, perimeter roads, distributor road and local roads, which is reasonably well connected with the surrounding access streets. Other than this, cyclists may need to share the road with motorists. Shared paths have also been developed to provide through the riparian zones. A map of the developed cycling infrastructure in the area is provided in Figure 13. The locality is currently defined as a high pedestrian activity area, and the speed limit has been implemented to provide a generally friendly environment for cycling.



Figure 13 – Pedestrian Circulation and Accessibility Map (Source : PDS)

## 4. Consultation Process

During the preparation of this report, meetings were held online / phone call with Transport for New South Wales (TfNSW), Eurobodalla Shire Council and Priors Bus Service (private bus company in Rosedale).

The detailed consultation with the relevant authorities is elaborated in Table 9. The email conversations with the relevant authorities regarding the subject matters are attached in **Appendix 2**.

| Authority                                  | Contact                                                                                                             | Date /<br>Time                                               | Matters<br>raised                                                                                                                                                        | Responses received                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Development<br>services,<br>south<br>TfNSW | <ul> <li>Nathan<br/>Boscaro<br/>(Team<br/>Leader)</li> <li>Josiah<br/>Poulter<br/>(Business<br/>Trainee)</li> </ul> | 20<br>February<br>2024 /<br>10:00am –<br>11:00am<br>(online) | <ul> <li>Growth<br/>rates on<br/>George<br/>Bass Drive</li> <li>ptc.'s tube<br/>count trip<br/>rates of the<br/>selected<br/>comparable<br/>Forest<br/>Parade</li> </ul> | <ul> <li>Traffic volumes data for George<br/>Bass Drive to the north of Bevian<br/>Road, south of Illabunda Drive<br/>and south of Bevian Road, north<br/>of Rosedale Parade. This led to<br/>assume an annual growth rates<br/>between 5-9%.</li> <li>Suggestion to use standard low<br/>density residential trip generation<br/>rates from the TfNSW guide.</li> </ul> |
| Eurobodalla<br>Shire council               | Alister<br>Robertson<br>(Coordinator<br>Development<br>Engineering)                                                 | 27<br>February<br>2024 /<br>2:00pm –<br>2:30pm<br>(online)   | <ul> <li>Proposed<br/>roundabout<br/>on George<br/>Bass Drive<br/>at Road 01</li> </ul>                                                                                  | Potential for the Bullock Road to be<br>left-in, left-out featuring a physical<br>median as a requirement of the<br>Saltwood developer's DA.                                                                                                                                                                                                                             |
| Priors Bus<br>service                      | Kath<br>(Operations<br>Manager)                                                                                     | 8 April<br>2024 /<br>3:30pm<br>(5minutes<br>phone call)      | Identifying the<br>interest in<br>developing<br>the public<br>transport<br>strategy for<br>the proposed<br>Rosedale<br>subdivision.                                      | <ul> <li>Expressed interest in providing<br/>bus services through the site due<br/>to existing services in<br/>surrounding four regions.</li> <li>Request for a master plan<br/>indicating possible bus stop<br/>locations to assess feasibility,<br/>consider road widths, parking<br/>arrangements and facilitate their<br/>bus services.</li> </ul>                   |
|                                            |                                                                                                                     | 9 April<br>2024 /<br>Email                                   | A Road<br>Hierarchy plan<br>with indicative<br>bus stop<br>locations<br>along the main<br>internal                                                                       | <ul> <li>Confirmation that the provided<br/>master plan meets specifications.</li> <li>Acknowledgement of new<br/>estates, including Rosedale, for<br/>incorporation into timetables.</li> </ul>                                                                                                                                                                         |

Table 9 – Record of Consultation

|                                                            |                       | collector road<br>through the<br>site is mailed<br>as requested.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Mention of necessity to wait until<br/>Rosedale estate completion<br/>before inclusion.</li> <li>Note on complexity of timetable<br/>adjustments to accommodate<br/>entire areas.</li> </ul>                                                  |
|------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TfNSW<br>Request for<br>Information<br>(RFI) Revision<br>A | 6<br>November<br>2024 | Tomakin &<br>Princes<br>Highway<br>Intersection:<br>TfNSW has<br>reviewed the<br>information<br>and is unable<br>to properly<br>assess<br>possible<br>impacts of the<br>proposed<br>development<br>on the state<br>road network.<br>TfNSW<br>requires the<br>Traffic Impact<br>Assessment<br>(TIA)to be<br>updated to<br>included<br>analysis of the<br>intersection of<br>the Princes<br>Highway and<br>Tomakin Road,<br>at Mogo. The<br>analysis must<br>assess the<br>suitability of<br>this<br>intersection for<br>the traffic<br>generated by<br>this proposal<br>and where<br>required,<br>identify<br>appropriate<br>upgrades. | <ul> <li>Additional modelling for the<br/>Tomakin Road/Princes Highway<br/>intersection has been included,<br/>and the suitability of the<br/>intersection for the traffic<br/>generated by the proposed<br/>development has been assessed.</li> </ul> |

# 5. Traffic Impact Assessment

The following sections present an assessment of the existing traffic activity and future traffic conditions for the proposed development.

### 5.1. Key Intersections

In the vicinity of the site, the following intersections are either existing and close to the site or proposed to be constructed as part of the development, and have high importance to the development proposal:

Table 10 – Key Intersections

| Number | Intersection                                            | Description                              | Existing / Proposed |
|--------|---------------------------------------------------------|------------------------------------------|---------------------|
| I-1    | George Bass Drive / Tomakin Road /<br>Sunpatch Parade   | 4-arm roundabout                         | Existing            |
| I-2    | George Bass Drive / Road 01                             | New Southern access 3-<br>arm roundabout | Proposed            |
| 1-3    | George Bass Drive / Rosedale Parade<br>/ Saltwood Drive | 4-arm roundabout                         | Existing            |
| 1-4    | George Bass Drive / Bullock Road                        | 3-arm priority controlled                | Existing            |
| I-5    | Bullock Road / Purdie Parade                            | 4-arm roundabout                         | Existing            |
| I-6    | Princes Highway / Tomakin Road                          | 3-arm priority controlled                | Existing            |

The section of George Bass Drive in the vicinity of the George Bass Drive / Bullock Road intersection (I-4) has been the subject of construction for a T future intersection, restricted to Left-in Left-out movements, featuring a physical median.

The key intersections provide readily access to the site and are expected to be used by the prospective users of the development proposal.

Details and layouts of the key intersections are shown in Figure 14.



Figure 14 - Key Intersections (Map source: Near map)

### 5.2. Traffic Surveys

Typically, in determining the development inbound / outbound trip distribution, a generalised trip distribution of 20% inbound and 80% outbound during the AM peak period and vice versa during the PM peak is assumed. However, the best practice is to determine local traffic conditions to ensure that development design solutions satisfy local traffic habits. With this in mind, to understand the current traffic conditions and trip distributions near the site, the following traffic surveys were undertaken over a week in November 2023:

- Tube counts on George Bass Drive near Barlings Beach Holiday Park and Rosedale Parade to capture typical background traffic over a 1-week period;
- Tube counts on Forest Parade near Ainslie Parade to capture typical local residential traffic generation volumes off 100 dwellings over a 1-week period;
- Turning movement counts at the George Bass Drive / Tomakin Road (I-1) and George Bass Drive / Rosedale Parade intersections (I-3) during weekday and weekend peak periods. As the George Bass Drive / Bullock intersection (I-4) is temporarily closed, it is expected to carry a significant amount of traffic associated with the development subdivision, therefore no survey was carried out for this intersection and subsequently for the Bullock Road / Purdie Parade (I-5).

A new traffic survey for the Princes Highway/Tomakin Road (I-6) intersection was conducted in December 2024 during weekday and weekend peak periods, as requested by TfNSW.



The locations of the traffic surveys undertaken are illustrated in Figure 15.

Figure 15 - Tube Count Survey Locations (Source: Nearmap)

Figure 16 illustrates the 7-day traffic volume profile recorded on George Bass Drive. The survey data shows that the peak hour volumes vary from 300 to 350 vehicles per hour. The traffic volumes are currently low and consistent with the regional context of the area.

The analysis of traffic survey data has found that the area has the following network peak hours:

- Weekday AM Peak: 8am 9am
- Weekday PM Peak: 3:30pm 4:30pm
- Weekend Midday Peak: 12:00pm 1:00pm



Figure 16 - 7-day total traffic volume profile of George Bass Drive

Based on the analysis of number of dwellings and network peak hour traffic volumes captured on Forest Parade, the following residential trip generation rates are established for the region:

- Weekday AM Peak: 0.71 trips per dwelling
- Weekday PM Peak: 0.53 trips per dwelling
- Weekend Midday Peak: 0.42 trips per dwelling



Figure 17 - Aerial view of the local residential trip generation tube count location at Forest Parade

### 5.3. Traffic Generation

#### 5.3.1. Existing Traffic Generation

Existing traffic volumes collected through the intersection traffic surveys during the weekday morning, afternoon and weekend mid-day peak hours are provided in **Appendix 3**.

### 5.3.2. Development Traffic Generation

Generally, the traffic activity with a particular type of land can be determined through a number of approaches. For the purposes of this assessment, the traffic activity related to the existing land use for the existing and post-development traffic generation is determined with reference to the following documents:

- TfNSW Guide to Traffic Generating Developments 2002 (TTR-002) (formerly known as RTA Guide)
- TfNSW Guide to Traffic Generating Developments Updated Traffic Surveys (TDT 2013/04a)

The guide provides AM and PM peak hour trip generation rates of 0.85 in the morning and 0.9 in the evening for low-density residential dwellings during the weekdays, consistent with the 2008 Concept approval TIA, which adopted a rate of 0.85 vehicles per hour two-way during peak periods based on the RTA guide. For weekends, the guide does not provide any rates. However, we have assumed the maximum weekday trip generation rate of 0.9. Based on the above, the traffic generation rates adopted for residential land uses in the development proposal are presented in Table 11.

| Land use                                   | Units | Source          | Trip Generation Rates |     | Trip Generation |         |     |         |
|--------------------------------------------|-------|-----------------|-----------------------|-----|-----------------|---------|-----|---------|
|                                            |       |                 | Weekday               |     | Weekend         | Weekday |     | Weekend |
|                                            |       |                 | AM                    | PM  | Mid-day         | AM      | PM  | Mid-day |
| Low<br>density<br>Residential<br>dwellings | 792   | TDT<br>2013.04a | 0.85                  | 0.9 | 0.9             | 673     | 713 | 713     |

Table 11 – Development Trip Generation

### 5.4. Development Traffic Distribution

Based on the surveyed existing traffic volumes, the following trip distribution was derived / assumed for the study area via three access points I-2, I-3 and I-4 for both the AM and PM peak periods.

- About 50% travel from north of the George Bass Drive to reach the site
- About 50% travel from west of the George Bass Drive to reach the site

Figure 18 and Figure 19 shows inbound and outbound trip distribution assumptions.

#### 5.4.1. Proposed inbound trip distribution

Of the total 50% inbound development trip to the Site from north of the George Bass Drive (Figure 18),

- No trips would travel via Bullock Road (I-4) as it features a left-in left-out with a physical central median,
- About 45% would travel via Saltwood Drive (I-3), and

• About 5% would travel via Road 01 (I-2).

Of the total 50% inbound development trip to the Site from west of the George Bass Drive (Figure 18),

- About 30% would travel via Road 01 (I-2),
- About 15% would travel via Saltwood Drive (I-3), and
- About 5% would travel via Bullock Road (I-4).



Figure 18 – Proposed inbound trip distribution

#### 5.4.2. Proposed outbound trip distribution

Of the total 50% outbound development trip from the Site to north of the George Bass Drive (Figure 19),

- About 30% would travel via Bullock Road (I-4),
- About 15% would travel via Saltwood Drive (I-3), and
- About 5% would travel via Road 01 (I-2).

Of the total 50% outbound development trip from the Site to west of the George Bass Drive (Figure 19),

- About 35% would travel via Road 01 (I-2),
- About 15% would travel via Saltwood Drive (I-3), and
- No trips would travel via Bullock Road (I-4) as it features a left-in left-out with a physical central median.



Figure 19 - Proposed outbound trip distribution

Based on the collected local residential trip generation data in Section 5.2 and the characteristics of the various land uses during different peak hours, the inbound / outbound traffic distribution has been derived for distributing the development traffic generation and is presented in Table 12, which supports the trip distribution adopted in the 2008 concept approval TIA (assumed 35% inbound / 65% outbound in the morning and vice-versa in the evening).

The full distributed development traffic volumes are provided in Appendix 3.

Table 12 - Development trip inbound / outbound distribution

| Land use    | AM peak      | PM peak      | Weekend midday peak |
|-------------|--------------|--------------|---------------------|
| Residential | 35% inbound  | 68% inbound  | 48% inbound         |
|             | 65% outbound | 32% outbound | 52% outbound        |

### 5.5. Future background traffic growth

The Rosedale development is expected to be delivered over approximately 12 stages (excluding completed stage 1). It is expected that the development would be delivered over the next 10 years, hence modelling is undertaken for future year in 2033.

• George Bass Drive (Regional Road) - Future background traffic growth for the George Bass Drive was obtained from the data provided by TfNSW. Table 13 shows the traffic volumes on George Bass Drive in 2016, 2019 and 2021 provided by TfNSW along with the 10-year growth rate.

| Road Sections                                           | Year       | Year<br>difference | Traffic Volumes | Growth rate per<br>annum |
|---------------------------------------------------------|------------|--------------------|-----------------|--------------------------|
| George Bass Drive to the north of Bevian Road, south of | 03/03/2016 | 3                  | 2204            | 8.85%                    |
| Illabunda Drive                                         | 21/08/2019 |                    | 2843            |                          |
| George Bass Drive to the south                          | 19/05/2016 | 5                  | 2553            | 5.62%                    |
| of Bevian Road, north of<br>Rosedale Parade             | 03/03/2021 |                    | 3356            |                          |

Table 13 – Traffic volumes and Backround growth rates on George Bass Drive provided by TfNSW

TfNSW provided growth rates ranging between 5-9% per annum. It is considered a growth rate of 9% is unsustainable, and will tend to reduce in the future, therefore a growth rate of 7% per annum has been adopted for 10 years between 2023 and 2033.

• **Princes Highway (State Road)** – A future background traffic growth rate of 2% per annum has been assumed for Princes Highway and applied over a 9-year period from 2024 to 2033.

### 5.6. SIDRA Modelling

An analysis has been undertaken using the SIDRA Intersection 9.1 software, a micro-analytical tool for individual intersection and whole-network modelling. The models use inputs based on the collected traffic survey data, the forecast generation and distribution of traffic associated with the proposed development.

SIDRA provides a number of performance indicators outlined below:

• Degree of Saturation – The total usage of the intersection expressed as a factor of 1 with 1 representing 100% use/saturation. (e.g. 0.8=80% saturation).

- Average Delay The average delay encountered by all vehicles passing through the intersection. It is often important to review the average delay of each approach as a side road could have a long delay time, while the large free flowing major traffic will provide an overall low average delay.
- 95% Queue Lengths (Q95) is defined to be the queue length in metres that has only a 5-percent probability of being exceeded during the analysis time period. It transforms the average delay into measurable distance units.
- Level of Service (LoS) This is a categorization of average delay, intended for simple reference. It is a good indicator of overall performance for individual intersections.

TfNSW adopts the bands shown in Table 14.

| Level of<br>Service | Average Delay<br>(secs/veh) | Traffic Signals, Roundabout                                                                                   | Give Way and Stop Signs                    |
|---------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| А                   | <14                         | Good operation                                                                                                |                                            |
| В                   | 15 to 28                    | Good with acceptable delays & spare capacity                                                                  | Acceptable delays & spare capacity         |
| С                   | 29 to 42                    | Satisfactory                                                                                                  | Satisfactory, but accident study required  |
| D                   | 43 to 56                    | Operating near capacity                                                                                       | Near capacity & accident study required    |
| E                   | 57 to 70                    | At capacity. At signals, incidents would<br>cause excessive delays. Roundabouts<br>require other control mode | At capacity, requires other control mode   |
| F                   | >70                         | Extra capacity required                                                                                       | Extreme delay, major<br>treatment required |

Table 14 - Intersection performance - Levels of Service

### 5.7. Base Model Development

The base model was developed as per *TfNSW Traffic Modelling Guidelines, version 1, February 2013* (*TfNSW guidelines*). Given that the key intersections are spaced more than 2 kilometres apart, the base SIDRA model was developed to reflect the site environment.

Figure 20 shows the individual sites modelled within the base SIDRA.



### 5.8. Modelling Scenarios

The SIDRA modelling scenarios were undertaken with and without the proposal for future year in 2033 AM and PM peaks (Table 15).

Table 15 – Modelling Scenarios

| S. No | Scenarios                                     | Meaning                                                                                                                                |
|-------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| 1     | Existing                                      | Base case scenario using traffic volumes collected during the surveys. This case represents the existing peak hour traffic conditions. |
| 2     | Existing + Background<br>Growth               | Base case scenario along with the future traffic background growth on George Bass Drive.                                               |
| 3     | Existing + Development                        | Future scenario that combines the existing scenario with the additional development traffic generation volumes.                        |
| 4     | Existing + Background<br>Growth + Development | The same methodology as above along with the background growth on George Bass Drive.                                                   |

### 5.9. SIDRA Results

Table 16 compares the results of the existing traffic volumes, future base case, and additional development volumes for 792 dwellings. The full movement summaries have been provided as **Appendix 4.** 

| Intersections          | Peak<br>Hour  | Scenarios                          | Average<br>delay<br>(sec) | Average<br>LoS¹ | Highest<br>DoS (v/c) | Highest Q95<br>(m) |
|------------------------|---------------|------------------------------------|---------------------------|-----------------|----------------------|--------------------|
|                        | Weekday<br>AM | Existing                           | В                         | 14.5            | 0.367                | 17.4               |
|                        |               | Existing + Growth                  | В                         | 17.7            | 0.626                | 44.4               |
|                        |               | Existing +<br>Development          | В                         | 17              | 0.586                | 37.8               |
| (I-1)                  |               | Existing + Growth<br>+ Development | В                         | 22.5            | 0.841                | 108.4              |
| George Bass<br>Drive / | Weekday       | Existing                           | А                         | 12.4            | 0.292                | 13.6               |
| Tomakin                | PM            | Existing + Growth                  | А                         | 13.4            | 0.419                | 22.9               |
| Road /<br>Sunpatch     |               | Existing +<br>Development          | A                         | 13.6            | 0.446                | 24.8               |
| Parade                 |               | Existing + Growth<br>+ Development | В                         | 15.2            | 0.577                | 39.4               |
|                        | Weekend       | Existing                           | А                         | 12.8            | 0.344                | 16.3               |
|                        | Mid-day       | Existing + Growth                  | А                         | 13.9            | 0.487                | 27.7               |
|                        |               | Existing +<br>Development          | A                         | 13.6            | 0.472                | 25.8               |

Table 16 - SIDRA traffic modelling results summary

<sup>&</sup>lt;sup>1</sup> It is noted that for priority-controlled intersections, the minor road usually experiences the highest delay whereas the major road experiences zero delay. In light of this, the average performance indicators may not be a suitable method of assessing the performance of an intersection. Therefore, the performance indicators for the worst movement have been reported for priority-controlled intersections.

|                                        |         | Existing + Growth                  | В | 15.5 | 0.622 | 42.1 |
|----------------------------------------|---------|------------------------------------|---|------|-------|------|
|                                        |         | + Development                      |   |      |       |      |
| (I-2)                                  | Weekday | Existing                           | А | 11.5 | 0.172 | 8.1  |
| George Bass                            | AM      | Existing + Growth                  | А | 12.2 | 0.330 | 18.6 |
| Drive / Road<br>01 (New                |         | Existing +<br>Development          | A | 12   | 0.310 | 16.2 |
| southern<br>access                     |         | Existing + Growth<br>+ Development | А | 12.9 | 0.525 | 35.2 |
| roundabout)                            | Weekday | Existing                           | А | 11.8 | 0.129 | 5.6  |
|                                        | PM      | Existing + Growth                  | А | 13   | 0.244 | 12.0 |
|                                        |         | Existing +<br>Development          | А | 12.6 | 0.305 | 16.2 |
|                                        |         | Existing + Growth<br>+ Development | А | 14.1 | 0.427 | 27   |
|                                        | Weekend | Existing                           | А | 12.2 | 0.168 | 7.6  |
|                                        | Mid-day | Existing + Growth                  | А | 13.9 | 0.322 | 17.4 |
|                                        |         | Existing +<br>Development          | A | 13   | 0.294 | 16.2 |
|                                        |         | Existing + Growth<br>+ Development | В | 15.3 | 0.454 | 31.2 |
| (I-3)                                  | Weekday | Existing                           | А | 11.6 | 0.126 | 4.7  |
| George Bass                            | AM      | Existing + Growth                  | А | 12.4 | 0.229 | 9.4  |
| Drive /<br>Rosedale                    |         | Existing +<br>Development          | A | 12.5 | 0.235 | 10   |
| Parade /<br>Saltwood                   |         | Existing + Growth<br>+ Development | A | 13.5 | 0.353 | 17.5 |
| Drive                                  | Weekday | Existing                           | А | 11.5 | 0.112 | 4.2  |
|                                        | РМ      | Existing + Growth                  | А | 12.1 | 0.198 | 8.1  |
|                                        |         | Existing +                         | А | 12.6 | 0.272 | 12.1 |
|                                        |         | Development                        |   |      |       |      |
|                                        |         | Existing + Growth<br>+ Development | A | 13.2 | 0.373 | 17.4 |
|                                        | Weekend | Existing                           | А | 11.7 | 0.149 | 5.6  |
|                                        | Mid-day | Existing + Growth                  | А | 12.7 | 0.269 | 11.9 |
|                                        |         | Existing +<br>Development          | A | 12.4 | 0.266 | 11.1 |
|                                        |         | Existing + Growth<br>+ Development | A | 13.2 | 0.419 | 20.7 |
| (I-4)                                  | Weekday | Existing                           | А | 5.6  | 0.1   | 0    |
| George Bass<br>Drive /<br>Bullock Road | AM      | Existing + Growth                  | A | 5.6  | 0.194 | 0    |
|                                        |         | Existing +<br>Development          | A | 5.6  | 0.164 | 2.9  |
|                                        |         | Existing + Growth<br>+ Development | A | 5.6  | 0.258 | 3.2  |
|                                        | Weekday | Existing                           | А | 5.6  | 0.087 | 0    |
|                                        | PM      | Existing + Growth                  | А | 5.6  | 0.167 | 0    |

|                      |               | Existing +<br>Development          | А   | 5.6  | 0.201 | 1.5  |
|----------------------|---------------|------------------------------------|-----|------|-------|------|
|                      |               | Existing + Growth<br>+ Development | A   | 5.6  | 0.267 | 1.7  |
|                      | Weekend       | Existing                           | A   | 6.2  | 0.115 | 0    |
|                      | Mid-day       | Existing + Growth                  | A   | 7    | 0.225 | 0    |
|                      |               | Existing +<br>Development          | А   | 6.6  | 0.168 | 2.7  |
|                      |               | Existing + Growth<br>+ Development | А   | 7.7  | 0.275 | 3.3  |
|                      | Weekday<br>AM | Existing                           | N/A | N/A  | N/A   | N/A  |
|                      |               | Existing + Growth                  | N/A | N/A  | N/A   | N/A  |
|                      |               | Existing +<br>Development          | А   | 11.3 | 0.087 | 2.9  |
|                      |               | Existing + Growth<br>+ Development | А   | 11.3 | 0.087 | 2.9  |
|                      | Weekday       | Existing                           | N/A | N/A  | N/A   | N/A  |
| (I-5)                | PM            | Existing + Growth                  | N/A | N/A  | N/A   | N/A  |
| Bullock Road         |               | Existing +                         | А   | 11   | 0.049 | 1.6  |
| / Purdie             |               | Development                        |     |      |       |      |
| Parade               |               | Existing + Growth                  | A   | 11   | 0.049 | 1.6  |
|                      |               | + Development                      |     |      |       |      |
|                      | Weekend       | Existing                           | N/A | N/A  | N/A   | N/A  |
|                      | Mid-day       | Existing + Growth                  | N/A | N/A  | N/A   | N/A  |
|                      |               | Existing +                         | A   | 11.2 | 0.076 | 2.5  |
|                      |               | Development                        | •   | 11.0 | 0.07/ | 0.5  |
|                      |               | Existing + Growth<br>+ Development | А   | 11.2 | 0.076 | 2.5  |
|                      | Weekday       | Existing                           | A   | 12.1 | 0.372 | 12.0 |
|                      | AM            | Existing + Growth                  | В   | 14.8 | 0.447 | 14.8 |
|                      |               | Existing +<br>Development          | А   | 13.0 | 0.455 | 16.5 |
|                      |               | Existing + Growth<br>+ Development | В   | 16.3 | 0.546 | 20.5 |
| (1.4)                | Weekday<br>PM | Existing                           | В   | 15.3 | 0.355 | 10.1 |
| (I-6)<br>Princes     |               | Existing + Growth                  | В   | 20.6 | 0.464 | 13.3 |
| Highway /<br>Tomakin |               | Existing +<br>Development          | В   | 16.6 | 0.426 | 12.9 |
| Road                 |               | Existing + Growth<br>+ Development | В   | 22.8 | 0.559 | 17.4 |
|                      | Weekend       | Existing                           | А   | 11.6 | 0.389 | 12.8 |
|                      | Mid-day       | Existing + Growth                  | А   | 13.9 | 0.457 | 15.5 |
|                      |               | Existing +<br>Development          | А   | 12.5 | 0.462 | 16.8 |
|                      |               | Existing + Growth<br>+ Development | В   | 15.2 | 0.543 | 20.5 |

The Sidra results shows that George Bass Drive / Tomakin Road / Sunpatch Parade (I-1) and Princes Highway / Tomakin Road (I-6) intersections are operating with average delays for the highest delayed of less than 23 seconds per vehicle during the weekday morning and afternoon peak periods. This represents a Level of Service B, which is considered acceptable for intersection operation.

The remaining intersections, George Bass Drive / Road 01 (I-2), George Bass Drive / Rosedale Parade / Saltwood Drive (I-3), George Bass Drive / Bullock Road (I-4) and Bullock Road / Purdie Parade (I-5) were found to operate at a level of service A/B during peak periods. Average delays for all movements through the intersections were less than 15 seconds per vehicle, indicating a good level of intersection operation.
# 6. Access Design Assessment

The development involves a proposed new southern access at the southern boundary of site to George Bass Drive, which operates at 100km/h. The southern access is proposed to be a 3-arm single-lane roundabout, established from George Bass Drive with the introduction of a northern leg that connects with the development site identified in civil drawings as 'Road 01'.

Reference has been made to *Austroads Guide to Road Design Part 4B: Roundabouts* for the design compliance review of the proposed new roundabout, as shown in Table 17. And explained in detail in the below sections.

The design of the proposed roundabout is shown in Figure 21 and attached in Appendix 5.



Figure 21 - Proposed George Bass Drive / Road 01 roundabout design

| S. No | Geometric Design Elements<br>of Roundabout            | Reference<br>Section from<br>Guide | Speed       | Value                            |
|-------|-------------------------------------------------------|------------------------------------|-------------|----------------------------------|
| 1     | Central Island Radius of a single lane roundabout     | Table 4.1                          | >90 km/h    | Minimum – 14m<br>Desirable – 22m |
| 2     | Maximum entry path radius                             | Table 4.2                          | >or=90 km/h | <or=55m< td=""></or=55m<>        |
| 3     | Construction of the entry path of a single-lane entry | Figure 4.5                         | -           | -                                |

| T-I-I- 17  | CONTRACTOR         | Elses a set a set a set a set a | <ul> <li>A</li></ul> | and the line of a |
|------------|--------------------|---------------------------------|----------------------|-------------------|
| Iable I/ - | LIPOMETRIC LIPSIAR | n Flements as ne                | r Alistroads         | aundennes         |
|            | Geometric Design   | r Elernente de pe               | 7 10511 00005        | galacinico        |

### 6.1. Central Island Radius

George Bass Drive has a posted speed limit of 100km/h (low pedestrian activity area), with reference to the Austroads guide shown in Figure 22, any single lane roundabouts are subject to the minimum central island radius of 14m and desirable of 22m to reduce the relative speed and crash rates between the vehicles.

Based on this guide, the proposed southern access roundabout is provided with a central radius of 20m, thus it is compliant with the minimum and desirable requirements.

| Desired driver speed<br>on the fastest leg<br>prior to the |                        | d radius of a<br>oundabout (m) | Central islan<br>two-lane rou |           | Speed reduction<br>treatments required<br>prior to the entry |
|------------------------------------------------------------|------------------------|--------------------------------|-------------------------------|-----------|--------------------------------------------------------------|
| roundabout (km/h)                                          | Minimum <sup>(5)</sup> | Desirable                      | Minimum <sup>(5)</sup>        | Desirable | curve <sup>(1)</sup>                                         |
| ≤ 40 <sup>(2)</sup>                                        | 5(4)                   | 10                             | 8                             | 12        | No                                                           |
| 50(2)                                                      | 8                      | 11                             | 8                             | 12        | No                                                           |
| 60 <sup>(3)</sup>                                          | 10                     | 12                             | 14                            | 16        | No                                                           |
| 70(3)                                                      | 12                     | 18                             | 18                            | 20        | No                                                           |
| 80(3)                                                      | 14                     | 22                             | 20                            | 24        | Desirable                                                    |
| ≥ 90 <sup>(3)</sup>                                        | 14                     | 22                             | 20                            | 24        | Yes                                                          |

Figure 22 – Central Island Radius requirements at single lane roundabouts (Source : Austroads Guide to Road Design Part 4B)

### 6.2. Entry path radius

Austroads Part 4B requires that the maximum entry path radius shall be provided on each entry of the roundabout as shown in Figure 23. This criterion is to ensure that adequate geometry is provided to discourage motorists against cutting across entry lanes, minimising the likelihood of sideswipe crashes.

The maximum entry path radius for the proposed single lane roundabout of less than or equal to 55m is provided in accordance with the guide.

| Desired driver                                           | Maximum entry path radius (m) <sup>(5)</sup>                                                     |                                                                                  |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--|
| speed on the leg<br>prior to the<br>roundabout<br>(km/h) | Single-lane entries <sup>(1)</sup><br>Two-lane entry – staying in<br>correct lane <sup>(2)</sup> | Two-lane entry – cutting across lanes <sup>(3)</sup>                             |  |
| ≤ 40                                                     | ≤ 55                                                                                             | 1.9 x actual entry path radius when staying in correct lane <sup>(4)</sup>       |  |
| 50                                                       |                                                                                                  | 1.8 x actual entry path radius when staying in correct $\ensuremath{lane}^{(4)}$ |  |
| 60                                                       |                                                                                                  | 1.6 x actual entry path radius when staying in correct lane <sup>(4)</sup>       |  |
| 70                                                       |                                                                                                  | 1.5 x actual entry path radius when staying in correct lane <sup>(4)</sup>       |  |
| 80                                                       |                                                                                                  | 1.5 x actual entry path radius when staying in correct $\ensuremath{lane}^{(4)}$ |  |
| ≥ 90                                                     |                                                                                                  | 1.5 x actual entry path radius when staying in correct lane <sup>(4)</sup>       |  |

Figure 23 – Maximum entry path radii for one lane roundabouts (Source : Austroads Guide to Road Design Part 4B)

### 6.3. Construction of the entry path

Austroads Part 4B provides the method of construction of the entry path for single entries. The steps to construct the entry path and the schematic representation are shown in Figure 24 and Figure 25.

The proposed roundabout has been checked by following the construction steps and ensuring that the measured radius does not exceed the criteria given in Table 4.2 of the Austroads guide.

- Step 1 Where no approach curve/s is used, draw a line parallel to the right edge of the approach lane at an offset 'D' prior to the entry curve. This line is the approach path. Where an approach curve/s is used, draw this line along the last approach curve in the direction of travel at an offset of 'M<sub>1</sub>'.
- Step 2 Draw a curved line parallel to the edge of the central island at an offset 'M<sub>2</sub>'. For an elliptical/oval/oblong roundabout the line may comprise multiple radii.
- Step 3 Draw a curved line parallel to the left edge of the entry lane at an offset 'D'.
- Step 4 Draw the entry path. This is a circular curve drawn tangentially to the lines constructed in Steps 1, 2 and 3. This path approximates the path taken by passenger car drivers on single-lane roundabout entries.

The radius of the entry path drawn in Step 4 must be no greater than the values for single-lane entries given in Table 4.2. If the measured radius exceeds the criteria, tighten the entry curve, relocate the approach leg, and/or increase the roundabout size to reduce the entry path radius to the required limit.



Figure 24 – Steps to construct the entry path (Source : Austroads Guide to Road Design Part 4B)

D = 1.5 m when measuring from a road centreline or kerb face, 1.0 m when measuring from an edge line. M<sub>1</sub> = Half the width of the approach lane.

 $M_2 =$  Half of the width of the circulating carriageway.

Source: Department of Main Roads (2006)<sup>4</sup>.

Figure 25 - Construction of the entry path of a single-lane entry (Source : Austroads Guide to Road Design Part 4B)

# 7. Preliminary Construction Traffic Management Plan

The following sections outline the preliminary traffic management arrangements and considerations for the delivery of the project. Noting that this TIA has been written to support a Concept Plan Approval modification for the Site, a detailed CTMP will need to be prepared to support the subsequent detailed Development Applications prior to Subdivision Works Certification which outlines the specific site requirements and scope upon the appointment of a Principal Contractor.

# 7.1. Key Standards and Guidelines

Reference has been made to the following Standards and guidelines:

- TfNSW Traffic Control at Works Sites (TCAWS) Technical Manual Issue 6.1
- AS1742.3:2009 Manual of Uniform Traffic Control Devices Part 3: Traffic Control Devices for Works on Roads

### 7.2. Objective

The traffic management plan associated with the construction activity aims to ensure the safety of all workers and road users within the vicinity of the construction site and the following are the primary objectives:

- To minimise the impact of the construction vehicle traffic on the overall operation of the road network;
- To ensure continuous, safe and efficient movement of traffic for both the general public and construction workers;
- Installation of appropriate advance warning signs to inform users of the changed traffic conditions;
- To provide a description of the construction vehicles and the volume of these construction vehicles accessing the construction site;
- To provide information regarding the changed access arrangement and also a description of the proposed external routes for vehicles including the construction vehicles accessing the site; and
- Establishment of a safe pedestrian environment in the vicinity of the site.

### 7.3. General Requirements

In accordance with the Standards and guidelines outlined in Section 0, all vehicles transporting loose materials will have the entire load covered and/or secured to prevent any large items, excess dust or dirt particles depositing onto the roadway during travel to and from the site.

All subcontractors must be inducted by the lead contractor to ensure that the procedures are met for all vehicles entering and exiting the construction site. The lead contractors will monitor the roads leading to and from the site and take all necessary steps to rectify any road deposits caused by site vehicles.



Vehicles operating to, from and within the site shall do so in a manner, which does not create unreasonable or unnecessary noise or vibration. No tracked vehicles will be permitted or required on any paved roads. Public roads and access points will not be obstructed by any materials, vehicles, refuse skips or the like, under any circumstances.

# 7.4. Staging and Program

While the civil drawings nominate a proposed staging plan and noting that this TIA has been written to support a Concept Plan Approval modification for the Site, the exact construction staging, and program will be determined and addressed during the subsequent detailed Development Application processes, and once a Principal Contractor has been appointed for delivery of the construction works.

### 7.5. Hours of Work

All works associated with the project will be restricted to the time periods outlined within the Conditions of Consent upon approval of the DA.

Until this is available, it has been assumed the indicative hours of work will be as follows:

- Mon-Fri 7:00am 6:00pm
- Sat 8:00am 1:00pm
- Sunday & Public Holidays
   No works to be carried out.

### 7.6. Construction Vehicle Types

The construction of the development will involve the use of several different vehicle types in relation to the various stages and tasks involved. The proposed works are envisaged to be carried out using a mix of commercial small to heavy rigid vehicles.

Given the size of the excavation project and the structural concrete pours, vehicles up to and including 19m semi-trailer and truck-and-dog trailer units will be used for material removal and deliveries.

Any oversized vehicle (including the use of mobile cranes) that is required to travel to the project into the vicinity of the site will be dealt with separately, with the submission of required permits to and subsequent approval by Eurobodolla Shire Council prior to any delivery being undertaken. Any road closures associated with the use of a mobile crane must be applied to Council in advance as it requires Local Traffic Committee approval. All Oversize Over Mass (OSOM) applications must be submitted via the National Heavy Vehicle Regulator (NHVR) portal.

The delivery of materials to and from the site will result in minimal generated traffic activity associated with the works. All deliveries are to be scheduled to occur outside of the peak commuter periods.

The indicative construction vehicle type and volumes during each stage are shown in Table 18.

| Stage                                 | Indicative Vehicle Types                                                                                                                                           | Estimated Average - Peak<br>No. of Trucks per Day <sup>2</sup> |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| Site Establishment and<br>Civil Works | <ul> <li>19m Articulated Vehicle</li> <li>19m Truck &amp; Dog</li> <li>12.5m Heavy Rigid Vehicle</li> <li>8.8m Medium Rigid Vehicle</li> <li>Low Loader</li> </ul> | 60 – 85 trucks <sup>3</sup>                                    |

Table 18 – Indicative Construction vehicle size and Estimated Volumes

### 7.7. Indicative Construction Vehicle Routes

All vehicle routes are constrained to existing public roads that have the physical geometry to accommodate the turning movements. Approaching the site, some vehicle movements may entail the assistance of traffic controllers, as more than one lane will be required for turning manoeuvres.

No queuing or marshalling of trucks is permitted on any public road and all loading and unloading of materials will be undertaken either within the site or within the Works Zones.

All access gates to the site will be managed by gate controllers to ensure the safe management of the access and egress to the site and its interaction with non-construction traffic on the road network.

Whilst not anticipated, any oversized vehicle that is required to travel to the site will be dealt with separately, with the submission of required permits to and subsequent approval by Council prior to any delivery. Requests shall be submitted 28 days prior to the scheduled date of use of an oversized vehicle.

Appropriate Traffic Guidance Schemes (TGSs) will need to be prepared as part of the detailed CTMP to outline the traffic management measures required for the project.

Details of any Work Zones, if required, will be finalised in the detailed Construction Traffic Management Plan.

The development proposes to develop Stage 2 first shown in Figure 3, hence the construction vehicle routes will be via Saltwood Drive. For this site, different ingress and egress routes have been identified for the construction vehicles and analysed further, as outlined in the following subsections.

Swept path assessments along the proposed entry / exit routes will be undertaken for the largest vehicles used for construction in the detailed Construction Traffic Management Plan.

<sup>&</sup>lt;sup>2</sup> These volumes are indicative only and the appointed Principal Contractor shall undertake an analysis of construction vehicle movements based on its final methodology and the CTMP will be updated accordingly.

<sup>&</sup>lt;sup>3</sup> 1 truck = 2 trips (1 inbound trip and 1 outbound trip)

### 7.7.1. Access Route for Construction Vehicles

The site access routes are described below and presented in Figure 26.

### 7.7.1.1. Ingress Route

The ingress route for all types of construction vehicles travelling to the site will be either from north or south of the site. The ingress routes are shown in pink lines in Figure 26.

Vehicles approaching the site either from the north or south will arrive via George Bass Drive (Regional Road) and turn left or right to Saltwood Drive (Local Road) to reach the site.

### 7.7.1.2. Egress Route

Construction vehicles will leave the site either north or south. The egress routes are shown in blue lines in Figure 26.

Vehicles leaving the site either to the north or south will exit via Saltwood Drive (Local Road) onto George Bass Drive (Regional Road) by turning either left or right.



Figure 26 – Construction Vehicle Routes

### 7.8. Site Access Arrangements

The site establishment including construction site access will be prepared once the principal contractor is appointed for the project.

Until the construction site access is finalised, it is assumed that the site will provide up to three (3) access points at different stages of the proposed works as civil works progress and roads are completed providing additional access points.

### 7.9. Pedestrian Access

Pedestrian access to the site will be via designated pedestrian gates and the exact location of these gates will be determined during the Subdivision Works Certification processes once a Principal Contractor has been appointed for delivery of the construction works.

All access points are to be securely locked when construction activities are not in progress.

The exact location of this fence is to be agreed on site, prior to commencement of the works.

# 7.10. Special Deliveries

Whilst not anticipated, any oversized vehicle that is required to travel to the site will be dealt with separately, with the submission of required permits to and subsequent approval by TfNSW and/or Council prior to any delivery. Requests shall be submitted at least 28 days prior to the scheduled date of use of an oversized vehicle.

# 7.11. Staff Parking

The site has sufficient room to provide parking to accommodate the parking demand generated by the site personnel for the civil works.

All site personnel are encouraged to park on site in the vicinity of the development site. To minimise the required parking, the contractor will be encouraged to assist in the transportation of workers to the site. Also, site personnel will be advised to carpool (wherever practicable) and will be informed of the alternative transport options available in the vicinity of the site and encouraged to utilise these facilities (wherever practicable).

A public transport information pack will be provided to all staff and contractors, advising them of the public transport options available.

# 7.12. Work Site Security

To provide security to the works site and protection to the general public, it is proposed that temporary fencing is to be erected along the construction site boundary by the Principal Contractor. This fencing will define the extent of the works site. All access points are to be securely locked when construction activities are not in progress. The exact location of this fence is to be agreed on site, prior to commencement of the works.

### 7.13. Staff Induction

All staff and subcontractors engaged on site will be required to undergo a site induction. The induction will include permitted access routes to and from the construction site for all vehicles, as well as standard environmental, OH&S, driver protocols and emergency procedures. Additionally, the Principal Contractor will discuss TMP requirements regularly as a part of toolbox talks and advise workers of public transport and car-pooling opportunities.

### 7.14. Emergency Vehicle Access

The proposed traffic control arrangements do not propose closure of any local roads.

Any emergency vehicles require access to the project site will do so via the site access on Saltwood Drive.

# 7.15. Access to Adjoining Properties

Access to all adjoining properties will be maintained throughout the works.

# 7.16. Occupational Health and Safety

Any workers required to undertake works or traffic control within the public domain shall be suitably trained and will be covered by adequate and appropriate insurances. All traffic control personnel will be required to hold the appropriate SafeWork NSW accreditation in accordance with the Standards and guidelines outlined in Section 0.

# 7.17. Method of Communicating Traffic Changes

Traffic Guidance Schemes (TGSs) in accordance with the Standards and guidelines outlined in Section 0 will advise motorist of upcoming changes in the road network.

During construction, the contractor shall each morning, prior to work commencing, ensure all signage is erected in accordance with the TGS and clearly visible. Each evening, upon completion of work, the contractor is to ensure signage is either covered or removed as required. Sign size is to be size "A'.

No deviation from the approved TGS shall be permitted, unless otherwise approved by Council and certified by SafeWork NSW accredited personnel.

The associated TGS road signage will inform drivers of works activities in the area including truck movements in operation.

The TGSs will be formalised in the detailed Construction Traffic Management Plan.

Prior to commencement of works on site, the contractor is to inform neighbouring properties of proposed works and provide site contact information by means of a letter box distribution.

# 7.18. Contact Details for On-site Enquiries and Site Access

The Principal Contractor for the development has not yet been engaged and the contact and telephone will be confirmed prior to commencement on site.

# 8. Conclusion

This report documents the traffic impact assessment undertaken to support a modification of the 2008 Concept plan Approval proposing a residential development at Bevian Road, Rosedale (the Proposal).

The modification proposes:

- 792 residential subdivision lots and neighbourhood shops inclusive of the 51 residential lots recently completed and registered (DP1293369);
- vehicular access to the proposed subdivision will be via three intersections, two existing intersections on the east and new proposed roundabout in the south on George Bass Drive;
- the proposed subdivision will increase residential densities and strengthen the demand for existing and future public transport services in the area;
- a possible bus route could be provided through the proposed residential subdivision, along the internal collector road;
- pedestrians and cycle networks through the proposed residential subdivision are considered appropriate.

A consultation process involving TfNSW, Eurobodolla Shire Council and the private bus company in Rosedale division constituted an important element of this study. Key traffic modelling assumption such as background growth were provided by TfNSW.

This assessment report identified the following key findings:

- Tube Count surveys were conducted at two locations of George Bass Drive, one near Barlings Beach Holiday Park and the other near Rosedale Parade. The results showed that current traffic volumes are low, ranging from 300 to 350 vehicles per hour.
- TfNSW guides provides trip generation rates of 0.85 and 0.9 during AM and PM peak hours for low-density residential dwellings. A rate of 0.9 is assumed for the weekend mid-day, as the guide does not provide any trip generation rate for the weekend. The proposed development is expected to generate peak period traffic volumes of 673, 713 and 713 vehicles per hour during weekday AM, PM and weekend mid-day peak hours.
- TfNSW advised adopting a background growth rate of 5-9% per annum for George Bass Drive. However, it is considered a growth rate of 9% is unsustainable and will tend to reduce in the future, therefore, a middle-value growth rate of 7% was adopted for traffic modelling. A growth rate of 2% is assumed for Princes Highway.
- Six intersections were assessed as part of this TIA. According to SIDRA results, in 2033 for postdevelopment conditions, the analysis typically shows a level of service ranging from 'A' to 'B' for all six key intersections. This indicates a better level of service through these intersections with the capacity to handle additional growth and trip volumes in the future.
- The road network, including the proposed roundabout on the south of the site onto George Bass Drive will be able to accommodate future traffic growth, including traffic from the proposed development. The proposed modification is considered supportable from a traffic and transport perspective.

**Appendix 1.** Subdivision Drawing including Road **Hierarchy Plan** 



# **BEVIAN ROAD- Modified Concept Application**

Date April 2025 Drawing number

AA\_01





# Appendix 2. Consultation with relevant authorities

### Priya Baaskaraun

From:Alister Robertson <Alister.Robertson@esc.nsw.gov.au>Sent:Friday, 5 April 2024 2:58 PMTo:Priya BaaskaraunCc:Andrew MorseSubject:RE: 73 Bevian Road - Rosedale Subdivision

Hi Priya,

Sorry I've not been in touch, Council has a <u>Transport Network Plan - Northern Area of Eurobodalla</u> relevant to the precinct you currently considering.

Kind Regards,

### Alister Robertson

Coordinator Development Engineering t 02 4474 1312 | f 02 4474 1234

Please ensure all correspondence that requires actioning is addressed to <u>council@esc.nsw.gov.au</u>, detailing the application number and addressed to the appropriate officer, to ensure proper record keeping and a timely response is provided.

From: Priya Baaskaraun <priya.baaskaraun@ptcconsultants.co>
Sent: Thursday, March 21, 2024 9:24 AM
To: Alister Robertson <Alister.Robertson@esc.nsw.gov.au>
Cc: Andrew Morse <andrew.morse@ptcconsultants.co>
Subject: RE: 73 Bevian Road - Rosedale Subdivision

This email DID NOT come from a council email address.

Morning Alister,

Hope you are doing good.

I'm reaching out to follow up on our previous discussions. Have you had an opportunity to review the growth rate along George Bass Drive and share any relevant information with us?

I look forward to hearing from you soon.

Thanks

**Priya Baaskaraun** Graduate Traffic Engineer



m +61 499 165 038 t +61 2 8920 0800 priya.baaskaraun@ptcconsultants.co

Suite 502, 1 James Place North Sydney NSW 2060



### Taking the money out of basements and into the streets

read the article 🔌

ptc.

The information contained in this e-mail is confidential and may be legally privileged. If the reader of this message is not the intended recipient you are hereby notified that any use, dissemination, distribution, or reproduction of this message is prohibited.

From: Priya Baaskaraun

Sent: Tuesday, February 27, 2024 2:42 PM
To: Alister Robertson <<u>Alister.Robertson@esc.nsw.gov.au</u>>
Cc: Andrew Morse <<u>andrew.morse@ptcconsultants.co</u>>; Sichao Miao <<u>sichao.miao@ptcconsultants.co</u>>; Subject: RE: 73 Bevian Road - Rosedale Subdivision

Hi Alister,

Nice talking to you.

Following our call now, I've attached the presentation that we've presented for your reference along with the approved Traffic report 2008.

Looking forward to your advice on the discussions we had today.

Thanks

**Priya Baaskaraun** Graduate Traffic Engineer

# ptc.

m +61 499 165 038 t +61 2 8920 0800 priya.baaskaraun@ptcconsultants.co

Suite 502, 1 James Place North Sydney NSW 2060



Taking the money out of basements and into the streets

read the article 🏈

ptc.

The information contained in this e-mail is confidential and may be legally privileged. If the reader of this message is not the intended recipient you are hereby notified that any use, dissemination, distribution, or reproduction of this message is prohibited.

From: Alister

Robertson <<u>Alister.Robertson@esc.nsw.gov.au</u>> Sent: Tuesday, February 20, 2024 12:46 PM To: Priya Baaskaraun <<u>priya.baaskaraun@ptcconsultants.co</u>> Cc: Andrew Morse <<u>andrew.morse@ptcconsultants.co</u>>; Sichao Miao <<u>sichao.miao@ptcconsultants.co</u>> Subject: RE: 73 Bevian Road - Rosedale Subdivision

Hi Priya,

Happy to meet and discuss, how does 2pm Monday or Tuesday next week sound. Please send through a meeting invite and I'll lock it in.

Thanks Alister

Kind Regards,

### **Alister Robertson**

Coordinator Development Engineering t 02 4474 1312 | f 02 4474 1234

Please ensure all correspondence that requires actioning is addressed to <u>council@esc.nsw.gov.au</u>, detailing the application number and addressed to the appropriate officer, to ensure proper record keeping and a timely response is provided.

From: Priya Baaskaraun <<u>priya.baaskaraun@ptcconsultants.co</u>>
Sent: Tuesday, February 20, 2024 11:30 AM
To: Alister Robertson <<u>Alister.Robertson@esc.nsw.gov.au</u>>; Council <<u>council@esc.nsw.gov.au</u>>
Cc: Andrew Morse <<u>andrew.morse@ptcconsultants.co</u>>; Sichao Miao <<u>sichao.miao@ptcconsultants.co</u>>; Subject: RE: 73 Bevian Road - Rosedale Subdivision

This email DID NOT come from a council email address.

Hi Alister,

Following up with you regarding the email I sent last week.

I was informed that you are quite busy and was advised by your council member to loop the mail in again.

Please let us know if you have some available time.

**Kind Regards** 

**Priya Baaskaraun** Graduate Traffic Engineer



m +61 499 165 038 t +61 2 8920 0800 Suite 502, 1 James Place North Sydney NSW 2060



Taking the money out of basements and into the streets

read the article 🔶

ptc.

The information contained in this e-mail is confidential and may be legally privileged. If the reader of this message is not the intended recipient you are hereby notified that any use, dissemination, distribution, or reproduction of this message is prohibited.

From: Priya Baaskaraun

Sent: Wednesday, February 14, 2024 2:55 PM

To: <u>alister.robertson@esc.nsw.gov.au</u>; <u>council@esc.nsw.gov.au</u> Cc: Andrew Morse <andrew.morse@ptcconsultants.co>; Sichao Miao <sichao.miao@ptcconsultants.co>

Subject: 73 Bevian Road - Rosedale Subdivision

Hi Alister,

Hope all is well.

We are emailing to commence the consultation required by the application process for the proposed subdivision at 73 Bevian Road, Rosedale. We are engaged by Walker to prepare the Traffic Impact Assessment and road design input for a modification to the current approval and would like to arrange an on-line meeting to introduce you to the project and receive any feedback that you may have for us to include within the Traffic Impact Assessment.

Thanks

**Priya Baaskaraun** Graduate Traffic Engineer

# ptc.

m +61 499 165 038 t +61 2 8920 0800 priya.baaskaraun@ptcconsultants.co

Suite 502, 1 James Place North Sydney NSW 2060



# Taking the money out of basements and into the streets

read the article >

ptc.

The information contained in this e-mail is confidential and may be legally privileged. If the reader of this message is not the intended recipient you are hereby notified that any use, dissemination, distribution, or reproduction of this message is prohibited.

### Priya Baaskaraun

| From:    | Nathan Boscaro <nathan.boscaro@transport.nsw.gov.au></nathan.boscaro@transport.nsw.gov.au> |
|----------|--------------------------------------------------------------------------------------------|
| Sent:    | Wednesday, 14 February 2024 3:30 PM                                                        |
| To:      | Priya Baaskaraun                                                                           |
| Subject: | RE: 73 Bevian Road - Rosedale Subdivision                                                  |

Hi Priya,

Nice to meet you.

If you could send through some times and ill arrange the meeting.

Regards

#### **Nathan Boscaro**

Team Leader, Development Services South Community and Place Regional and Outer Metropolitan **Transport for NSW** 

M 9549 9728

transport.nsw.gov.au

Level 4, 90 Crown Street Wollongong NSW 2505

I work flexibly. Unless it suits you, I don't expect you to read or respond to my emails outside of your normal work hours.



OFFICIAL

OFFICIAL

From: Priya Baaskaraun <<u>priya.baaskaraun@ptcconsultants.co</u>>
Sent: Wednesday, February 14, 2024 2:58 PM
To: Development South <<u>development.south@transport.nsw.gov.au</u>>
Cc: Andrew Morse <<u>andrew.morse@ptcconsultants.co</u>>; Sichao Miao <<u>sichao.miao@ptcconsultants.co</u>>
Subject: 73 Bevian Road - Rosedale Subdivision

You don't often get email from priya.baaskaraun@ptcconsultants.co. Learn why this is important

**CAUTION**: This email is sent from an external source. Do not click any links or open attachments unless you recognise the sender and know the content is safe.

Dear TfNSW team,

Hope all is well.

We are emailing to commence the consultation required by the application process for the proposed subdivision at 73 Bevian Road, Rosedale. We are engaged by Walker to prepare the Traffic Impact Assessment and road design input for a modification to the current approval and would like to arrange an on-line meeting to introduce you to the project and receive any feedback that you may have for us to include within the Traffic Impact Assessment.

Thanks

### Priya Baaskaraun

Graduate Traffic Engineer



m +61 499 165 038 t +61 2 8920 0800 priya.baaskaraun@ptcconsultants.co

Suite 502, 1 James Place North Sydney NSW 2060



Taking the money out of basements and into the streets

```
read the article 🔌
```

ptc.

The information contained in this e-mail is confidential and may be legally privileged. If the reader of this message is not the intended recipient you are hereby notified that any use, dissemination, distribution, or reproduction of this message is prohibited.

This email is intended only for the addressee and may contain confidential information. If you receive this email in error please delete it and any attachments and notify the sender immediately by reply email. Transport for NSW takes all care to ensure that attachments are free from viruses or other defects. Transport for NSW assume no liability for any loss, damage or other consequences which may arise from opening or using an attachment.

Consider the environment. Please don't print this e-mail unless really necessary.

### Priya Baaskaraun

| From:    | Josiah Poulter <josiah.poulter@transport.nsw.gov.au></josiah.poulter@transport.nsw.gov.au> |
|----------|--------------------------------------------------------------------------------------------|
| Sent:    | Friday, 22 March 2024 2:53 PM                                                              |
| То:      | Priya Baaskaraun                                                                           |
| Subject: | RE: 73 Bevian Road, Rosedale Subdivision - TfNSW Consultation                              |

Hi Priya,

The dates are updated below:

George Bass Drive to the north of Bevian Road, south of Illabunda Dr,

| 2016 | 2204 | 3.3.2016  |
|------|------|-----------|
| 2019 | 2843 | 21.8.2019 |

George Bass Drive south of Bevian Road, north of Rosedale Pde

| 2016 | 2553 | 19.5.2016 |
|------|------|-----------|
| 2021 | 3356 | 3.3.2021  |

Josiah

OFFICIAL

From: Priya Baaskaraun <priya.baaskaraun@ptcconsultants.co>
Sent: Thursday, March 21, 2024 3:36 PM
To: Josiah Poulter <Josiah.Poulter@transport.nsw.gov.au>
Cc: Nathan Boscaro <Nathan.BOSCARO@transport.nsw.gov.au>
Subject: RE: 73 Bevian Road, Rosedale Subdivision - TfNSW Consultation

You don't often get email from priya.baaskaraun@ptcconsultants.co. Learn why this is important CAUTION: This email is sent from an external source. Do not click any links or open attachments unless you recognise the sender and know the content is safe.

Thanks Josiah for the information.

Is it possible to give us the specific months associated with these traffic volumes?

Thanks

**Priya Baaskaraun** Graduate Traffic Engineer

ptc.

m +61 499 165 038

Suite 502, 1 James Place North Sydney NSW 2060



Taking the money out of basements and into the streets

read the article 🔌

ptc.

The information contained in this e-mail is confidential and may be legally privileged. If the reader of this message is not the intended recipient you are hereby notified that any use, dissemination, distribution, or reproduction of this message is prohibited.

#### OFFICIAL

From: Josiah Poulter <<u>Josiah.Poulter@transport.nsw.gov.au</u>>
Sent: Thursday, March 21, 2024 2:20 PM
To: Priya Baaskaraun <<u>priya.baaskaraun@ptcconsultants.co</u>>
Cc: Nathan Boscaro <<u>Nathan.BOSCARO@transport.nsw.gov.au</u>>
Subject: RE: 73 Bevian Road, Rosedale Subdivision - TfNSW Consultation

Hi Priya,

Council has provided us with following count data on George Bass Drive:

Data for George Bass Drive to the north of Bevian Road, south of Illabunda Dr:

- 2016 2204
- 2019 2843

Data for George Bass Drive south of Bevian Road, north of Rosedale Pde:

- 2016 2553
- 2021 3356

From this we can assume an annual growth rate of between 5-9%.

Regarding traffic generation rates, we would prefer that the standard low density residential rates be applied from the guide. We acknowledge that you have conducted your own survey but, without knowing the make-up of the catchment used, it is Transport's view that the standard rates would be more appropriate. We have no issue with the retail rates.

Could you please send through any existing plans for upgrade to the northern access intersection to George Bass Dr via Bevian Rd?

Regards,

Josiah Poulter Business Trainee, Development Services, South

#### **Transport for NSW**

P 02 9983 3879
E josiah.poulter@transport.nsw.com.au
Level 4, 90 Crown Street, Wollongong NSW 2500



Transport for NSW

OFFICIAL

From: Priya Baaskaraun <<u>priya.baaskaraun@ptcconsultants.co</u>>
Sent: Thursday, March 21, 2024 9:25 AM
To: Josiah Poulter <<u>Josiah.Poulter@transport.nsw.gov.au</u>>; Nathan Boscaro
<<u>Nathan.BOSCARO@transport.nsw.gov.au</u>>
Cc: Andrew Morse <<u>andrew.morse@ptcconsultants.co</u>>
Subject: RE: 73 Bevian Road, Rosedale Subdivision - TfNSW Consultation

Some people who received this message don't often get email from priva.baaskaraun@ptcconsultants.co. Learn why this is important

**CAUTION**: This email is sent from an external source. Do not click any links or open attachments unless you recognise the sender and know the content is safe.

Morning transport team,

Hope you are doing good.

I'm reaching out to follow up on our previous discussions. Have you had an opportunity to review the growth rate along George Bass Drive and share any relevant information with us?

I look forward to hearing from you soon.

Thanks

**Priya Baaskaraun** Graduate Traffic Engineer



m +61 499 165 038 t +61 2 8920 0800 priya.baaskaraun@ptcconsultants.co

Suite 502, 1 James Place North Sydney NSW 2060



### Taking the money out of basements and into the streets

read the article 🔌

ptc.

The information contained in this e-mail is confidential and may be legally privileged. If the reader of this message is not the intended recipient you are hereby notified that any use, dissemination, distribution, or reproduction of this message is prohibited.

OFFICIAL

From: Priya Baaskaraun
Sent: Tuesday, February 27, 2024 10:54 AM
To: Josiah Poulter <<u>Josiah.Poulter@transport.nsw.gov.au</u>>
Cc: Andrew Morse <<u>andrew.morse@ptcconsultants.co</u>>; Sichao Miao <<u>sichao.miao@ptcconsultants.co</u>>; Subject: RE: 73 Bevian Road, Rosedale Subdivision - TfNSW Consultation

Hi Josiah,

Attached is the traffic impact report approved for Rosedale 2008.

Looking forward for your opinions on the discussion we had earlier.

Thanks

**Priya Baaskaraun** Graduate Traffic Engineer



m +61 499 165 038 t +61 2 8920 0800 priya.baaskaraun@ptcconsultants.co

Suite 502, 1 James Place North Sydney NSW 2060



Taking the money out of basements and into the streets

read the article 🔌

ptc.

The information contained in this e-mail is confidential and may be legally privileged. If the reader of this message is not the intended recipient you are hereby notified that any use, dissemination, distribution, or reproduction of this message is prohibited.

<Josiah.Poulter@transport.nsw.gov.au> Sent: Tuesday, February 27, 2024 10:39 AM To: Priya Baaskaraun <<u>priya.baaskaraun@ptcconsultants.co</u>> Subject: RE: 73 Bevian Road - Rosedale Subdivision

Hi Priya,

Could you please through a copy of the existing approval for the proposal?

Thanks and regards,

Josiah Poulter Business Trainee, Development Services, South Transport for NSW

P 02 9983 3879
E josiah.poulter@transport.nsw.com.au
Level 4, 90 Crown Street, Wollongong NSW 2500



Transport for NSW

OFFICIAL

From: Priya Baaskaraun <<u>priya.baaskaraun@ptcconsultants.co</u>>
Sent: Wednesday, February 14, 2024 2:58 PM
To: Development South <<u>development.south@transport.nsw.gov.au</u>>
Cc: Andrew Morse <<u>andrew.morse@ptcconsultants.co</u>>; Sichao Miao <<u>sichao.miao@ptcconsultants.co</u>>
Subject: 73 Bevian Road - Rosedale Subdivision

You don't often get email from priya.baaskaraun@ptcconsultants.co. Learn why this is important

**CAUTION**: This email is sent from an external source. Do not click any links or open attachments unless you recognise the sender and know the content is safe.

Dear TfNSW team,

Hope all is well.

We are emailing to commence the consultation required by the application process for the proposed subdivision at 73 Bevian Road, Rosedale. We are engaged by Walker to prepare the Traffic Impact Assessment and road design input for a modification to the current approval and would like to arrange an on-line meeting to introduce you to the project and receive any feedback that you may have for us to include within the Traffic Impact Assessment.

Thanks

From: Josiah Poulter



m +61 499 165 038 t +61 2 8920 0800 priya.baaskaraun@ptcconsultants.co

Suite 502, 1 James Place North Sydney NSW 2060



Taking the money out of basements and into the streets

#### read the article 📀

ptc.

The information contained in this e-mail is confidential and may be legally privileged. If the reader of this message is not the intended recipient you are hereby notified that any use, dissemination, distribution, or reproduction of this message is prohibited.

This email is intended only for the addressee and may contain confidential information. If you receive this email in error please delete it and any attachments and notify the sender immediately by reply email. Transport for NSW takes all care to ensure that attachments are free from viruses or other defects. Transport for NSW assume no liability for any loss, damage or other consequences which may arise from opening or using an attachment.

#### Consider the environment. Please don't print this e-mail unless really necessary.

This email is intended only for the addressee and may contain confidential information. If you receive this email in error please delete it and any attachments and notify the sender immediately by reply email. Transport for NSW takes all care to ensure that attachments are free from viruses or other defects. Transport for NSW assume no liability for any loss, damage or other consequences which may arise from opening or using an attachment.



Consider the environment. Please don't print this e-mail unless really necessary.

This email is intended only for the addressee and may contain confidential information. If you receive this email in error please delete it and any attachments and notify the sender immediately by reply email. Transport for NSW takes all care to ensure that attachments are free from viruses or other defects. Transport for NSW assume no liability for any loss, damage or other consequences which may arise from opening or using an attachment.

Consider the environment. Please don't print this e-mail unless really necessary.

### Priya Baaskaraun

| From:    | Priors Bus Service <opsmanager@sctelco.net.au></opsmanager@sctelco.net.au> |
|----------|----------------------------------------------------------------------------|
| Sent:    | Friday, 19 April 2024 2:29 PM                                              |
| То:      | Priya Baaskaraun; priorsbus@sctelco.net.au                                 |
| Cc:      | Andrew Morse                                                               |
| Subject: | RE: 73 Bevian Road Rosedale - Bus stop placements                          |

Hi Priya,

All the information you have provided looks to be within specification.

As mentioned on the phone, we have a few new estates to try and incorporate into our timetables, and we will certainly be aware of Rosedale. We need to wait until the estate is complete before we can include it and timetable adjustment to include an entire area is not necessarily a straightforward process.

I look forward to seeing the finished product.

Regards, Kath Karlsson Operations Manager Priors Bus Service Phone: 4472 4040 www.priorsbus.com.au

From: Priya Baaskaraun <priya.baaskaraun@ptcconsultants.co>
Sent: Tuesday, April 9, 2024 2:45 PM
To: opsmanager@sctelco.net.au; priorsbus@sctelco.net.au
Cc: Andrew Morse <andrew.morse@ptcconsultants.co>
Subject: 73 Bevian Road Rosedale - Bus stop placements

Hi Kath,

It was nice talking to you over the phone yesterday.

Just to recap, we have been engaged by Walker to prepare the Traffic Impact Assessment Report for a modification to the current approval for the proposed subdivision at 73 Bevian Road, Rosedale.

We are interested in developing the public transport strategy for our site and would like to know if the Priors bus services can be operated along the main internal collector road through our estate. We noticed your local bus services (860) running along George Bass Drive.

I've attached the Road Hierarchy plan of our proposed subdivision, indicating the bus stops location as per the NSW bus stop guidelines.

The important criteria involved in the bus stop location includes:

- 1. Spacing of around 400 metres between stops or spacing that reflects the local context and location in order to achieve a reasonable level of customer access to bus services
- 2. Generally, it is preferable to place stops on the departure side of a pedestrian crossing to reduce the risk of customers crossing the road in front of a stopped bus.
- 3. Minimise walking distance between interchange stops.
- 4. Bus stops are generally paired, such that the bus stop one side of a road is in close proximity to a partner stop in the other direction.

- 5. Generally, it is preferable to locate stops on the far side of intersections to allow a bus to clear the intersection before stopping for customers.
- 6. The following image shows the lane widths of the traffic lanes to allow for a safe operation of bus service, while the proposed internal collector road has a 4m lane width.

#### Lane widths

The following lane widths are required to allow a bus service to operate safely and efficiently. Traffic lanes are measured from the face of the kerb or to the lane line for multi-lane roads or roads with shoulders.

Traffic lanes

- minimum 3.5m standard traffic lane widths are desirable on all road types
- minimum 3.5m traffic lane width for a 60km zone
- minimum 3.2m traffic lane width for a 50km zone, provided there is no centre median

The proposed subdivision, with its increase in residential population, will strengthen demand for public transport services in the area such that these services will offer alternatives to travel by modes other than car.

Please have a look at the attached masterplan for the bus stops placement and let us know if the site is appropriate for the bus services.

Looking forward to hearing from you.

Thanks

#### **Priya Baaskaraun** Graduate Traffic Engineer

ptc.

m +61 499 165 038 t +61 2 8920 0800 priya.baaskaraun@ptcconsultants.co

Suite 502, 1 James Place North Sydney NSW 2060



Taking the money out of basements and into the streets

read the article 🌖

ptc.

The information contained in this e-mail is confidential and may be legally privileged. If the reader of this message is not the intended recipient you are hereby notified that any use, dissemination, distribution, or reproduction of this message is prohibited.

# **Appendix 3.**

Existing and Post-Development Traffic Volumes












# Appendix 4. Full SIDRA Results

#### V Site: 101 [(I-1) George Bass Drive / Sunpatch Parade / Tomakin Road\_Weekday AM (Site Folder: Existing 2023 -Weekday AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday AM Peak Survey Date: 22 November 2023 Peak Hour: 8:00am - 9:00am Site Category: (None) Roundabout

| Vehi      | cle Mo | ovement      | t Perfo | rma         | nce  |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
|-----------|--------|--------------|---------|-------------|------|----------------------------|---------------------|-----------------------|---------------------|-------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | ows<br>HV ] |      | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Sunp | patch Par    | ade     |             |      |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 1         | L2     | All MCs      | 54      | 0.0         | 54   | 0.0                        | 0.103               | 7.7                   | LOS A               | 0.6                           | 4.2  | 0.68         | 0.67                 | 0.68                      | 51.7                   |
| 2         | T1     | All MCs      | 24      | 0.0         | 24   | 0.0                        | 0.103               | 7.8                   | LOS A               | 0.6                           | 4.2  | 0.68         | 0.67                 | 0.68                      | 52.1                   |
| 3         | R2     | All MCs      | 3       | 0.0         | 3    | 0.0                        | 0.103               | 12.5                  | LOS A               | 0.6                           | 4.2  | 0.68         | 0.67                 | 0.68                      | 55.9                   |
| 3u        | U      | All MCs      | 1       | 0.0         | 1    | 0.0                        | 0.103               | 14.5                  | LOS B               | 0.6                           | 4.2  | 0.68         | 0.67                 | 0.68                      | 51.3                   |
| Appro     | bach   |              | 82      | 0.0         | 82   | 0.0                        | 0.103               | 8.0                   | LOS A               | 0.6                           | 4.2  | 0.68         | 0.67                 | 0.68                      | 52.2                   |
| East:     | Georg  | e Bass D     | rive    |             |      |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 4         | L2     | All MCs      | 6       | 0.0         | 6    | 0.0                        | 0.367               | 6.1                   | LOS A               | 2.4                           | 17.4 | 0.60         | 0.60                 | 0.60                      | 56.1                   |
| 5         | T1     | All MCs      | 284     | 4.8         | 284  | 4.8                        | 0.367               | 6.4                   | LOS A               | 2.4                           | 17.4 | 0.60         | 0.60                 | 0.60                      | 56.2                   |
| 6         | R2     | All MCs      | 75      | 4.2         | 75   | 4.2                        | 0.367               | 11.0                  | LOS A               | 2.4                           | 17.4 | 0.60         | 0.60                 | 0.60                      | 55.8                   |
| 6u        | U      | All MCs      | 1       | 0.0         | 1    | 0.0                        | 0.367               | 12.9                  | LOS A               | 2.4                           | 17.4 | 0.60         | 0.60                 | 0.60                      | 57.3                   |
| Appro     | bach   |              | 366     | 4.6         | 366  | 4.6                        | 0.367               | 7.4                   | LOS A               | 2.4                           | 17.4 | 0.60         | 0.60                 | 0.60                      | 56.1                   |
| North     | : Toma | akin Road    |         |             |      |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 7         | L2     | All MCs      | 31      | 13.8        | 31   | 13.8                       | 0.281               | 5.2                   | LOS A               | 1.7                           | 12.6 | 0.43         | 0.61                 | 0.43                      | 55.3                   |
| 8         | T1     | All MCs      | 12      | 9.1         | 12   | 9.1                        | 0.281               | 5.3                   | LOS A               | 1.7                           | 12.6 | 0.43         | 0.61                 | 0.43                      | 50.7                   |
| 9         | R2     | All MCs      | 280     | 4.1         | 280  | 4.1                        | 0.281               | 9.8                   | LOS A               | 1.7                           | 12.6 | 0.43         | 0.61                 | 0.43                      | 50.0                   |
| 9u        | U      | All MCs      | 2       | 100.<br>0   | 2    | 100.<br>0                  | 0.281               | 14.2                  | LOS A               | 1.7                           | 12.6 | 0.43         | 0.61                 | 0.43                      | 46.9                   |
| Appro     | bach   |              | 324     | 5.8         | 324  | 5.8                        | 0.281               | 9.3                   | LOS A               | 1.7                           | 12.6 | 0.43         | 0.61                 | 0.43                      | 51.0                   |
| West:     | Georg  | ge Bass D    | Drive   |             |      |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 10        | L2     | All MCs      | 234     | 5.0         | 234  | 5.0                        | 0.319               | 4.6                   | LOS A               | 2.1                           | 15.6 | 0.34         | 0.48                 | 0.34                      | 53.1                   |
| 11        | T1     | All MCs      | 136     | 7.8         | 136  | 7.8                        | 0.319               | 4.8                   | LOS A               | 2.1                           | 15.6 | 0.34         | 0.48                 | 0.34                      | 57.0                   |
| 12        | R2     | All MCs      | 31      | 3.4         | 31   | 3.4                        | 0.319               | 9.3                   | LOS A               | 2.1                           | 15.6 | 0.34         | 0.48                 | 0.34                      | 52.6                   |
| 12u       | U      | All MCs      | 12      | 0.0         | 12   | 0.0                        | 0.319               | 11.3                  | LOS A               | 2.1                           | 15.6 | 0.34         | 0.48                 | 0.34                      | 52.7                   |
| Appro     | bach   |              | 412     | 5.6         | 412  | 5.6                        | 0.319               | 5.2                   | LOS A               | 2.1                           | 15.6 | 0.34         | 0.48                 | 0.34                      | 55.1                   |
| All Ve    | hicles |              | 1184    | 5.0         | 1184 | 5.0                        | 0.367               | 7.2                   | LOS A               | 2.4                           | 17.4 | 0.47         | 0.56                 | 0.47                      | 54.5                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:43:16 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\1. Rosedale - Existing.sip9

#### W Site: 102 [(I-2) George Bass Drive / Road 01\_Weekday AM (Site Folder: Existing 2023 - Weekday AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday AM Peak Survey Date: 22 November 2023 Peak Hour: 8:00am - 9:00am Site Category: (None) Roundabout

| Vehio     | cle Mo | ovement      | t Perfo | rma | nce |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
|-----------|--------|--------------|---------|-----|-----|----------------------------|---------------------|-----------------------|---------------------|-----|------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | FI      |     |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | ack Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| East:     | Georg  | je Bass D    | )rive   |     |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 5         | T1     | All MCs      | 284     | 4.8 | 284 | 4.8                        | 0.172               | 4.1                   | LOS A               | 1.1 | 8.1                          | 0.04         | 0.40                 | 0.04                      | 58.7                   |
| 6         | R2     | All MCs      | 1       | 0.0 | 1   | 0.0                        | 0.172               | 8.7                   | LOS A               | 1.1 | 8.1                          | 0.04         | 0.40                 | 0.04                      | 57.9                   |
| 6u        | U      | All MCs      | 1       | 0.0 | 1   | 0.0                        | 0.172               | 10.7                  | LOS A               | 1.1 | 8.1                          | 0.04         | 0.40                 | 0.04                      | 58.7                   |
| Appro     | bach   |              | 286     | 4.8 | 286 | 4.8                        | 0.172               | 4.1                   | LOS A               | 1.1 | 8.1                          | 0.04         | 0.40                 | 0.04                      | 58.7                   |
| North     | : Roac | 101          |         |     |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 7         | L2     | All MCs      | 1       | 0.0 | 1   | 0.0                        | 0.003               | 4.6                   | LOS A               | 0.0 | 0.1                          | 0.32         | 0.55                 | 0.32                      | 56.8                   |
| 9         | R2     | All MCs      | 1       | 0.0 | 1   | 0.0                        | 0.003               | 9.4                   | LOS A               | 0.0 | 0.1                          | 0.32         | 0.55                 | 0.32                      | 55.6                   |
| 9u        | U      | All MCs      | 1       | 0.0 | 1   | 0.0                        | 0.003               | 11.5                  | LOS A               | 0.0 | 0.1                          | 0.32         | 0.55                 | 0.32                      | 50.8                   |
| Appro     | bach   |              | 3       | 0.0 | 3   | 0.0                        | 0.003               | 8.5                   | LOS A               | 0.0 | 0.1                          | 0.32         | 0.55                 | 0.32                      | 55.3                   |
| West:     | Geor   | ge Bass [    | Drive   |     |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 10        | L2     | All MCs      | 1       | 0.0 | 1   | 0.0                        | 0.090               | 3.8                   | LOS A               | 0.5 | 3.8                          | 0.04         | 0.40                 | 0.04                      | 57.6                   |
| 11        | T1     | All MCs      | 141     | 9.0 | 141 | 9.0                        | 0.090               | 4.1                   | LOS A               | 0.5 | 3.8                          | 0.04         | 0.40                 | 0.04                      | 58.7                   |
| 12u       | U      | All MCs      | 1       | 0.0 | 1   | 0.0                        | 0.090               | 10.7                  | LOS A               | 0.5 | 3.8                          | 0.04         | 0.40                 | 0.04                      | 58.3                   |
| Appro     | bach   |              | 143     | 8.8 | 143 | 8.8                        | 0.090               | 4.2                   | LOS A               | 0.5 | 3.8                          | 0.04         | 0.40                 | 0.04                      | 58.7                   |
| All Ve    | hicles |              | 433     | 6.1 | 433 | 6.1                        | 0.172               | 4.2                   | LOS A               | 1.1 | 8.1                          | 0.04         | 0.40                 | 0.04                      | 58.7                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:43:18 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\1. Rosedale - Existing.sip9

#### V Site: 103 [(I-3) George Bass Drive / Rosedale Parade / Saltwood Drive\_Weekday AM (Site Folder: Existing 2023 -Weekday AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday AM Peak Survey Date: 22 November 2023 Peak Hour: 8:00am - 9:00am Site Category: (None) Roundabout

| Vehic     | cle Mo | ovemen       | t Perfo | rma  | nce |                            |                     |                       |                     |                               |                              |              |                      |                           |                        |
|-----------|--------|--------------|---------|------|-----|----------------------------|---------------------|-----------------------|---------------------|-------------------------------|------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | FI      |      |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh | ack Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geoi | rge Bass     | Drive   |      |     |                            |                     |                       |                     |                               |                              |              |                      |                           |                        |
| 1         | L2     | All MCs      | 6       | 0.0  | 6   | 0.0                        | 0.080               | 4.0                   | LOS A               | 0.4                           | 3.0                          | 0.11         | 0.42                 | 0.11                      | 57.9                   |
| 2         | T1     | All MCs      | 97      | 8.7  | 97  | 8.7                        | 0.080               | 4.2                   | LOS A               | 0.4                           | 3.0                          | 0.11         | 0.42                 | 0.11                      | 58.1                   |
| 3         | R2     | All MCs      | 8       | 12.5 | 8   | 12.5                       | 0.080               | 8.9                   | LOS A               | 0.4                           | 3.0                          | 0.11         | 0.42                 | 0.11                      | 57.5                   |
| 3u        | U      | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.080               | 10.8                  | LOS A               | 0.4                           | 3.0                          | 0.11         | 0.42                 | 0.11                      | 58.6                   |
| Appro     | ach    |              | 113     | 8.4  | 113 | 8.4                        | 0.080               | 4.6                   | LOS A               | 0.4                           | 3.0                          | 0.11         | 0.42                 | 0.11                      | 58.1                   |
| East:     | Rosec  | lale Para    | de      |      |     |                            |                     |                       |                     |                               |                              |              |                      |                           |                        |
| 4         | L2     | All MCs      | 21      | 0.0  | 21  | 0.0                        | 0.030               | 4.7                   | LOS A               | 0.1                           | 1.0                          | 0.34         | 0.55                 | 0.34                      | 57.3                   |
| 5         | T1     | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.030               | 4.9                   | LOS A               | 0.1                           | 1.0                          | 0.34         | 0.55                 | 0.34                      | 53.0                   |
| 6         | R2     | All MCs      | 12      | 9.1  | 12  | 9.1                        | 0.030               | 9.7                   | LOS A               | 0.1                           | 1.0                          | 0.34         | 0.55                 | 0.34                      | 53.3                   |
| 6u        | U      | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.030               | 11.6                  | LOS A               | 0.1                           | 1.0                          | 0.34         | 0.55                 | 0.34                      | 52.1                   |
| Appro     | ach    |              | 35      | 3.0  | 35  | 3.0                        | 0.030               | 6.6                   | LOS A               | 0.1                           | 1.0                          | 0.34         | 0.55                 | 0.34                      | 56.4                   |
| North     | Geor   | ge Bass I    | Drive   |      |     |                            |                     |                       |                     |                               |                              |              |                      |                           |                        |
| 7         | L2     | All MCs      | 5       | 0.0  | 5   | 0.0                        | 0.126               | 3.9                   | LOS A               | 0.6                           | 4.7                          | 0.09         | 0.41                 | 0.09                      | 55.4                   |
| 8         | T1     | All MCs      | 177     | 5.4  | 177 | 5.4                        | 0.126               | 4.2                   | LOS A               | 0.6                           | 4.7                          | 0.09         | 0.41                 | 0.09                      | 58.2                   |
| 9         | R2     | All MCs      | 6       | 16.7 | 6   | 16.7                       | 0.126               | 8.9                   | LOS A               | 0.6                           | 4.7                          | 0.09         | 0.41                 | 0.09                      | 54.4                   |
| 9u        | U      | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.126               | 10.8                  | LOS A               | 0.6                           | 4.7                          | 0.09         | 0.41                 | 0.09                      | 55.8                   |
| Appro     | ach    |              | 189     | 5.6  | 189 | 5.6                        | 0.126               | 4.3                   | LOS A               | 0.6                           | 4.7                          | 0.09         | 0.41                 | 0.09                      | 58.1                   |
| West:     | Saltw  | ood Drive    | Э       |      |     |                            |                     |                       |                     |                               |                              |              |                      |                           |                        |
| 10        | L2     | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.006               | 4.4                   | LOS A               | 0.0                           | 0.2                          | 0.26         | 0.57                 | 0.26                      | 53.0                   |
| 11        | T1     | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.006               | 4.6                   | LOS A               | 0.0                           | 0.2                          | 0.26         | 0.57                 | 0.26                      | 51.8                   |
| 12        | R2     | All MCs      | 4       | 0.0  | 4   | 0.0                        | 0.006               | 9.2                   | LOS A               | 0.0                           | 0.2                          | 0.26         | 0.57                 | 0.26                      | 56.6                   |
| 12u       | U      | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.006               | 11.2                  | LOS A               | 0.0                           | 0.2                          | 0.26         | 0.57                 | 0.26                      | 51.0                   |
| Appro     | ach    |              | 7       | 0.0  | 7   | 0.0                        | 0.006               | 8.1                   | LOS A               | 0.0                           | 0.2                          | 0.26         | 0.57                 | 0.26                      | 55.6                   |
| All Ve    | hicles |              | 344     | 6.1  | 344 | 6.1                        | 0.126               | 4.7                   | LOS A               | 0.6                           | 4.7                          | 0.12         | 0.43                 | 0.12                      | 57.9                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:43:18 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\1. Rosedale - Existing.sip9

#### V Site: 104 [(I-4) George Bass Drive / Bullock Road\_Weekday AM (Site Folder: Existing 2023 - Weekday AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday AM Peak Survey Date: 22 November 2023 Peak Hour: 8:00am - 9:00am Site Category: (None) Give-Way (Two-Way)

| Vehic     | cle Mo | ovement      | t Perfo | rma          | nce |                            |                     |                       |                     |                               |     |              |                      |                           |                        |
|-----------|--------|--------------|---------|--------------|-----|----------------------------|---------------------|-----------------------|---------------------|-------------------------------|-----|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | lows<br>HV ] |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh |     | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geoi | rge Bass     | Drive   |              |     |                            |                     |                       |                     |                               |     |              |                      |                           |                        |
| 1         | L2     | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.060               | 5.6                   | LOS A               | 0.0                           | 0.0 | 0.00         | 0.01                 | 0.00                      | 36.4                   |
| 2         | T1     | All MCs      | 109     | 8.7          | 109 | 8.7                        | 0.060               | 0.0                   | LOS A               | 0.0                           | 0.0 | 0.00         | 0.01                 | 0.00                      | 59.9                   |
| Appro     | ach    |              | 111     | 8.6          | 111 | 8.6                        | 0.060               | 0.1                   | NA                  | 0.0                           | 0.0 | 0.00         | 0.01                 | 0.00                      | 59.7                   |
| North     | Geor   | ge Bass I    | Drive   |              |     |                            |                     |                       |                     |                               |     |              |                      |                           |                        |
| 8         | T1     | All MCs      | 188     | 5.6          | 188 | 5.6                        | 0.100               | 0.0                   | LOS A               | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 60.0                   |
| Appro     | ach    |              | 188     | 5.6          | 188 | 5.6                        | 0.100               | 0.0                   | NA                  | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 60.0                   |
| West:     | Bullo  | ck Road      |         |              |     |                            |                     |                       |                     |                               |     |              |                      |                           |                        |
| 10        | L2     | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.001               | 4.6                   | LOS A               | 0.0                           | 0.0 | 0.20         | 0.50                 | 0.20                      | 49.1                   |
| Appro     | ach    |              | 1       | 0.0          | 1   | 0.0                        | 0.001               | 4.6                   | LOS A               | 0.0                           | 0.0 | 0.20         | 0.50                 | 0.20                      | 49.1                   |
| All Ve    | hicles |              | 300     | 6.7          | 300 | 6.7                        | 0.100               | 0.1                   | NA                  | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 59.8                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:43:19 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\1. Rosedale - Existing.sip9

#### V Site: 101 [(I-1) George Bass Drive / Sunpatch Parade / Tomakin Road\_Weekday PM (Site Folder: Existing 2023 -Weekday PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday PM Peak Survey Date: 22 November 2023 Peak Hour: 3:30pm - 4:30pm Site Category: (None) Roundabout

| Vehic     | le Mo  | ovement      | t Perfo            | rma         | nce |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
|-----------|--------|--------------|--------------------|-------------|-----|----------------------------|---------------------|-----------------------|---------------------|-------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID |        | Mov<br>Class | [ Total  <br>veh/h | ows<br>HV ] |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Sunp | patch Par    | ade                |             |     |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 1         | L2     | All MCs      | 38                 | 2.8         | 38  | 2.8                        | 0.050               | 5.6                   | LOS A               | 0.3                           | 1.8  | 0.48         | 0.57                 | 0.48                      | 52.8                   |
| 2         | T1     | All MCs      | 7                  | 0.0         | 7   | 0.0                        | 0.050               | 5.8                   | LOS A               | 0.3                           | 1.8  | 0.48         | 0.57                 | 0.48                      | 53.2                   |
| 3         | R2     | All MCs      | 4                  | 0.0         | 4   | 0.0                        | 0.050               | 10.4                  | LOS A               | 0.3                           | 1.8  | 0.48         | 0.57                 | 0.48                      | 56.5                   |
| 3u        | U      | All MCs      | 1                  | 0.0         | 1   | 0.0                        | 0.050               | 12.4                  | LOS A               | 0.3                           | 1.8  | 0.48         | 0.57                 | 0.48                      | 52.4                   |
| Appro     | ach    |              | 51                 | 2.1         | 51  | 2.1                        | 0.050               | 6.2                   | LOS A               | 0.3                           | 1.8  | 0.48         | 0.57                 | 0.48                      | 53.5                   |
| East:     | Georg  | je Bass D    | )rive              |             |     |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 4         | L2     | All MCs      | 5                  | 0.0         | 5   | 0.0                        | 0.178               | 5.1                   | LOS A               | 1.0                           | 7.4  | 0.43         | 0.53                 | 0.43                      | 56.5                   |
| 5         | T1     | All MCs      | 146                | 6.5         | 146 | 6.5                        | 0.178               | 5.4                   | LOS A               | 1.0                           | 7.4  | 0.43         | 0.53                 | 0.43                      | 56.6                   |
| 6         | R2     | All MCs      | 41                 | 7.7         | 41  | 7.7                        | 0.178               | 10.1                  | LOS A               | 1.0                           | 7.4  | 0.43         | 0.53                 | 0.43                      | 56.1                   |
| 6u        | U      | All MCs      | 1                  | 0.0         | 1   | 0.0                        | 0.178               | 11.9                  | LOS A               | 1.0                           | 7.4  | 0.43         | 0.53                 | 0.43                      | 57.5                   |
| Appro     | ach    |              | 194                | 6.5         | 194 | 6.5                        | 0.178               | 6.4                   | LOS A               | 1.0                           | 7.4  | 0.43         | 0.53                 | 0.43                      | 56.5                   |
| North     | Toma   | akin Road    | 1                  |             |     |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 7         | L2     | All MCs      | 46                 | 9.1         | 46  | 9.1                        | 0.207               | 5.5                   | LOS A               | 1.2                           | 8.4  | 0.46         | 0.62                 | 0.46                      | 55.6                   |
| 8         | T1     | All MCs      | 17                 | 6.3         | 17  | 6.3                        | 0.207               | 5.6                   | LOS A               | 1.2                           | 8.4  | 0.46         | 0.62                 | 0.46                      | 51.2                   |
| 9         | R2     | All MCs      | 160                | 2.6         | 160 | 2.6                        | 0.207               | 10.1                  | LOS A               | 1.2                           | 8.4  | 0.46         | 0.62                 | 0.46                      | 50.5                   |
| 9u        | U      | All MCs      | 1                  | 0.0         | 1   | 0.0                        | 0.207               | 12.1                  | LOS A               | 1.2                           | 8.4  | 0.46         | 0.62                 | 0.46                      | 50.6                   |
| Appro     | ach    |              | 224                | 4.2         | 224 | 4.2                        | 0.207               | 8.9                   | LOS A               | 1.2                           | 8.4  | 0.46         | 0.62                 | 0.46                      | 52.3                   |
| West:     | Geor   | ge Bass [    | Drive              |             |     |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 10        | L2     | All MCs      | 169                | 1.2         | 169 | 1.2                        | 0.292               | 4.2                   | LOS A               | 1.9                           | 13.6 | 0.23         | 0.45                 | 0.23                      | 53.6                   |
| 11        | T1     | All MCs      | 202                | 3.1         | 202 | 3.1                        | 0.292               | 4.4                   | LOS A               | 1.9                           | 13.6 | 0.23         | 0.45                 | 0.23                      | 57.2                   |
| 12        | R2     | All MCs      | 37                 | 5.7         | 37  | 5.7                        | 0.292               | 9.1                   | LOS A               | 1.9                           | 13.6 | 0.23         | 0.45                 | 0.23                      | 52.9                   |
| 12u       | U      | All MCs      | 9                  | 11.1        | 9   | 11.1                       | 0.292               | 11.2                  | LOS A               | 1.9                           | 13.6 | 0.23         | 0.45                 | 0.23                      | 52.7                   |
| Appro     | ach    |              | 418                | 2.8         | 418 | 2.8                        | 0.292               | 4.9                   | LOS A               | 1.9                           | 13.6 | 0.23         | 0.45                 | 0.23                      | 56.0                   |
| All Ve    | hicles |              | 886                | 3.9         | 886 | 3.9                        | 0.292               | 6.3                   | LOS A               | 1.9                           | 13.6 | 0.34         | 0.52                 | 0.34                      | 55.3                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:43:20 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\1. Rosedale - Existing.sip9

#### W Site: 102 [(I-2) George Bass Drive / Road 01\_Weekday PM (Site Folder: Existing 2023 - Weekday PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday PM Peak Survey Date: 22 November 2023 Peak Hour: 3:30pm - 4:30pm Site Category: (None) Roundabout

| Vehio     | cle Mo | ovement      | Perfo | rma          | nce |                            |                     |                       |                     |                                |     |              |                      |                           |                        |
|-----------|--------|--------------|-------|--------------|-----|----------------------------|---------------------|-----------------------|---------------------|--------------------------------|-----|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |       | lows<br>HV ] |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>[ Veh.<br>veh |     | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| East:     | Georg  | je Bass D    | rive  |              |     |                            |                     |                       |                     |                                |     |              |                      |                           |                        |
| 5         | T1     | All MCs      | 158   | 6.0          | 158 | 6.0                        | 0.098               | 4.1                   | LOS A               | 0.6                            | 4.4 | 0.04         | 0.40                 | 0.04                      | 58.7                   |
| 6         | R2     | All MCs      | 1     | 0.0          | 1   | 0.0                        | 0.098               | 8.7                   | LOS A               | 0.6                            | 4.4 | 0.04         | 0.40                 | 0.04                      | 57.9                   |
| 6u        | U      | All MCs      | 1     | 0.0          | 1   | 0.0                        | 0.098               | 10.7                  | LOS A               | 0.6                            | 4.4 | 0.04         | 0.40                 | 0.04                      | 58.7                   |
| Appro     | bach   |              | 160   | 5.9          | 160 | 5.9                        | 0.098               | 4.2                   | LOS A               | 0.6                            | 4.4 | 0.04         | 0.40                 | 0.04                      | 58.7                   |
| North     | : Road | 101          |       |              |     |                            |                     |                       |                     |                                |     |              |                      |                           |                        |
| 7         | L2     | All MCs      | 1     | 0.0          | 1   | 0.0                        | 0.003               | 4.9                   | LOS A               | 0.0                            | 0.1 | 0.39         | 0.55                 | 0.39                      | 56.7                   |
| 9         | R2     | All MCs      | 1     | 0.0          | 1   | 0.0                        | 0.003               | 9.8                   | LOS A               | 0.0                            | 0.1 | 0.39         | 0.55                 | 0.39                      | 55.5                   |
| 9u        | U      | All MCs      | 1     | 0.0          | 1   | 0.0                        | 0.003               | 11.8                  | LOS A               | 0.0                            | 0.1 | 0.39         | 0.55                 | 0.39                      | 50.6                   |
| Appro     | bach   |              | 3     | 0.0          | 3   | 0.0                        | 0.003               | 8.8                   | LOS A               | 0.0                            | 0.1 | 0.39         | 0.55                 | 0.39                      | 55.2                   |
| West:     | Georg  | ge Bass D    | Drive |              |     |                            |                     |                       |                     |                                |     |              |                      |                           |                        |
| 10        | L2     | All MCs      | 1     | 0.0          | 1   | 0.0                        | 0.129               | 3.8                   | LOS A               | 0.8                            | 5.6 | 0.04         | 0.40                 | 0.04                      | 57.6                   |
| 11        | T1     | All MCs      | 209   | 5.5          | 209 | 5.5                        | 0.129               | 4.1                   | LOS A               | 0.8                            | 5.6 | 0.04         | 0.40                 | 0.04                      | 58.7                   |
| 12u       | U      | All MCs      | 1     | 0.0          | 1   | 0.0                        | 0.129               | 10.7                  | LOS A               | 0.8                            | 5.6 | 0.04         | 0.40                 | 0.04                      | 58.3                   |
| Appro     | bach   |              | 212   | 5.5          | 212 | 5.5                        | 0.129               | 4.1                   | LOS A               | 0.8                            | 5.6 | 0.04         | 0.40                 | 0.04                      | 58.7                   |
| All Ve    | hicles |              | 375   | 5.6          | 375 | 5.6                        | 0.129               | 4.2                   | LOS A               | 0.8                            | 5.6 | 0.04         | 0.40                 | 0.04                      | 58.7                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:43:21 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\1. Rosedale - Existing.sip9

#### V Site: 103 [(I-3) George Bass Drive / Rosedale Parade / Saltwood Drive\_Weekday PM (Site Folder: Existing 2023 -Weekday PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday PM Peak Survey Date: 22 November 2023 Peak Hour: 3:30pm - 4:30pm Site Category: (None) Roundabout

| Vehic     | cle Mo | ovemen       | t Perfo | rma         | nce |                           |                     |                       |                     |                               |     |              |                      |                           |                        |
|-----------|--------|--------------|---------|-------------|-----|---------------------------|---------------------|-----------------------|---------------------|-------------------------------|-----|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | ows<br>HV ] |     | rival<br>lows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh |     | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geoi | rge Bass     | Drive   |             |     |                           |                     |                       |                     |                               |     |              |                      |                           |                        |
| 1         | L2     | All MCs      | 6       | 0.0         | 6   | 0.0                       | 0.112               | 3.9                   | LOS A               | 0.6                           | 4.2 | 0.09         | 0.42                 | 0.09                      | 57.9                   |
| 2         | T1     | All MCs      | 145     | 8.0         | 145 | 8.0                       | 0.112               | 4.2                   | LOS A               | 0.6                           | 4.2 | 0.09         | 0.42                 | 0.09                      | 58.1                   |
| 3         | R2     | All MCs      | 13      | 0.0         | 13  | 0.0                       | 0.112               | 8.7                   | LOS A               | 0.6                           | 4.2 | 0.09         | 0.42                 | 0.09                      | 57.7                   |
| 3u        | U      | All MCs      | 1       | 0.0         | 1   | 0.0                       | 0.112               | 10.8                  | LOS A               | 0.6                           | 4.2 | 0.09         | 0.42                 | 0.09                      | 58.6                   |
| Appro     | ach    |              | 165     | 7.0         | 165 | 7.0                       | 0.112               | 4.6                   | LOS A               | 0.6                           | 4.2 | 0.09         | 0.42                 | 0.09                      | 58.1                   |
| East:     | Rosec  | lale Para    | de      |             |     |                           |                     |                       |                     |                               |     |              |                      |                           |                        |
| 4         | L2     | All MCs      | 12      | 9.1         | 12  | 9.1                       | 0.017               | 4.5                   | LOS A               | 0.1                           | 0.6 | 0.26         | 0.53                 | 0.26                      | 57.2                   |
| 5         | T1     | All MCs      | 1       | 0.0         | 1   | 0.0                       | 0.017               | 4.6                   | LOS A               | 0.1                           | 0.6 | 0.26         | 0.53                 | 0.26                      | 52.9                   |
| 6         | R2     | All MCs      | 7       | 0.0         | 7   | 0.0                       | 0.017               | 9.2                   | LOS A               | 0.1                           | 0.6 | 0.26         | 0.53                 | 0.26                      | 53.5                   |
| 6u        | U      | All MCs      | 1       | 0.0         | 1   | 0.0                       | 0.017               | 11.3                  | LOS A               | 0.1                           | 0.6 | 0.26         | 0.53                 | 0.26                      | 52.1                   |
| Appro     | ach    |              | 21      | 5.0         | 21  | 5.0                       | 0.017               | 6.5                   | LOS A               | 0.1                           | 0.6 | 0.26         | 0.53                 | 0.26                      | 56.2                   |
| North     | : Geor | ge Bass I    | Drive   |             |     |                           |                     |                       |                     |                               |     |              |                      |                           |                        |
| 7         | L2     | All MCs      | 20      | 0.0         | 20  | 0.0                       | 0.093               | 3.9                   | LOS A               | 0.5                           | 3.3 | 0.10         | 0.42                 | 0.10                      | 55.3                   |
| 8         | T1     | All MCs      | 107     | 3.9         | 107 | 3.9                       | 0.093               | 4.2                   | LOS A               | 0.5                           | 3.3 | 0.10         | 0.42                 | 0.10                      | 58.2                   |
| 9         | R2     | All MCs      | 6       | 16.7        | 6   | 16.7                      | 0.093               | 9.0                   | LOS A               | 0.5                           | 3.3 | 0.10         | 0.42                 | 0.10                      | 54.3                   |
| 9u        | U      | All MCs      | 1       | 0.0         | 1   | 0.0                       | 0.093               | 10.8                  | LOS A               | 0.5                           | 3.3 | 0.10         | 0.42                 | 0.10                      | 55.7                   |
| Appro     | ach    |              | 135     | 3.9         | 135 | 3.9                       | 0.093               | 4.4                   | LOS A               | 0.5                           | 3.3 | 0.10         | 0.42                 | 0.10                      | 57.9                   |
| West:     | Saltw  | ood Drive    | Э       |             |     |                           |                     |                       |                     |                               |     |              |                      |                           |                        |
| 10        | L2     | All MCs      | 8       | 0.0         | 8   | 0.0                       | 0.013               | 4.6                   | LOS A               | 0.1                           | 0.4 | 0.31         | 0.51                 | 0.31                      | 54.2                   |
| 11        | T1     | All MCs      | 3       | 0.0         | 3   | 0.0                       | 0.013               | 4.8                   | LOS A               | 0.1                           | 0.4 | 0.31         | 0.51                 | 0.31                      | 53.2                   |
| 12        | R2     | All MCs      | 3       | 0.0         | 3   | 0.0                       | 0.013               | 9.4                   | LOS A               | 0.1                           | 0.4 | 0.31         | 0.51                 | 0.31                      | 57.2                   |
| 12u       | U      | All MCs      | 1       | 0.0         | 1   | 0.0                       | 0.013               | 11.5                  | LOS A               | 0.1                           | 0.4 | 0.31         | 0.51                 | 0.31                      | 52.3                   |
| Appro     | ach    |              | 16      | 0.0         | 16  | 0.0                       | 0.013               | 6.0                   | LOS A               | 0.1                           | 0.4 | 0.31         | 0.51                 | 0.31                      | 55.1                   |
| All Ve    | hicles |              | 337     | 5.3         | 337 | 5.3                       | 0.112               | 4.7                   | LOS A               | 0.6                           | 4.2 | 0.12         | 0.43                 | 0.12                      | 57.9                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:43:21 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\1. Rosedale - Existing.sip9

#### V Site: 104 [(I-4) George Bass Drive / Bullock Road\_Weekday PM (Site Folder: Existing 2023 - Weekday PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday PM Peak Survey Date: 22 November 2023 Peak Hour: 3:30pm - 4:30pm Site Category: (None) Give-Way (Two-Way)

| Vehic     | cle Mo | ovement      | t Perfo | rma | nce |                            |                     |                       |                     |                               |     |              |                      |                           |                        |
|-----------|--------|--------------|---------|-----|-----|----------------------------|---------------------|-----------------------|---------------------|-------------------------------|-----|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | F       |     |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh |     | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geoi | rge Bass     | Drive   |     |     |                            |                     |                       |                     |                               |     |              |                      |                           |                        |
| 1         | L2     | All MCs      | 1       | 0.0 | 1   | 0.0                        | 0.087               | 5.6                   | LOS A               | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 36.4                   |
| 2         | T1     | All MCs      | 161     | 7.2 | 161 | 7.2                        | 0.087               | 0.0                   | LOS A               | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| Appro     | ach    |              | 162     | 7.1 | 162 | 7.1                        | 0.087               | 0.1                   | NA                  | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 59.8                   |
| North     | Geor   | ge Bass I    | Drive   |     |     |                            |                     |                       |                     |                               |     |              |                      |                           |                        |
| 8         | T1     | All MCs      | 134     | 3.9 | 134 | 3.9                        | 0.070               | 0.0                   | LOS A               | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 60.0                   |
| Appro     | ach    |              | 134     | 3.9 | 134 | 3.9                        | 0.070               | 0.0                   | NA                  | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 60.0                   |
| West:     | Bullo  | ck Road      |         |     |     |                            |                     |                       |                     |                               |     |              |                      |                           |                        |
| 10        | L2     | All MCs      | 1       | 0.0 | 1   | 0.0                        | 0.001               | 4.8                   | LOS A               | 0.0                           | 0.0 | 0.25         | 0.50                 | 0.25                      | 48.9                   |
| Appro     | ach    |              | 1       | 0.0 | 1   | 0.0                        | 0.001               | 4.8                   | LOS A               | 0.0                           | 0.0 | 0.25         | 0.50                 | 0.25                      | 48.9                   |
| All Ve    | hicles |              | 297     | 5.7 | 297 | 5.7                        | 0.087               | 0.1                   | NA                  | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 59.8                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:43:22 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\1. Rosedale - Existing.sip9

#### V Site: 101 [(I-1) George Bass Drive / Sunpatch Parade / Tomakin Road\_Weekend Mid-day (Site Folder: Existing 2023 -Weekend Mid-day)]

#### Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekend Mid-day Peak Survey Date: 19 November 2023 Peak Hour: 12:00pm - 1:00pm Site Category: (None) Roundabout

| Vehic     | le Mo  | ovement      | Perfo | rma  | nce  |                           |                     |                       |                     |                                |      |              |                      |                           |                        |
|-----------|--------|--------------|-------|------|------|---------------------------|---------------------|-----------------------|---------------------|--------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | FI    |      |      | rival<br>lows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Sunp | oatch Para   | ade   |      |      |                           |                     |                       |                     |                                |      |              |                      |                           |                        |
| 1         | L2     | All MCs      | 69    | 1.5  | 69   | 1.5                       | 0.131               | 5.9                   | LOS A               | 0.7                            | 5.1  | 0.53         | 0.60                 | 0.53                      | 52.3                   |
| 2         | T1     | All MCs      | 37    | 2.9  | 37   | 2.9                       | 0.131               | 6.2                   | LOS A               | 0.7                            | 5.1  | 0.53         | 0.60                 | 0.53                      | 52.7                   |
| 3         | R2     | All MCs      | 22    | 0.0  | 22   | 0.0                       | 0.131               | 10.7                  | LOS A               | 0.7                            | 5.1  | 0.53         | 0.60                 | 0.53                      | 56.2                   |
| 3u        | U      | All MCs      | 1     | 0.0  | 1    | 0.0                       | 0.131               | 12.8                  | LOS A               | 0.7                            | 5.1  | 0.53         | 0.60                 | 0.53                      | 51.9                   |
| Appro     | ach    |              | 129   | 1.6  | 129  | 1.6                       | 0.131               | 6.9                   | LOS A               | 0.7                            | 5.1  | 0.53         | 0.60                 | 0.53                      | 53.6                   |
| East:     | Georg  | e Bass D     | rive  |      |      |                           |                     |                       |                     |                                |      |              |                      |                           |                        |
| 4         | L2     | All MCs      | 11    | 10.0 | 11   | 10.0                      | 0.217               | 5.6                   | LOS A               | 1.3                            | 9.1  | 0.48         | 0.56                 | 0.48                      | 56.2                   |
| 5         | T1     | All MCs      | 163   | 3.9  | 163  | 3.9                       | 0.217               | 5.6                   | LOS A               | 1.3                            | 9.1  | 0.48         | 0.56                 | 0.48                      | 56.4                   |
| 6         | R2     | All MCs      | 58    | 1.8  | 58   | 1.8                       | 0.217               | 10.2                  | LOS A               | 1.3                            | 9.1  | 0.48         | 0.56                 | 0.48                      | 56.0                   |
| 6u        | U      | All MCs      | 1     | 0.0  | 1    | 0.0                       | 0.217               | 12.2                  | LOS A               | 1.3                            | 9.1  | 0.48         | 0.56                 | 0.48                      | 57.4                   |
| Appro     | ach    |              | 233   | 3.6  | 233  | 3.6                       | 0.217               | 6.8                   | LOS A               | 1.3                            | 9.1  | 0.48         | 0.56                 | 0.48                      | 56.3                   |
| North:    | Toma   | ikin Road    |       |      |      |                           |                     |                       |                     |                                |      |              |                      |                           |                        |
| 7         | L2     | All MCs      | 47    | 2.2  | 47   | 2.2                       | 0.222               | 5.7                   | LOS A               | 1.3                            | 9.4  | 0.52         | 0.63                 | 0.52                      | 55.8                   |
| 8         | T1     | All MCs      | 40    | 5.3  | 40   | 5.3                       | 0.222               | 6.0                   | LOS A               | 1.3                            | 9.4  | 0.52         | 0.63                 | 0.52                      | 51.4                   |
| 9         | R2     | All MCs      | 137   | 6.9  | 137  | 6.9                       | 0.222               | 10.7                  | LOS A               | 1.3                            | 9.4  | 0.52         | 0.63                 | 0.52                      | 50.5                   |
| 9u        | U      | All MCs      | 1     | 0.0  | 1    | 0.0                       | 0.222               | 12.5                  | LOS A               | 1.3                            | 9.4  | 0.52         | 0.63                 | 0.52                      | 50.7                   |
| Appro     | ach    |              | 225   | 5.6  | 225  | 5.6                       | 0.222               | 8.8                   | LOS A               | 1.3                            | 9.4  | 0.52         | 0.63                 | 0.52                      | 52.5                   |
| West:     | Georg  | ge Bass D    | )rive |      |      |                           |                     |                       |                     |                                |      |              |                      |                           |                        |
| 10        | L2     | All MCs      | 153   | 2.1  | 153  | 2.1                       | 0.344               | 4.6                   | LOS A               | 2.3                            | 16.3 | 0.35         | 0.49                 | 0.35                      | 52.8                   |
| 11        | T1     | All MCs      | 208   | 5.6  | 208  | 5.6                       | 0.344               | 4.8                   | LOS A               | 2.3                            | 16.3 | 0.35         | 0.49                 | 0.35                      | 56.8                   |
| 12        | R2     | All MCs      | 56    | 3.8  | 56   | 3.8                       | 0.344               | 9.5                   | LOS A               | 2.3                            | 16.3 | 0.35         | 0.49                 | 0.35                      | 52.2                   |
| 12u       | U      | All MCs      | 28    | 0.0  | 28   | 0.0                       | 0.344               | 11.4                  | LOS A               | 2.3                            | 16.3 | 0.35         | 0.49                 | 0.35                      | 52.3                   |
| Appro     | ach    |              | 445   | 3.8  | 445  | 3.8                       | 0.344               | 5.8                   | LOS A               | 2.3                            | 16.3 | 0.35         | 0.49                 | 0.35                      | 55.3                   |
| All Ve    | hicles |              | 1033  | 3.9  | 1033 | 3.9                       | 0.344               | 6.8                   | LOS A               | 2.3                            | 16.3 | 0.44         | 0.55                 | 0.44                      | 55.0                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:43:23 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\1. Rosedale - Existing.sip9

### W Site: 102 [(I-2) George Bass Drive / Road 01\_Weekend Midday (Site Folder: Existing 2023 - Weekend Mid-day)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekend Mid-day Peak Survey Date: 19 November 2023 Peak Hour: 12:00pm - 1:00pm Site Category: (None) Roundabout

| Vehio     | cle Mo | ovement      | t Perfo | rma          | nce |                            |                     |                       |                     |                                |     |              |                      |                           |                        |
|-----------|--------|--------------|---------|--------------|-----|----------------------------|---------------------|-----------------------|---------------------|--------------------------------|-----|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | lows<br>HV ] |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>[ Veh.<br>veh |     | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| East:     | Georg  | je Bass D    | rive    |              |     |                            |                     |                       |                     |                                |     |              |                      |                           |                        |
| 5         | T1     | All MCs      | 191     | 3.3          | 191 | 3.3                        | 0.116               | 4.1                   | LOS A               | 0.7                            | 5.2 | 0.04         | 0.40                 | 0.04                      | 58.8                   |
| 6         | R2     | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.116               | 8.7                   | LOS A               | 0.7                            | 5.2 | 0.04         | 0.40                 | 0.04                      | 57.9                   |
| 6u        | U      | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.116               | 10.7                  | LOS A               | 0.7                            | 5.2 | 0.04         | 0.40                 | 0.04                      | 58.7                   |
| Appro     | ach    |              | 193     | 3.3          | 193 | 3.3                        | 0.116               | 4.1                   | LOS A               | 0.7                            | 5.2 | 0.04         | 0.40                 | 0.04                      | 58.8                   |
| North     | : Road | 01           |         |              |     |                            |                     |                       |                     |                                |     |              |                      |                           |                        |
| 7         | L2     | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.003               | 5.3                   | LOS A               | 0.0                            | 0.1 | 0.44         | 0.56                 | 0.44                      | 56.6                   |
| 9         | R2     | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.003               | 10.1                  | LOS A               | 0.0                            | 0.1 | 0.44         | 0.56                 | 0.44                      | 55.4                   |
| 9u        | U      | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.003               | 12.2                  | LOS A               | 0.0                            | 0.1 | 0.44         | 0.56                 | 0.44                      | 50.5                   |
| Appro     | ach    |              | 3       | 0.0          | 3   | 0.0                        | 0.003               | 9.2                   | LOS A               | 0.0                            | 0.1 | 0.44         | 0.56                 | 0.44                      | 55.1                   |
| West:     | Geor   | ge Bass [    | Drive   |              |     |                            |                     |                       |                     |                                |     |              |                      |                           |                        |
| 10        | L2     | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.168               | 3.8                   | LOS A               | 1.1                            | 7.6 | 0.04         | 0.40                 | 0.04                      | 57.6                   |
| 11        | T1     | All MCs      | 278     | 4.5          | 278 | 4.5                        | 0.168               | 4.1                   | LOS A               | 1.1                            | 7.6 | 0.04         | 0.40                 | 0.04                      | 58.8                   |
| 12u       | U      | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.168               | 10.7                  | LOS A               | 1.1                            | 7.6 | 0.04         | 0.40                 | 0.04                      | 58.3                   |
| Appro     | bach   |              | 280     | 4.5          | 280 | 4.5                        | 0.168               | 4.1                   | LOS A               | 1.1                            | 7.6 | 0.04         | 0.40                 | 0.04                      | 58.7                   |
| All Ve    | hicles |              | 476     | 4.0          | 476 | 4.0                        | 0.168               | 4.2                   | LOS A               | 1.1                            | 7.6 | 0.04         | 0.40                 | 0.04                      | 58.7                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:43:23 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\1. Rosedale - Existing.sip9

#### V Site: 103 [(I-3) George Bass Drive / Rosedale Parade / Saltwood Drive\_Weekend Mid-day (Site Folder: Existing 2023 -Weekend Mid-day)]

#### Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekend Mid-day Peak Survey Date: 19 November 2023 Peak Hour: 12:00pm - 1:00pm Site Category: (None) Roundabout

| Vehic     | le Mo  | ovement      | t Perfo | rma  | nce | _                          |                     |                       |                     |                                |     |              |                      |                           |                        |
|-----------|--------|--------------|---------|------|-----|----------------------------|---------------------|-----------------------|---------------------|--------------------------------|-----|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | FI      |      |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>[ Veh.<br>veh |     | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geor | ge Bass      | Drive   |      |     |                            |                     |                       |                     |                                |     |              |                      |                           |                        |
| 1         | L2     | All MCs      | 6       | 0.0  | 6   | 0.0                        | 0.149               | 3.9                   | LOS A               | 0.8                            | 5.6 | 0.10         | 0.42                 | 0.10                      | 57.9                   |
| 2         | T1     | All MCs      | 204     | 0.0  | 204 | 0.0                        | 0.149               | 4.1                   | LOS A               | 0.8                            | 5.6 | 0.10         | 0.42                 | 0.10                      | 58.2                   |
| 3         | R2     | All MCs      | 19      | 0.0  | 19  | 0.0                        | 0.149               | 8.8                   | LOS A               | 0.8                            | 5.6 | 0.10         | 0.42                 | 0.10                      | 57.7                   |
| 3u        | U      | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.149               | 10.8                  | LOS A               | 0.8                            | 5.6 | 0.10         | 0.42                 | 0.10                      | 58.6                   |
| Appro     | ach    |              | 231     | 0.0  | 231 | 0.0                        | 0.149               | 4.5                   | LOS A               | 0.8                            | 5.6 | 0.10         | 0.42                 | 0.10                      | 58.2                   |
| East:     | Rosec  | lale Para    | de      |      |     |                            |                     |                       |                     |                                |     |              |                      |                           |                        |
| 4         | L2     | All MCs      | 16      | 6.7  | 16  | 6.7                        | 0.024               | 4.6                   | LOS A               | 0.1                            | 0.8 | 0.28         | 0.54                 | 0.28                      | 57.2                   |
| 5         | T1     | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.024               | 4.6                   | LOS A               | 0.1                            | 0.8 | 0.28         | 0.54                 | 0.28                      | 52.9                   |
| 6         | R2     | All MCs      | 11      | 10.0 | 11  | 10.0                       | 0.024               | 9.4                   | LOS A               | 0.1                            | 0.8 | 0.28         | 0.54                 | 0.28                      | 53.2                   |
| 6u        | U      | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.024               | 11.3                  | LOS A               | 0.1                            | 0.8 | 0.28         | 0.54                 | 0.28                      | 52.1                   |
| Appro     | ach    |              | 28      | 7.4  | 28  | 7.4                        | 0.024               | 6.6                   | LOS A               | 0.1                            | 0.8 | 0.28         | 0.54                 | 0.28                      | 56.2                   |
| North     | Geor   | ge Bass I    | Drive   |      |     |                            |                     |                       |                     |                                |     |              |                      |                           |                        |
| 7         | L2     | All MCs      | 15      | 0.0  | 15  | 0.0                        | 0.100               | 4.0                   | LOS A               | 0.5                            | 3.5 | 0.11         | 0.41                 | 0.11                      | 55.3                   |
| 8         | T1     | All MCs      | 126     | 1.7  | 126 | 1.7                        | 0.100               | 4.2                   | LOS A               | 0.5                            | 3.5 | 0.11         | 0.41                 | 0.11                      | 58.2                   |
| 9         | R2     | All MCs      | 4       | 0.0  | 4   | 0.0                        | 0.100               | 8.8                   | LOS A               | 0.5                            | 3.5 | 0.11         | 0.41                 | 0.11                      | 54.9                   |
| 9u        | U      | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.100               | 10.9                  | LOS A               | 0.5                            | 3.5 | 0.11         | 0.41                 | 0.11                      | 55.7                   |
| Appro     | ach    |              | 146     | 1.4  | 146 | 1.4                        | 0.100               | 4.3                   | LOS A               | 0.5                            | 3.5 | 0.11         | 0.41                 | 0.11                      | 58.0                   |
| West:     | Saltw  | ood Drive    | Э       |      |     |                            |                     |                       |                     |                                |     |              |                      |                           |                        |
| 10        | L2     | All MCs      | 6       | 0.0  | 6   | 0.0                        | 0.011               | 4.9                   | LOS A               | 0.1                            | 0.4 | 0.36         | 0.55                 | 0.36                      | 53.6                   |
| 11        | T1     | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.011               | 5.0                   | LOS A               | 0.1                            | 0.4 | 0.36         | 0.55                 | 0.36                      | 52.6                   |
| 12        | R2     | All MCs      | 4       | 0.0  | 4   | 0.0                        | 0.011               | 9.7                   | LOS A               | 0.1                            | 0.4 | 0.36         | 0.55                 | 0.36                      | 57.0                   |
| 12u       | U      | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.011               | 11.7                  | LOS A               | 0.1                            | 0.4 | 0.36         | 0.55                 | 0.36                      | 51.7                   |
| Appro     | ach    |              | 13      | 0.0  | 13  | 0.0                        | 0.011               | 7.1                   | LOS A               | 0.1                            | 0.4 | 0.36         | 0.55                 | 0.36                      | 55.3                   |
| All Ve    | hicles |              | 418     | 1.0  | 418 | 1.0                        | 0.149               | 4.7                   | LOS A               | 0.8                            | 5.6 | 0.13         | 0.43                 | 0.13                      | 58.0                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:43:24 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\1. Rosedale - Existing.sip9

### V Site: 104 [(I-4) George Bass Drive / Bullock Road\_Weekend Mid-day (Site Folder: Existing 2023 - Weekend Mid-day)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekend Mid-day Peak Survey Date: 19 November 2023 Peak Hour: 12:00pm - 1:00pm Site Category: (None) Give-Way (Two-Way)

| Vehic     | le Mo  | ovemen       | t Perfo | rma          | nce |                            |                     |                       |                     |                               |     |              |                      |                           |                        |
|-----------|--------|--------------|---------|--------------|-----|----------------------------|---------------------|-----------------------|---------------------|-------------------------------|-----|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | lows<br>HV ] |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh |     | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geoi | rge Bass     | Drive   |              |     |                            |                     |                       |                     |                               |     |              |                      |                           |                        |
| 1         | L2     | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.115               | 5.6                   | LOS A               | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 57.9                   |
| 2         | T1     | All MCs      | 222     | 0.5          | 222 | 0.5                        | 0.115               | 0.0                   | LOS A               | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| Appro     | ach    |              | 223     | 0.5          | 223 | 0.5                        | 0.115               | 0.1                   | NA                  | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| North:    | Geor   | ge Bass I    | Drive   |              |     |                            |                     |                       |                     |                               |     |              |                      |                           |                        |
| 8         | T1     | All MCs      | 146     | 1.4          | 146 | 1.4                        | 0.076               | 0.0                   | LOS A               | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 60.0                   |
| Appro     | ach    |              | 146     | 1.4          | 146 | 1.4                        | 0.076               | 0.0                   | NA                  | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 60.0                   |
| West:     | Bullo  | ck Road      |         |              |     |                            |                     |                       |                     |                               |     |              |                      |                           |                        |
| 10        | L2     | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.001               | 6.2                   | LOS A               | 0.0                           | 0.0 | 0.29         | 0.51                 | 0.29                      | 52.0                   |
| Appro     | ach    |              | 1       | 0.0          | 1   | 0.0                        | 0.001               | 6.2                   | LOS A               | 0.0                           | 0.0 | 0.29         | 0.51                 | 0.29                      | 52.0                   |
| All Ve    | hicles |              | 371     | 0.9          | 371 | 0.9                        | 0.115               | 0.1                   | NA                  | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 59.9                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:43:25 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\1. Rosedale - Existing.sip9

#### V Site: 106 [(I-6) Princess Highway / Tomakin Road\_Weekday AM (Site Folder: Existing 2023 - Weekday AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

New Site Site Category: (None) Give-Way (Two-Way)

| Vehi      | cle M   | ovemen       | t Perfo                       | rma          | nce  |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
|-----------|---------|--------------|-------------------------------|--------------|------|--------------------------|---------------------|-----------------------|---------------------|-----|--------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn    | Mov<br>Class | Dem<br>Fl<br>[ Total<br>veh/h | lows<br>HV ] |      | rival<br>ows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | Back Of<br>Jeue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Prino | cess High    | nway (S)                      | )            |      |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
| 2         | T1      | All MCs      | 445                           | 5.9          | 445  | 5.9                      | 0.267               | 0.2                   | LOS A               | 0.3 | 2.5                            | 0.09         | 0.11                 | 0.09                      | 59.2                   |
| 3         | R2      | All MCs      | 35                            | 6.1          | 35   | 6.1                      | 0.267               | 7.3                   | LOS A               | 0.3 | 2.5                            | 0.09         | 0.11                 | 0.09                      | 56.2                   |
| Appro     | bach    |              | 480                           | 5.9          | 480  | 5.9                      | 0.267               | 0.7                   | NA                  | 0.3 | 2.5                            | 0.09         | 0.11                 | 0.09                      | 59.0                   |
| East:     | Tomal   | kin Road     | (E)                           |              |      |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
| 4         | L2      | All MCs      | 36                            | 8.8          | 36   | 8.8                      | 0.372               | 7.6                   | LOS A               | 1.7 | 12.0                           | 0.62         | 0.89                 | 0.82                      | 48.5                   |
| 6         | R2      | All MCs      | 186                           | 1.7          | 186  | 1.7                      | 0.372               | 12.1                  | LOS A               | 1.7 | 12.0                           | 0.62         | 0.89                 | 0.82                      | 48.5                   |
| Appro     | bach    |              | 222                           | 2.8          | 222  | 2.8                      | 0.372               | 11.3                  | LOS A               | 1.7 | 12.0                           | 0.62         | 0.89                 | 0.82                      | 48.5                   |
| North     | : Princ | ess High     | way (N)                       | )            |      |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
| 7         | L2      | All MCs      | 107                           | 5.9          | 107  | 5.9                      | 0.194               | 5.7                   | LOS A               | 0.0 | 0.0                            | 0.00         | 0.18                 | 0.00                      | 55.6                   |
| 8         | T1      | All MCs      | 244                           | 10.3         | 244  | 10.3                     | 0.194               | 0.1                   | LOS A               | 0.0 | 0.0                            | 0.00         | 0.18                 | 0.00                      | 58.2                   |
| Appro     | bach    |              | 352                           | 9.0          | 352  | 9.0                      | 0.194               | 1.8                   | NA                  | 0.0 | 0.0                            | 0.00         | 0.18                 | 0.00                      | 57.4                   |
| All Ve    | hicles  |              | 1054                          | 6.3          | 1054 | 6.3                      | 0.372               | 3.3                   | NA                  | 1.7 | 12.0                           | 0.17         | 0.30                 | 0.21                      | 55.9                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Monday, 6 January 2025 4:09:03 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\250106 - SIDRA Modelling\1. Rosedale - Existing.sip9

#### V Site: 101 [(I-6) Princess Highway / Tomakin Road\_Weekday PM (Site Folder: Existing 2023 - Weekday PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

New Site Site Category: (None) Give-Way (Two-Way)

| Vehi      | cle M   | ovement      | t Perfo                       | rma          | nce  |                           |                     |                       |                     |     |                               |              |                      |                           |                        |
|-----------|---------|--------------|-------------------------------|--------------|------|---------------------------|---------------------|-----------------------|---------------------|-----|-------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn    | Mov<br>Class | Dem<br>Fl<br>[ Total<br>veh/h | lows<br>HV ] |      | rival<br>lows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | Back Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Prino | cess High    | way (S)                       | )            |      |                           |                     |                       |                     |     |                               |              |                      |                           |                        |
| 2         | T1      | All MCs      | 433                           | 6.6          | 433  | 6.6                       | 0.274               | 0.5                   | LOS A               | 0.5 | 3.7                           | 0.13         | 0.17                 | 0.13                      | 58.8                   |
| 3         | R2      | All MCs      | 37                            | 2.9          | 37   | 2.9                       | 0.274               | 9.1                   | LOS A               | 0.5 | 3.7                           | 0.13         | 0.17                 | 0.13                      | 55.9                   |
| Appro     | bach    |              | 469                           | 6.3          | 469  | 6.3                       | 0.274               | 1.2                   | NA                  | 0.5 | 3.7                           | 0.13         | 0.17                 | 0.13                      | 58.6                   |
| East:     | Tomal   | kin Road     | (E)                           |              |      |                           |                     |                       |                     |     |                               |              |                      |                           |                        |
| 4         | L2      | All MCs      | 36                            | 2.9          | 36   | 2.9                       | 0.355               | 8.7                   | LOS A               | 1.4 | 10.1                          | 0.72         | 0.95                 | 0.93                      | 47.1                   |
| 6         | R2      | All MCs      | 123                           | 3.4          | 123  | 3.4                       | 0.355               | 15.3                  | LOS B               | 1.4 | 10.1                          | 0.72         | 0.95                 | 0.93                      | 46.9                   |
| Appro     | bach    |              | 159                           | 3.3          | 159  | 3.3                       | 0.355               | 13.9                  | LOS A               | 1.4 | 10.1                          | 0.72         | 0.95                 | 0.93                      | 46.9                   |
| North     | : Princ | ess High     | way (N)                       |              |      |                           |                     |                       |                     |     |                               |              |                      |                           |                        |
| 7         | L2      | All MCs      | 172                           | 1.2          | 172  | 1.2                       | 0.336               | 5.6                   | LOS A               | 0.0 | 0.0                           | 0.00         | 0.16                 | 0.00                      | 55.9                   |
| 8         | T1      | All MCs      | 459                           | 4.6          | 459  | 4.6                       | 0.336               | 0.1                   | LOS A               | 0.0 | 0.0                           | 0.00         | 0.16                 | 0.00                      | 58.3                   |
| Appro     | bach    |              | 631                           | 3.7          | 631  | 3.7                       | 0.336               | 1.6                   | NA                  | 0.0 | 0.0                           | 0.00         | 0.16                 | 0.00                      | 57.6                   |
| All Ve    | hicles  |              | 1259                          | 4.6          | 1259 | 4.6                       | 0.355               | 3.0                   | NA                  | 1.4 | 10.1                          | 0.14         | 0.26                 | 0.17                      | 56.3                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Monday, 6 January 2025 4:09:06 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\250106 - SIDRA Modelling\1. Rosedale - Existing.sip9

### V Site: 102 [(I-6) Princess Highway / Tomakin Road\_Weekend Mid-day (Site Folder: Existing 2023 - Weekend Mid-day)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

New Site Site Category: (None) Give-Way (Two-Way)

| Vehi      | cle M   | ovemen       | t Perfo                         | rma          | nce  |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
|-----------|---------|--------------|---------------------------------|--------------|------|--------------------------|---------------------|-----------------------|---------------------|-----|--------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn    | Mov<br>Class | Dem<br>Fl<br>[ Total ]<br>veh/h | lows<br>HV ] |      | rival<br>ows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | Back Of<br>leue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Prino | cess High    | way (S)                         | )            |      |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
| 2         | T1      | All MCs      | 366                             | 1.4          | 366  | 1.4                      | 0.218               | 0.3                   | LOS A               | 0.3 | 2.3                            | 0.11         | 0.13                 | 0.11                      | 59.1                   |
| 3         | R2      | All MCs      | 32                              | 0.0          | 32   | 0.0                      | 0.218               | 7.5                   | LOS A               | 0.3 | 2.3                            | 0.11         | 0.13                 | 0.11                      | 56.4                   |
| Appro     | bach    |              | 398                             | 1.3          | 398  | 1.3                      | 0.218               | 0.9                   | NA                  | 0.3 | 2.3                            | 0.11         | 0.13                 | 0.11                      | 58.9                   |
| East:     | Tomal   | kin Road     | (E)                             |              |      |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
| 4         | L2      | All MCs      | 42                              | 2.5          | 42   | 2.5                      | 0.389               | 7.7                   | LOS A               | 1.8 | 12.8                           | 0.62         | 0.89                 | 0.82                      | 49.0                   |
| 6         | R2      | All MCs      | 206                             | 0.5          | 206  | 0.5                      | 0.389               | 11.6                  | LOS A               | 1.8 | 12.8                           | 0.62         | 0.89                 | 0.82                      | 48.8                   |
| Appro     | bach    |              | 248                             | 0.8          | 248  | 0.8                      | 0.389               | 10.9                  | LOS A               | 1.8 | 12.8                           | 0.62         | 0.89                 | 0.82                      | 48.8                   |
| North     | : Princ | ess High     | way (N)                         |              |      |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
| 7         | L2      | All MCs      | 164                             | 1.9          | 164  | 1.9                      | 0.243               | 5.6                   | LOS A               | 0.0 | 0.0                            | 0.00         | 0.21                 | 0.00                      | 55.6                   |
| 8         | T1      | All MCs      | 297                             | 1.1          | 297  | 1.1                      | 0.243               | 0.1                   | LOS A               | 0.0 | 0.0                            | 0.00         | 0.21                 | 0.00                      | 58.0                   |
| Appro     | bach    |              | 461                             | 1.4          | 461  | 1.4                      | 0.243               | 2.0                   | NA                  | 0.0 | 0.0                            | 0.00         | 0.21                 | 0.00                      | 57.1                   |
| All Ve    | hicles  |              | 1107                            | 1.2          | 1107 | 1.2                      | 0.389               | 3.6                   | NA                  | 1.8 | 12.8                           | 0.18         | 0.34                 | 0.22                      | 55.6                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Monday, 6 January 2025 4:09:10 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\250106 - SIDRA Modelling\1. Rosedale - Existing.sip9

#### V Site: 101 [(I-1) George Bass Drive / Sunpatch Parade / Tomakin Road\_Weekday AM (Site Folder: Existing + Growth -Weekday AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday AM Peak Survey Date: 22 November 2023 Peak Hour: 8:00am - 9:00am Site Category: (None) Roundabout

| Vehic     | le Mo  | ovement      | Perfo | rma       | nce  |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
|-----------|--------|--------------|-------|-----------|------|----------------------------|---------------------|-----------------------|---------------------|-------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | FI    |           |      | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Sunp | atch Par     | ade   |           |      |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 1         | L2     | All MCs      | 54    | 0.0       | 54   | 0.0                        | 0.148               | 10.8                  | LOS A               | 1.0                           | 7.0  | 0.86         | 0.76                 | 0.86                      | 49.6                   |
| 2         | T1     | All MCs      | 24    | 0.0       | 24   | 0.0                        | 0.148               | 11.0                  | LOS A               | 1.0                           | 7.0  | 0.86         | 0.76                 | 0.86                      | 49.9                   |
| 3         | R2     | All MCs      | 3     | 0.0       | 3    | 0.0                        | 0.148               | 15.6                  | LOS B               | 1.0                           | 7.0  | 0.86         | 0.76                 | 0.86                      | 54.8                   |
| 3u        | U      | All MCs      | 1     | 0.0       | 1    | 0.0                        | 0.148               | 17.7                  | LOS B               | 1.0                           | 7.0  | 0.86         | 0.76                 | 0.86                      | 49.1                   |
| Appro     | ach    |              | 82    | 0.0       | 82   | 0.0                        | 0.148               | 11.1                  | LOS A               | 1.0                           | 7.0  | 0.86         | 0.76                 | 0.86                      | 50.1                   |
| East:     | Georg  | e Bass D     | rive  |           |      |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 4         | L2     | All MCs      | 6     | 0.0       | 6    | 0.0                        | 0.626               | 7.7                   | LOS A               | 6.2                           | 44.4 | 0.77         | 0.68                 | 0.86                      | 55.8                   |
| 5         | T1     | All MCs      | 559   | 2.4       | 559  | 2.4                        | 0.626               | 8.0                   | LOS A               | 6.2                           | 44.4 | 0.77         | 0.68                 | 0.86                      | 56.0                   |
| 6         | R2     | All MCs      | 75    | 4.2       | 75   | 4.2                        | 0.626               | 12.7                  | LOS A               | 6.2                           | 44.4 | 0.77         | 0.68                 | 0.86                      | 55.5                   |
| 6u        | U      | All MCs      | 1     | 0.0       | 1    | 0.0                        | 0.626               | 14.6                  | LOS B               | 6.2                           | 44.4 | 0.77         | 0.68                 | 0.86                      | 57.1                   |
| Appro     | ach    |              | 641   | 2.6       | 641  | 2.6                        | 0.626               | 8.5                   | LOS A               | 6.2                           | 44.4 | 0.77         | 0.68                 | 0.86                      | 55.9                   |
| North     | Toma   | kin Road     |       |           |      |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 7         | L2     | All MCs      | 31    | 13.8      | 31   | 13.8                       | 0.323               | 6.2                   | LOS A               | 2.0                           | 14.9 | 0.57         | 0.65                 | 0.57                      | 55.1                   |
| 8         | T1     | All MCs      | 12    | 9.1       | 12   | 9.1                        | 0.323               | 6.3                   | LOS A               | 2.0                           | 14.9 | 0.57         | 0.65                 | 0.57                      | 50.3                   |
| 9         | R2     | All MCs      | 280   | 4.1       | 280  | 4.1                        | 0.323               | 10.8                  | LOS A               | 2.0                           | 14.9 | 0.57         | 0.65                 | 0.57                      | 49.6                   |
| 9u        | U      | All MCs      | 2     | 100.<br>0 | 2    | 100.<br>0                  | 0.323               | 16.0                  | LOS B               | 2.0                           | 14.9 | 0.57         | 0.65                 | 0.57                      | 46.6                   |
| Appro     | ach    |              | 324   | 5.8       | 324  | 5.8                        | 0.323               | 10.2                  | LOS A               | 2.0                           | 14.9 | 0.57         | 0.65                 | 0.57                      | 50.6                   |
| West:     | Geor   | ge Bass D    | Drive |           |      |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 10        | L2     | All MCs      | 234   | 5.0       | 234  | 5.0                        | 0.414               | 4.6                   | LOS A               | 3.2                           | 23.0 | 0.39         | 0.47                 | 0.39                      | 53.0                   |
| 11        | T1     | All MCs      | 267   | 3.9       | 267  | 3.9                        | 0.414               | 4.8                   | LOS A               | 3.2                           | 23.0 | 0.39         | 0.47                 | 0.39                      | 57.0                   |
| 12        | R2     | All MCs      | 31    | 3.4       | 31   | 3.4                        | 0.414               | 9.4                   | LOS A               | 3.2                           | 23.0 | 0.39         | 0.47                 | 0.39                      | 52.5                   |
| 12u       | U      | All MCs      | 12    | 0.0       | 12   | 0.0                        | 0.414               | 11.4                  | LOS A               | 3.2                           | 23.0 | 0.39         | 0.47                 | 0.39                      | 52.6                   |
| Appro     | ach    |              | 543   | 4.3       | 543  | 4.3                        | 0.414               | 5.1                   | LOS A               | 3.2                           | 23.0 | 0.39         | 0.47                 | 0.39                      | 55.6                   |
| All Ve    | hicles |              | 1591  | 3.7       | 1591 | 3.7                        | 0.626               | 7.8                   | LOS A               | 6.2                           | 44.4 | 0.60         | 0.61                 | 0.64                      | 54.9                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:15:54 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\2. Rosedale - Existing +Growth.sip9

#### W Site: 102 [(I-2) George Bass Drive / Road 01\_Weekday AM (Site Folder: Existing + Growth - Weekday AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday AM Peak Survey Date: 22 November 2023 Peak Hour: 8:00am - 9:00am Site Category: (None) Roundabout

| Vehic     | cle Mo | ovement      | t Perfo | rma          | nce |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
|-----------|--------|--------------|---------|--------------|-----|----------------------------|---------------------|-----------------------|---------------------|--------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | lows<br>HV ] |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| East:     | Georg  | je Bass D    | rive    |              |     |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
| 5         | T1     | All MCs      | 559     | 2.4          | 559 | 2.4                        | 0.330               | 4.1                   | LOS A               | 2.6                            | 18.6 | 0.05         | 0.40                 | 0.05                      | 58.8                   |
| 6         | R2     | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.330               | 8.7                   | LOS A               | 2.6                            | 18.6 | 0.05         | 0.40                 | 0.05                      | 57.9                   |
| 6u        | U      | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.330               | 10.7                  | LOS A               | 2.6                            | 18.6 | 0.05         | 0.40                 | 0.05                      | 58.7                   |
| Appro     | ach    |              | 561     | 2.4          | 561 | 2.4                        | 0.330               | 4.1                   | LOS A               | 2.6                            | 18.6 | 0.05         | 0.40                 | 0.05                      | 58.8                   |
| North     | Road   | 101          |         |              |     |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
| 7         | L2     | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.003               | 5.3                   | LOS A               | 0.0                            | 0.1  | 0.44         | 0.56                 | 0.44                      | 56.6                   |
| 9         | R2     | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.003               | 10.1                  | LOS A               | 0.0                            | 0.1  | 0.44         | 0.56                 | 0.44                      | 55.4                   |
| 9u        | U      | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.003               | 12.2                  | LOS A               | 0.0                            | 0.1  | 0.44         | 0.56                 | 0.44                      | 50.5                   |
| Appro     | ach    |              | 3       | 0.0          | 3   | 0.0                        | 0.003               | 9.2                   | LOS A               | 0.0                            | 0.1  | 0.44         | 0.56                 | 0.44                      | 55.1                   |
| West:     | Geor   | ge Bass [    | Drive   |              |     |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
| 10        | L2     | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.168               | 3.8                   | LOS A               | 1.0                            | 7.6  | 0.04         | 0.40                 | 0.04                      | 57.6                   |
| 11        | T1     | All MCs      | 277     | 4.6          | 277 | 4.6                        | 0.168               | 4.1                   | LOS A               | 1.0                            | 7.6  | 0.04         | 0.40                 | 0.04                      | 58.8                   |
| 12u       | U      | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.168               | 10.7                  | LOS A               | 1.0                            | 7.6  | 0.04         | 0.40                 | 0.04                      | 58.3                   |
| Appro     | ach    |              | 279     | 4.5          | 279 | 4.5                        | 0.168               | 4.1                   | LOS A               | 1.0                            | 7.6  | 0.04         | 0.40                 | 0.04                      | 58.7                   |
| All Ve    | hicles |              | 843     | 3.1          | 843 | 3.1                        | 0.330               | 4.1                   | LOS A               | 2.6                            | 18.6 | 0.05         | 0.40                 | 0.05                      | 58.7                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:15:55 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\2. Rosedale - Existing +Growth.sip9

#### V Site: 103 [(I-3) George Bass Drive / Rosedale Parade / Saltwood Drive\_Weekday AM (Site Folder: Existing + Growth -Weekday AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday AM Peak Survey Date: 22 November 2023 Peak Hour: 8:00am - 9:00am Site Category: (None) Roundabout

| Vehic     | le Mo  | ovemen       | t Perfo                  | rma  | nce |                           |                     |                       |                     |     |                              |              |                      |                           |                        |
|-----------|--------|--------------|--------------------------|------|-----|---------------------------|---------------------|-----------------------|---------------------|-----|------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID |        | Mov<br>Class | Fl<br>[ Total ]<br>veh/h |      |     | rival<br>lows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | ack Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geor | rge Bass     | Drive                    |      |     |                           |                     |                       |                     |     |                              |              |                      |                           |                        |
| 1         | L2     | All MCs      | 6                        | 0.0  | 6   | 0.0                       | 0.139               | 4.0                   | LOS A               | 0.8 | 5.6                          | 0.11         | 0.41                 | 0.11                      | 57.9                   |
| 2         | T1     | All MCs      | 191                      | 4.4  | 191 | 4.4                       | 0.139               | 4.2                   | LOS A               | 0.8 | 5.6                          | 0.11         | 0.41                 | 0.11                      | 58.2                   |
| 3         | R2     | All MCs      | 8                        | 12.5 | 8   | 12.5                      | 0.139               | 8.9                   | LOS A               | 0.8 | 5.6                          | 0.11         | 0.41                 | 0.11                      | 57.5                   |
| 3u        | U      | All MCs      | 1                        | 0.0  | 1   | 0.0                       | 0.139               | 10.8                  | LOS A               | 0.8 | 5.6                          | 0.11         | 0.41                 | 0.11                      | 58.6                   |
| Appro     | ach    |              | 206                      | 4.6  | 206 | 4.6                       | 0.139               | 4.4                   | LOS A               | 0.8 | 5.6                          | 0.11         | 0.41                 | 0.11                      | 58.2                   |
| East:     | Rosec  | lale Para    | de                       |      |     |                           |                     |                       |                     |     |                              |              |                      |                           |                        |
| 4         | L2     | All MCs      | 21                       | 0.0  | 21  | 0.0                       | 0.034               | 5.5                   | LOS A               | 0.2 | 1.2                          | 0.46         | 0.59                 | 0.46                      | 57.2                   |
| 5         | T1     | All MCs      | 1                        | 0.0  | 1   | 0.0                       | 0.034               | 5.7                   | LOS A               | 0.2 | 1.2                          | 0.46         | 0.59                 | 0.46                      | 52.6                   |
| 6         | R2     | All MCs      | 12                       | 9.1  | 12  | 9.1                       | 0.034               | 10.6                  | LOS A               | 0.2 | 1.2                          | 0.46         | 0.59                 | 0.46                      | 52.9                   |
| 6u        | U      | All MCs      | 1                        | 0.0  | 1   | 0.0                       | 0.034               | 12.4                  | LOS A               | 0.2 | 1.2                          | 0.46         | 0.59                 | 0.46                      | 51.7                   |
| Appro     | ach    |              | 35                       | 3.0  | 35  | 3.0                       | 0.034               | 7.4                   | LOS A               | 0.2 | 1.2                          | 0.46         | 0.59                 | 0.46                      | 56.2                   |
| North     | Geor   | ge Bass I    | Drive                    |      |     |                           |                     |                       |                     |     |                              |              |                      |                           |                        |
| 7         | L2     | All MCs      | 5                        | 0.0  | 5   | 0.0                       | 0.229               | 3.9                   | LOS A               | 1.3 | 9.4                          | 0.10         | 0.40                 | 0.10                      | 55.4                   |
| 8         | T1     | All MCs      | 347                      | 2.7  | 347 | 2.7                       | 0.229               | 4.1                   | LOS A               | 1.3 | 9.4                          | 0.10         | 0.40                 | 0.10                      | 58.3                   |
| 9         | R2     | All MCs      | 6                        | 16.7 | 6   | 16.7                      | 0.229               | 8.9                   | LOS A               | 1.3 | 9.4                          | 0.10         | 0.40                 | 0.10                      | 54.4                   |
| 9u        | U      | All MCs      | 1                        | 0.0  | 1   | 0.0                       | 0.229               | 10.8                  | LOS A               | 1.3 | 9.4                          | 0.10         | 0.40                 | 0.10                      | 55.8                   |
| Appro     | ach    |              | 360                      | 2.9  | 360 | 2.9                       | 0.229               | 4.2                   | LOS A               | 1.3 | 9.4                          | 0.10         | 0.40                 | 0.10                      | 58.2                   |
| West:     | Saltw  | ood Drive    | Э                        |      |     |                           |                     |                       |                     |     |                              |              |                      |                           |                        |
| 10        | L2     | All MCs      | 1                        | 0.0  | 1   | 0.0                       | 0.006               | 4.8                   | LOS A               | 0.0 | 0.2                          | 0.35         | 0.57                 | 0.35                      | 52.8                   |
| 11        | T1     | All MCs      | 1                        | 0.0  | 1   | 0.0                       | 0.006               | 4.9                   | LOS A               | 0.0 | 0.2                          | 0.35         | 0.57                 | 0.35                      | 51.5                   |
| 12        | R2     | All MCs      | 4                        | 0.0  | 4   | 0.0                       | 0.006               | 9.6                   | LOS A               | 0.0 | 0.2                          | 0.35         | 0.57                 | 0.35                      | 56.5                   |
| 12u       | U      | All MCs      | 1                        | 0.0  | 1   | 0.0                       | 0.006               | 11.6                  | LOS A               | 0.0 | 0.2                          | 0.35         | 0.57                 | 0.35                      | 50.7                   |
| Appro     | ach    |              | 7                        | 0.0  | 7   | 0.0                       | 0.006               | 8.5                   | LOS A               | 0.0 | 0.2                          | 0.35         | 0.57                 | 0.35                      | 55.4                   |
| All Ve    | hicles |              | 608                      | 3.5  | 608 | 3.5                       | 0.229               | 4.5                   | LOS A               | 1.3 | 9.4                          | 0.13         | 0.41                 | 0.13                      | 58.1                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:15:56 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\2. Rosedale - Existing +Growth.sip9

### V Site: 104 [(I-4) George Bass Drive / Bullock Road\_Weekday AM (Site Folder: Existing + Growth - Weekday AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday AM Peak Survey Date: 22 November 2023 Peak Hour: 8:00am - 9:00am Site Category: (None) Give-Way (Two-Way)

| Vehic     | cle Mo | ovement      | t Perfo | rma | nce |                            |                     |                       |                     |                               |     |              |                      |                           |                        |
|-----------|--------|--------------|---------|-----|-----|----------------------------|---------------------|-----------------------|---------------------|-------------------------------|-----|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | F       |     |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh |     | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geo  | rge Bass     | Drive   |     |     |                            |                     |                       |                     |                               |     |              |                      |                           |                        |
| 1         | L2     | All MCs      | 1       | 0.0 | 1   | 0.0                        | 0.114               | 5.6                   | LOS A               | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 36.4                   |
| 2         | T1     | All MCs      | 216     | 4.4 | 216 | 4.4                        | 0.114               | 0.0                   | LOS A               | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| Appro     | ach    |              | 217     | 4.4 | 217 | 4.4                        | 0.114               | 0.1                   | NA                  | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 59.8                   |
| North     | Geor   | ge Bass I    | Drive   |     |     |                            |                     |                       |                     |                               |     |              |                      |                           |                        |
| 8         | T1     | All MCs      | 371     | 2.8 | 371 | 2.8                        | 0.194               | 0.1                   | LOS A               | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| Appro     | ach    |              | 371     | 2.8 | 371 | 2.8                        | 0.194               | 0.1                   | NA                  | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| West:     | Bullo  | ck Road      |         |     |     |                            |                     |                       |                     |                               |     |              |                      |                           |                        |
| 10        | L2     | All MCs      | 1       | 0.0 | 1   | 0.0                        | 0.001               | 4.9                   | LOS A               | 0.0                           | 0.0 | 0.29         | 0.50                 | 0.29                      | 48.8                   |
| Appro     | ach    |              | 1       | 0.0 | 1   | 0.0                        | 0.001               | 4.9                   | LOS A               | 0.0                           | 0.0 | 0.29         | 0.50                 | 0.29                      | 48.8                   |
| All Ve    | hicles |              | 588     | 3.4 | 588 | 3.4                        | 0.194               | 0.1                   | NA                  | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 59.9                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:15:56 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\2. Rosedale - Existing +Growth.sip9

#### V Site: 101 [(I-1) George Bass Drive / Sunpatch Parade / Tomakin Road\_Weekday PM (Site Folder: Existing + Growth -Weekday PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday PM Peak Survey Date: 22 November 2023 Peak Hour: 3:30pm - 4:30pm Site Category: (None) Roundabout

| Vehio     | cle Mo | ovement      | t Perfo | rma          | nce  |                           |                     |                       |                     |                               |      |              |                      |                           |                        |
|-----------|--------|--------------|---------|--------------|------|---------------------------|---------------------|-----------------------|---------------------|-------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | lows<br>HV ] |      | rival<br>lows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Sunp | patch Par    | ade     |              |      |                           |                     |                       |                     |                               |      |              |                      |                           |                        |
| 1         | L2     | All MCs      | 38      | 2.8          | 38   | 2.8                       | 0.056               | 6.5                   | LOS A               | 0.3                           | 2.2  | 0.58         | 0.62                 | 0.58                      | 52.3                   |
| 2         | T1     | All MCs      | 7       | 0.0          | 7    | 0.0                       | 0.056               | 6.6                   | LOS A               | 0.3                           | 2.2  | 0.58         | 0.62                 | 0.58                      | 52.8                   |
| 3         | R2     | All MCs      | 4       | 0.0          | 4    | 0.0                       | 0.056               | 11.2                  | LOS A               | 0.3                           | 2.2  | 0.58         | 0.62                 | 0.58                      | 56.2                   |
| 3u        | U      | All MCs      | 1       | 0.0          | 1    | 0.0                       | 0.056               | 13.3                  | LOS A               | 0.3                           | 2.2  | 0.58         | 0.62                 | 0.58                      | 51.9                   |
| Appro     | ach    |              | 51      | 2.1          | 51   | 2.1                       | 0.056               | 7.0                   | LOS A               | 0.3                           | 2.2  | 0.58         | 0.62                 | 0.58                      | 53.0                   |
| East:     | Georg  | e Bass D     | rive    |              |      |                           |                     |                       |                     |                               |      |              |                      |                           |                        |
| 4         | L2     | All MCs      | 5       | 0.0          | 5    | 0.0                       | 0.302               | 5.2                   | LOS A               | 1.9                           | 13.9 | 0.49         | 0.52                 | 0.49                      | 56.5                   |
| 5         | T1     | All MCs      | 287     | 3.3          | 287  | 3.3                       | 0.302               | 5.5                   | LOS A               | 1.9                           | 13.9 | 0.49         | 0.52                 | 0.49                      | 56.6                   |
| 6         | R2     | All MCs      | 41      | 7.7          | 41   | 7.7                       | 0.302               | 10.2                  | LOS A               | 1.9                           | 13.9 | 0.49         | 0.52                 | 0.49                      | 56.1                   |
| 6u        | U      | All MCs      | 1       | 0.0          | 1    | 0.0                       | 0.302               | 12.1                  | LOS A               | 1.9                           | 13.9 | 0.49         | 0.52                 | 0.49                      | 57.5                   |
| Appro     | ach    |              | 335     | 3.8          | 335  | 3.8                       | 0.302               | 6.1                   | LOS A               | 1.9                           | 13.9 | 0.49         | 0.52                 | 0.49                      | 56.5                   |
| North     | : Toma | kin Road     |         |              |      |                           |                     |                       |                     |                               |      |              |                      |                           |                        |
| 7         | L2     | All MCs      | 46      | 9.1          | 46   | 9.1                       | 0.242               | 6.8                   | LOS A               | 1.4                           | 10.3 | 0.60         | 0.68                 | 0.60                      | 55.3                   |
| 8         | T1     | All MCs      | 17      | 6.3          | 17   | 6.3                       | 0.242               | 6.9                   | LOS A               | 1.4                           | 10.3 | 0.60         | 0.68                 | 0.60                      | 50.6                   |
| 9         | R2     | All MCs      | 160     | 2.6          | 160  | 2.6                       | 0.242               | 11.4                  | LOS A               | 1.4                           | 10.3 | 0.60         | 0.68                 | 0.60                      | 49.8                   |
| 9u        | U      | All MCs      | 1       | 0.0          | 1    | 0.0                       | 0.242               | 13.4                  | LOS A               | 1.4                           | 10.3 | 0.60         | 0.68                 | 0.60                      | 49.9                   |
| Appro     | ach    |              | 224     | 4.2          | 224  | 4.2                       | 0.242               | 10.1                  | LOS A               | 1.4                           | 10.3 | 0.60         | 0.68                 | 0.60                      | 51.8                   |
| West:     | Geor   | ge Bass I    | Drive   |              |      |                           |                     |                       |                     |                               |      |              |                      |                           |                        |
| 10        | L2     | All MCs      | 169     | 1.2          | 169  | 1.2                       | 0.419               | 4.2                   | LOS A               | 3.2                           | 22.9 | 0.26         | 0.43                 | 0.26                      | 53.5                   |
| 11        | T1     | All MCs      | 398     | 1.6          | 398  | 1.6                       | 0.419               | 4.4                   | LOS A               | 3.2                           | 22.9 | 0.26         | 0.43                 | 0.26                      | 57.2                   |
| 12        | R2     | All MCs      | 37      | 5.7          | 37   | 5.7                       | 0.419               | 9.1                   | LOS A               | 3.2                           | 22.9 | 0.26         | 0.43                 | 0.26                      | 52.8                   |
| 12u       | U      | All MCs      | 9       | 11.1         | 9    | 11.1                      | 0.419               | 11.3                  | LOS A               | 3.2                           | 22.9 | 0.26         | 0.43                 | 0.26                      | 52.6                   |
| Appro     | ach    |              | 614     | 1.9          | 614  | 1.9                       | 0.419               | 4.7                   | LOS A               | 3.2                           | 22.9 | 0.26         | 0.43                 | 0.26                      | 56.4                   |
| All Ve    | hicles |              | 1223    | 2.8          | 1223 | 2.8                       | 0.419               | 6.2                   | LOS A               | 3.2                           | 22.9 | 0.40         | 0.51                 | 0.40                      | 55.7                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:15:57 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\2. Rosedale - Existing +Growth.sip9

# V Site: 102 [(I-2) George Bass Drive / Road 01\_Weekday PM (Site Folder: Existing + Growth - Weekday PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday PM Peak Survey Date: 22 November 2023 Peak Hour: 3:30pm - 4:30pm Site Category: (None) Roundabout

| Vehi      | cle Mo | ovement      | t Perfo | rma          | nce |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
|-----------|--------|--------------|---------|--------------|-----|----------------------------|---------------------|-----------------------|---------------------|--------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | lows<br>HV ] |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| East:     | Georg  | e Bass D     | rive    |              |     |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
| 5         | T1     | All MCs      | 311     | 3.1          | 311 | 3.1                        | 0.186               | 4.1                   | LOS A               | 1.3                            | 9.1  | 0.04         | 0.40                 | 0.04                      | 58.8                   |
| 6         | R2     | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.186               | 8.7                   | LOS A               | 1.3                            | 9.1  | 0.04         | 0.40                 | 0.04                      | 57.9                   |
| 6u        | U      | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.186               | 10.7                  | LOS A               | 1.3                            | 9.1  | 0.04         | 0.40                 | 0.04                      | 58.7                   |
| Appro     | bach   |              | 313     | 3.0          | 313 | 3.0                        | 0.186               | 4.1                   | LOS A               | 1.3                            | 9.1  | 0.04         | 0.40                 | 0.04                      | 58.8                   |
| North     | : Road | I 01         |         |              |     |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
| 7         | L2     | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.003               | 6.1                   | LOS A               | 0.0                            | 0.1  | 0.53         | 0.57                 | 0.53                      | 56.5                   |
| 9         | R2     | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.003               | 10.9                  | LOS A               | 0.0                            | 0.1  | 0.53         | 0.57                 | 0.53                      | 55.3                   |
| 9u        | U      | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.003               | 13.0                  | LOS A               | 0.0                            | 0.1  | 0.53         | 0.57                 | 0.53                      | 50.1                   |
| Appro     | bach   |              | 3       | 0.0          | 3   | 0.0                        | 0.003               | 10.0                  | LOS A               | 0.0                            | 0.1  | 0.53         | 0.57                 | 0.53                      | 54.9                   |
| West:     | Geor   | ge Bass D    | Drive   |              |     |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
| 10        | L2     | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.244               | 3.8                   | LOS A               | 1.7                            | 12.0 | 0.04         | 0.40                 | 0.04                      | 57.6                   |
| 11        | T1     | All MCs      | 411     | 2.8          | 411 | 2.8                        | 0.244               | 4.1                   | LOS A               | 1.7                            | 12.0 | 0.04         | 0.40                 | 0.04                      | 58.8                   |
| 12u       | U      | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.244               | 10.7                  | LOS A               | 1.7                            | 12.0 | 0.04         | 0.40                 | 0.04                      | 58.3                   |
| Appro     | bach   |              | 413     | 2.8          | 413 | 2.8                        | 0.244               | 4.1                   | LOS A               | 1.7                            | 12.0 | 0.04         | 0.40                 | 0.04                      | 58.8                   |
| All Ve    | hicles |              | 728     | 2.9          | 728 | 2.9                        | 0.244               | 4.1                   | LOS A               | 1.7                            | 12.0 | 0.04         | 0.40                 | 0.04                      | 58.7                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:15:58 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\2. Rosedale - Existing +Growth.sip9

#### V Site: 103 [(I-3) George Bass Drive / Rosedale Parade / Saltwood Drive\_Weekday PM (Site Folder: Existing + Growth -Weekday PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday PM Peak Survey Date: 22 November 2023 Peak Hour: 3:30pm - 4:30pm Site Category: (None) Roundabout

| Vehic     | cle Mo | ovement      | t Perfo | rma         | nce |                           |                     |                       |                     |                                |     |              |                      |                           |                        |
|-----------|--------|--------------|---------|-------------|-----|---------------------------|---------------------|-----------------------|---------------------|--------------------------------|-----|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | ows<br>HV ] |     | rival<br>lows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>[ Veh.<br>veh |     | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geor | rge Bass     | Drive   |             |     |                           |                     |                       |                     |                                |     |              |                      |                           |                        |
| 1         | L2     | All MCs      | 6       | 0.0         | 6   | 0.0                       | 0.198               | 3.9                   | LOS A               | 1.1                            | 8.1 | 0.10         | 0.41                 | 0.10                      | 58.0                   |
| 2         | T1     | All MCs      | 285     | 4.1         | 285 | 4.1                       | 0.198               | 4.2                   | LOS A               | 1.1                            | 8.1 | 0.10         | 0.41                 | 0.10                      | 58.2                   |
| 3         | R2     | All MCs      | 13      | 0.0         | 13  | 0.0                       | 0.198               | 8.7                   | LOS A               | 1.1                            | 8.1 | 0.10         | 0.41                 | 0.10                      | 57.8                   |
| 3u        | U      | All MCs      | 1       | 0.0         | 1   |                           | 0.198               | 10.8                  | LOS A               | 1.1                            | 8.1 | 0.10         | 0.41                 | 0.10                      | 58.6                   |
| Appro     | ach    |              | 305     | 3.8         | 305 | 3.8                       | 0.198               | 4.4                   | LOS A               | 1.1                            | 8.1 | 0.10         | 0.41                 | 0.10                      | 58.2                   |
| East:     | Rosec  | lale Para    | de      |             |     |                           |                     |                       |                     |                                |     |              |                      |                           |                        |
| 4         | L2     | All MCs      | 12      | 9.1         | 12  | 9.1                       | 0.019               | 5.0                   | LOS A               | 0.1                            | 0.6 | 0.36         | 0.55                 | 0.36                      | 57.1                   |
| 5         | T1     | All MCs      | 1       | 0.0         | 1   | 0.0                       | 0.019               | 5.0                   | LOS A               | 0.1                            | 0.6 | 0.36         | 0.55                 | 0.36                      | 52.6                   |
| 6         | R2     | All MCs      | 7       | 0.0         | 7   | 0.0                       | 0.019               | 9.6                   | LOS A               | 0.1                            | 0.6 | 0.36         | 0.55                 | 0.36                      | 53.3                   |
| 6u        | U      | All MCs      | 1       | 0.0         | 1   | 0.0                       | 0.019               | 11.7                  | LOS A               | 0.1                            | 0.6 | 0.36         | 0.55                 | 0.36                      | 51.8                   |
| Appro     | ach    |              | 21      | 5.0         | 21  | 5.0                       | 0.019               | 7.0                   | LOS A               | 0.1                            | 0.6 | 0.36         | 0.55                 | 0.36                      | 56.0                   |
| North     | Geor   | ge Bass I    | Drive   |             |     |                           |                     |                       |                     |                                |     |              |                      |                           |                        |
| 7         | L2     | All MCs      | 20      | 0.0         | 20  | 0.0                       | 0.158               | 4.0                   | LOS A               | 0.8                            | 6.0 | 0.11         | 0.41                 | 0.11                      | 55.4                   |
| 8         | T1     | All MCs      | 212     | 2.0         | 212 | 2.0                       | 0.158               | 4.2                   | LOS A               | 0.8                            | 6.0 | 0.11         | 0.41                 | 0.11                      | 58.2                   |
| 9         | R2     | All MCs      | 6       | 16.7        | 6   | 16.7                      | 0.158               | 9.0                   | LOS A               | 0.8                            | 6.0 | 0.11         | 0.41                 | 0.11                      | 54.4                   |
| 9u        | U      | All MCs      | 1       | 0.0         | 1   | 0.0                       | 0.158               | 10.8                  | LOS A               | 0.8                            | 6.0 | 0.11         | 0.41                 | 0.11                      | 55.7                   |
| Appro     | ach    |              | 239     | 2.2         | 239 | 2.2                       | 0.158               | 4.3                   | LOS A               | 0.8                            | 6.0 | 0.11         | 0.41                 | 0.11                      | 58.1                   |
| West:     | Saltw  | ood Drive    | •       |             |     |                           |                     |                       |                     |                                |     |              |                      |                           |                        |
| 10        | L2     | All MCs      | 8       | 0.0         | 8   | 0.0                       | 0.015               | 5.2                   | LOS A               | 0.1                            | 0.5 | 0.42         | 0.54                 | 0.42                      | 53.9                   |
| 11        | T1     | All MCs      | 3       | 0.0         | 3   | 0.0                       | 0.015               | 5.4                   | LOS A               | 0.1                            | 0.5 | 0.42         | 0.54                 | 0.42                      | 52.8                   |
| 12        | R2     | All MCs      | 3       | 0.0         | 3   | 0.0                       | 0.015               | 10.0                  | LOS A               | 0.1                            | 0.5 | 0.42         | 0.54                 | 0.42                      | 57.1                   |
| 12u       | U      | All MCs      | 1       | 0.0         | 1   | 0.0                       | 0.015               | 12.1                  | LOS A               | 0.1                            | 0.5 | 0.42         | 0.54                 | 0.42                      | 52.0                   |
| Appro     | ach    |              | 16      | 0.0         | 16  | 0.0                       | 0.015               | 6.7                   | LOS A               | 0.1                            | 0.5 | 0.42         | 0.54                 | 0.42                      | 54.9                   |
| All Ve    | hicles |              | 581     | 3.1         | 581 | 3.1                       | 0.198               | 4.5                   | LOS A               | 1.1                            | 8.1 | 0.12         | 0.42                 | 0.12                      | 58.0                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:15:58 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\2. Rosedale - Existing +Growth.sip9

### V Site: 104 [(I-4) George Bass Drive / Bullock Road\_Weekday PM (Site Folder: Existing + Growth - Weekday PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday PM Peak Survey Date: 22 November 2023 Peak Hour: 3:30pm - 4:30pm Site Category: (None) Give-Way (Two-Way)

| Vehic     | le Mo  | ovement      | t Perfo | rma          | nce |                            |                     |                       |                     |                               |     |              |                      |                           |                        |
|-----------|--------|--------------|---------|--------------|-----|----------------------------|---------------------|-----------------------|---------------------|-------------------------------|-----|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | lows<br>HV ] |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh |     | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geoi | rge Bass     | Drive   |              |     |                            |                     |                       |                     |                               |     |              |                      |                           |                        |
| 1         | L2     | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.167               | 5.6                   | LOS A               | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 36.3                   |
| 2         | T1     | All MCs      | 317     | 3.7          | 317 | 3.7                        | 0.167               | 0.1                   | LOS A               | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| Appro     | ach    |              | 318     | 3.6          | 318 | 3.6                        | 0.167               | 0.1                   | NA                  | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 59.8                   |
| North     | Geor   | ge Bass I    | Drive   |              |     |                            |                     |                       |                     |                               |     |              |                      |                           |                        |
| 8         | T1     | All MCs      | 263     | 2.0          | 263 | 2.0                        | 0.137               | 0.0                   | LOS A               | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| Appro     | ach    |              | 263     | 2.0          | 263 | 2.0                        | 0.137               | 0.0                   | NA                  | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| West:     | Bullo  | ck Road      |         |              |     |                            |                     |                       |                     |                               |     |              |                      |                           |                        |
| 10        | L2     | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.001               | 5.3                   | LOS A               | 0.0                           | 0.0 | 0.36         | 0.51                 | 0.36                      | 48.5                   |
| Appro     | ach    |              | 1       | 0.0          | 1   | 0.0                        | 0.001               | 5.3                   | LOS A               | 0.0                           | 0.0 | 0.36         | 0.51                 | 0.36                      | 48.5                   |
| All Ve    | hicles |              | 582     | 2.9          | 582 | 2.9                        | 0.167               | 0.1                   | NA                  | 0.0                           | 0.0 | 0.00         | 0.00                 | 0.00                      | 59.9                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:15:59 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\2. Rosedale - Existing +Growth.sip9

#### V Site: 101 [(I-1) George Bass Drive / Sunpatch Parade / Tomakin Road\_Weekend Mid-day (Site Folder: Existing + Growth - Weekend Mid-day)]

#### Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekend Mid-day Peak Survey Date: 19 November 2023 Peak Hour: 12:00pm - 1:00pm Site Category: (None) Roundabout

| Vehicle Movement Performance |        |              |       |             |      |                           |                     |                       |                     |                                |      |              |                      |                           |                        |
|------------------------------|--------|--------------|-------|-------------|------|---------------------------|---------------------|-----------------------|---------------------|--------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID                    | Turn   | Mov<br>Class |       | ows<br>HV ] |      | rival<br>lows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South                        | : Sunp | atch Par     | ade   |             |      |                           |                     |                       |                     |                                |      |              |                      |                           |                        |
| 1                            | L2     | All MCs      | 69    | 1.5         | 69   | 1.5                       | 0.151               | 7.0                   | LOS A               | 0.9                            | 6.2  | 0.64         | 0.65                 | 0.64                      | 51.7                   |
| 2                            | T1     | All MCs      | 37    | 2.9         | 37   | 2.9                       | 0.151               | 7.2                   | LOS A               | 0.9                            | 6.2  | 0.64         | 0.65                 | 0.64                      | 52.0                   |
| 3                            | R2     | All MCs      | 22    | 0.0         | 22   | 0.0                       | 0.151               | 11.7                  | LOS A               | 0.9                            | 6.2  | 0.64         | 0.65                 | 0.64                      | 55.9                   |
| 3u                           | U      | All MCs      | 1     | 0.0         | 1    | 0.0                       | 0.151               | 13.8                  | LOS A               | 0.9                            | 6.2  | 0.64         | 0.65                 | 0.64                      | 51.2                   |
| Appro                        | ach    |              | 129   | 1.6         | 129  | 1.6                       | 0.151               | 7.9                   | LOS A               | 0.9                            | 6.2  | 0.64         | 0.65                 | 0.64                      | 53.1                   |
| East:                        | Georg  | e Bass D     | rive  |             |      |                           |                     |                       |                     |                                |      |              |                      |                           |                        |
| 4                            | L2     | All MCs      | 11    | 10.0        | 11   | 10.0                      | 0.360               | 5.8                   | LOS A               | 2.4                            | 17.2 | 0.55         | 0.55                 | 0.55                      | 56.2                   |
| 5                            | T1     | All MCs      | 321   | 2.0         | 321  | 2.0                       | 0.360               | 5.8                   | LOS A               | 2.4                            | 17.2 | 0.55         | 0.55                 | 0.55                      | 56.5                   |
| 6                            | R2     | All MCs      | 58    | 1.8         | 58   | 1.8                       | 0.360               | 10.4                  | LOS A               | 2.4                            | 17.2 | 0.55         | 0.55                 | 0.55                      | 56.0                   |
| 6u                           | U      | All MCs      | 1     | 0.0         | 1    | 0.0                       | 0.360               | 12.4                  | LOS A               | 2.4                            | 17.2 | 0.55         | 0.55                 | 0.55                      | 57.4                   |
| Appro                        | ach    |              | 391   | 2.2         | 391  | 2.2                       | 0.360               | 6.5                   | LOS A               | 2.4                            | 17.2 | 0.55         | 0.55                 | 0.55                      | 56.4                   |
| North                        | Toma   | ikin Road    |       |             |      |                           |                     |                       |                     |                                |      |              |                      |                           |                        |
| 7                            | L2     | All MCs      | 47    | 2.2         | 47   | 2.2                       | 0.264               | 7.1                   | LOS A               | 1.6                            | 11.9 | 0.67         | 0.69                 | 0.67                      | 55.4                   |
| 8                            | T1     | All MCs      | 40    | 5.3         | 40   | 5.3                       | 0.264               | 7.4                   | LOS A               | 1.6                            | 11.9 | 0.67         | 0.69                 | 0.67                      | 50.5                   |
| 9                            | R2     | All MCs      | 137   | 6.9         | 137  | 6.9                       | 0.264               | 12.1                  | LOS A               | 1.6                            | 11.9 | 0.67         | 0.69                 | 0.67                      | 49.6                   |
| 9u                           | U      | All MCs      | 1     | 0.0         | 1    | 0.0                       | 0.264               | 13.9                  | LOS A               | 1.6                            | 11.9 | 0.67         | 0.69                 | 0.67                      | 49.9                   |
| Appro                        | ach    |              | 225   | 5.6         | 225  | 5.6                       | 0.264               | 10.2                  | LOS A               | 1.6                            | 11.9 | 0.67         | 0.69                 | 0.67                      | 51.8                   |
| West:                        | Georg  | ge Bass I    | Drive |             |      |                           |                     |                       |                     |                                |      |              |                      |                           |                        |
| 10                           | L2     | All MCs      | 153   | 2.1         | 153  | 2.1                       | 0.487               | 4.7                   | LOS A               | 3.9                            | 27.7 | 0.42         | 0.48                 | 0.42                      | 52.7                   |
| 11                           | T1     | All MCs      | 409   | 2.8         | 409  | 2.8                       | 0.487               | 4.9                   | LOS A               | 3.9                            | 27.7 | 0.42         | 0.48                 | 0.42                      | 56.8                   |
| 12                           | R2     | All MCs      | 56    | 3.8         | 56   | 3.8                       | 0.487               | 9.6                   | LOS A               | 3.9                            | 27.7 | 0.42         | 0.48                 | 0.42                      | 52.1                   |
| 12u                          | U      | All MCs      | 28    | 0.0         | 28   | 0.0                       | 0.487               | 11.6                  | LOS A               | 3.9                            | 27.7 | 0.42         | 0.48                 | 0.42                      | 52.2                   |
| Appro                        | ach    |              | 646   | 2.6         | 646  | 2.6                       | 0.487               | 5.6                   | LOS A               | 3.9                            | 27.7 | 0.42         | 0.48                 | 0.42                      | 55.9                   |
| All Ve                       | hicles |              | 1392  | 2.9         | 1392 | 2.9                       | 0.487               | 6.8                   | LOS A               | 3.9                            | 27.7 | 0.52         | 0.55                 | 0.52                      | 55.4                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:16:00 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\2. Rosedale - Existing +Growth.sip9
## W Site: 102 [(I-2) George Bass Drive / Road 01\_Weekend Midday (Site Folder: Existing + Growth - Weekend Mid-day)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekend Mid-day Peak Survey Date: 19 November 2023 Peak Hour: 12:00pm - 1:00pm Site Category: (None) Roundabout

| Vehi      | cle Mo | ovemen       | t Perfo | rma | nce |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
|-----------|--------|--------------|---------|-----|-----|----------------------------|---------------------|-----------------------|---------------------|-----|------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | F       |     |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | ack Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| East:     | Georg  | je Bass D    | Drive   |     |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 5         | T1     | All MCs      | 374     | 1.7 | 374 | 1.7                        | 0.221               | 4.1                   | LOS A               | 1.6 | 11.3                         | 0.04         | 0.40                 | 0.04                      | 58.8                   |
| 6         | R2     | All MCs      | 1       | 0.0 | 1   | 0.0                        | 0.221               | 8.7                   | LOS A               | 1.6 | 11.3                         | 0.04         | 0.40                 | 0.04                      | 57.9                   |
| 6u        | U      | All MCs      | 1       | 0.0 | 1   | 0.0                        | 0.221               | 10.7                  | LOS A               | 1.6 | 11.3                         | 0.04         | 0.40                 | 0.04                      | 58.7                   |
| Appro     | bach   |              | 376     | 1.7 | 376 | 1.7                        | 0.221               | 4.1                   | LOS A               | 1.6 | 11.3                         | 0.04         | 0.40                 | 0.04                      | 58.8                   |
| North     | : Roac | 101          |         |     |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 7         | L2     | All MCs      | 1       | 0.0 | 1   | 0.0                        | 0.004               | 7.0                   | LOS A               | 0.0 | 0.1                          | 0.60         | 0.59                 | 0.60                      | 56.2                   |
| 9         | R2     | All MCs      | 1       | 0.0 | 1   | 0.0                        | 0.004               | 11.8                  | LOS A               | 0.0 | 0.1                          | 0.60         | 0.59                 | 0.60                      | 54.9                   |
| 9u        | U      | All MCs      | 1       | 0.0 | 1   | 0.0                        | 0.004               | 13.9                  | LOS A               | 0.0 | 0.1                          | 0.60         | 0.59                 | 0.60                      | 49.5                   |
| Appro     | bach   |              | 3       | 0.0 | 3   | 0.0                        | 0.004               | 10.9                  | LOS A               | 0.0 | 0.1                          | 0.60         | 0.59                 | 0.60                      | 54.6                   |
| West      | Geor   | ge Bass [    | Drive   |     |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 10        | L2     | All MCs      | 1       | 0.0 | 1   | 0.0                        | 0.322               | 3.8                   | LOS A               | 2.4 | 17.4                         | 0.04         | 0.40                 | 0.04                      | 57.6                   |
| 11        | T1     | All MCs      | 546     | 2.3 | 546 | 2.3                        | 0.322               | 4.1                   | LOS A               | 2.4 | 17.4                         | 0.04         | 0.40                 | 0.04                      | 58.8                   |
| 12u       | U      | All MCs      | 1       | 0.0 | 1   | 0.0                        | 0.322               | 10.7                  | LOS A               | 2.4 | 17.4                         | 0.04         | 0.40                 | 0.04                      | 58.3                   |
| Appro     | bach   |              | 548     | 2.3 | 548 | 2.3                        | 0.322               | 4.1                   | LOS A               | 2.4 | 17.4                         | 0.04         | 0.40                 | 0.04                      | 58.8                   |
| All Ve    | hicles |              | 927     | 2.0 | 927 | 2.0                        | 0.322               | 4.1                   | LOS A               | 2.4 | 17.4                         | 0.05         | 0.40                 | 0.05                      | 58.8                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:16:01 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\2. Rosedale - Existing +Growth.sip9

#### V Site: 103 [(I-3) George Bass Drive / Rosedale Parade / Saltwood Drive\_Weekend Mid-day (Site Folder: Existing + Growth - Weekend Mid-day)]

#### Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekend Mid-day Peak Survey Date: 19 November 2023 Peak Hour: 12:00pm - 1:00pm Site Category: (None) Roundabout

| Vehic     | le Mo  | ovement      | t Perfo | rma  | nce |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
|-----------|--------|--------------|---------|------|-----|----------------------------|---------------------|-----------------------|---------------------|-------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | F       |      |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geoi | rge Bass     | Drive   |      |     |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 1         | L2     | All MCs      | 6       | 0.0  | 6   | 0.0                        | 0.269               | 3.9                   | LOS A               | 1.7                           | 11.9 | 0.11         | 0.40                 | 0.11                      | 57.9                   |
| 2         | T1     | All MCs      | 402     | 0.0  | 402 | 0.0                        | 0.269               | 4.1                   | LOS A               | 1.7                           | 11.9 | 0.11         | 0.40                 | 0.11                      | 58.2                   |
| 3         | R2     | All MCs      | 19      | 0.0  | 19  | 0.0                        | 0.269               | 8.8                   | LOS A               | 1.7                           | 11.9 | 0.11         | 0.40                 | 0.11                      | 57.7                   |
| 3u        | U      | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.269               | 10.8                  | LOS A               | 1.7                           | 11.9 | 0.11         | 0.40                 | 0.11                      | 58.6                   |
| Appro     | ach    |              | 428     | 0.0  | 428 | 0.0                        | 0.269               | 4.3                   | LOS A               | 1.7                           | 11.9 | 0.11         | 0.40                 | 0.11                      | 58.2                   |
| East:     | Rosec  | lale Para    | de      |      |     |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 4         | L2     | All MCs      | 16      | 6.7  | 16  | 6.7                        | 0.027               | 5.1                   | LOS A               | 0.1                           | 0.9  | 0.39         | 0.57                 | 0.39                      | 57.1                   |
| 5         | T1     | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.027               | 5.2                   | LOS A               | 0.1                           | 0.9  | 0.39         | 0.57                 | 0.39                      | 52.6                   |
| 6         | R2     | All MCs      | 11      | 10.0 | 11  | 10.0                       | 0.027               | 10.1                  | LOS A               | 0.1                           | 0.9  | 0.39         | 0.57                 | 0.39                      | 52.9                   |
| 6u        | U      | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.027               | 11.9                  | LOS A               | 0.1                           | 0.9  | 0.39         | 0.57                 | 0.39                      | 51.8                   |
| Appro     | ach    |              | 28      | 7.4  | 28  | 7.4                        | 0.027               | 7.2                   | LOS A               | 0.1                           | 0.9  | 0.39         | 0.57                 | 0.39                      | 56.0                   |
| North     | Geor   | ge Bass I    | Drive   |      |     |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 7         | L2     | All MCs      | 15      | 0.0  | 15  | 0.0                        | 0.178               | 4.0                   | LOS A               | 1.0                           | 6.7  | 0.12         | 0.40                 | 0.12                      | 55.3                   |
| 8         | T1     | All MCs      | 248     | 0.8  | 248 | 0.8                        | 0.178               | 4.2                   | LOS A               | 1.0                           | 6.7  | 0.12         | 0.40                 | 0.12                      | 58.2                   |
| 9         | R2     | All MCs      | 4       | 0.0  | 4   | 0.0                        | 0.178               | 8.8                   | LOS A               | 1.0                           | 6.7  | 0.12         | 0.40                 | 0.12                      | 54.9                   |
| 9u        | U      | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.178               | 10.9                  | LOS A               | 1.0                           | 6.7  | 0.12         | 0.40                 | 0.12                      | 55.7                   |
| Appro     | ach    |              | 268     | 0.8  | 268 | 0.8                        | 0.178               | 4.3                   | LOS A               | 1.0                           | 6.7  | 0.12         | 0.40                 | 0.12                      | 58.1                   |
| West:     | Saltw  | ood Drive    | Э       |      |     |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 10        | L2     | All MCs      | 6       | 0.0  | 6   | 0.0                        | 0.013               | 5.8                   | LOS A               | 0.1                           | 0.4  | 0.49         | 0.59                 | 0.49                      | 53.3                   |
| 11        | T1     | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.013               | 6.0                   | LOS A               | 0.1                           | 0.4  | 0.49         | 0.59                 | 0.49                      | 52.1                   |
| 12        | R2     | All MCs      | 4       | 0.0  | 4   | 0.0                        | 0.013               | 10.6                  | LOS A               | 0.1                           | 0.4  | 0.49         | 0.59                 | 0.49                      | 56.8                   |
| 12u       | U      | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.013               | 12.7                  | LOS A               | 0.1                           | 0.4  | 0.49         | 0.59                 | 0.49                      | 51.3                   |
| Appro     | ach    |              | 13      | 0.0  | 13  | 0.0                        | 0.013               | 8.0                   | LOS A               | 0.1                           | 0.4  | 0.49         | 0.59                 | 0.49                      | 55.0                   |
| All Ve    | hicles |              | 738     | 0.6  | 738 | 0.6                        | 0.269               | 4.5                   | LOS A               | 1.7                           | 11.9 | 0.13         | 0.41                 | 0.13                      | 58.1                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:16:01 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\2. Rosedale - Existing +Growth.sip9

#### V Site: 104 [(I-4) George Bass Drive / Bullock Road\_Weekend Mid-day (Site Folder: Existing + Growth - Weekend Mid-day)] Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekend Mid-day Peak

Survey Date: 19 November 2023 Peak Hour: 12:00pm - 1:00pm Site Category: (None) Give-Way (Two-Way)

| Vehic     | le Mo  | ovement      | t Perfo | rma          | nce |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
|-----------|--------|--------------|---------|--------------|-----|----------------------------|---------------------|-----------------------|---------------------|-----|------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | lows<br>HV ] |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | ack Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geoi | rge Bass     | Drive   |              |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 1         | L2     | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.225               | 5.6                   | LOS A               | 0.0 | 0.0                          | 0.00         | 0.00                 | 0.00                      | 57.9                   |
| 2         | T1     | All MCs      | 437     | 0.2          | 437 | 0.2                        | 0.225               | 0.1                   | LOS A               | 0.0 | 0.0                          | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| Appro     | ach    |              | 438     | 0.2          | 438 | 0.2                        | 0.225               | 0.1                   | NA                  | 0.0 | 0.0                          | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| North     | Geor   | ge Bass I    | Drive   |              |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 8         | T1     | All MCs      | 287     | 0.7          | 287 | 0.7                        | 0.148               | 0.0                   | LOS A               | 0.0 | 0.0                          | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| Appro     | ach    |              | 287     | 0.7          | 287 | 0.7                        | 0.148               | 0.0                   | NA                  | 0.0 | 0.0                          | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| West:     | Bullo  | ck Road      |         |              |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 10        | L2     | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.001               | 7.0                   | LOS A               | 0.0 | 0.0                          | 0.43         | 0.54                 | 0.43                      | 51.6                   |
| Appro     | ach    |              | 1       | 0.0          | 1   | 0.0                        | 0.001               | 7.0                   | LOS A               | 0.0 | 0.0                          | 0.43         | 0.54                 | 0.43                      | 51.6                   |
| All Ve    | hicles |              | 726     | 0.4          | 726 | 0.4                        | 0.225               | 0.1                   | NA                  | 0.0 | 0.0                          | 0.00         | 0.00                 | 0.00                      | 59.9                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:16:02 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\2. Rosedale - Existing +Growth.sip9

## V Site: 106 [(I-6) Princess Highway / Tomakin Road\_Weekday AM (Site Folder: Existing + Growth - Weekday AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

New Site Site Category: (None) Give-Way (Two-Way)

| Vehic     | cle Mo  | ovemen       | t Perfo                       | rma          | nce  |                            |                     |                       |                     |     |                                |              |                      |                           |                        |
|-----------|---------|--------------|-------------------------------|--------------|------|----------------------------|---------------------|-----------------------|---------------------|-----|--------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn    | Mov<br>Class | Dem<br>Fl<br>[ Total<br>veh/h | lows<br>HV ] |      | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | Back Of<br>ieue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Princ | cess High    | way (S)                       | )            |      |                            |                     |                       |                     |     |                                |              |                      |                           |                        |
| 2         | T1      | All MCs      | 533                           | 4.9          | 533  | 4.9                        | 0.313               | 0.2                   | LOS A               | 0.4 | 2.7                            | 0.08         | 0.10                 | 0.08                      | 59.3                   |
| 3         | R2      | All MCs      | 35                            | 6.1          | 35   | 6.1                        | 0.313               | 7.6                   | LOS A               | 0.4 | 2.7                            | 0.08         | 0.10                 | 0.08                      | 56.2                   |
| Appro     | ach     |              | 567                           | 5.0          | 567  | 5.0                        | 0.313               | 0.7                   | NA                  | 0.4 | 2.7                            | 0.08         | 0.10                 | 0.08                      | 59.1                   |
| East:     | Tomal   | kin Road     | (E)                           |              |      |                            |                     |                       |                     |     |                                |              |                      |                           |                        |
| 4         | L2      | All MCs      | 36                            | 8.8          | 36   | 8.8                        | 0.447               | 8.5                   | LOS A               | 2.1 | 14.8                           | 0.70         | 0.97                 | 1.02                      | 47.0                   |
| 6         | R2      | All MCs      | 186                           | 1.7          | 186  | 1.7                        | 0.447               | 14.8                  | LOS B               | 2.1 | 14.8                           | 0.70         | 0.97                 | 1.02                      | 47.0                   |
| Appro     | ach     |              | 222                           | 2.8          | 222  | 2.8                        | 0.447               | 13.8                  | LOS A               | 2.1 | 14.8                           | 0.70         | 0.97                 | 1.02                      | 47.0                   |
| North     | Princ   | ess High     | way (N)                       | )            |      |                            |                     |                       |                     |     |                                |              |                      |                           |                        |
| 7         | L2      | All MCs      | 107                           | 5.9          | 107  | 5.9                        | 0.218               | 5.7                   | LOS A               | 0.0 | 0.0                            | 0.00         | 0.16                 | 0.00                      | 55.8                   |
| 8         | T1      | All MCs      | 292                           | 8.7          | 292  | 8.7                        | 0.218               | 0.1                   | LOS A               | 0.0 | 0.0                            | 0.00         | 0.16                 | 0.00                      | 58.4                   |
| Appro     | ach     |              | 399                           | 7.9          | 399  | 7.9                        | 0.218               | 1.6                   | NA                  | 0.0 | 0.0                            | 0.00         | 0.16                 | 0.00                      | 57.7                   |
| All Ve    | hicles  |              | 1188                          | 5.6          | 1188 | 5.6                        | 0.447               | 3.4                   | NA                  | 2.1 | 14.8                           | 0.17         | 0.28                 | 0.23                      | 55.9                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Monday, 6 January 2025 4:11:19 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\250106 - SIDRA Modelling\2. Rosedale - Existing +Growth.sip9

## V Site: 106 [(I-6) Princess Highway / Tomakin Road\_Weekday PM (Site Folder: Existing + Growth - Weekday PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

New Site Site Category: (None) Give-Way (Two-Way)

| Vehic     | cle Mo  | ovemen       | t Perfo                         | rma          | nce  |                           |                     |                       |                     |     |                               |              |                      |                           |                        |
|-----------|---------|--------------|---------------------------------|--------------|------|---------------------------|---------------------|-----------------------|---------------------|-----|-------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn    | Mov<br>Class | Dem<br>Fl<br>[ Total  <br>veh/h | lows<br>HV ] |      | rival<br>lows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | Back Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Princ | cess High    | way (S)                         | )            |      |                           |                     |                       |                     |     |                               |              |                      |                           |                        |
| 2         | T1      | All MCs      | 517                             | 5.5          | 517  | 5.5                       | 0.324               | 0.6                   | LOS A               | 0.6 | 4.3                           | 0.13         | 0.17                 | 0.13                      | 58.8                   |
| 3         | R2      | All MCs      | 37                              | 2.9          | 37   | 2.9                       | 0.324               | 10.1                  | LOS A               | 0.6 | 4.3                           | 0.13         | 0.17                 | 0.13                      | 55.9                   |
| Appro     | ach     |              | 554                             | 5.3          | 554  | 5.3                       | 0.324               | 1.3                   | NA                  | 0.6 | 4.3                           | 0.13         | 0.17                 | 0.13                      | 58.6                   |
| East:     | Tomal   | kin Road     | (E)                             |              |      |                           |                     |                       |                     |     |                               |              |                      |                           |                        |
| 4         | L2      | All MCs      | 36                              | 2.9          | 36   | 2.9                       | 0.464               | 10.7                  | LOS A               | 1.9 | 13.3                          | 0.82         | 1.02                 | 1.17                      | 44.5                   |
| 6         | R2      | All MCs      | 123                             | 3.4          | 123  | 3.4                       | 0.464               | 20.6                  | LOS B               | 1.9 | 13.3                          | 0.82         | 1.02                 | 1.17                      | 44.4                   |
| Appro     | ach     |              | 159                             | 3.3          | 159  | 3.3                       | 0.464               | 18.3                  | LOS B               | 1.9 | 13.3                          | 0.82         | 1.02                 | 1.17                      | 44.5                   |
| North     | : Princ | ess High     | way (N)                         | 1            |      |                           |                     |                       |                     |     |                               |              |                      |                           |                        |
| 7         | L2      | All MCs      | 172                             | 1.2          | 172  | 1.2                       | 0.381               | 5.7                   | LOS A               | 0.0 | 0.0                           | 0.00         | 0.14                 | 0.00                      | 56.0                   |
| 8         | T1      | All MCs      | 548                             | 3.8          | 548  | 3.8                       | 0.381               | 0.1                   | LOS A               | 0.0 | 0.0                           | 0.00         | 0.14                 | 0.00                      | 58.5                   |
| Appro     | ach     |              | 720                             | 3.2          | 720  | 3.2                       | 0.381               | 1.5                   | NA                  | 0.0 | 0.0                           | 0.00         | 0.14                 | 0.00                      | 57.9                   |
| All Ve    | hicles  |              | 1433                            | 4.0          | 1433 | 4.0                       | 0.464               | 3.3                   | NA                  | 1.9 | 13.3                          | 0.14         | 0.25                 | 0.18                      | 56.2                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Monday, 6 January 2025 4:11:23 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\250106 - SIDRA Modelling\2. Rosedale - Existing +Growth.sip9

### V Site: 106 [(I-6) Princess Highway / Tomakin Road\_Weekend Mid-day (Site Folder: Existing + Growth - Weekend Mid-day)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

New Site Site Category: (None) Give-Way (Two-Way)

| Vehi      | cle Mo  | ovemen       | t Perfo                         | rma          | nce  |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
|-----------|---------|--------------|---------------------------------|--------------|------|--------------------------|---------------------|-----------------------|---------------------|-----|--------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn    | Mov<br>Class | Dem<br>Fl<br>[ Total  <br>veh/h | lows<br>HV ] |      | rival<br>ows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | Back Of<br>ieue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Princ | cess High    | nway (S)                        | )            |      |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
| 2         | T1      | All MCs      | 438                             | 1.2          | 438  | 1.2                      | 0.257               | 0.3                   | LOS A               | 0.4 | 2.5                            | 0.10         | 0.12                 | 0.10                      | 59.2                   |
| 3         | R2      | All MCs      | 32                              | 0.0          | 32   | 0.0                      | 0.257               | 8.0                   | LOS A               | 0.4 | 2.5                            | 0.10         | 0.12                 | 0.10                      | 56.4                   |
| Appro     | bach    |              | 469                             | 1.1          | 469  | 1.1                      | 0.257               | 0.8                   | NA                  | 0.4 | 2.5                            | 0.10         | 0.12                 | 0.10                      | 59.0                   |
| East:     | Tomal   | kin Road     | (E)                             |              |      |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
| 4         | L2      | All MCs      | 42                              | 2.5          | 42   | 2.5                      | 0.457               | 8.6                   | LOS A               | 2.2 | 15.5                           | 0.70         | 0.97                 | 1.02                      | 47.6                   |
| 6         | R2      | All MCs      | 206                             | 0.5          | 206  | 0.5                      | 0.457               | 13.9                  | LOS A               | 2.2 | 15.5                           | 0.70         | 0.97                 | 1.02                      | 47.5                   |
| Appro     | bach    |              | 248                             | 0.8          | 248  | 0.8                      | 0.457               | 13.0                  | LOS A               | 2.2 | 15.5                           | 0.70         | 0.97                 | 1.02                      | 47.5                   |
| North     | : Princ | ess High     | way (N)                         |              |      |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
| 7         | L2      | All MCs      | 164                             | 1.9          | 164  | 1.9                      | 0.273               | 5.6                   | LOS A               | 0.0 | 0.0                            | 0.00         | 0.19                 | 0.00                      | 55.8                   |
| 8         | T1      | All MCs      | 355                             | 0.9          | 355  | 0.9                      | 0.273               | 0.1                   | LOS A               | 0.0 | 0.0                            | 0.00         | 0.19                 | 0.00                      | 58.2                   |
| Appro     | bach    |              | 519                             | 1.2          | 519  | 1.2                      | 0.273               | 1.8                   | NA                  | 0.0 | 0.0                            | 0.00         | 0.19                 | 0.00                      | 57.4                   |
| All Ve    | hicles  |              | 1237                            | 1.1          | 1237 | 1.1                      | 0.457               | 3.7                   | NA                  | 2.2 | 15.5                           | 0.18         | 0.32                 | 0.24                      | 55.6                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Monday, 6 January 2025 4:11:26 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\250106 - SIDRA Modelling\2. Rosedale - Existing +Growth.sip9

#### V Site: 101 [(I-1) George Bass Drive / Sunpatch Parade / Tomakin Road\_Weekday AM (Site Folder: Existing + Dev792 -Weekday AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday AM Peak Survey Date: 22 November 2023 Peak Hour: 8:00am - 9:00am Site Category: (None) Roundabout

| Vehic     | cle Mo | ovement      | l Perfo | rma          | nce  |                           |                     |                       |                     |                                |      |              |                      |                           |                        |
|-----------|--------|--------------|---------|--------------|------|---------------------------|---------------------|-----------------------|---------------------|--------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | lows<br>HV ] |      | rival<br>lows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Sunp | patch Par    | ade     |              |      |                           |                     |                       |                     |                                |      |              |                      |                           |                        |
| 1         | L2     | All MCs      | 54      | 0.0          | 54   | 0.0                       | 0.141               | 10.1                  | LOS A               | 0.9                            | 6.5  | 0.83         | 0.75                 | 0.83                      | 50.0                   |
| 2         | T1     | All MCs      | 24      | 0.0          | 24   | 0.0                       | 0.141               | 10.3                  | LOS A               | 0.9                            | 6.5  | 0.83         | 0.75                 | 0.83                      | 50.3                   |
| 3         | R2     | All MCs      | 5       | 0.0          | 5    | 0.0                       | 0.141               | 14.9                  | LOS B               | 0.9                            | 6.5  | 0.83         | 0.75                 | 0.83                      | 55.0                   |
| 3u        | U      | All MCs      | 1       | 0.0          | 1    | 0.0                       | 0.141               | 17.0                  | LOS B               | 0.9                            | 6.5  | 0.83         | 0.75                 | 0.83                      | 49.5                   |
| Appro     | ach    |              | 84      | 0.0          | 84   | 0.0                       | 0.141               | 10.5                  | LOS A               | 0.9                            | 6.5  | 0.83         | 0.75                 | 0.83                      | 50.7                   |
| East:     | Georg  | e Bass D     | rive    |              |      |                           |                     |                       |                     |                                |      |              |                      |                           |                        |
| 4         | L2     | All MCs      | 11      | 0.0          | 11   | 0.0                       | 0.586               | 7.2                   | LOS A               | 5.3                            | 37.8 | 0.74         | 0.66                 | 0.79                      | 55.8                   |
| 5         | T1     | All MCs      | 463     | 3.0          | 463  | 3.0                       | 0.586               | 7.5                   | LOS A               | 5.3                            | 37.8 | 0.74         | 0.66                 | 0.79                      | 55.9                   |
| 6         | R2     | All MCs      | 122     | 2.6          | 122  | 2.6                       | 0.586               | 12.1                  | LOS A               | 5.3                            | 37.8 | 0.74         | 0.66                 | 0.79                      | 55.5                   |
| 6u        | U      | All MCs      | 1       | 0.0          | 1    | 0.0                       | 0.586               | 14.1                  | LOS A               | 5.3                            | 37.8 | 0.74         | 0.66                 | 0.79                      | 57.1                   |
| Appro     | ach    |              | 597     | 2.8          | 597  | 2.8                       | 0.586               | 8.4                   | LOS A               | 5.3                            | 37.8 | 0.74         | 0.66                 | 0.79                      | 55.8                   |
| North     | : Toma | akin Road    |         |              |      |                           |                     |                       |                     |                                |      |              |                      |                           |                        |
| 7         | L2     | All MCs      | 54      | 7.8          | 54   | 7.8                       | 0.337               | 5.9                   | LOS A               | 2.2                            | 16.0 | 0.56         | 0.64                 | 0.56                      | 55.3                   |
| 8         | T1     | All MCs      | 12      | 9.1          | 12   | 9.1                       | 0.337               | 6.1                   | LOS A               | 2.2                            | 16.0 | 0.56         | 0.64                 | 0.56                      | 50.6                   |
| 9         | R2     | All MCs      | 280     | 4.1          | 280  | 4.1                       | 0.337               | 10.6                  | LOS A               | 2.2                            | 16.0 | 0.56         | 0.64                 | 0.56                      | 49.9                   |
| 9u        | U      | All MCs      | 2       | 100.<br>0    | 2    | 100.<br>0                 | 0.337               | 15.7                  | LOS B               | 2.2                            | 16.0 | 0.56         | 0.64                 | 0.56                      | 46.8                   |
| Appro     | ach    |              | 347     | 5.5          | 347  | 5.5                       | 0.337               | 9.7                   | LOS A               | 2.2                            | 16.0 | 0.56         | 0.64                 | 0.56                      | 51.4                   |
| West:     | Georg  | ge Bass D    | Drive   |              |      |                           |                     |                       |                     |                                |      |              |                      |                           |                        |
| 10        | L2     | All MCs      | 234     | 5.0          | 234  | 5.0                       | 0.419               | 5.0                   | LOS A               | 3.2                            | 23.0 | 0.47         | 0.50                 | 0.47                      | 52.7                   |
| 11        | T1     | All MCs      | 236     | 4.5          | 236  | 4.5                       | 0.419               | 5.1                   | LOS A               | 3.2                            | 23.0 | 0.47         | 0.50                 | 0.47                      | 56.8                   |
| 12        | R2     | All MCs      | 31      | 3.4          | 31   | 3.4                       | 0.419               | 9.8                   | LOS A               | 3.2                            | 23.0 | 0.47         | 0.50                 | 0.47                      | 52.2                   |
| 12u       | U      | All MCs      | 12      | 0.0          | 12   | 0.0                       | 0.419               | 11.7                  | LOS A               | 3.2                            | 23.0 | 0.47         | 0.50                 | 0.47                      | 52.3                   |
| Appro     | ach    |              | 512     | 4.5          | 512  | 4.5                       | 0.419               | 5.5                   | LOS A               | 3.2                            | 23.0 | 0.47         | 0.50                 | 0.47                      | 55.3                   |
| All Ve    | hicles |              | 1540    | 3.8          | 1540 | 3.8                       | 0.586               | 7.9                   | LOS A               | 5.3                            | 37.8 | 0.61         | 0.61                 | 0.64                      | 54.8                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:22:04 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\5. Rosedale - Existing+Dev792 (RMS rates).sip9

#### W Site: 102 [(I-2) George Bass Drive / Road 01\_Weekday AM (Site Folder: Existing + Dev792 - Weekday AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday AM Peak Survey Date: 22 November 2023 Peak Hour: 8:00am - 9:00am Site Category: (None) Roundabout

| Vehio     | cle Mo | ovement      | t Perfo | rma          | nce |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
|-----------|--------|--------------|---------|--------------|-----|----------------------------|---------------------|-----------------------|---------------------|-----|------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | lows<br>HV ] |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | ack Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| East:     | Georg  | je Bass D    | )rive   |              |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 5         | T1     | All MCs      | 353     | 3.9          | 353 | 3.9                        | 0.310               | 5.3                   | LOS A               | 2.2 | 16.2                         | 0.46         | 0.47                 | 0.46                      | 58.2                   |
| 6         | R2     | All MCs      | 14      | 0.0          | 14  | 0.0                        | 0.310               | 9.8                   | LOS A               | 2.2 | 16.2                         | 0.46         | 0.47                 | 0.46                      | 57.2                   |
| 6u        | U      | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.310               | 11.9                  | LOS A               | 2.2 | 16.2                         | 0.46         | 0.47                 | 0.46                      | 58.3                   |
| Appro     | ach    |              | 367     | 3.7          | 367 | 3.7                        | 0.310               | 5.5                   | LOS A               | 2.2 | 16.2                         | 0.46         | 0.47                 | 0.46                      | 58.2                   |
| North     | : Road | 01           |         |              |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 7         | L2     | All MCs      | 24      | 0.0          | 24  | 0.0                        | 0.164               | 5.1                   | LOS A               | 1.0 | 6.8                          | 0.42         | 0.61                 | 0.42                      | 56.5                   |
| 9         | R2     | All MCs      | 162     | 0.0          | 162 | 0.0                        | 0.164               | 9.9                   | LOS A               | 1.0 | 6.8                          | 0.42         | 0.61                 | 0.42                      | 55.3                   |
| 9u        | U      | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.164               | 12.0                  | LOS A               | 1.0 | 6.8                          | 0.42         | 0.61                 | 0.42                      | 50.2                   |
| Appro     | ach    |              | 187     | 0.0          | 187 | 0.0                        | 0.164               | 9.3                   | LOS A               | 1.0 | 6.8                          | 0.42         | 0.61                 | 0.42                      | 55.5                   |
| West:     | Georg  | ge Bass [    | Drive   |              |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 10        | L2     | All MCs      | 76      | 0.0          | 76  | 0.0                        | 0.174               | 3.9                   | LOS A               | 1.2 | 8.6                          | 0.11         | 0.41                 | 0.11                      | 57.5                   |
| 11        | T1     | All MCs      | 191     | 6.6          | 191 | 6.6                        | 0.174               | 4.2                   | LOS A               | 1.2 | 8.6                          | 0.11         | 0.41                 | 0.11                      | 58.7                   |
| 12u       | U      | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.174               | 10.8                  | LOS A               | 1.2 | 8.6                          | 0.11         | 0.41                 | 0.11                      | 58.2                   |
| Appro     | bach   |              | 267     | 4.7          | 267 | 4.7                        | 0.174               | 4.1                   | LOS A               | 1.2 | 8.6                          | 0.11         | 0.41                 | 0.11                      | 58.5                   |
| All Ve    | hicles |              | 822     | 3.2          | 822 | 3.2                        | 0.310               | 5.9                   | LOS A               | 2.2 | 16.2                         | 0.34         | 0.48                 | 0.34                      | 57.9                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:22:05 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\5. Rosedale - Existing+Dev792 (RMS rates).sip9

#### V Site: 103 [(I-3) George Bass Drive / Rosedale Parade / Saltwood Drive\_Weekday AM (Site Folder: Existing + Dev792 -Weekday AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday AM Peak Survey Date: 22 November 2023 Peak Hour: 8:00am - 9:00am Site Category: (None) Roundabout

| Vehic     | cle Mo | ovemen       | t Perfo | rma  | nce |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
|-----------|--------|--------------|---------|------|-----|----------------------------|---------------------|-----------------------|---------------------|-----|------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | FI      |      |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | ack Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geoi | rge Bass     | Drive   |      |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 1         | L2     | All MCs      | 44      | 0.0  | 44  | 0.0                        | 0.154               | 4.5                   | LOS A               | 0.8 | 6.0                          | 0.32         | 0.46                 | 0.32                      | 57.6                   |
| 2         | T1     | All MCs      | 133     | 6.3  | 133 | 6.3                        | 0.154               | 4.8                   | LOS A               | 0.8 | 6.0                          | 0.32         | 0.46                 | 0.32                      | 57.9                   |
| 3         | R2     | All MCs      | 8       | 12.5 | 8   | 12.5                       | 0.154               | 9.6                   | LOS A               | 0.8 | 6.0                          | 0.32         | 0.46                 | 0.32                      | 57.2                   |
| 3u        | U      | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.154               | 11.4                  | LOS A               | 0.8 | 6.0                          | 0.32         | 0.46                 | 0.32                      | 58.4                   |
| Appro     | ach    |              | 186     | 5.1  | 186 | 5.1                        | 0.154               | 5.0                   | LOS A               | 0.8 | 6.0                          | 0.32         | 0.46                 | 0.32                      | 57.8                   |
| East:     | Rosec  | lale Para    | de      |      |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 4         | L2     | All MCs      | 21      | 0.0  | 21  | 0.0                        | 0.035               | 5.6                   | LOS A               | 0.2 | 1.3                          | 0.49         | 0.60                 | 0.49                      | 57.2                   |
| 5         | T1     | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.035               | 5.8                   | LOS A               | 0.2 | 1.3                          | 0.49         | 0.60                 | 0.49                      | 52.5                   |
| 6         | R2     | All MCs      | 12      | 9.1  | 12  | 9.1                        | 0.035               | 10.7                  | LOS A               | 0.2 | 1.3                          | 0.49         | 0.60                 | 0.49                      | 52.9                   |
| 6u        | U      | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.035               | 12.5                  | LOS A               | 0.2 | 1.3                          | 0.49         | 0.60                 | 0.49                      | 51.7                   |
| Appro     | ach    |              | 35      | 3.0  | 35  | 3.0                        | 0.035               | 7.6                   | LOS A               | 0.2 | 1.3                          | 0.49         | 0.60                 | 0.49                      | 56.2                   |
| North     | : Geor | ge Bass I    | Drive   |      |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 7         | L2     | All MCs      | 5       | 0.0  | 5   | 0.0                        | 0.235               | 4.3                   | LOS A               | 1.4 | 10.0                         | 0.27         | 0.50                 | 0.27                      | 53.9                   |
| 8         | T1     | All MCs      | 189     | 5.0  | 189 | 5.0                        | 0.235               | 4.5                   | LOS A               | 1.4 | 10.0                         | 0.27         | 0.50                 | 0.27                      | 57.6                   |
| 9         | R2     | All MCs      | 119     | 0.9  | 119 | 0.9                        | 0.235               | 9.1                   | LOS A               | 1.4 | 10.0                         | 0.27         | 0.50                 | 0.27                      | 53.5                   |
| 9u        | U      | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.235               | 11.2                  | LOS A               | 1.4 | 10.0                         | 0.27         | 0.50                 | 0.27                      | 54.5                   |
| Appro     | ach    |              | 315     | 3.3  | 315 | 3.3                        | 0.235               | 6.3                   | LOS A               | 1.4 | 10.0                         | 0.27         | 0.50                 | 0.27                      | 56.7                   |
| West:     | Saltw  | ood Drive    | Э       |      |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 10        | L2     | All MCs      | 69      | 0.0  | 69  | 0.0                        | 0.120               | 4.6                   | LOS A               | 0.6 | 4.4                          | 0.34         | 0.57                 | 0.34                      | 53.5                   |
| 11        | T1     | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.120               | 4.8                   | LOS A               | 0.6 | 4.4                          | 0.34         | 0.57                 | 0.34                      | 52.5                   |
| 12        | R2     | All MCs      | 73      | 0.0  | 73  | 0.0                        | 0.120               | 9.5                   | LOS A               | 0.6 | 4.4                          | 0.34         | 0.57                 | 0.34                      | 56.9                   |
| 12u       | U      | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.120               | 11.5                  | LOS A               | 0.6 | 4.4                          | 0.34         | 0.57                 | 0.34                      | 51.6                   |
| Appro     | ach    |              | 144     | 0.0  | 144 | 0.0                        | 0.120               | 7.1                   | LOS A               | 0.6 | 4.4                          | 0.34         | 0.57                 | 0.34                      | 55.9                   |
| All Ve    | hicles |              | 680     | 3.1  | 680 | 3.1                        | 0.235               | 6.2                   | LOS A               | 1.4 | 10.0                         | 0.31         | 0.51                 | 0.31                      | 56.9                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:22:06 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\5. Rosedale - Existing+Dev792 (RMS rates).sip9

### V Site: 104 [(I-4) George Bass Drive / Bullock Road\_Weekday AM (Site Folder: Existing + Dev792 - Weekday AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday AM Peak Survey Date: 22 November 2023 Peak Hour: 8:00am - 9:00am Site Category: (None) Give-Way (Two-Way)

| Vehic     | cle Mo | ovemen       | t Perfo | rma          | nce |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
|-----------|--------|--------------|---------|--------------|-----|----------------------------|---------------------|-----------------------|---------------------|-----|------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | lows<br>HV ] |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | ack Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geo  | rge Bass     | Drive   |              |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 1         | L2     | All MCs      | 14      | 0.0          | 14  | 0.0                        | 0.114               | 5.6                   | LOS A               | 0.0 | 0.0                          | 0.00         | 0.04                 | 0.00                      | 36.2                   |
| 2         | T1     | All MCs      | 201     | 4.7          | 201 | 4.7                        | 0.114               | 0.0                   | LOS A               | 0.0 | 0.0                          | 0.00         | 0.04                 | 0.00                      | 59.7                   |
| Appro     | ach    |              | 215     | 4.4          | 215 | 4.4                        | 0.114               | 0.4                   | NA                  | 0.0 | 0.0                          | 0.00         | 0.04                 | 0.00                      | 58.1                   |
| North     | Geor   | ge Bass      | Drive   |              |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 8         | T1     | All MCs      | 314     | 3.4          | 314 | 3.4                        | 0.164               | 0.0                   | LOS A               | 0.0 | 0.0                          | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| Appro     | ach    |              | 314     | 3.4          | 314 | 3.4                        | 0.164               | 0.0                   | NA                  | 0.0 | 0.0                          | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| West:     | Bullo  | ck Road      |         |              |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 10        | L2     | All MCs      | 139     | 0.0          | 139 | 0.0                        | 0.102               | 5.0                   | LOS A               | 0.4 | 2.9                          | 0.30         | 0.56                 | 0.30                      | 48.7                   |
| Appro     | ach    |              | 139     | 0.0          | 139 | 0.0                        | 0.102               | 5.0                   | LOS A               | 0.4 | 2.9                          | 0.30         | 0.56                 | 0.30                      | 48.7                   |
| All Ve    | hicles |              | 667     | 3.0          | 667 | 3.0                        | 0.164               | 1.2                   | NA                  | 0.4 | 2.9                          | 0.06         | 0.13                 | 0.06                      | 57.8                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:22:06 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\5. Rosedale - Existing+Dev792 (RMS rates).sip9

#### 🐺 Site: 105 [(I-5) Bullock Road / Purdie Parade\_Weekday AM (Site Folder: Existing + Dev792 - Weekday AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

New Site Site Category: (None) Roundabout

| Vehic     | cle Mo | ovement      | t Perfo | rma          | nce           |     |              |                |                     |                         |            |              |                      |                           |                |
|-----------|--------|--------------|---------|--------------|---------------|-----|--------------|----------------|---------------------|-------------------------|------------|--------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | [ Total | lows<br>HV ] | Fl<br>[ Total |     | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Ba<br>Que<br>[ Veh. |            | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| Ocuth     | . Duni | lia Danada   | veh/h   | %            | veh/h         | %   | v/c          | sec            |                     | veh                     | m          |              |                      |                           | km/h           |
|           |        | lie Parade   |         |              |               |     |              |                |                     |                         | <b>.</b> . |              | 0.50                 |                           |                |
| 1         |        | All MCs      |         | 0.0          |               | 0.0 | 0.003        | 3.9            | LOS A               | 0.0                     | 0.1        | 0.08         | 0.56                 | 0.08                      | 52.5           |
| 2         | T1     | All MCs      |         | 0.0          |               | 0.0 | 0.003        | 4.1            | LOS A               | 0.0                     | 0.1        | 0.08         | 0.56                 | 0.08                      | 52.9           |
| 3         | R2     | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.003        | 8.7            | LOS A               | 0.0                     | 0.1        | 0.08         | 0.56                 | 0.08                      | 30.8           |
| 3u        | U      | All MCs      | 1       |              |               | 0.0 | 0.003        | 10.8           | LOS A               | 0.0                     | 0.1        | 0.08         | 0.56                 | 0.08                      | 52.0           |
| Appro     | ach    |              | 4       | 0.0          | 4             | 0.0 | 0.003        | 6.9            | LOS A               | 0.0                     | 0.1        | 0.08         | 0.56                 | 0.08                      | 47.1           |
| East:     | Bulloc | k Road       |         |              |               |     |              |                |                     |                         |            |              |                      |                           |                |
| 4         | L2     | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.011        | 2.8            | LOS A               | 0.1                     | 0.4        | 0.05         | 0.44                 | 0.05                      | 51.7           |
| 5         | T1     | All MCs      | 13      | 0.0          | 13            | 0.0 | 0.011        | 3.1            | LOS A               | 0.1                     | 0.4        | 0.05         | 0.44                 | 0.05                      | 52.3           |
| 6         | R2     | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.011        | 7.5            | LOS A               | 0.1                     | 0.4        | 0.05         | 0.44                 | 0.05                      | 50.9           |
| 6u        | U      | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.011        | 9.6            | LOS A               | 0.1                     | 0.4        | 0.05         | 0.44                 | 0.05                      | 13.7           |
| Appro     | ach    |              | 16      | 0.0          | 16            | 0.0 | 0.011        | 3.8            | LOS A               | 0.1                     | 0.4        | 0.05         | 0.44                 | 0.05                      | 49.6           |
| North     | Purd   | ie Parade    | )       |              |               |     |              |                |                     |                         |            |              |                      |                           |                |
| 7         | L2     | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.003        | 4.4            | LOS A               | 0.0                     | 0.1        | 0.28         | 0.54                 | 0.28                      | 30.4           |
| 8         | T1     | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.003        | 4.6            | LOS A               | 0.0                     | 0.1        | 0.28         | 0.54                 | 0.28                      | 52.3           |
| 9         | R2     | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.003        | 9.3            | LOS A               | 0.0                     | 0.1        | 0.28         | 0.54                 | 0.28                      | 51.5           |
| 9u        | U      | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.003        | 11.3           | LOS A               | 0.0                     | 0.1        | 0.28         | 0.54                 | 0.28                      | 51.5           |
| Appro     | ach    |              | 4       | 0.0          | 4             | 0.0 | 0.003        | 7.4            | LOS A               | 0.0                     | 0.1        | 0.28         | 0.54                 | 0.28                      | 46.5           |
| West:     | Bullo  | ck Road      |         |              |               |     |              |                |                     |                         |            |              |                      |                           |                |
| 10        | L2     | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.087        | 3.9            | LOS A               | 0.4                     | 2.9        | 0.04         | 0.40                 | 0.04                      | 54.6           |
| 11        | T1     | All MCs      | 138     | 0.0          | 138           | 0.0 | 0.087        | 4.1            | LOS A               | 0.4                     | 2.9        | 0.04         | 0.40                 | 0.04                      | 32.3           |
| 12        | R2     | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.087        | 8.7            | LOS A               | 0.4                     | 2.9        | 0.04         | 0.40                 | 0.04                      | 54.1           |
| 12u       | U      | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.087        | 10.8           | LOS A               | 0.4                     | 2.9        | 0.04         | 0.40                 | 0.04                      | 54.1           |
| Appro     | ach    |              | 141     |              | 141           |     | 0.087        | 4.1            | LOS A               | 0.4                     | 2.9        | 0.04         | 0.40                 | 0.04                      | 32.9           |
| All Ve    | hicles |              | 165     | 0.0          | 165           | 0.0 | 0.087        | 4.3            | LOS A               | 0.4                     | 2.9        | 0.05         | 0.41                 | 0.05                      | 34.7           |
| All ve    | noies  |              | 105     | 0.0          | 105           | 0.0 | 0.007        | 4.5            | LUGA                | 0.4                     | 2.3        | 0.05         | 0.41                 | 0.05                      | 04.7           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:22:07 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale\_Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\5. Rosedale - Existing+Dev792 (RMS rates).sip9

#### V Site: 101 [(I-1) George Bass Drive / Sunpatch Parade / Tomakin Road\_Weekday PM (Site Folder: Existing + Dev792 -Weekday PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday PM Peak Survey Date: 22 November 2023 Peak Hour: 3:30pm - 4:30pm Site Category: (None) Roundabout

| Vehic     | cle Mo | ovemen       | t Perfo | rma          | nce  |                           |                     |                       |                     |                               |      |              |                      |                           |                        |
|-----------|--------|--------------|---------|--------------|------|---------------------------|---------------------|-----------------------|---------------------|-------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | lows<br>HV ] |      | rival<br>ows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Sunp | patch Par    | ade     |              |      |                           |                     |                       |                     |                               |      |              |                      |                           |                        |
| 1         | L2     | All MCs      | 38      | 2.8          | 38   | 2.8                       | 0.060               | 6.3                   | LOS A               | 0.3                           | 2.3  | 0.56         | 0.62                 | 0.56                      | 52.2                   |
| 2         | T1     | All MCs      | 7       | 0.0          | 7    | 0.0                       | 0.060               | 6.4                   | LOS A               | 0.3                           | 2.3  | 0.56         | 0.62                 | 0.56                      | 52.6                   |
| 3         | R2     | All MCs      | 8       | 0.0          | 8    | 0.0                       | 0.060               | 11.1                  | LOS A               | 0.3                           | 2.3  | 0.56         | 0.62                 | 0.56                      | 56.2                   |
| 3u        | U      | All MCs      | 1       | 0.0          | 1    | 0.0                       | 0.060               | 13.1                  | LOS A               | 0.3                           | 2.3  | 0.56         | 0.62                 | 0.56                      | 51.8                   |
| Appro     | ach    |              | 55      | 1.9          | 55   | 1.9                       | 0.060               | 7.2                   | LOS A               | 0.3                           | 2.3  | 0.56         | 0.62                 | 0.56                      | 53.4                   |
| East:     | Georg  | je Bass D    | Drive   |              |      |                           |                     |                       |                     |                               |      |              |                      |                           |                        |
| 4         | L2     | All MCs      | 7       | 0.0          | 7    | 0.0                       | 0.284               | 5.2                   | LOS A               | 1.8                           | 13.0 | 0.48         | 0.54                 | 0.48                      | 56.4                   |
| 5         | T1     | All MCs      | 240     | 3.9          | 240  | 3.9                       | 0.284               | 5.5                   | LOS A               | 1.8                           | 13.0 | 0.48         | 0.54                 | 0.48                      | 56.5                   |
| 6         | R2     | All MCs      | 65      | 4.8          | 65   | 4.8                       | 0.284               | 10.1                  | LOS A               | 1.8                           | 13.0 | 0.48         | 0.54                 | 0.48                      | 56.0                   |
| 6u        | U      | All MCs      | 1       | 0.0          | 1    | 0.0                       | 0.284               | 12.1                  | LOS A               | 1.8                           | 13.0 | 0.48         | 0.54                 | 0.48                      | 57.5                   |
| Appro     | ach    |              | 314     | 4.0          | 314  | 4.0                       | 0.284               | 6.4                   | LOS A               | 1.8                           | 13.0 | 0.48         | 0.54                 | 0.48                      | 56.4                   |
| North     | Toma   | akin Roac    | ł       |              |      |                           |                     |                       |                     |                               |      |              |                      |                           |                        |
| 7         | L2     | All MCs      | 93      | 4.5          | 93   | 4.5                       | 0.296               | 6.9                   | LOS A               | 1.8                           | 13.2 | 0.64         | 0.68                 | 0.64                      | 55.5                   |
| 8         | T1     | All MCs      | 17      | 6.3          | 17   | 6.3                       | 0.296               | 7.1                   | LOS A               | 1.8                           | 13.2 | 0.64         | 0.68                 | 0.64                      | 50.8                   |
| 9         | R2     | All MCs      | 160     | 2.6          | 160  | 2.6                       | 0.296               | 11.6                  | LOS A               | 1.8                           | 13.2 | 0.64         | 0.68                 | 0.64                      | 50.1                   |
| 9u        | U      | All MCs      | 1       | 0.0          | 1    | 0.0                       | 0.296               | 13.6                  | LOS A               | 1.8                           | 13.2 | 0.64         | 0.68                 | 0.64                      | 50.2                   |
| Appro     | ach    |              | 271     | 3.5          | 271  | 3.5                       | 0.296               | 9.7                   | LOS A               | 1.8                           | 13.2 | 0.64         | 0.68                 | 0.64                      | 52.9                   |
| West:     | Geor   | ge Bass [    | Drive   |              |      |                           |                     |                       |                     |                               |      |              |                      |                           |                        |
| 10        | L2     | All MCs      | 169     | 1.2          | 169  | 1.2                       | 0.446               | 4.4                   | LOS A               | 3.5                           | 24.8 | 0.34         | 0.45                 | 0.34                      | 53.2                   |
| 11        | T1     | All MCs      | 406     | 1.6          | 406  | 1.6                       | 0.446               | 4.6                   | LOS A               | 3.5                           | 24.8 | 0.34         | 0.45                 | 0.34                      | 57.1                   |
| 12        | R2     | All MCs      | 37      | 5.7          | 37   | 5.7                       | 0.446               | 9.3                   | LOS A               | 3.5                           | 24.8 | 0.34         | 0.45                 | 0.34                      | 52.5                   |
| 12u       | U      | All MCs      | 9       | 11.1         | 9    | 11.1                      | 0.446               | 11.5                  | LOS A               | 3.5                           | 24.8 | 0.34         | 0.45                 | 0.34                      | 52.3                   |
| Appro     | ach    |              | 622     | 1.9          | 622  | 1.9                       | 0.446               | 5.0                   | LOS A               | 3.5                           | 24.8 | 0.34         | 0.45                 | 0.34                      | 56.3                   |
| All Ve    | hicles |              | 1261    | 2.8          | 1261 | 2.8                       | 0.446               | 6.4                   | LOS A               | 3.5                           | 24.8 | 0.45         | 0.53                 | 0.45                      | 55.6                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:22:07 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\5. Rosedale - Existing+Dev792 (RMS rates).sip9

#### W Site: 102 [(I-2) George Bass Drive / Road 01\_Weekday PM (Site Folder: Existing + Dev792 - Weekday PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday PM Peak Survey Date: 22 November 2023 Peak Hour: 3:30pm - 4:30pm Site Category: (None) Roundabout

| Vehi      | cle Mo | ovement      | t Perfo | rma          | nce |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
|-----------|--------|--------------|---------|--------------|-----|----------------------------|---------------------|-----------------------|---------------------|-----|------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | lows<br>HV ] |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | ack Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| East:     | Georg  | je Bass D    | )rive   |              |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 5         | T1     | All MCs      | 194     | 4.9          | 194 | 4.9                        | 0.172               | 4.6                   | LOS A               | 1.1 | 8.3                          | 0.31         | 0.44                 | 0.31                      | 58.3                   |
| 6         | R2     | All MCs      | 26      | 0.0          | 26  | 0.0                        | 0.172               | 9.2                   | LOS A               | 1.1 | 8.3                          | 0.31         | 0.44                 | 0.31                      | 57.3                   |
| 6u        | U      | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.172               | 11.3                  | LOS A               | 1.1 | 8.3                          | 0.31         | 0.44                 | 0.31                      | 58.4                   |
| Appro     | bach   |              | 221     | 4.3          | 221 | 4.3                        | 0.172               | 5.2                   | LOS A               | 1.1 | 8.3                          | 0.31         | 0.44                 | 0.31                      | 58.2                   |
| North     | : Road | 101          |         |              |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 7         | L2     | All MCs      | 13      | 0.0          | 13  | 0.0                        | 0.096               | 5.7                   | LOS A               | 0.6 | 3.9                          | 0.51         | 0.64                 | 0.51                      | 56.4                   |
| 9         | R2     | All MCs      | 85      | 0.0          | 85  | 0.0                        | 0.096               | 10.6                  | LOS A               | 0.6 | 3.9                          | 0.51         | 0.64                 | 0.51                      | 55.2                   |
| 9u        | U      | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.096               | 12.6                  | LOS A               | 0.6 | 3.9                          | 0.51         | 0.64                 | 0.51                      | 50.0                   |
| Appro     | bach   |              | 99      | 0.0          | 99  | 0.0                        | 0.096               | 10.0                  | LOS A               | 0.6 | 3.9                          | 0.51         | 0.64                 | 0.51                      | 55.4                   |
| West      | Geor   | ge Bass [    | Drive   |              |     |                            |                     |                       |                     |     |                              |              |                      |                           |                        |
| 10        | L2     | All MCs      | 154     | 0.0          | 154 | 0.0                        | 0.305               | 4.0                   | LOS A               | 2.3 | 16.2                         | 0.17         | 0.41                 | 0.17                      | 57.4                   |
| 11        | T1     | All MCs      | 312     | 3.7          | 312 | 3.7                        | 0.305               | 4.3                   | LOS A               | 2.3 | 16.2                         | 0.17         | 0.41                 | 0.17                      | 58.6                   |
| 12u       | U      | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.305               | 10.9                  | LOS A               | 2.3 | 16.2                         | 0.17         | 0.41                 | 0.17                      | 58.1                   |
| Appro     | bach   |              | 466     | 2.5          | 466 | 2.5                        | 0.305               | 4.2                   | LOS A               | 2.3 | 16.2                         | 0.17         | 0.41                 | 0.17                      | 58.4                   |
| All Ve    | hicles |              | 786     | 2.7          | 786 | 2.7                        | 0.305               | 5.2                   | LOS A               | 2.3 | 16.2                         | 0.25         | 0.45                 | 0.25                      | 58.1                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:22:08 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\5. Rosedale - Existing+Dev792 (RMS rates).sip9

#### V Site: 103 [(I-3) George Bass Drive / Rosedale Parade / Saltwood Drive\_Weekday PM (Site Folder: Existing + Dev792 -Weekday PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday PM Peak Survey Date: 22 November 2023 Peak Hour: 3:30pm - 4:30pm Site Category: (None) Roundabout

| Vehic     | le Mo  | ovement      | t Perfo | rma         | nce |                           |                     |                       |                     |                                |      |              |                      |                           |                        |
|-----------|--------|--------------|---------|-------------|-----|---------------------------|---------------------|-----------------------|---------------------|--------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | ows<br>HV ] |     | rival<br>lows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geor | ge Bass      | Drive   |             |     |                           |                     |                       |                     |                                |      |              |                      |                           |                        |
| 1         | L2     | All MCs      | 83      | 0.0         | 83  | 0.0                       | 0.255               | 5.3                   | LOS A               | 1.5                            | 10.7 | 0.46         | 0.52                 | 0.46                      | 57.4                   |
| 2         | T1     | All MCs      | 183     | 6.3         | 183 | 6.3                       | 0.255               | 5.6                   | LOS A               | 1.5                            | 10.7 | 0.46         | 0.52                 | 0.46                      | 57.7                   |
| 3         | R2     | All MCs      | 13      | 0.0         | 13  | 0.0                       | 0.255               | 10.1                  | LOS A               | 1.5                            | 10.7 | 0.46         | 0.52                 | 0.46                      | 57.2                   |
| 3u        | U      | All MCs      | 1       | 0.0         | 1   | 0.0                       | 0.255               | 12.1                  | LOS A               | 1.5                            | 10.7 | 0.46         | 0.52                 | 0.46                      | 58.3                   |
| Appro     | ach    |              | 280     | 4.1         | 280 | 4.1                       | 0.255               | 5.7                   | LOS A               | 1.5                            | 10.7 | 0.46         | 0.52                 | 0.46                      | 57.6                   |
| East:     | Rosec  | lale Para    | de      |             |     |                           |                     |                       |                     |                                |      |              |                      |                           |                        |
| 4         | L2     | All MCs      | 12      | 9.1         | 12  | 9.1                       | 0.022               | 6.0                   | LOS A               | 0.1                            | 0.8  | 0.50         | 0.60                 | 0.50                      | 56.9                   |
| 5         | T1     | All MCs      | 1       | 0.0         | 1   | 0.0                       | 0.022               | 5.9                   | LOS A               | 0.1                            | 0.8  | 0.50         | 0.60                 | 0.50                      | 52.1                   |
| 6         | R2     | All MCs      | 7       | 0.0         | 7   | 0.0                       | 0.022               | 10.6                  | LOS A               | 0.1                            | 0.8  | 0.50         | 0.60                 | 0.50                      | 52.9                   |
| 6u        | U      | All MCs      | 1       | 0.0         | 1   | 0.0                       | 0.022               | 12.6                  | LOS A               | 0.1                            | 0.8  | 0.50         | 0.60                 | 0.50                      | 51.3                   |
| Appro     | ach    |              | 21      | 5.0         | 21  | 5.0                       | 0.022               | 7.9                   | LOS A               | 0.1                            | 0.8  | 0.50         | 0.60                 | 0.50                      | 55.8                   |
| North:    | Geor   | ge Bass I    | Drive   |             |     |                           |                     |                       |                     |                                |      |              |                      |                           |                        |
| 7         | L2     | All MCs      | 20      | 0.0         | 20  | 0.0                       | 0.272               | 4.2                   | LOS A               | 1.7                            | 12.1 | 0.22         | 0.55                 | 0.22                      | 53.5                   |
| 8         | T1     | All MCs      | 133     | 3.2         | 133 | 3.2                       | 0.272               | 4.4                   | LOS A               | 1.7                            | 12.1 | 0.22         | 0.55                 | 0.22                      | 57.4                   |
| 9         | R2     | All MCs      | 236     | 0.4         | 236 | 0.4                       | 0.272               | 9.0                   | LOS A               | 1.7                            | 12.1 | 0.22         | 0.55                 | 0.22                      | 53.1                   |
| 9u        | U      | All MCs      | 1       | 0.0         | 1   | 0.0                       | 0.272               | 11.0                  | LOS A               | 1.7                            | 12.1 | 0.22         | 0.55                 | 0.22                      | 54.1                   |
| Appro     | ach    |              | 389     | 1.4         | 389 | 1.4                       | 0.272               | 7.2                   | LOS A               | 1.7                            | 12.1 | 0.22         | 0.55                 | 0.22                      | 55.5                   |
| West:     | Saltw  | ood Drive    | e       |             |     |                           |                     |                       |                     |                                |      |              |                      |                           |                        |
| 10        | L2     | All MCs      | 44      | 0.0         | 44  | 0.0                       | 0.076               | 4.8                   | LOS A               | 0.4                            | 2.8  | 0.39         | 0.58                 | 0.39                      | 53.6                   |
| 11        | T1     | All MCs      | 3       | 0.0         | 3   | 0.0                       | 0.076               | 5.0                   | LOS A               | 0.4                            | 2.8  | 0.39         | 0.58                 | 0.39                      | 52.5                   |
| 12        | R2     | All MCs      | 39      | 0.0         | 39  | 0.0                       | 0.076               | 9.7                   | LOS A               | 0.4                            | 2.8  | 0.39         | 0.58                 | 0.39                      | 56.9                   |
| 12u       | U      | All MCs      | 1       | 0.0         | 1   | 0.0                       | 0.076               | 11.7                  | LOS A               | 0.4                            | 2.8  | 0.39         | 0.58                 | 0.39                      | 51.6                   |
| Appro     | ach    |              | 87      | 0.0         | 87  | 0.0                       | 0.076               | 7.1                   | LOS A               | 0.4                            | 2.8  | 0.39         | 0.58                 | 0.39                      | 55.7                   |
| All Ve    | hicles |              | 778     | 2.3         | 778 | 2.3                       | 0.272               | 6.7                   | LOS A               | 1.7                            | 12.1 | 0.33         | 0.54                 | 0.33                      | 56.5                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:22:09 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\5. Rosedale - Existing+Dev792 (RMS rates).sip9

### V Site: 104 [(I-4) George Bass Drive / Bullock Road\_Weekday PM (Site Folder: Existing + Dev792 - Weekday PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday PM Peak Survey Date: 22 November 2023 Peak Hour: 3:30pm - 4:30pm Site Category: (None) Give-Way (Two-Way)

| Vehio     | cle Mo | ovement      | t Perfo | rma          | nce |                            |                     |                       |                     |     |                               |              |                      |                           |                        |
|-----------|--------|--------------|---------|--------------|-----|----------------------------|---------------------|-----------------------|---------------------|-----|-------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | lows<br>HV ] |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | Back Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geo  | rge Bass     | Drive   |              |     |                            |                     |                       |                     |     |                               |              |                      |                           |                        |
| 1         | L2     | All MCs      | 26      | 0.0          | 26  | 0.0                        | 0.125               | 5.6                   | LOS A               | 0.0 | 0.0                           | 0.00         | 0.07                 | 0.00                      | 36.1                   |
| 2         | T1     | All MCs      | 209     | 5.5          | 209 | 5.5                        | 0.125               | 0.0                   | LOS A               | 0.0 | 0.0                           | 0.00         | 0.07                 | 0.00                      | 59.4                   |
| Appro     | ach    |              | 236     | 4.9          | 236 | 4.9                        | 0.125               | 0.7                   | NA                  | 0.0 | 0.0                           | 0.00         | 0.07                 | 0.00                      | 56.6                   |
| North     | Geor   | ge Bass I    | Drive   |              |     |                            |                     |                       |                     |     |                               |              |                      |                           |                        |
| 8         | T1     | All MCs      | 388     | 1.4          | 388 | 1.4                        | 0.201               | 0.1                   | LOS A               | 0.0 | 0.0                           | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| Appro     | ach    |              | 388     | 1.4          | 388 | 1.4                        | 0.201               | 0.1                   | NA                  | 0.0 | 0.0                           | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| West:     | Bullo  | ck Road      |         |              |     |                            |                     |                       |                     |     |                               |              |                      |                           |                        |
| 10        | L2     | All MCs      | 74      | 0.0          | 74  | 0.0                        | 0.054               | 5.0                   | LOS A               | 0.2 | 1.5                           | 0.30         | 0.56                 | 0.30                      | 48.7                   |
| Appro     | ach    |              | 74      | 0.0          | 74  | 0.0                        | 0.054               | 5.0                   | LOS A               | 0.2 | 1.5                           | 0.30         | 0.56                 | 0.30                      | 48.7                   |
| All Ve    | hicles |              | 698     | 2.4          | 698 | 2.4                        | 0.201               | 0.8                   | NA                  | 0.2 | 1.5                           | 0.03         | 0.08                 | 0.03                      | 58.1                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:22:09 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\5. Rosedale - Existing+Dev792 (RMS rates).sip9

#### W Site: 105 [(I-5) Bullock Road / Purdie Parade\_Weekday PM (Site Folder: Existing + Dev792 - Weekday PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

New Site Site Category: (None) Roundabout

| Mov      | Turn    | Mov       | Dem   | nand | Ar               | rival    | Deg.  | Aver. | Level of | 95% Ba        |             | Prop. | Eff. | Aver.  | Aver. |
|----------|---------|-----------|-------|------|------------------|----------|-------|-------|----------|---------------|-------------|-------|------|--------|-------|
| ID       |         | Class     |       | lows |                  | lows     | Satn  | Delay | Service  | Que           |             | Que   | Stop | No. of | Speed |
|          |         |           | veh/h |      | [ Total<br>veh/h | HV]<br>% | v/c   | sec   |          | [ Veh.<br>veh | Dist ]<br>m |       | Rate | Cycles | km/h  |
| South    | : Purd  | ie Parade | Э     |      |                  |          |       |       |          |               |             |       |      |        |       |
| 1        | L2      | All MCs   | 1     | 0.0  | 1                | 0.0      | 0.003 | 4.0   | LOS A    | 0.0           | 0.1         | 0.12  | 0.56 | 0.12   | 52.4  |
| 2        | T1      | All MCs   | 1     | 0.0  | 1                | 0.0      | 0.003 | 4.2   | LOS A    | 0.0           | 0.1         | 0.12  | 0.56 | 0.12   | 52.8  |
| 3        | R2      | All MCs   | 1     | 0.0  | 1                | 0.0      | 0.003 | 8.8   | LOS A    | 0.0           | 0.1         | 0.12  | 0.56 | 0.12   | 30.7  |
| 3u       | U       | All MCs   | 1     | 0.0  | 1                | 0.0      | 0.003 | 10.9  | LOS A    | 0.0           | 0.1         | 0.12  | 0.56 | 0.12   | 51.9  |
| Appro    | ach     |           | 4     | 0.0  | 4                | 0.0      | 0.003 | 7.0   | LOS A    | 0.0           | 0.1         | 0.12  | 0.56 | 0.12   | 47.0  |
| East:    | Bulloc  | k Road    |       |      |                  |          |       |       |          |               |             |       |      |        |       |
| 4        | L2      | All MCs   | 1     | 0.0  | 1                | 0.0      | 0.019 | 2.8   | LOS A    | 0.1           | 0.6         | 0.05  | 0.42 | 0.05   | 52.1  |
| 5        | T1      | All MCs   | 25    | 0.0  | 25               | 0.0      | 0.019 | 3.1   | LOS A    | 0.1           | 0.6         | 0.05  | 0.42 | 0.05   | 52.7  |
| 6        | R2      | All MCs   | 1     | 0.0  | 1                | 0.0      | 0.019 | 7.5   | LOS A    | 0.1           | 0.6         | 0.05  | 0.42 | 0.05   | 51.2  |
| 6u       | U       | All MCs   | 1     | 0.0  | 1                | 0.0      | 0.019 | 9.6   | LOS A    | 0.1           | 0.6         | 0.05  | 0.42 | 0.05   | 13.7  |
| Appro    | ach     |           | 28    | 0.0  | 28               | 0.0      | 0.019 | 3.5   | LOS A    | 0.1           | 0.6         | 0.05  | 0.42 | 0.05   | 51.2  |
| North    | : Purdi | ie Parade | 9     |      |                  |          |       |       |          |               |             |       |      |        |       |
| 7        | L2      | All MCs   | 1     | 0.0  | 1                | 0.0      | 0.003 | 4.2   | LOS A    | 0.0           | 0.1         | 0.20  | 0.54 | 0.20   | 30.5  |
| 8        | T1      | All MCs   | 1     | 0.0  | 1                | 0.0      | 0.003 | 4.4   | LOS A    | 0.0           | 0.1         | 0.20  | 0.54 | 0.20   | 52.5  |
| 9        | R2      | All MCs   | 1     | 0.0  | 1                | 0.0      | 0.003 | 9.0   | LOS A    | 0.0           | 0.1         | 0.20  | 0.54 | 0.20   | 51.7  |
| 9u       | U       | All MCs   | 1     | 0.0  | 1                | 0.0      | 0.003 | 11.0  | LOS A    | 0.0           | 0.1         | 0.20  | 0.54 | 0.20   | 51.7  |
| Appro    | ach     |           | 4     | 0.0  | 4                | 0.0      | 0.003 | 7.1   | LOS A    | 0.0           | 0.1         | 0.20  | 0.54 | 0.20   | 46.7  |
| West:    | Bullo   | ck Road   |       |      |                  |          |       |       |          |               |             |       |      |        |       |
| 10       | L2      | All MCs   | 1     | 0.0  | 1                | 0.0      | 0.049 | 3.9   | LOS A    | 0.2           | 1.6         | 0.04  | 0.41 | 0.04   | 54.6  |
| 11       | T1      | All MCs   | 73    | 0.0  | 73               | 0.0      | 0.049 | 4.1   | LOS A    | 0.2           | 1.6         | 0.04  | 0.41 | 0.04   | 32.3  |
| 12       | R2      | All MCs   | 1     | 0.0  | 1                | 0.0      | 0.049 | 8.7   | LOS A    | 0.2           | 1.6         | 0.04  | 0.41 | 0.04   | 54.0  |
| 12u      | U       | All MCs   | 1     | 0.0  | 1                | 0.0      | 0.049 | 10.8  | LOS A    | 0.2           | 1.6         | 0.04  | 0.41 | 0.04   | 54.0  |
| Appro    | ach     |           | 76    | 0.0  | 76               | 0.0      | 0.049 | 4.2   | LOS A    | 0.2           | 1.6         | 0.04  | 0.41 | 0.04   | 33.3  |
| A II \/- | hieles  |           | 110   | 0.0  | 110              | 0.0      | 0.040 | 4.0   |          | 0.2           | 1.6         | 0.05  | 0.40 | 0.05   | 27 5  |
| All Ve   | nicles  |           | 113   | 0.0  | 113              | 0.0      | 0.049 | 4.2   | LOS A    | 0.2           | 1.6         | 0.05  | 0.42 | 0.05   | 37.5  |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:22:10 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale\_Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\5. Rosedale - Existing+Dev792 (RMS rates).sip9

#### V Site: 101 [(I-1) George Bass Drive / Sunpatch Parade / Tomakin Road\_Weekend Mid-day (Site Folder: Existing + Dev792 - Weekend Mid-day)]

#### Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekend Mid-day Peak Survey Date: 19 November 2023 Peak Hour: 12:00pm - 1:00pm Site Category: (None) Roundabout

| Vehic     | cle Mo | ovement      | t Perfo | rma         | nce  |                          |                     |                       |                     |                                |      |              |                      |                           |                        |
|-----------|--------|--------------|---------|-------------|------|--------------------------|---------------------|-----------------------|---------------------|--------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | ows<br>HV ] |      | rival<br>ows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Sunp | oatch Par    | ade     |             |      |                          |                     |                       |                     |                                |      |              |                      |                           |                        |
| 1         | L2     | All MCs      | 69      | 1.5         | 69   | 1.5                      | 0.160               | 7.3                   | LOS A               | 1.0                            | 6.7  | 0.67         | 0.67                 | 0.67                      | 51.5                   |
| 2         | T1     | All MCs      | 37      | 2.9         | 37   | 2.9                      | 0.160               | 7.5                   | LOS A               | 1.0                            | 6.7  | 0.67         | 0.67                 | 0.67                      | 51.8                   |
| 3         | R2     | All MCs      | 25      | 0.0         | 25   | 0.0                      | 0.160               | 12.0                  | LOS A               | 1.0                            | 6.7  | 0.67         | 0.67                 | 0.67                      | 55.8                   |
| 3u        | U      | All MCs      | 1       | 0.0         | 1    | 0.0                      | 0.160               | 14.1                  | LOS A               | 1.0                            | 6.7  | 0.67         | 0.67                 | 0.67                      | 51.0                   |
| Appro     | ach    |              | 133     | 1.6         | 133  | 1.6                      | 0.160               | 8.3                   | LOS A               | 1.0                            | 6.7  | 0.67         | 0.67                 | 0.67                      | 53.0                   |
| East:     | Georg  | e Bass D     | rive    |             |      |                          |                     |                       |                     |                                |      |              |                      |                           |                        |
| 4         | L2     | All MCs      | 14      | 7.7         | 14   | 7.7                      | 0.393               | 5.8                   | LOS A               | 2.7                            | 19.2 | 0.56         | 0.57                 | 0.56                      | 56.1                   |
| 5         | T1     | All MCs      | 316     | 2.0         | 316  | 2.0                      | 0.393               | 5.8                   | LOS A               | 2.7                            | 19.2 | 0.56         | 0.57                 | 0.56                      | 56.3                   |
| 6         | R2     | All MCs      | 98      | 1.1         | 98   | 1.1                      | 0.393               | 10.4                  | LOS A               | 2.7                            | 19.2 | 0.56         | 0.57                 | 0.56                      | 55.9                   |
| 6u        | U      | All MCs      | 1       | 0.0         | 1    | 0.0                      | 0.393               | 12.5                  | LOS A               | 2.7                            | 19.2 | 0.56         | 0.57                 | 0.56                      | 57.3                   |
| Appro     | ach    |              | 428     | 2.0         | 428  | 2.0                      | 0.393               | 6.9                   | LOS A               | 2.7                            | 19.2 | 0.56         | 0.57                 | 0.56                      | 56.2                   |
| North     | Toma   | kin Road     | I       |             |      |                          |                     |                       |                     |                                |      |              |                      |                           |                        |
| 7         | L2     | All MCs      | 80      | 1.3         | 80   | 1.3                      | 0.290               | 6.7                   | LOS A               | 1.8                            | 13.2 | 0.66         | 0.68                 | 0.66                      | 55.6                   |
| 8         | T1     | All MCs      | 40      | 5.3         | 40   | 5.3                      | 0.290               | 7.1                   | LOS A               | 1.8                            | 13.2 | 0.66         | 0.68                 | 0.66                      | 51.0                   |
| 9         | R2     | All MCs      | 137     | 6.9         | 137  | 6.9                      | 0.290               | 11.8                  | LOS A               | 1.8                            | 13.2 | 0.66         | 0.68                 | 0.66                      | 50.1                   |
| 9u        | U      | All MCs      | 1       | 0.0         | 1    | 0.0                      | 0.290               | 13.6                  | LOS A               | 1.8                            | 13.2 | 0.66         | 0.68                 | 0.66                      | 50.3                   |
| Appro     | ach    |              | 258     | 4.9         | 258  | 4.9                      | 0.290               | 9.5                   | LOS A               | 1.8                            | 13.2 | 0.66         | 0.68                 | 0.66                      | 52.9                   |
| West:     | Georg  | ge Bass [    | Drive   |             |      |                          |                     |                       |                     |                                |      |              |                      |                           |                        |
| 10        | L2     | All MCs      | 153     | 2.1         | 153  | 2.1                      | 0.472               | 5.0                   | LOS A               | 3.6                            | 25.8 | 0.48         | 0.51                 | 0.48                      | 52.4                   |
| 11        | T1     | All MCs      | 352     | 3.3         | 352  | 3.3                      | 0.472               | 5.2                   | LOS A               | 3.6                            | 25.8 | 0.48         | 0.51                 | 0.48                      | 56.6                   |
| 12        | R2     | All MCs      | 56      | 3.8         | 56   | 3.8                      | 0.472               | 9.9                   | LOS A               | 3.6                            | 25.8 | 0.48         | 0.51                 | 0.48                      | 51.8                   |
| 12u       | U      | All MCs      | 28      | 0.0         | 28   | 0.0                      | 0.472               | 11.9                  | LOS A               | 3.6                            | 25.8 | 0.48         | 0.51                 | 0.48                      | 52.0                   |
| Appro     | ach    |              | 588     | 2.9         | 588  | 2.9                      | 0.472               | 6.0                   | LOS A               | 3.6                            | 25.8 | 0.48         | 0.51                 | 0.48                      | 55.6                   |
| All Ve    | hicles |              | 1407    | 2.8         | 1407 | 2.8                      | 0.472               | 7.1                   | LOS A               | 3.6                            | 25.8 | 0.55         | 0.57                 | 0.55                      | 55.3                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:22:10 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\5. Rosedale - Existing+Dev792 (RMS rates).sip9

### W Site: 102 [(I-2) George Bass Drive / Road 01\_Weekend Midday (Site Folder: Existing + Dev792 - Weekend Mid-day)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekend Mid-day Peak Survey Date: 19 November 2023 Peak Hour: 12:00pm - 1:00pm Site Category: (None) Roundabout

| Vehi      | cle Mo | ovement      | t Perfo | rma          | nce |                            |                     |                       |                     |     |                               |              |                      |                           |                        |
|-----------|--------|--------------|---------|--------------|-----|----------------------------|---------------------|-----------------------|---------------------|-----|-------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | lows<br>HV ] |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | Back Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| East:     | Georg  | je Bass D    | rive    |              |     |                            |                     |                       |                     |     |                               |              |                      |                           |                        |
| 5         | T1     | All MCs      | 249     | 2.5          | 249 | 2.5                        | 0.224               | 5.0                   | LOS A               | 1.5 | 11.1                          | 0.41         | 0.46                 | 0.41                      | 58.3                   |
| 6         | R2     | All MCs      | 19      | 0.0          | 19  | 0.0                        | 0.224               | 9.6                   | LOS A               | 1.5 | 11.1                          | 0.41         | 0.46                 | 0.41                      | 57.2                   |
| 6u        | U      | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.224               | 11.7                  | LOS A               | 1.5 | 11.1                          | 0.41         | 0.46                 | 0.41                      | 58.3                   |
| Appro     | bach   |              | 269     | 2.3          | 269 | 2.3                        | 0.224               | 5.4                   | LOS A               | 1.5 | 11.1                          | 0.41         | 0.46                 | 0.41                      | 58.2                   |
| North     | : Road | 101          |         |              |     |                            |                     |                       |                     |     |                               |              |                      |                           |                        |
| 7         | L2     | All MCs      | 21      | 0.0          | 21  | 0.0                        | 0.162               | 6.1                   | LOS A               | 1.0 | 6.8                           | 0.55         | 0.65                 | 0.55                      | 56.4                   |
| 9         | R2     | All MCs      | 139     | 0.0          | 139 | 0.0                        | 0.162               | 11.0                  | LOS A               | 1.0 | 6.8                           | 0.55         | 0.65                 | 0.55                      | 55.1                   |
| 9u        | U      | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.162               | 13.0                  | LOS A               | 1.0 | 6.8                           | 0.55         | 0.65                 | 0.55                      | 49.9                   |
| Appro     | bach   |              | 161     | 0.0          | 161 | 0.0                        | 0.162               | 10.4                  | LOS A               | 1.0 | 6.8                           | 0.55         | 0.65                 | 0.55                      | 55.3                   |
| West:     | Georg  | ge Bass [    | Drive   |              |     |                            |                     |                       |                     |     |                               |              |                      |                           |                        |
| 10        | L2     | All MCs      | 108     | 0.0          | 108 | 0.0                        | 0.294               | 3.9                   | LOS A               | 2.3 | 16.2                          | 0.15         | 0.40                 | 0.15                      | 57.4                   |
| 11        | T1     | All MCs      | 349     | 3.6          | 349 | 3.6                        | 0.294               | 4.2                   | LOS A               | 2.3 | 16.2                          | 0.15         | 0.40                 | 0.15                      | 58.7                   |
| 12u       | U      | All MCs      | 1       | 0.0          | 1   | 0.0                        | 0.294               | 10.9                  | LOS A               | 2.3 | 16.2                          | 0.15         | 0.40                 | 0.15                      | 58.1                   |
| Appro     | bach   |              | 459     | 2.8          | 459 | 2.8                        | 0.294               | 4.2                   | LOS A               | 2.3 | 16.2                          | 0.15         | 0.40                 | 0.15                      | 58.5                   |
| All Ve    | hicles |              | 889     | 2.1          | 889 | 2.1                        | 0.294               | 5.6                   | LOS A               | 2.3 | 16.2                          | 0.30         | 0.46                 | 0.30                      | 58.0                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akcelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:22:11 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\5. Rosedale - Existing+Dev792 (RMS rates).sip9

#### V Site: 103 [(I-3) George Bass Drive / Rosedale Parade / Saltwood Drive\_Weekend Mid-day (Site Folder: Existing + Dev792 - Weekend Mid-day)]

#### Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekend Mid-day Peak Survey Date: 19 November 2023 Peak Hour: 12:00pm - 1:00pm Site Category: (None) Roundabout

| Vehic     | cle Mo | ovemen       | t Perfo | rma  | nce |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
|-----------|--------|--------------|---------|------|-----|----------------------------|---------------------|-----------------------|---------------------|--------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | FI      |      |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geoi | rge Bass     | Drive   |      |     |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
| 1         | L2     | All MCs      | 60      | 0.0  | 60  | 0.0                        | 0.266               | 4.9                   | LOS A               | 1.6                            | 11.1 | 0.40         | 0.48                 | 0.40                      | 57.5                   |
| 2         | T1     | All MCs      | 242     | 0.0  | 242 | 0.0                        | 0.266               | 5.1                   | LOS A               | 1.6                            | 11.1 | 0.40         | 0.48                 | 0.40                      | 57.8                   |
| 3         | R2     | All MCs      | 19      | 0.0  | 19  | 0.0                        | 0.266               | 9.7                   | LOS A               | 1.6                            | 11.1 | 0.40         | 0.48                 | 0.40                      | 57.3                   |
| 3u        | U      | All MCs      |         | 0.0  | 1   | 0.0                        | 0.266               | 11.7                  | LOS A               | 1.6                            | 11.1 | 0.40         | 0.48                 | 0.40                      | 58.3                   |
| Appro     | ach    |              | 322     | 0.0  | 322 | 0.0                        | 0.266               | 5.3                   | LOS A               | 1.6                            | 11.1 | 0.40         | 0.48                 | 0.40                      | 57.7                   |
| East:     | Rosec  | dale Para    | de      |      |     |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
| 4         | L2     | All MCs      | 16      | 6.7  | 16  | 6.7                        | 0.029               | 5.8                   | LOS A               | 0.1                            | 1.1  | 0.48         | 0.60                 | 0.48                      | 57.0                   |
| 5         | T1     | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.029               | 5.8                   | LOS A               | 0.1                            | 1.1  | 0.48         | 0.60                 | 0.48                      | 52.3                   |
| 6         | R2     | All MCs      | 11      | 10.0 | 11  | 10.0                       | 0.029               | 10.7                  | LOS A               | 0.1                            | 1.1  | 0.48         | 0.60                 | 0.48                      | 52.7                   |
| 6u        | U      | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.029               | 12.4                  | LOS A               | 0.1                            | 1.1  | 0.48         | 0.60                 | 0.48                      | 51.5                   |
| Appro     | ach    |              | 28      | 7.4  | 28  | 7.4                        | 0.029               | 7.8                   | LOS A               | 0.1                            | 1.1  | 0.48         | 0.60                 | 0.48                      | 55.9                   |
| North     | Geor   | ge Bass I    | Drive   |      |     |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
| 7         | L2     | All MCs      | 15      | 0.0  | 15  | 0.0                        | 0.240               | 4.3                   | LOS A               | 1.5                            | 10.3 | 0.27         | 0.53                 | 0.27                      | 53.6                   |
| 8         | T1     | All MCs      | 144     | 1.5  | 144 | 1.5                        | 0.240               | 4.5                   | LOS A               | 1.5                            | 10.3 | 0.27         | 0.53                 | 0.27                      | 57.5                   |
| 9         | R2     | All MCs      | 165     | 0.0  | 165 | 0.0                        | 0.240               | 9.1                   | LOS A               | 1.5                            | 10.3 | 0.27         | 0.53                 | 0.27                      | 53.2                   |
| 9u        | U      | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.240               | 11.2                  | LOS A               | 1.5                            | 10.3 | 0.27         | 0.53                 | 0.27                      | 54.2                   |
| Appro     | ach    |              | 325     | 0.6  | 325 | 0.6                        | 0.240               | 6.9                   | LOS A               | 1.5                            | 10.3 | 0.27         | 0.53                 | 0.27                      | 56.0                   |
| West:     | Saltw  | ood Drive    | Э       |      |     |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
| 10        | L2     | All MCs      | 65      | 0.0  | 65  | 0.0                        | 0.120               | 5.2                   | LOS A               | 0.7                            | 4.6  | 0.45         | 0.60                 | 0.45                      | 53.3                   |
| 11        | T1     | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.120               | 5.4                   | LOS A               | 0.7                            | 4.6  | 0.45         | 0.60                 | 0.45                      | 52.2                   |
| 12        | R2     | All MCs      | 63      | 0.0  | 63  | 0.0                        | 0.120               | 10.0                  | LOS A               | 0.7                            | 4.6  | 0.45         | 0.60                 | 0.45                      | 56.8                   |
| 12u       | U      | All MCs      | 1       | 0.0  | 1   | 0.0                        | 0.120               | 12.1                  | LOS A               | 0.7                            | 4.6  | 0.45         | 0.60                 | 0.45                      | 51.4                   |
| Appro     | ach    |              | 131     | 0.0  | 131 | 0.0                        | 0.120               | 7.6                   | LOS A               | 0.7                            | 4.6  | 0.45         | 0.60                 | 0.45                      | 55.7                   |
| All Ve    | hicles |              | 806     | 0.5  | 806 | 0.5                        | 0.266               | 6.4                   | LOS A               | 1.6                            | 11.1 | 0.36         | 0.53                 | 0.36                      | 56.8                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:22:12 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\5. Rosedale - Existing+Dev792 (RMS rates).sip9

## V Site: 104 [(I-4) George Bass Drive / Bullock Road\_Weekend Mid-day (Site Folder: Existing + Dev792 - Weekend Mid-day)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekend Mid-day Peak Survey Date: 19 November 2023 Peak Hour: 12:00pm - 1:00pm Site Category: (None) Give-Way (Two-Way)

| Vehic     | cle Mo | ovement      | t Perfo | rma         | nce |                            |                     |                       |                     |     |                               |              |                      |                           |                        |
|-----------|--------|--------------|---------|-------------|-----|----------------------------|---------------------|-----------------------|---------------------|-----|-------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | ows<br>HV ] |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | Back Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geor | rge Bass     | Drive   |             |     |                            |                     |                       |                     |     |                               |              |                      |                           |                        |
| 1         | L2     | All MCs      | 19      | 0.0         | 19  | 0.0                        | 0.165               | 5.6                   | LOS A               | 0.0 | 0.0                           | 0.00         | 0.04                 | 0.00                      | 57.7                   |
| 2         | T1     | All MCs      | 301     | 0.3         | 301 | 0.3                        | 0.165               | 0.1                   | LOS A               | 0.0 | 0.0                           | 0.00         | 0.04                 | 0.00                      | 59.7                   |
| Appro     | ach    |              | 320     | 0.3         | 320 | 0.3                        | 0.165               | 0.4                   | NA                  | 0.0 | 0.0                           | 0.00         | 0.04                 | 0.00                      | 59.5                   |
| North     | Geor   | ge Bass I    | Drive   |             |     |                            |                     |                       |                     |     |                               |              |                      |                           |                        |
| 8         | T1     | All MCs      | 325     | 0.6         | 325 | 0.6                        | 0.168               | 0.0                   | LOS A               | 0.0 | 0.0                           | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| Appro     | ach    |              | 325     | 0.6         | 325 | 0.6                        | 0.168               | 0.0                   | NA                  | 0.0 | 0.0                           | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| West:     | Bullo  | ck Road      |         |             |     |                            |                     |                       |                     |     |                               |              |                      |                           |                        |
| 10        | L2     | All MCs      | 119     | 0.0         | 119 | 0.0                        | 0.096               | 6.6                   | LOS A               | 0.4 | 2.7                           | 0.37         | 0.61                 | 0.37                      | 51.8                   |
| Appro     | ach    |              | 119     | 0.0         | 119 | 0.0                        | 0.096               | 6.6                   | LOS A               | 0.4 | 2.7                           | 0.37         | 0.61                 | 0.37                      | 51.8                   |
| All Ve    | hicles |              | 764     | 0.4         | 764 | 0.4                        | 0.168               | 1.2                   | NA                  | 0.4 | 2.7                           | 0.06         | 0.11                 | 0.06                      | 58.6                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:22:12 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\5. Rosedale - Existing+Dev792 (RMS rates).sip9

### W Site: 105 [(I-5) Bullock Road / Purdie Parade\_Weekend Midday (Site Folder: Existing + Dev792 - Weekend Mid-day)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

New Site Site Category: (None) Roundabout

| Vehic     | le Mo  | ovement      | t Perfo | rma          | nce           |     |              |                |                     |                         |             |              |                      |                           |                |
|-----------|--------|--------------|---------|--------------|---------------|-----|--------------|----------------|---------------------|-------------------------|-------------|--------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | [ Total | lows<br>HV ] | Fi<br>[ Total |     | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Ba<br>Que<br>[ Veh. | ue<br>Dist] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| South     | · Purd | ie Parade    | veh/h   | %            | veh/h         | %   | v/c          | sec            | _                   | veh                     | m           |              |                      | _                         | km/h           |
| 1         |        | All MCs      |         | 0.0          | 1             | 0.0 | 0.003        | 4.0            | LOS A               | 0.0                     | 0.1         | 0.10         | 0.56                 | 0.10                      | 52.5           |
| 2         | T1     | All MCs      |         | 0.0          |               | 0.0 | 0.003        | 4.1            | LOSA                | 0.0                     | 0.1         | 0.10         | 0.56                 | 0.10                      | 52.8           |
| 3         |        |              |         | 0.0          |               | 0.0 | 0.003        | 8.8            | LOSA                | 0.0                     | 0.1         | 0.10         | 0.56                 | 0.10                      | 52.0           |
| 3<br>3u   | U      | All MCs      |         | 0.0          |               | 0.0 | 0.003        | 10.8           | LOSA                | 0.0                     | 0.1         | 0.10         | 0.56                 | 0.10                      | 52.0           |
| Appro     | -      | All MCS      |         | 0.0          |               | 0.0 | 0.003        | 6.9            | LOSA                | 0.0                     | 0.1         | 0.10         | 0.56                 | 0.10                      | 52.0           |
|           |        |              |         |              |               |     |              |                |                     |                         |             |              |                      |                           |                |
|           |        | k Road       |         | 0.0          |               |     | 0.044        |                | 100.4               |                         | 0.5         | 0.05         | 0.44                 | 0.05                      | 54.0           |
| 4         |        | All MCs      |         | 0.0          |               | 0.0 | 0.014        | 3.9            | LOSA                | 0.1                     | 0.5         | 0.05         | 0.44                 | 0.05                      | 54.2           |
| 5         | T1     | All MCs      |         | 0.0          |               | 0.0 | 0.014        | 4.1            | LOSA                | 0.1                     | 0.5         | 0.05         | 0.44                 | 0.05                      | 54.6           |
| 6         |        | All MCs      |         | 0.0          |               | 0.0 | 0.014        | 8.7            | LOS A               | 0.1                     | 0.5         | 0.05         | 0.44                 | 0.05                      | 53.7           |
| 6u        | U      | All MCs      | 1       |              | 1             |     | 0.014        | 10.8           | LOSA                | 0.1                     | 0.5         | 0.05         | 0.44                 | 0.05                      | 53.7           |
| Appro     | ach    |              | 21      | 0.0          | 21            | 0.0 | 0.014        | 4.6            | LOS A               | 0.1                     | 0.5         | 0.05         | 0.44                 | 0.05                      | 54.5           |
| North:    | Purdi  | ie Parade    | •       |              |               |     |              |                |                     |                         |             |              |                      |                           |                |
| 7         | L2     | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.003        | 4.4            | LOS A               | 0.0                     | 0.1         | 0.25         | 0.54                 | 0.25                      | 52.0           |
| 8         | T1     | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.003        | 4.5            | LOS A               | 0.0                     | 0.1         | 0.25         | 0.54                 | 0.25                      | 52.4           |
| 9         | R2     | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.003        | 9.2            | LOS A               | 0.0                     | 0.1         | 0.25         | 0.54                 | 0.25                      | 51.5           |
| 9u        | U      | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.003        | 11.2           | LOS A               | 0.0                     | 0.1         | 0.25         | 0.54                 | 0.25                      | 51.5           |
| Appro     | ach    |              | 4       | 0.0          | 4             | 0.0 | 0.003        | 7.3            | LOS A               | 0.0                     | 0.1         | 0.25         | 0.54                 | 0.25                      | 51.9           |
| West:     | Bullo  | ck Road      |         |              |               |     |              |                |                     |                         |             |              |                      |                           |                |
| 10        | L2     | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.076        | 3.9            | LOS A               | 0.4                     | 2.5         | 0.04         | 0.40                 | 0.04                      | 54.6           |
| 11        | T1     | All MCs      | 118     | 0.0          | 118           | 0.0 | 0.076        | 4.1            | LOS A               | 0.4                     | 2.5         | 0.04         | 0.40                 | 0.04                      | 55.0           |
| 12        | R2     | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.076        | 8.7            | LOS A               | 0.4                     | 2.5         | 0.04         | 0.40                 | 0.04                      | 54.1           |
| 12u       | U      | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.076        | 10.8           | LOS A               | 0.4                     | 2.5         | 0.04         | 0.40                 | 0.04                      | 54.1           |
| Appro     | ach    |              | 121     | 0.0          | 121           | 0.0 | 0.076        | 4.2            | LOS A               | 0.4                     | 2.5         | 0.04         | 0.40                 | 0.04                      | 55.0           |
| All Ve    | hicles |              | 151     | 0.0          | 151           | 0.0 | 0.076        | 4.4            | LOS A               | 0.4                     | 2.5         | 0.05         | 0.42                 | 0.05                      | 54.7           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:22:13 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale\_Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\5. Rosedale - Existing+Dev792 (RMS rates).sip9

# V Site: 106 [(I-6) Princess Highway / Tomakin Road\_Weekday AM (Site Folder: Existing + Dev792 - Weekday AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

New Site Site Category: (None) Give-Way (Two-Way)

| Vehic     | cle M   | ovemen       | t Perfo                       | rma          | nce  |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
|-----------|---------|--------------|-------------------------------|--------------|------|--------------------------|---------------------|-----------------------|---------------------|-----|--------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn    | Mov<br>Class | Dem<br>Fl<br>[ Total<br>veh/h | lows<br>HV ] |      | rival<br>ows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | Back Of<br>ieue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Prino | cess High    | nway (S)                      | )            |      |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
| 2         | T1      | All MCs      | 445                           | 5.9          | 445  | 5.9                      | 0.271               | 0.2                   | LOS A               | 0.4 | 2.9                            | 0.10         | 0.12                 | 0.10                      | 59.1                   |
| 3         | R2      | All MCs      | 39                            | 5.4          | 39   | 5.4                      | 0.271               | 7.4                   | LOS A               | 0.4 | 2.9                            | 0.10         | 0.12                 | 0.10                      | 56.1                   |
| Appro     | bach    |              | 484                           | 5.9          | 484  | 5.9                      | 0.271               | 0.8                   | NA                  | 0.4 | 2.9                            | 0.10         | 0.12                 | 0.10                      | 58.9                   |
| East:     | Tomal   | kin Road     | (E)                           |              |      |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
| 4         | L2      | All MCs      | 45                            | 7.0          | 45   | 7.0                      | 0.455               | 8.1                   | LOS A               | 2.3 | 16.5                           | 0.66         | 0.94                 | 0.96                      | 48.0                   |
| 6         | R2      | All MCs      | 224                           | 1.4          | 224  | 1.4                      | 0.455               | 13.0                  | LOS A               | 2.3 | 16.5                           | 0.66         | 0.94                 | 0.96                      | 47.9                   |
| Appro     | bach    |              | 269                           | 2.3          | 269  | 2.3                      | 0.455               | 12.2                  | LOS A               | 2.3 | 16.5                           | 0.66         | 0.94                 | 0.96                      | 48.0                   |
| North     | : Princ | ess High     | way (N)                       | )            |      |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
| 7         | L2      | All MCs      | 125                           | 5.0          | 125  | 5.0                      | 0.204               | 5.6                   | LOS A               | 0.0 | 0.0                            | 0.00         | 0.20                 | 0.00                      | 55.5                   |
| 8         | T1      | All MCs      | 244                           | 10.3         | 244  | 10.3                     | 0.204               | 0.1                   | LOS A               | 0.0 | 0.0                            | 0.00         | 0.20                 | 0.00                      | 58.0                   |
| Appro     | bach    |              | 369                           | 8.5          | 369  | 8.5                      | 0.204               | 2.0                   | NA                  | 0.0 | 0.0                            | 0.00         | 0.20                 | 0.00                      | 57.1                   |
| All Ve    | hicles  |              | 1123                          | 5.9          | 1123 | 5.9                      | 0.455               | 3.9                   | NA                  | 2.3 | 16.5                           | 0.20         | 0.34                 | 0.27                      | 55.3                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Monday, 6 January 2025 4:13:19 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\250106 - SIDRA Modelling\3. Rosedale - Existing+Dev792 (RMS rates).sip9

### V Site: 106 [(I-6) Princess Highway / Tomakin Road\_Weekday PM (Site Folder: Existing + Dev792 - Weekday PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

New Site Site Category: (None) Give-Way (Two-Way)

| Vehic     | cle Mo  | ovement      | t Perfo                         | rma          | nce  |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
|-----------|---------|--------------|---------------------------------|--------------|------|--------------------------|---------------------|-----------------------|---------------------|-----|--------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn    | Mov<br>Class | Dem<br>Fl<br>[ Total  <br>veh/h | lows<br>HV ] |      | rival<br>ows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | Back Of<br>ieue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Princ | cess High    | way (S)                         | )            |      |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
| 2         | T1      | All MCs      | 433                             | 6.6          | 433  | 6.6                      | 0.288               | 0.7                   | LOS A               | 0.7 | 4.8                            | 0.17         | 0.21                 | 0.17                      | 58.5                   |
| 3         | R2      | All MCs      | 46                              | 2.3          | 46   | 2.3                      | 0.288               | 9.4                   | LOS A               | 0.7 | 4.8                            | 0.17         | 0.21                 | 0.17                      | 55.6                   |
| Appro     | ach     |              | 479                             | 6.2          | 479  | 6.2                      | 0.288               | 1.6                   | NA                  | 0.7 | 4.8                            | 0.17         | 0.21                 | 0.17                      | 58.2                   |
| East:     | Tomal   | kin Road     | (E)                             |              |      |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
| 4         | L2      | All MCs      | 41                              | 2.6          | 41   | 2.6                      | 0.426               | 9.3                   | LOS A               | 1.8 | 12.9                           | 0.75         | 0.99                 | 1.05                      | 46.4                   |
| 6         | R2      | All MCs      | 143                             | 2.9          | 143  | 2.9                      | 0.426               | 16.6                  | LOS B               | 1.8 | 12.9                           | 0.75         | 0.99                 | 1.05                      | 46.2                   |
| Appro     | ach     |              | 184                             | 2.9          | 184  | 2.9                      | 0.426               | 15.0                  | LOS B               | 1.8 | 12.9                           | 0.75         | 0.99                 | 1.05                      | 46.2                   |
| North     | : Princ | ess High     | way (N)                         | 1            |      |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
| 7         | L2      | All MCs      | 209                             | 1.0          | 209  | 1.0                      | 0.356               | 5.7                   | LOS A               | 0.0 | 0.0                            | 0.00         | 0.19                 | 0.00                      | 55.7                   |
| 8         | T1      | All MCs      | 459                             | 4.6          | 459  | 4.6                      | 0.356               | 0.1                   | LOS A               | 0.0 | 0.0                            | 0.00         | 0.19                 | 0.00                      | 58.1                   |
| Appro     | ach     |              | 668                             | 3.5          | 668  | 3.5                      | 0.356               | 1.9                   | NA                  | 0.0 | 0.0                            | 0.00         | 0.19                 | 0.00                      | 57.3                   |
| All Ve    | hicles  |              | 1332                            | 4.3          | 1332 | 4.3                      | 0.426               | 3.6                   | NA                  | 1.8 | 12.9                           | 0.16         | 0.31                 | 0.21                      | 55.8                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Monday, 6 January 2025 4:13:22 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\250106 - SIDRA Modelling\3. Rosedale - Existing+Dev792 (RMS rates).sip9

### V Site: 106 [(I-6) Princess Highway / Tomakin Road\_Weekend Mid-day (Site Folder: Existing + Dev792 - Weekend Mid-day)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

New Site Site Category: (None) Give-Way (Two-Way)

| Vehi      | cle M   | ovemen       | t Perfo                         | rma          | nce  |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
|-----------|---------|--------------|---------------------------------|--------------|------|--------------------------|---------------------|-----------------------|---------------------|-----|--------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn    | Mov<br>Class | Dem<br>Fl<br>[ Total  <br>veh/h | lows<br>HV ] |      | rival<br>ows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | Back Of<br>leue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Prino | cess High    | way (S)                         | )            |      |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
| 2         | T1      | All MCs      | 366                             | 1.4          | 366  | 1.4                      | 0.225               | 0.4                   | LOS A               | 0.4 | 2.8                            | 0.13         | 0.16                 | 0.13                      | 58.9                   |
| 3         | R2      | All MCs      | 38                              | 0.0          | 38   | 0.0                      | 0.225               | 7.7                   | LOS A               | 0.4 | 2.8                            | 0.13         | 0.16                 | 0.13                      | 56.2                   |
| Appro     | bach    |              | 404                             | 1.3          | 404  | 1.3                      | 0.225               | 1.0                   | NA                  | 0.4 | 2.8                            | 0.13         | 0.16                 | 0.13                      | 58.7                   |
| East:     | Tomal   | kin Road     | (E)                             |              |      |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
| 4         | L2      | All MCs      | 51                              | 2.1          | 51   | 2.1                      | 0.462               | 8.1                   | LOS A               | 2.4 | 16.8                           | 0.65         | 0.94                 | 0.95                      | 48.4                   |
| 6         | R2      | All MCs      | 239                             | 0.4          | 239  | 0.4                      | 0.462               | 12.5                  | LOS A               | 2.4 | 16.8                           | 0.65         | 0.94                 | 0.95                      | 48.3                   |
| Appro     | bach    |              | 289                             | 0.7          | 289  | 0.7                      | 0.462               | 11.7                  | LOS A               | 2.4 | 16.8                           | 0.65         | 0.94                 | 0.95                      | 48.3                   |
| North     | : Princ | ess High     | way (N)                         |              |      |                          |                     |                       |                     |     |                                |              |                      |                           |                        |
| 7         | L2      | All MCs      | 191                             | 1.7          | 191  | 1.7                      | 0.257               | 5.6                   | LOS A               | 0.0 | 0.0                            | 0.00         | 0.23                 | 0.00                      | 55.4                   |
| 8         | T1      | All MCs      | 297                             | 1.1          | 297  | 1.1                      | 0.257               | 0.1                   | LOS A               | 0.0 | 0.0                            | 0.00         | 0.23                 | 0.00                      | 57.8                   |
| Appro     | bach    |              | 487                             | 1.3          | 487  | 1.3                      | 0.257               | 2.2                   | NA                  | 0.0 | 0.0                            | 0.00         | 0.23                 | 0.00                      | 56.9                   |
| All Ve    | hicles  |              | 1181                            | 1.2          | 1181 | 1.2                      | 0.462               | 4.2                   | NA                  | 2.4 | 16.8                           | 0.20         | 0.38                 | 0.28                      | 55.0                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Monday, 6 January 2025 4:13:25 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\250106 - SIDRA Modelling\3. Rosedale - Existing+Dev792 (RMS rates).sip9

#### V Site: 101 [(I-1) George Bass Drive / Sunpatch Parade / Tomakin Road\_Weekday AM (Site Folder: Existing + Growth + Dev792 - Weekday AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday AM Peak Survey Date: 22 November 2023 Peak Hour: 8:00am - 9:00am Site Category: (None) Roundabout

| Vehicle Movement Performance |        |              |       |              |      |                            |                     |                       |                     |                                |       |              |                      |                           |                        |
|------------------------------|--------|--------------|-------|--------------|------|----------------------------|---------------------|-----------------------|---------------------|--------------------------------|-------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID                    | Turn   | Mov<br>Class |       | lows<br>HV ] |      | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>[ Veh.<br>veh |       | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South                        | : Sunp | atch Para    | ade   |              |      |                            |                     |                       |                     |                                |       |              |                      |                           |                        |
| 1                            | L2     | All MCs      | 54    | 0.0          | 54   | 0.0                        | 0.238               | 15.6                  | LOS B               | 1.8                            | 12.6  | 1.00         | 0.83                 | 1.00                      | 46.5                   |
| 2                            | T1     | All MCs      | 24    | 0.0          | 24   | 0.0                        | 0.238               | 15.8                  | LOS B               | 1.8                            | 12.6  | 1.00         | 0.83                 | 1.00                      | 46.8                   |
| 3                            | R2     | All MCs      | 5     | 0.0          | 5    | 0.0                        | 0.238               | 20.4                  | LOS B               | 1.8                            | 12.6  | 1.00         | 0.83                 | 1.00                      | 53.1                   |
| 3u                           | U      | All MCs      | 1     | 0.0          | 1    | 0.0                        | 0.238               | 22.5                  | LOS B               | 1.8                            | 12.6  | 1.00         | 0.83                 | 1.00                      | 46.1                   |
| Appro                        | ach    |              | 84    | 0.0          | 84   | 0.0                        | 0.238               | 16.1                  | LOS B               | 1.8                            | 12.6  | 1.00         | 0.83                 | 1.00                      | 47.4                   |
| East: George Bass Dr         |        |              | rive  |              |      |                            |                     |                       |                     |                                |       |              |                      |                           |                        |
| 4                            | L2     | All MCs      | 11    | 0.0          | 11   | 0.0                        | 0.841               | 12.9                  | LOS A               | 15.2                           | 108.4 | 1.00         | 0.92                 | 1.38                      | 54.1                   |
| 5                            | T1     | All MCs      | 738   | 1.9          | 738  | 1.9                        | 0.841               | 13.2                  | LOS A               | 15.2                           | 108.4 | 1.00         | 0.92                 | 1.38                      | 54.3                   |
| 6                            | R2     | All MCs      | 122   | 2.6          | 122  | 2.6                        | 0.841               | 17.9                  | LOS B               | 15.2                           | 108.4 | 1.00         | 0.92                 | 1.38                      | 53.9                   |
| 6u                           | U      | All MCs      | 1     | 0.0          | 1    | 0.0                        | 0.841               | 19.8                  | LOS B               | 15.2                           | 108.4 | 1.00         | 0.92                 | 1.38                      | 56.0                   |
| Appro                        | ach    |              | 872   | 1.9          | 872  | 1.9                        | 0.841               | 13.9                  | LOS A               | 15.2                           | 108.4 | 1.00         | 0.92                 | 1.38                      | 54.2                   |
| North                        | : Toma | kin Road     |       |              |      |                            |                     |                       |                     |                                |       |              |                      |                           |                        |
| 7                            | L2     | All MCs      | 54    | 7.8          | 54   | 7.8                        | 0.382               | 6.9                   | LOS A               | 2.6                            | 18.8  | 0.68         | 0.69                 | 0.68                      | 55.1                   |
| 8                            | T1     | All MCs      | 12    | 9.1          | 12   | 9.1                        | 0.382               | 7.1                   | LOS A               | 2.6                            | 18.8  | 0.68         | 0.69                 | 0.68                      | 50.2                   |
| 9                            | R2     | All MCs      | 280   | 4.1          | 280  | 4.1                        | 0.382               | 11.6                  | LOS A               | 2.6                            | 18.8  | 0.68         | 0.69                 | 0.68                      | 49.4                   |
| 9u                           | U      | All MCs      | 2     | 100.<br>0    | 2    | 100.<br>0                  | 0.382               | 17.5                  | LOS B               | 2.6                            | 18.8  | 0.68         | 0.69                 | 0.68                      | 46.4                   |
| Appro                        | ach    |              | 347   | 5.5          | 347  | 5.5                        | 0.382               | 10.7                  | LOS A               | 2.6                            | 18.8  | 0.68         | 0.69                 | 0.68                      | 51.0                   |
| West:                        | Georg  | ge Bass D    | )rive |              |      |                            |                     |                       |                     |                                |       |              |                      |                           |                        |
| 10                           | L2     | All MCs      | 234   | 5.0          | 234  | 5.0                        | 0.522               | 5.1                   | LOS A               | 4.7                            | 33.7  | 0.55         | 0.51                 | 0.55                      | 52.4                   |
| 11                           | T1     | All MCs      | 367   | 2.9          | 367  | 2.9                        | 0.522               | 5.3                   | LOS A               | 4.7                            | 33.7  | 0.55         | 0.51                 | 0.55                      | 56.7                   |
| 12                           | R2     | All MCs      | 31    | 3.4          | 31   | 3.4                        | 0.522               | 9.9                   | LOS A               | 4.7                            | 33.7  | 0.55         | 0.51                 | 0.55                      | 51.9                   |
| 12u                          | U      | All MCs      | 12    | 0.0          | 12   | 0.0                        | 0.522               | 11.9                  | LOS A               | 4.7                            | 33.7  | 0.55         | 0.51                 | 0.55                      | 52.0                   |
| Appro                        | ach    |              | 643   | 3.6          | 643  | 3.6                        | 0.522               | 5.5                   | LOS A               | 4.7                            | 33.7  | 0.55         | 0.51                 | 0.55                      | 55.5                   |
| All Ve                       | hicles |              | 1946  | 3.0          | 1946 | 3.0                        | 0.841               | 10.7                  | LOS A               | 15.2                           | 108.4 | 0.79         | 0.74                 | 0.96                      | 54.0                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:31:33 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\6. Rosedale - Existing+Growth +Dev792 (RMS rates).sip9

### 

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday AM Peak Survey Date: 22 November 2023 Peak Hour: 8:00am - 9:00am Site Category: (None) Roundabout

| Vehicle Movement Performance |                |              |       |              |      |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
|------------------------------|----------------|--------------|-------|--------------|------|----------------------------|---------------------|-----------------------|---------------------|-------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID                    | Turn           | Mov<br>Class |       | lows<br>HV ] |      | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| East: George Bass Drive      |                |              |       |              |      |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 5                            | T1             | All MCs      | 627   | 2.2          | 627  | 2.2                        | 0.525               | 5.6                   | LOS A               | 4.9                           | 35.2 | 0.59         | 0.49                 | 0.59                      | 58.1                   |
| 6                            | R2             | All MCs      | 14    | 0.0          | 14   | 0.0                        | 0.525               | 10.2                  | LOS A               | 4.9                           | 35.2 | 0.59         | 0.49                 | 0.59                      | 57.0                   |
| 6u                           | U              | All MCs      | 1     | 0.0          | 1    | 0.0                        | 0.525               | 12.2                  | LOS A               | 4.9                           | 35.2 | 0.59         | 0.49                 | 0.59                      | 58.1                   |
| Appro                        | ach            |              | 642   | 2.1          | 642  | 2.1                        | 0.525               | 5.7                   | LOS A               | 4.9                           | 35.2 | 0.59         | 0.49                 | 0.59                      | 58.1                   |
| North                        | North: Road 01 |              |       |              |      |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 7                            | L2             | All MCs      | 24    | 0.0          | 24   | 0.0                        | 0.185               | 6.0                   | LOS A               | 1.1                           | 7.8  | 0.54         | 0.65                 | 0.54                      | 56.4                   |
| 9                            | R2             | All MCs      | 162   | 0.0          | 162  | 0.0                        | 0.185               | 10.9                  | LOS A               | 1.1                           | 7.8  | 0.54         | 0.65                 | 0.54                      | 55.1                   |
| 9u                           | U              | All MCs      | 1     | 0.0          | 1    | 0.0                        | 0.185               | 12.9                  | LOS A               | 1.1                           | 7.8  | 0.54         | 0.65                 | 0.54                      | 49.9                   |
| Appro                        | ach            |              | 187   | 0.0          | 187  | 0.0                        | 0.185               | 10.3                  | LOS A               | 1.1                           | 7.8  | 0.54         | 0.65                 | 0.54                      | 55.3                   |
| West:                        | Georg          | ge Bass D    | Drive |              |      |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 10                           | L2             | All MCs      | 76    | 0.0          | 76   | 0.0                        | 0.255               | 3.9                   | LOS A               | 2.0                           | 14.2 | 0.12         | 0.40                 | 0.12                      | 57.4                   |
| 11                           | T1             | All MCs      | 326   | 3.9          | 326  | 3.9                        | 0.255               | 4.2                   | LOS A               | 2.0                           | 14.2 | 0.12         | 0.40                 | 0.12                      | 58.7                   |
| 12u                          | U              | All MCs      | 1     | 0.0          | 1    | 0.0                        | 0.255               | 10.8                  | LOS A               | 2.0                           | 14.2 | 0.12         | 0.40                 | 0.12                      | 58.2                   |
| Appro                        | ach            |              | 403   | 3.1          | 403  | 3.1                        | 0.255               | 4.1                   | LOS A               | 2.0                           | 14.2 | 0.12         | 0.40                 | 0.12                      | 58.5                   |
| All Ve                       | hicles         |              | 1233  | 2.1          | 1233 | 2.1                        | 0.525               | 5.9                   | LOS A               | 4.9                           | 35.2 | 0.43         | 0.49                 | 0.43                      | 57.9                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:31:34 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\6. Rosedale - Existing+Growth +Dev792 (RMS rates).sip9

#### V Site: 103 [(I-3) George Bass Drive / Rosedale Parade / Saltwood Drive\_Weekday AM (Site Folder: Existing + Growth + Dev792 - Weekday AM)]

#### Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday AM Peak Survey Date: 22 November 2023 Peak Hour: 8:00am - 9:00am Site Category: (None) Roundabout

| Vehicle Movement Performance |                      |              |       |              |     |                           |                     |                       |                     |                               |      |              |                      |                           |                        |
|------------------------------|----------------------|--------------|-------|--------------|-----|---------------------------|---------------------|-----------------------|---------------------|-------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID                    | Turn                 | Mov<br>Class |       | lows<br>HV ] |     | rival<br>lows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South                        | : Geoi               | rge Bass     | Drive |              |     |                           |                     |                       |                     |                               |      |              |                      |                           |                        |
| 1                            | L2                   | All MCs      | 44    | 0.0          | 44  | 0.0                       | 0.226               | 4.6                   | LOS A               | 1.3                           | 9.4  | 0.34         | 0.45                 | 0.34                      | 57.6                   |
| 2                            | T1                   | All MCs      | 226   | 3.7          | 226 | 3.7                       | 0.226               | 4.8                   | LOS A               | 1.3                           | 9.4  | 0.34         | 0.45                 | 0.34                      | 57.9                   |
| 3                            | R2                   | All MCs      | 8     | 12.5         | 8   | 12.5                      | 0.226               | 9.6                   | LOS A               | 1.3                           | 9.4  | 0.34         | 0.45                 | 0.34                      | 57.2                   |
| 3u                           | U                    | All MCs      | 1     | 0.0          | 1   | 0.0                       | 0.226               | 11.4                  | LOS A               | 1.3                           | 9.4  | 0.34         | 0.45                 | 0.34                      | 58.4                   |
| Appro                        | ach                  |              | 280   | 3.4          | 280 | 3.4                       | 0.226               | 4.9                   | LOS A               | 1.3                           | 9.4  | 0.34         | 0.45                 | 0.34                      | 57.8                   |
| East:                        | East: Rosedale Parad |              |       |              |     |                           |                     |                       |                     |                               |      |              |                      |                           |                        |
| 4                            | L2                   | All MCs      | 21    | 0.0          | 21  | 0.0                       | 0.040               | 6.7                   | LOS A               | 0.2                           | 1.6  | 0.59         | 0.65                 | 0.59                      | 56.9                   |
| 5                            | T1                   | All MCs      | 1     | 0.0          | 1   | 0.0                       | 0.040               | 6.8                   | LOS A               | 0.2                           | 1.6  | 0.59         | 0.65                 | 0.59                      | 51.8                   |
| 6                            | R2                   | All MCs      | 12    | 9.1          | 12  | 9.1                       | 0.040               | 11.8                  | LOS A               | 0.2                           | 1.6  | 0.59         | 0.65                 | 0.59                      | 52.3                   |
| 6u                           | U                    | All MCs      | 1     | 0.0          | 1   | 0.0                       | 0.040               | 13.5                  | LOS A               | 0.2                           | 1.6  | 0.59         | 0.65                 | 0.59                      | 51.0                   |
| Appro                        | ach                  |              | 35    | 3.0          | 35  | 3.0                       | 0.040               | 8.6                   | LOS A               | 0.2                           | 1.6  | 0.59         | 0.65                 | 0.59                      | 55.8                   |
| North                        | Geor                 | ge Bass I    | Drive |              |     |                           |                     |                       |                     |                               |      |              |                      |                           |                        |
| 7                            | L2                   | All MCs      | 5     | 0.0          | 5   | 0.0                       | 0.353               | 4.3                   | LOS A               | 2.5                           | 17.5 | 0.31         | 0.47                 | 0.31                      | 54.1                   |
| 8                            | T1                   | All MCs      | 360   | 2.6          | 360 | 2.6                       | 0.353               | 4.6                   | LOS A               | 2.5                           | 17.5 | 0.31         | 0.47                 | 0.31                      | 57.7                   |
| 9                            | R2                   | All MCs      | 119   | 0.9          | 119 | 0.9                       | 0.353               | 9.2                   | LOS A               | 2.5                           | 17.5 | 0.31         | 0.47                 | 0.31                      | 53.7                   |
| 9u                           | U                    | All MCs      | 1     | 0.0          | 1   | 0.0                       | 0.353               | 11.2                  | LOS A               | 2.5                           | 17.5 | 0.31         | 0.47                 | 0.31                      | 54.7                   |
| Appro                        | ach                  |              | 485   | 2.2          | 485 | 2.2                       | 0.353               | 5.7                   | LOS A               | 2.5                           | 17.5 | 0.31         | 0.47                 | 0.31                      | 57.2                   |
| West:                        | Saltw                | ood Drive    | Э     |              |     |                           |                     |                       |                     |                               |      |              |                      |                           |                        |
| 10                           | L2                   | All MCs      | 69    | 0.0          | 69  | 0.0                       | 0.130               | 5.1                   | LOS A               | 0.7                           | 4.9  | 0.43         | 0.60                 | 0.43                      | 53.3                   |
| 11                           | T1                   | All MCs      | 1     | 0.0          | 1   | 0.0                       | 0.130               | 5.3                   | LOS A               | 0.7                           | 4.9  | 0.43         | 0.60                 | 0.43                      | 52.2                   |
| 12                           | R2                   | All MCs      | 73    | 0.0          | 73  | 0.0                       | 0.130               | 9.9                   | LOS A               | 0.7                           | 4.9  | 0.43         | 0.60                 | 0.43                      | 56.8                   |
| 12u                          | U                    | All MCs      | 1     | 0.0          | 1   | 0.0                       | 0.130               | 12.0                  | LOS A               | 0.7                           | 4.9  | 0.43         | 0.60                 | 0.43                      | 51.4                   |
| Appro                        | ach                  |              | 144   | 0.0          | 144 | 0.0                       | 0.130               | 7.6                   | LOS A               | 0.7                           | 4.9  | 0.43         | 0.60                 | 0.43                      | 55.8                   |
| All Ve                       | hicles               |              | 944   | 2.2          | 944 | 2.2                       | 0.353               | 5.9                   | LOS A               | 2.5                           | 17.5 | 0.35         | 0.49                 | 0.35                      | 57.2                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:31:35 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\6. Rosedale - Existing+Growth +Dev792 (RMS rates).sip9
# V Site: 104 [(I-4) George Bass Drive / Bullock Road\_Weekday AM (Site Folder: Existing + Growth + Dev792 - Weekday AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday AM Peak Survey Date: 22 November 2023 Peak Hour: 8:00am - 9:00am Site Category: (None) Give-Way (Two-Way)

| Vehic     | cle Mo | ovement      | t Perfo | rma         | nce |                            |                     |                       |                     |     |                               |              |                      |                           |                        |
|-----------|--------|--------------|---------|-------------|-----|----------------------------|---------------------|-----------------------|---------------------|-----|-------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | ows<br>HV ] |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | Back Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geo  | rge Bass     | Drive   |             |     |                            |                     |                       |                     |     |                               |              |                      |                           |                        |
| 1         | L2     | All MCs      | 14      | 0.0         | 14  | 0.0                        | 0.168               | 5.6                   | LOS A               | 0.0 | 0.0                           | 0.00         | 0.03                 | 0.00                      | 36.2                   |
| 2         | T1     | All MCs      | 307     | 3.1         | 307 | 3.1                        | 0.168               | 0.1                   | LOS A               | 0.0 | 0.0                           | 0.00         | 0.03                 | 0.00                      | 59.7                   |
| Appro     | ach    |              | 321     | 3.0         | 321 | 3.0                        | 0.168               | 0.3                   | NA                  | 0.0 | 0.0                           | 0.00         | 0.03                 | 0.00                      | 58.7                   |
| North     | Geor   | ge Bass I    | Drive   |             |     |                            |                     |                       |                     |     |                               |              |                      |                           |                        |
| 8         | T1     | All MCs      | 496     | 2.1         | 496 | 2.1                        | 0.258               | 0.1                   | LOS A               | 0.0 | 0.0                           | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| Appro     | ach    |              | 496     | 2.1         | 496 | 2.1                        | 0.258               | 0.1                   | NA                  | 0.0 | 0.0                           | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| West:     | Bullo  | ck Road      |         |             |     |                            |                     |                       |                     |     |                               |              |                      |                           |                        |
| 10        | L2     | All MCs      | 139     | 0.0         | 139 | 0.0                        | 0.113               | 5.4                   | LOS A               | 0.5 | 3.2                           | 0.38         | 0.61                 | 0.38                      | 48.4                   |
| Appro     | ach    |              | 139     | 0.0         | 139 | 0.0                        | 0.113               | 5.4                   | LOS A               | 0.5 | 3.2                           | 0.38         | 0.61                 | 0.38                      | 48.4                   |
| All Ve    | hicles |              | 956     | 2.1         | 956 | 2.1                        | 0.258               | 0.9                   | NA                  | 0.5 | 3.2                           | 0.06         | 0.10                 | 0.06                      | 58.4                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:31:35 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\6. Rosedale - Existing+Growth +Dev792 (RMS rates).sip9

### 🐺 Site: 105 [(I-5) Bullock Road / Purdie Parade\_Weekday AM (Site Folder: Existing + Growth + Dev792 - Weekday AM)]

**Output produced by SIDRA INTERSECTION Version: 9.1.5.224** 

New Site Site Category: (None) Roundabout

| Vehic     | cle Mo | ovement      | t Perfo | rma | nce   |                       |              |                |                     |                         |     |              |                      |                           |                |
|-----------|--------|--------------|---------|-----|-------|-----------------------|--------------|----------------|---------------------|-------------------------|-----|--------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | ows |       | rival<br>lows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% Ba<br>Que<br>[ Veh. |     | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
|           |        |              | veh/h   | %   | veh/h | %                     | v/c          | sec            |                     | veh                     | m   |              |                      |                           | km/h           |
| South     | : Purd | ie Parade    | 9       |     |       |                       |              |                |                     |                         |     |              |                      |                           |                |
| 1         | L2     | All MCs      | 1       | 0.0 | 1     | 0.0                   | 0.003        | 3.9            | LOS A               | 0.0                     | 0.1 | 0.08         | 0.56                 | 0.08                      | 52.5           |
| 2         | T1     | All MCs      | 1       | 0.0 | 1     | 0.0                   | 0.003        | 4.1            | LOS A               | 0.0                     | 0.1 | 0.08         | 0.56                 | 0.08                      | 52.9           |
| 3         | R2     | All MCs      | 1       | 0.0 | 1     | 0.0                   | 0.003        | 8.7            | LOS A               | 0.0                     | 0.1 | 0.08         | 0.56                 | 0.08                      | 30.8           |
| 3u        | U      | All MCs      | 1       | 0.0 | 1     | 0.0                   | 0.003        | 10.8           | LOS A               | 0.0                     | 0.1 | 0.08         | 0.56                 | 0.08                      | 52.0           |
| Appro     | ach    |              | 4       | 0.0 | 4     | 0.0                   | 0.003        | 6.9            | LOS A               | 0.0                     | 0.1 | 0.08         | 0.56                 | 0.08                      | 47.1           |
| East:     | Bulloc | k Road       |         |     |       |                       |              |                |                     |                         |     |              |                      |                           |                |
| 4         | L2     | All MCs      | 1       | 0.0 | 1     | 0.0                   | 0.011        | 2.8            | LOS A               | 0.1                     | 0.4 | 0.05         | 0.44                 | 0.05                      | 51.7           |
| 5         | T1     | All MCs      | 13      | 0.0 | 13    | 0.0                   | 0.011        | 3.1            | LOS A               | 0.1                     | 0.4 | 0.05         | 0.44                 | 0.05                      | 52.3           |
| 6         | R2     | All MCs      | 1       | 0.0 | 1     | 0.0                   | 0.011        | 7.5            | LOS A               | 0.1                     | 0.4 | 0.05         | 0.44                 | 0.05                      | 50.9           |
| 6u        | U      | All MCs      | 1       | 0.0 | 1     | 0.0                   | 0.011        | 9.6            | LOS A               | 0.1                     | 0.4 | 0.05         | 0.44                 | 0.05                      | 13.7           |
| Appro     | ach    |              | 16      | 0.0 | 16    | 0.0                   | 0.011        | 3.8            | LOS A               | 0.1                     | 0.4 | 0.05         | 0.44                 | 0.05                      | 49.6           |
| North:    | Purdi  | ie Parade    | •       |     |       |                       |              |                |                     |                         |     |              |                      |                           |                |
| 7         | L2     | All MCs      | 1       | 0.0 | 1     | 0.0                   | 0.003        | 4.4            | LOS A               | 0.0                     | 0.1 | 0.28         | 0.54                 | 0.28                      | 30.4           |
| 8         | T1     | All MCs      | 1       | 0.0 | 1     | 0.0                   | 0.003        | 4.6            | LOS A               | 0.0                     | 0.1 | 0.28         | 0.54                 | 0.28                      | 52.3           |
| 9         | R2     | All MCs      | 1       | 0.0 | 1     | 0.0                   | 0.003        | 9.3            | LOS A               | 0.0                     | 0.1 | 0.28         | 0.54                 | 0.28                      | 51.5           |
| 9u        | U      | All MCs      | 1       | 0.0 | 1     | 0.0                   | 0.003        | 11.3           | LOS A               | 0.0                     | 0.1 | 0.28         | 0.54                 | 0.28                      | 51.5           |
| Appro     | ach    |              | 4       | 0.0 | 4     | 0.0                   | 0.003        | 7.4            | LOS A               | 0.0                     | 0.1 | 0.28         | 0.54                 | 0.28                      | 46.5           |
| West:     | Bullo  | ck Road      |         |     |       |                       |              |                |                     |                         |     |              |                      |                           |                |
| 10        | L2     | All MCs      | 1       | 0.0 | 1     | 0.0                   | 0.087        | 3.9            | LOS A               | 0.4                     | 2.9 | 0.04         | 0.40                 | 0.04                      | 54.6           |
| 11        | T1     | All MCs      | 138     | 0.0 | 138   | 0.0                   | 0.087        | 4.1            | LOS A               | 0.4                     | 2.9 | 0.04         | 0.40                 | 0.04                      | 32.3           |
| 12        | R2     | All MCs      | 1       | 0.0 | 1     | 0.0                   | 0.087        | 8.7            | LOS A               | 0.4                     | 2.9 | 0.04         | 0.40                 | 0.04                      | 54.1           |
| 12u       | U      | All MCs      | 1       | 0.0 | 1     | 0.0                   | 0.087        | 10.8           | LOS A               | 0.4                     | 2.9 | 0.04         | 0.40                 | 0.04                      | 54.1           |
| Appro     | ach    |              | 141     | 0.0 | 141   | 0.0                   | 0.087        | 4.1            | LOS A               | 0.4                     | 2.9 | 0.04         | 0.40                 | 0.04                      | 32.9           |
| All Ve    | hicles |              | 165     | 0.0 | 165   | 0.0                   | 0.087        | 4.3            | LOS A               | 0.4                     | 2.9 | 0.05         | 0.41                 | 0.05                      | 34.7           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:31:36 PM Project: S:\PROJECTS 2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\6. Rosedale - Existing+Growth +Dev792 (RMS rates).sip9

#### V Site: 101 [(I-1) George Bass Drive / Sunpatch Parade / Tomakin Road\_Weekday PM (Site Folder: Existing + Growth + Dev792 - Weekday PM)]

#### Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday PM Peak Survey Date: 22 November 2023 Peak Hour: 3:30pm - 4:30pm Site Category: (None) Roundabout

| Vehic     | le Mo  | ovement      | t Perfo | rma         | nce  |                          |                     |                       |                     |                                |      |              |                      |                           |                        |
|-----------|--------|--------------|---------|-------------|------|--------------------------|---------------------|-----------------------|---------------------|--------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | ows<br>HV ] |      | rival<br>ows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Sunp | atch Par     | ade     |             |      |                          |                     |                       |                     |                                |      |              |                      |                           |                        |
| 1         | L2     | All MCs      | 38      | 2.8         | 38   | 2.8                      | 0.069               | 7.3                   | LOS A               | 0.4                            | 2.8  | 0.66         | 0.67                 | 0.66                      | 51.5                   |
| 2         | T1     | All MCs      | 7       | 0.0         | 7    | 0.0                      | 0.069               | 7.4                   | LOS A               | 0.4                            | 2.8  | 0.66         | 0.67                 | 0.66                      | 51.9                   |
| 3         | R2     | All MCs      | 8       | 0.0         | 8    | 0.0                      | 0.069               | 12.0                  | LOS A               | 0.4                            | 2.8  | 0.66         | 0.67                 | 0.66                      | 55.8                   |
| 3u        | U      | All MCs      | 1       | 0.0         | 1    | 0.0                      | 0.069               | 14.1                  | LOS A               | 0.4                            | 2.8  | 0.66         | 0.67                 | 0.66                      | 51.1                   |
| Appro     | ach    |              | 55      | 1.9         | 55   | 1.9                      | 0.069               | 8.2                   | LOS A               | 0.4                            | 2.8  | 0.66         | 0.67                 | 0.66                      | 52.8                   |
| East:     | Georg  | e Bass D     | rive    |             |      |                          |                     |                       |                     |                                |      |              |                      |                           |                        |
| 4         | L2     | All MCs      | 7       | 0.0         | 7    | 0.0                      | 0.404               | 5.3                   | LOS A               | 2.9                            | 21.0 | 0.55         | 0.54                 | 0.55                      | 56.3                   |
| 5         | T1     | All MCs      | 381     | 2.5         | 381  | 2.5                      | 0.404               | 5.6                   | LOS A               | 2.9                            | 21.0 | 0.55         | 0.54                 | 0.55                      | 56.5                   |
| 6         | R2     | All MCs      | 65      | 4.8         | 65   | 4.8                      | 0.404               | 10.3                  | LOS A               | 2.9                            | 21.0 | 0.55         | 0.54                 | 0.55                      | 56.0                   |
| 6u        | U      | All MCs      | 1       | 0.0         | 1    | 0.0                      | 0.404               | 12.2                  | LOS A               | 2.9                            | 21.0 | 0.55         | 0.54                 | 0.55                      | 57.4                   |
| Appro     | ach    |              | 455     | 2.8         | 455  | 2.8                      | 0.404               | 6.3                   | LOS A               | 2.9                            | 21.0 | 0.55         | 0.54                 | 0.55                      | 56.4                   |
| North:    | Toma   | ikin Road    |         |             |      |                          |                     |                       |                     |                                |      |              |                      |                           |                        |
| 7         | L2     | All MCs      | 93      | 4.5         | 93   | 4.5                      | 0.356               | 8.6                   | LOS A               | 2.4                            | 17.0 | 0.78         | 0.74                 | 0.78                      | 54.9                   |
| 8         | T1     | All MCs      | 17      | 6.3         | 17   | 6.3                      | 0.356               | 8.9                   | LOS A               | 2.4                            | 17.0 | 0.78         | 0.74                 | 0.78                      | 49.7                   |
| 9         | R2     | All MCs      | 160     | 2.6         | 160  | 2.6                      | 0.356               | 13.3                  | LOS A               | 2.4                            | 17.0 | 0.78         | 0.74                 | 0.78                      | 49.0                   |
| 9u        | U      | All MCs      | 1       | 0.0         | 1    | 0.0                      | 0.356               | 15.2                  | LOS B               | 2.4                            | 17.0 | 0.78         | 0.74                 | 0.78                      | 49.1                   |
| Appro     | ach    |              | 271     | 3.5         | 271  | 3.5                      | 0.356               | 11.4                  | LOS A               | 2.4                            | 17.0 | 0.78         | 0.74                 | 0.78                      | 52.1                   |
| West:     | Georg  | ge Bass I    | Drive   |             |      |                          |                     |                       |                     |                                |      |              |                      |                           |                        |
| 10        | L2     | All MCs      | 169     | 1.2         | 169  | 1.2                      | 0.577               | 4.6                   | LOS A               | 5.6                            | 39.4 | 0.41         | 0.44                 | 0.41                      | 52.9                   |
| 11        | T1     | All MCs      | 602     | 1.0         | 602  | 1.0                      | 0.577               | 4.7                   | LOS A               | 5.6                            | 39.4 | 0.41         | 0.44                 | 0.41                      | 56.9                   |
| 12        | R2     | All MCs      | 37      | 5.7         | 37   | 5.7                      | 0.577               | 9.5                   | LOS A               | 5.6                            | 39.4 | 0.41         | 0.44                 | 0.41                      | 52.2                   |
| 12u       | U      | All MCs      | 9       | 11.1        | 9    | 11.1                     | 0.577               | 11.6                  | LOS A               | 5.6                            | 39.4 | 0.41         | 0.44                 | 0.41                      | 52.0                   |
| Appro     | ach    |              | 818     | 1.4         | 818  | 1.4                      | 0.577               | 5.0                   | LOS A               | 5.6                            | 39.4 | 0.41         | 0.44                 | 0.41                      | 56.3                   |
| All Ve    | hicles |              | 1598    | 2.2         | 1598 | 2.2                      | 0.577               | 6.6                   | LOS A               | 5.6                            | 39.4 | 0.52         | 0.53                 | 0.52                      | 55.7                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:31:36 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\6. Rosedale - Existing+Growth +Dev792 (RMS rates).sip9

### 

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday PM Peak Survey Date: 22 November 2023 Peak Hour: 3:30pm - 4:30pm Site Category: (None) Roundabout

| Vehio     | cle Mo | ovement      | t Perfo | rma          | nce  |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
|-----------|--------|--------------|---------|--------------|------|----------------------------|---------------------|-----------------------|---------------------|-------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | lows<br>HV ] |      | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| East:     | Georg  | je Bass D    | rive    |              |      |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 5         | T1     | All MCs      | 346     | 2.7          | 346  | 2.7                        | 0.282               | 4.7                   | LOS A               | 2.2                           | 15.5 | 0.34         | 0.43                 | 0.34                      | 58.3                   |
| 6         | R2     | All MCs      | 26      | 0.0          | 26   | 0.0                        | 0.282               | 9.3                   | LOS A               | 2.2                           | 15.5 | 0.34         | 0.43                 | 0.34                      | 57.3                   |
| 6u        | U      | All MCs      | 1       | 0.0          | 1    | 0.0                        | 0.282               | 11.3                  | LOS A               | 2.2                           | 15.5 | 0.34         | 0.43                 | 0.34                      | 58.4                   |
| Appro     | ach    |              | 374     | 2.5          | 374  | 2.5                        | 0.282               | 5.0                   | LOS A               | 2.2                           | 15.5 | 0.34         | 0.43                 | 0.34                      | 58.3                   |
| North     | : Roac | 101          |         |              |      |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 7         | L2     | All MCs      | 13      | 0.0          | 13   | 0.0                        | 0.114               | 7.2                   | LOS A               | 0.7                           | 4.8  | 0.64         | 0.69                 | 0.64                      | 56.1                   |
| 9         | R2     | All MCs      | 85      | 0.0          | 85   | 0.0                        | 0.114               | 12.0                  | LOS A               | 0.7                           | 4.8  | 0.64         | 0.69                 | 0.64                      | 54.8                   |
| 9u        | U      | All MCs      | 1       | 0.0          | 1    | 0.0                        | 0.114               | 14.1                  | LOS A               | 0.7                           | 4.8  | 0.64         | 0.69                 | 0.64                      | 49.2                   |
| Appro     | ach    |              | 99      | 0.0          | 99   | 0.0                        | 0.114               | 11.4                  | LOS A               | 0.7                           | 4.8  | 0.64         | 0.69                 | 0.64                      | 54.9                   |
| West:     | Geor   | ge Bass I    | Drive   |              |      |                            |                     |                       |                     |                               |      |              |                      |                           |                        |
| 10        | L2     | All MCs      | 154     | 0.0          | 154  | 0.0                        | 0.427               | 4.0                   | LOS A               | 3.8                           | 27.0 | 0.20         | 0.40                 | 0.20                      | 57.3                   |
| 11        | T1     | All MCs      | 513     | 2.3          | 513  | 2.3                        | 0.427               | 4.3                   | LOS A               | 3.8                           | 27.0 | 0.20         | 0.40                 | 0.20                      | 58.6                   |
| 12u       | U      | All MCs      | 1       | 0.0          | 1    | 0.0                        | 0.427               | 10.9                  | LOS A               | 3.8                           | 27.0 | 0.20         | 0.40                 | 0.20                      | 58.1                   |
| Appro     | bach   |              | 667     | 1.7          | 667  | 1.7                        | 0.427               | 4.2                   | LOS A               | 3.8                           | 27.0 | 0.20         | 0.40                 | 0.20                      | 58.4                   |
| All Ve    | hicles |              | 1140    | 1.8          | 1140 | 1.8                        | 0.427               | 5.1                   | LOS A               | 3.8                           | 27.0 | 0.28         | 0.43                 | 0.28                      | 58.2                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:31:37 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\6. Rosedale - Existing+Growth +Dev792 (RMS rates).sip9

#### V Site: 103 [(I-3) George Bass Drive / Rosedale Parade / Saltwood Drive\_Weekday PM (Site Folder: Existing + Growth + Dev792 - Weekday PM)]

#### Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday PM Peak Survey Date: 22 November 2023 Peak Hour: 3:30pm - 4:30pm Site Category: (None) Roundabout

| Vehic     | le Mo  | ovement      | Perfo | rma          | nce  |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
|-----------|--------|--------------|-------|--------------|------|----------------------------|---------------------|-----------------------|---------------------|--------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |       | lows<br>HV ] |      | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geor | ge Bass      | Drive |              |      |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
| 1         | L2     | All MCs      | 83    | 0.0          | 83   | 0.0                        | 0.373               | 5.4                   | LOS A               | 2.4                            | 17.4 | 0.51         | 0.52                 | 0.51                      | 57.3                   |
| 2         | T1     | All MCs      | 323   | 3.6          | 323  | 3.6                        | 0.373               | 5.7                   | LOS A               | 2.4                            | 17.4 | 0.51         | 0.52                 | 0.51                      | 57.6                   |
| 3         | R2     | All MCs      | 13    | 0.0          | 13   | 0.0                        | 0.373               | 10.2                  | LOS A               | 2.4                            | 17.4 | 0.51         | 0.52                 | 0.51                      | 57.1                   |
| 3u        | U      | All MCs      | 1     | 0.0          | 1    | 0.0                        | 0.373               | 12.3                  | LOS A               | 2.4                            | 17.4 | 0.51         | 0.52                 | 0.51                      | 58.3                   |
| Appro     | ach    |              | 420   | 2.8          | 420  | 2.8                        | 0.373               | 5.8                   | LOS A               | 2.4                            | 17.4 | 0.51         | 0.52                 | 0.51                      | 57.6                   |
| East:     | Rosec  | lale Para    | de    |              |      |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
| 4         | L2     | All MCs      | 12    | 9.1          | 12   | 9.1                        | 0.024               | 6.6                   | LOS A               | 0.1                            | 0.9  | 0.56         | 0.62                 | 0.56                      | 56.7                   |
| 5         | T1     | All MCs      | 1     | 0.0          | 1    | 0.0                        | 0.024               | 6.5                   | LOS A               | 0.1                            | 0.9  | 0.56         | 0.62                 | 0.56                      | 51.7                   |
| 6         | R2     | All MCs      | 7     | 0.0          | 7    | 0.0                        | 0.024               | 11.2                  | LOS A               | 0.1                            | 0.9  | 0.56         | 0.62                 | 0.56                      | 52.5                   |
| 6u        | U      | All MCs      | 1     | 0.0          | 1    | 0.0                        | 0.024               | 13.2                  | LOS A               | 0.1                            | 0.9  | 0.56         | 0.62                 | 0.56                      | 50.9                   |
| Appro     | ach    |              | 21    | 5.0          | 21   | 5.0                        | 0.024               | 8.5                   | LOS A               | 0.1                            | 0.9  | 0.56         | 0.62                 | 0.56                      | 55.6                   |
| North     | Geor   | ge Bass I    | Drive |              |      |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
| 7         | L2     | All MCs      | 20    | 0.0          | 20   | 0.0                        | 0.340               | 4.2                   | LOS A               | 2.4                            | 16.7 | 0.24         | 0.52                 | 0.24                      | 53.8                   |
| 8         | T1     | All MCs      | 237   | 1.8          | 237  | 1.8                        | 0.340               | 4.4                   | LOS A               | 2.4                            | 16.7 | 0.24         | 0.52                 | 0.24                      | 57.5                   |
| 9         | R2     | All MCs      | 236   | 0.4          | 236  | 0.4                        | 0.340               | 9.0                   | LOS A               | 2.4                            | 16.7 | 0.24         | 0.52                 | 0.24                      | 53.3                   |
| 9u        | U      | All MCs      | 1     | 0.0          | 1    | 0.0                        | 0.340               | 11.1                  | LOS A               | 2.4                            | 16.7 | 0.24         | 0.52                 | 0.24                      | 54.4                   |
| Appro     | ach    |              | 494   | 1.1          | 494  | 1.1                        | 0.340               | 6.6                   | LOS A               | 2.4                            | 16.7 | 0.24         | 0.52                 | 0.24                      | 56.2                   |
| West:     | Saltw  | ood Drive    | 9     |              |      |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
| 10        | L2     | All MCs      | 44    | 0.0          | 44   | 0.0                        | 0.086               | 5.6                   | LOS A               | 0.5                            | 3.3  | 0.51         | 0.62                 | 0.51                      | 53.3                   |
| 11        | T1     | All MCs      | 3     | 0.0          | 3    | 0.0                        | 0.086               | 5.7                   | LOS A               | 0.5                            | 3.3  | 0.51         | 0.62                 | 0.51                      | 52.1                   |
| 12        | R2     | All MCs      | 39    | 0.0          | 39   | 0.0                        | 0.086               | 10.4                  | LOS A               | 0.5                            | 3.3  | 0.51         | 0.62                 | 0.51                      | 56.8                   |
| 12u       | U      | All MCs      | 1     | 0.0          | 1    | 0.0                        | 0.086               | 12.4                  | LOS A               | 0.5                            | 3.3  | 0.51         | 0.62                 | 0.51                      | 51.3                   |
| Appro     | ach    |              | 87    | 0.0          | 87   | 0.0                        | 0.086               | 7.8                   | LOS A               | 0.5                            | 3.3  | 0.51         | 0.62                 | 0.51                      | 55.5                   |
| All Ve    | hicles |              | 1022  | 1.8          | 1022 | 1.8                        | 0.373               | 6.4                   | LOS A               | 2.4                            | 17.4 | 0.38         | 0.53                 | 0.38                      | 56.8                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:31:37 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\6. Rosedale - Existing+Growth +Dev792 (RMS rates).sip9

## V Site: 104 [(I-4) George Bass Drive / Bullock Road\_Weekday PM (Site Folder: Existing + Growth + Dev792 - Weekday PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekday PM Peak Survey Date: 22 November 2023 Peak Hour: 3:30pm - 4:30pm Site Category: (None) Give-Way (Two-Way)

| Vehic     | cle Mo | ovemen       | t Perfo | rma          | nce |                            |                     |                       |                     |     |                               |              |                      |                           |                        |
|-----------|--------|--------------|---------|--------------|-----|----------------------------|---------------------|-----------------------|---------------------|-----|-------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | lows<br>HV ] |     | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | Back Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geoi | rge Bass     | Drive   |              |     |                            |                     |                       |                     |     |                               |              |                      |                           |                        |
| 1         | L2     | All MCs      | 26      | 0.0          | 26  | 0.0                        | 0.205               | 5.6                   | LOS A               | 0.0 | 0.0                           | 0.00         | 0.04                 | 0.00                      | 36.2                   |
| 2         | T1     | All MCs      | 365     | 3.2          | 365 | 3.2                        | 0.205               | 0.1                   | LOS A               | 0.0 | 0.0                           | 0.00         | 0.04                 | 0.00                      | 59.6                   |
| Appro     | ach    |              | 392     | 3.0          | 392 | 3.0                        | 0.205               | 0.5                   | NA                  | 0.0 | 0.0                           | 0.00         | 0.04                 | 0.00                      | 57.9                   |
| North     | Geor   | ge Bass      | Drive   |              |     |                            |                     |                       |                     |     |                               |              |                      |                           |                        |
| 8         | T1     | All MCs      | 518     | 1.0          | 518 | 1.0                        | 0.267               | 0.1                   | LOS A               | 0.0 | 0.0                           | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| Appro     | ach    |              | 518     | 1.0          | 518 | 1.0                        | 0.267               | 0.1                   | NA                  | 0.0 | 0.0                           | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| West:     | Bullo  | ck Road      |         |              |     |                            |                     |                       |                     |     |                               |              |                      |                           |                        |
| 10        | L2     | All MCs      | 74      | 0.0          | 74  | 0.0                        | 0.064               | 5.6                   | LOS A               | 0.2 | 1.7                           | 0.41         | 0.62                 | 0.41                      | 48.3                   |
| Appro     | ach    |              | 74      | 0.0          | 74  | 0.0                        | 0.064               | 5.6                   | LOS A               | 0.2 | 1.7                           | 0.41         | 0.62                 | 0.41                      | 48.3                   |
| All Ve    | hicles |              | 983     | 1.7          | 983 | 1.7                        | 0.267               | 0.6                   | NA                  | 0.2 | 1.7                           | 0.03         | 0.06                 | 0.03                      | 58.5                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

#### SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:31:38 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\6. Rosedale - Existing+Growth +Dev792 (RMS rates).sip9

### 🐺 Site: 105 [(I-5) Bullock Road / Purdie Parade\_Weekday AM (Site Folder: Existing + Growth + Dev792 - Weekday PM)]

**Output produced by SIDRA INTERSECTION Version: 9.1.5.224** 

New Site Site Category: (None) Roundabout

| Vehic     | le Mo  | ovement      | t Perfo | rma          | nce           |     |              |       |                     |                         |             |              |                      |                           |                |
|-----------|--------|--------------|---------|--------------|---------------|-----|--------------|-------|---------------------|-------------------------|-------------|--------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class | [ Total | lows<br>HV ] | Fl<br>[ Total |     | Deg.<br>Satn | Delay | Level of<br>Service | 95% Ba<br>Que<br>[ Veh. | ue<br>Dist] | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
| South     | · Durd | ie Parade    | veh/h   | %            | veh/h         | %   | v/c          | sec   | _                   | veh                     | m           | -            | -                    | _                         | km/h           |
|           |        |              |         | 0.0          | 4             | 0.0 | 0.002        | 4.0   |                     | 0.0                     | 0.4         | 0.40         | 0.50                 | 0.40                      | 50.4           |
| 1         |        | All MCs      |         | 0.0          | 1             |     | 0.003        | 4.0   | LOSA                | 0.0                     | 0.1         | 0.12         | 0.56                 | 0.12                      | 52.4           |
| 2         | T1     | All MCs      |         | 0.0          |               | 0.0 | 0.003        | 4.2   | LOS A               | 0.0                     | 0.1         | 0.12         | 0.56                 | 0.12                      | 52.8           |
| 3         |        | All MCs      |         | 0.0          |               | 0.0 | 0.003        | 8.8   | LOS A               | 0.0                     | 0.1         | 0.12         | 0.56                 | 0.12                      | 30.7           |
| 3u        | U      | All MCs      |         | 0.0          | 1             |     | 0.003        | 10.9  | LOSA                | 0.0                     | 0.1         | 0.12         | 0.56                 | 0.12                      | 51.9           |
| Appro     | ach    |              | 4       | 0.0          | 4             | 0.0 | 0.003        | 7.0   | LOS A               | 0.0                     | 0.1         | 0.12         | 0.56                 | 0.12                      | 47.0           |
| East:     | Bulloc | k Road       |         |              |               |     |              |       |                     |                         |             |              |                      |                           |                |
| 4         | L2     | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.019        | 2.8   | LOS A               | 0.1                     | 0.6         | 0.05         | 0.42                 | 0.05                      | 52.1           |
| 5         | T1     | All MCs      | 25      | 0.0          | 25            | 0.0 | 0.019        | 3.1   | LOS A               | 0.1                     | 0.6         | 0.05         | 0.42                 | 0.05                      | 52.7           |
| 6         | R2     | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.019        | 7.5   | LOS A               | 0.1                     | 0.6         | 0.05         | 0.42                 | 0.05                      | 51.2           |
| 6u        | U      | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.019        | 9.6   | LOS A               | 0.1                     | 0.6         | 0.05         | 0.42                 | 0.05                      | 13.7           |
| Appro     | ach    |              | 28      | 0.0          | 28            | 0.0 | 0.019        | 3.5   | LOS A               | 0.1                     | 0.6         | 0.05         | 0.42                 | 0.05                      | 51.2           |
| North:    | Purdi  | ie Parade    | )       |              |               |     |              |       |                     |                         |             |              |                      |                           |                |
| 7         | L2     | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.003        | 4.2   | LOS A               | 0.0                     | 0.1         | 0.20         | 0.54                 | 0.20                      | 30.5           |
| 8         | T1     | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.003        | 4.4   | LOS A               | 0.0                     | 0.1         | 0.20         | 0.54                 | 0.20                      | 52.5           |
| 9         | R2     | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.003        | 9.0   | LOS A               | 0.0                     | 0.1         | 0.20         | 0.54                 | 0.20                      | 51.7           |
| 9u        | U      | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.003        | 11.0  | LOS A               | 0.0                     | 0.1         | 0.20         | 0.54                 | 0.20                      | 51.7           |
| Appro     | ach    |              | 4       | 0.0          | 4             | 0.0 | 0.003        | 7.1   | LOS A               | 0.0                     | 0.1         | 0.20         | 0.54                 | 0.20                      | 46.7           |
| West:     | Bullo  | ck Road      |         |              |               |     |              |       |                     |                         |             |              |                      |                           |                |
| 10        | L2     | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.049        | 3.9   | LOS A               | 0.2                     | 1.6         | 0.04         | 0.41                 | 0.04                      | 54.6           |
| 11        | T1     | All MCs      | 73      | 0.0          | 73            | 0.0 | 0.049        | 4.1   | LOS A               | 0.2                     | 1.6         | 0.04         | 0.41                 | 0.04                      | 32.3           |
| 12        | R2     | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.049        | 8.7   | LOS A               | 0.2                     | 1.6         | 0.04         | 0.41                 | 0.04                      | 54.0           |
| 12u       | U      | All MCs      | 1       | 0.0          | 1             | 0.0 | 0.049        | 10.8  | LOS A               | 0.2                     | 1.6         | 0.04         | 0.41                 | 0.04                      | 54.0           |
| Appro     | ach    |              | 76      | 0.0          | 76            | 0.0 | 0.049        | 4.2   | LOS A               | 0.2                     | 1.6         | 0.04         | 0.41                 | 0.04                      | 33.3           |
| All Ve    | hicles |              | 113     | 0.0          | 113           | 0.0 | 0.049        | 4.2   | LOS A               | 0.2                     | 1.6         | 0.05         | 0.42                 | 0.05                      | 37.5           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:31:38 PM Project: S:\PROJECTS 2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\6. Rosedale - Existing+Growth +Dev792 (RMS rates).sip9

#### V Site: 101 [(I-1) George Bass Drive / Sunpatch Parade / Tomakin Road\_Weekend Mid-day (Site Folder: Existing + Growth + Dev792- Weekend Mid-day)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekend Mid-day Peak Survey Date: 19 November 2023 Peak Hour: 12:00pm - 1:00pm Site Category: (None) Roundabout

| Vehic     | le Mo  | ovement      | Perfo | rma          | nce  |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
|-----------|--------|--------------|-------|--------------|------|----------------------------|---------------------|-----------------------|---------------------|--------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |       | lows<br>HV ] |      | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% Ba<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Sunp | atch Par     | ade   |              |      |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
| 1         | L2     | All MCs      | 69    | 1.5          | 69   | 1.5                        | 0.192               | 8.7                   | LOS A               | 1.2                            | 8.7  | 0.77         | 0.72                 | 0.77                      | 50.5                   |
| 2         | T1     | All MCs      | 37    | 2.9          | 37   | 2.9                        | 0.192               | 8.9                   | LOS A               | 1.2                            | 8.7  | 0.77         | 0.72                 | 0.77                      | 50.9                   |
| 3         | R2     | All MCs      | 25    | 0.0          | 25   | 0.0                        | 0.192               | 13.4                  | LOS A               | 1.2                            | 8.7  | 0.77         | 0.72                 | 0.77                      | 55.3                   |
| 3u        | U      | All MCs      | 1     | 0.0          | 1    | 0.0                        | 0.192               | 15.5                  | LOS B               | 1.2                            | 8.7  | 0.77         | 0.72                 | 0.77                      | 50.1                   |
| Appro     | ach    |              | 133   | 1.6          | 133  | 1.6                        | 0.192               | 9.7                   | LOS A               | 1.2                            | 8.7  | 0.77         | 0.72                 | 0.77                      | 52.2                   |
| East:     | Georg  | e Bass D     | rive  |              |      |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
| 4         | L2     | All MCs      | 14    | 7.7          | 14   | 7.7                        | 0.531               | 6.1                   | LOS A               | 4.3                            | 30.4 | 0.65         | 0.58                 | 0.65                      | 56.0                   |
| 5         | T1     | All MCs      | 474   | 1.3          | 474  | 1.3                        | 0.531               | 6.1                   | LOS A               | 4.3                            | 30.4 | 0.65         | 0.58                 | 0.65                      | 56.2                   |
| 6         | R2     | All MCs      | 98    | 1.1          | 98   | 1.1                        | 0.531               | 10.7                  | LOS A               | 4.3                            | 30.4 | 0.65         | 0.58                 | 0.65                      | 55.8                   |
| 6u        | U      | All MCs      | 1     | 0.0          | 1    | 0.0                        | 0.531               | 12.7                  | LOS A               | 4.3                            | 30.4 | 0.65         | 0.58                 | 0.65                      | 57.3                   |
| Appro     | ach    |              | 586   | 1.4          | 586  | 1.4                        | 0.531               | 6.9                   | LOS A               | 4.3                            | 30.4 | 0.65         | 0.58                 | 0.65                      | 56.2                   |
| North     | Toma   | kin Road     |       |              |      |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
| 7         | L2     | All MCs      | 80    | 1.3          | 80   | 1.3                        | 0.359               | 8.5                   | LOS A               | 2.4                            | 17.8 | 0.81         | 0.74                 | 0.81                      | 55.0                   |
| 8         | T1     | All MCs      | 40    | 5.3          | 40   | 5.3                        | 0.359               | 8.8                   | LOS A               | 2.4                            | 17.8 | 0.81         | 0.74                 | 0.81                      | 49.9                   |
| 9         | R2     | All MCs      | 137   | 6.9          | 137  | 6.9                        | 0.359               | 13.6                  | LOS A               | 2.4                            | 17.8 | 0.81         | 0.74                 | 0.81                      | 49.0                   |
| 9u        | U      | All MCs      | 1     | 0.0          | 1    | 0.0                        | 0.359               | 15.3                  | LOS B               | 2.4                            | 17.8 | 0.81         | 0.74                 | 0.81                      | 49.2                   |
| Appro     | ach    |              | 258   | 4.9          | 258  | 4.9                        | 0.359               | 11.3                  | LOS A               | 2.4                            | 17.8 | 0.81         | 0.74                 | 0.81                      | 52.0                   |
| West:     | Georg  | ge Bass I    | Drive |              |      |                            |                     |                       |                     |                                |      |              |                      |                           |                        |
| 10        | L2     | All MCs      | 153   | 2.1          | 153  | 2.1                        | 0.622               | 5.3                   | LOS A               | 5.9                            | 42.1 | 0.59         | 0.52                 | 0.59                      | 52.1                   |
| 11        | T1     | All MCs      | 553   | 2.1          | 553  | 2.1                        | 0.622               | 5.5                   | LOS A               | 5.9                            | 42.1 | 0.59         | 0.52                 | 0.59                      | 56.5                   |
| 12        | R2     | All MCs      | 56    | 3.8          | 56   | 3.8                        | 0.622               | 10.2                  | LOS A               | 5.9                            | 42.1 | 0.59         | 0.52                 | 0.59                      | 51.5                   |
| 12u       | U      | All MCs      | 28    | 0.0          | 28   | 0.0                        | 0.622               | 12.1                  | LOS A               | 5.9                            | 42.1 | 0.59         | 0.52                 | 0.59                      | 51.6                   |
| Appro     | ach    |              | 789   | 2.1          | 789  | 2.1                        | 0.622               | 6.0                   | LOS A               | 5.9                            | 42.1 | 0.59         | 0.52                 | 0.59                      | 55.7                   |
| All Ve    | hicles |              | 1766  | 2.3          | 1766 | 2.3                        | 0.622               | 7.4                   | LOS A               | 5.9                            | 42.1 | 0.65         | 0.59                 | 0.65                      | 55.3                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:31:39 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\6. Rosedale - Existing+Growth +Dev792 (RMS rates).sip9

#### V Site: 102 [(I-2) George Bass Drive / Road 01\_Weekend Midday (Site Folder: Existing + Growth + Dev792- Weekend Midday)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekend Mid-day Peak Survey Date: 19 November 2023 Peak Hour: 12:00pm - 1:00pm Site Category: (None) Roundabout

| Vehic     | le Mo  | ovement      | Perfo | rma | nce   |                       |              |                |                     |                        |      |              |                      |                           |                |
|-----------|--------|--------------|-------|-----|-------|-----------------------|--------------|----------------|---------------------|------------------------|------|--------------|----------------------|---------------------------|----------------|
| Mov<br>ID | Turn   | Mov<br>Class |       | ows |       | rival<br>lows<br>HV ] | Deg.<br>Satn | Aver.<br>Delay | Level of<br>Service | 95% B<br>Que<br>[ Veh. |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed |
|           |        |              | veh/h | %   | veh/h | %                     | v/c          | sec            |                     | veh                    | m    |              |                      |                           | km/h           |
| East:     | Georg  | e Bass D     | rive  |     |       |                       |              |                |                     |                        |      |              |                      |                           |                |
| 5         | T1     | All MCs      | 433   | 1.5 | 433   | 1.5                   | 0.366        | 5.1            | LOS A               | 3.0                    | 21.4 | 0.48         | 0.46                 | 0.48                      | 58.2           |
| 6         | R2     | All MCs      | 19    | 0.0 | 19    | 0.0                   | 0.366        | 9.7            | LOS A               | 3.0                    | 21.4 | 0.48         | 0.46                 | 0.48                      | 57.1           |
| 6u        | U      | All MCs      | 1     | 0.0 | 1     | 0.0                   | 0.366        | 11.8           | LOS A               | 3.0                    | 21.4 | 0.48         | 0.46                 | 0.48                      | 58.2           |
| Appro     | ach    |              | 453   | 1.4 | 453   | 1.4                   | 0.366        | 5.3            | LOS A               | 3.0                    | 21.4 | 0.48         | 0.46                 | 0.48                      | 58.2           |
| North     | Road   | 01           |       |     |       |                       |              |                |                     |                        |      |              |                      |                           |                |
| 7         | L2     | All MCs      | 21    | 0.0 | 21    | 0.0                   | 0.203        | 8.3            | LOS A               | 1.3                    | 9.0  | 0.72         | 0.72                 | 0.72                      | 55.8           |
| 9         | R2     | All MCs      | 139   | 0.0 | 139   | 0.0                   | 0.203        | 13.2           | LOS A               | 1.3                    | 9.0  | 0.72         | 0.72                 | 0.72                      | 54.4           |
| 9u        | U      | All MCs      | 1     | 0.0 | 1     | 0.0                   | 0.203        | 15.3           | LOS B               | 1.3                    | 9.0  | 0.72         | 0.72                 | 0.72                      | 48.4           |
| Appro     | ach    |              | 161   | 0.0 | 161   | 0.0                   | 0.203        | 12.6           | LOS A               | 1.3                    | 9.0  | 0.72         | 0.72                 | 0.72                      | 54.6           |
| West:     | Georg  | ge Bass D    | Drive |     |       |                       |              |                |                     |                        |      |              |                      |                           |                |
| 10        | L2     | All MCs      | 108   | 0.0 | 108   | 0.0                   | 0.454        | 4.0            | LOS A               | 4.4                    | 31.2 | 0.18         | 0.39                 | 0.18                      | 57.3           |
| 11        | T1     | All MCs      | 618   | 2.0 | 618   | 2.0                   | 0.454        | 4.2            | LOS A               | 4.4                    | 31.2 | 0.18         | 0.39                 | 0.18                      | 58.6           |
| 12u       | U      | All MCs      | 1     | 0.0 | 1     | 0.0                   | 0.454        | 10.9           | LOS A               | 4.4                    | 31.2 | 0.18         | 0.39                 | 0.18                      | 58.1           |
| Appro     | ach    |              | 727   | 1.7 | 727   | 1.7                   | 0.454        | 4.2            | LOS A               | 4.4                    | 31.2 | 0.18         | 0.39                 | 0.18                      | 58.5           |
| All Ve    | hicles |              | 1341  | 1.4 | 1341  | 1.4                   | 0.454        | 5.6            | LOS A               | 4.4                    | 31.2 | 0.34         | 0.45                 | 0.34                      | 58.1           |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:31:39 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\6. Rosedale - Existing+Growth +Dev792 (RMS rates).sip9

#### V Site: 103 [(I-3) George Bass Drive / Rosedale Parade / Saltwood Drive\_Weekend Mid-day (Site Folder: Existing + Growth + Dev792- Weekend Mid-day)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekend Mid-day Peak Survey Date: 19 November 2023 Peak Hour: 12:00pm - 1:00pm Site Category: (None) Roundabout

| Vehic     | le Mo  | ovement      | l Perfo | rma  | nce  |                           |                     |                       |                     |                               |      |              |                      |                           |                        |
|-----------|--------|--------------|---------|------|------|---------------------------|---------------------|-----------------------|---------------------|-------------------------------|------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class | FI      |      |      | rival<br>lows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh |      | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geor | rge Bass     | Drive   |      |      |                           |                     |                       |                     |                               |      |              |                      |                           |                        |
| 1         | L2     | All MCs      | 60      | 0.0  | 60   | 0.0                       | 0.419               | 5.0                   | LOS A               | 3.0                           | 20.7 | 0.46         | 0.49                 | 0.46                      | 57.4                   |
| 2         | T1     | All MCs      | 440     | 0.0  | 440  | 0.0                       | 0.419               | 5.2                   | LOS A               | 3.0                           | 20.7 | 0.46         | 0.49                 | 0.46                      | 57.7                   |
| 3         | R2     | All MCs      | 19      | 0.0  | 19   | 0.0                       | 0.419               | 9.8                   | LOS A               | 3.0                           | 20.7 | 0.46         | 0.49                 | 0.46                      | 57.2                   |
| 3u        | U      | All MCs      | 1       | 0.0  | 1    | 0.0                       | 0.419               | 11.9                  | LOS A               | 3.0                           | 20.7 | 0.46         | 0.49                 | 0.46                      | 58.3                   |
| Appro     | ach    |              | 520     | 0.0  | 520  | 0.0                       | 0.419               | 5.4                   | LOS A               | 3.0                           | 20.7 | 0.46         | 0.49                 | 0.46                      | 57.7                   |
| East:     | Rosec  | lale Para    | de      |      |      |                           |                     |                       |                     |                               |      |              |                      |                           |                        |
| 4         | L2     | All MCs      | 16      | 6.7  | 16   | 6.7                       | 0.033               | 6.5                   | LOS A               | 0.2                           | 1.2  | 0.56         | 0.63                 | 0.56                      | 56.8                   |
| 5         | T1     | All MCs      | 1       | 0.0  | 1    | 0.0                       | 0.033               | 6.4                   | LOS A               | 0.2                           | 1.2  | 0.56         | 0.63                 | 0.56                      | 51.8                   |
| 6         | R2     | All MCs      | 11      | 10.0 | 11   | 10.0                      | 0.033               | 11.4                  | LOS A               | 0.2                           | 1.2  | 0.56         | 0.63                 | 0.56                      | 52.3                   |
| 6u        | U      | All MCs      | 1       | 0.0  | 1    | 0.0                       | 0.033               | 13.1                  | LOS A               | 0.2                           | 1.2  | 0.56         | 0.63                 | 0.56                      | 51.0                   |
| Appro     | ach    |              | 28      | 7.4  | 28   | 7.4                       | 0.033               | 8.6                   | LOS A               | 0.2                           | 1.2  | 0.56         | 0.63                 | 0.56                      | 55.6                   |
| North     | Geor   | ge Bass I    | Drive   |      |      |                           |                     |                       |                     |                               |      |              |                      |                           |                        |
| 7         | L2     | All MCs      | 15      | 0.0  | 15   | 0.0                       | 0.325               | 4.3                   | LOS A               | 2.2                           | 15.7 | 0.30         | 0.50                 | 0.30                      | 53.8                   |
| 8         | T1     | All MCs      | 266     | 0.8  | 266  | 0.8                       | 0.325               | 4.5                   | LOS A               | 2.2                           | 15.7 | 0.30         | 0.50                 | 0.30                      | 57.6                   |
| 9         | R2     | All MCs      | 165     | 0.0  | 165  | 0.0                       | 0.325               | 9.2                   | LOS A               | 2.2                           | 15.7 | 0.30         | 0.50                 | 0.30                      | 53.4                   |
| 9u        | U      | All MCs      | 1       | 0.0  | 1    | 0.0                       | 0.325               | 11.2                  | LOS A               | 2.2                           | 15.7 | 0.30         | 0.50                 | 0.30                      | 54.4                   |
| Appro     | ach    |              | 447     | 0.5  | 447  | 0.5                       | 0.325               | 6.2                   | LOS A               | 2.2                           | 15.7 | 0.30         | 0.50                 | 0.30                      | 56.7                   |
| West:     | Saltw  | ood Drive    | 9       |      |      |                           |                     |                       |                     |                               |      |              |                      |                           |                        |
| 10        | L2     | All MCs      | 65      | 0.0  | 65   | 0.0                       | 0.141               | 6.4                   | LOS A               | 0.8                           | 5.7  | 0.60         | 0.66                 | 0.60                      | 52.9                   |
| 11        | T1     | All MCs      | 1       | 0.0  | 1    | 0.0                       | 0.141               | 6.5                   | LOS A               | 0.8                           | 5.7  | 0.60         | 0.66                 | 0.60                      | 51.6                   |
| 12        | R2     | All MCs      | 63      | 0.0  | 63   | 0.0                       | 0.141               | 11.2                  | LOS A               | 0.8                           | 5.7  | 0.60         | 0.66                 | 0.60                      | 56.6                   |
| 12u       | U      | All MCs      | 1       | 0.0  | 1    | 0.0                       | 0.141               | 13.2                  | LOS A               | 0.8                           | 5.7  | 0.60         | 0.66                 | 0.60                      | 50.8                   |
| Appro     | ach    |              | 131     | 0.0  | 131  | 0.0                       | 0.141               | 8.8                   | LOS A               | 0.8                           | 5.7  | 0.60         | 0.66                 | 0.60                      | 55.4                   |
| All Ve    | hicles |              | 1126    | 0.4  | 1126 | 0.4                       | 0.419               | 6.2                   | LOS A               | 3.0                           | 20.7 | 0.42         | 0.52                 | 0.42                      | 57.1                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:31:40 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\6. Rosedale - Existing+Growth +Dev792 (RMS rates).sip9

#### V Site: 104 [(I-4) George Bass Drive / Bullock Road\_Weekend Mid-day (Site Folder: Existing + Growth + Dev792- Weekend Mid-day)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

Existing - Weekend Mid-day Peak Survey Date: 19 November 2023 Peak Hour: 12:00pm - 1:00pm Site Category: (None) Give-Way (Two-Way)

| Vehio     | cle M  | ovement      | l Perfo | rma          | nce  |                            |                     |                       |                     |                              |                              |              |                      |                           |                        |
|-----------|--------|--------------|---------|--------------|------|----------------------------|---------------------|-----------------------|---------------------|------------------------------|------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | lows<br>HV ] |      | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Qu<br>[ Veh.<br>veh | ack Of<br>eue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South     | : Geo  | rge Bass     | Drive   |              |      |                            |                     |                       |                     |                              |                              |              |                      |                           |                        |
| 1         | L2     | All MCs      | 19      | 0.0          | 19   | 0.0                        | 0.275               | 5.6                   | LOS A               | 0.0                          | 0.0                          | 0.00         | 0.02                 | 0.00                      | 57.7                   |
| 2         | T1     | All MCs      | 516     | 0.2          | 516  | 0.2                        | 0.275               | 0.1                   | LOS A               | 0.0                          | 0.0                          | 0.00         | 0.02                 | 0.00                      | 59.7                   |
| Appro     | ach    |              | 535     | 0.2          | 535  | 0.2                        | 0.275               | 0.3                   | NA                  | 0.0                          | 0.0                          | 0.00         | 0.02                 | 0.00                      | 59.6                   |
| North     | : Geor | ge Bass I    | Drive   |              |      |                            |                     |                       |                     |                              |                              |              |                      |                           |                        |
| 8         | T1     | All MCs      | 466     | 0.5          | 466  | 0.5                        | 0.240               | 0.1                   | LOS A               | 0.0                          | 0.0                          | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| Appro     | ach    |              | 466     | 0.5          | 466  | 0.5                        | 0.240               | 0.1                   | NA                  | 0.0                          | 0.0                          | 0.00         | 0.00                 | 0.00                      | 59.9                   |
| West:     | Bullo  | ck Road      |         |              |      |                            |                     |                       |                     |                              |                              |              |                      |                           |                        |
| 10        | L2     | All MCs      | 119     | 0.0          | 119  | 0.0                        | 0.122               | 7.7                   | LOS A               | 0.5                          | 3.3                          | 0.50         | 0.72                 | 0.50                      | 51.3                   |
| Appro     | ach    |              | 119     | 0.0          | 119  | 0.0                        | 0.122               | 7.7                   | LOS A               | 0.5                          | 3.3                          | 0.50         | 0.72                 | 0.50                      | 51.3                   |
| All Ve    | hicles |              | 1120    | 0.3          | 1120 | 0.3                        | 0.275               | 1.0                   | NA                  | 0.5                          | 3.3                          | 0.05         | 0.09                 | 0.05                      | 58.9                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:31:40 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\6. Rosedale - Existing+Growth +Dev792 (RMS rates).sip9

#### V Site: 105 [(I-5) Bullock Road / Purdie Parade\_Weekend Midday (Site Folder: Existing + Growth + Dev792- Weekend Midday)]

Output produced by SIDRA INTERSECTION Version: 9.1.5.224

New Site Site Category: (None) Roundabout

| Vehio     | cle Mo | ovemen       | t Perfo | rma          | nce     |                            |                     |                       |                     |                               |     |              |                      |                           |                       |
|-----------|--------|--------------|---------|--------------|---------|----------------------------|---------------------|-----------------------|---------------------|-------------------------------|-----|--------------|----------------------|---------------------------|-----------------------|
| Mov<br>ID | Turn   | Mov<br>Class |         | lows<br>HV ] |         | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service | 95% B<br>Que<br>[ Veh.<br>veh |     | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver<br>Speed<br>km/ł |
| South     | : Purd | lie Parade   |         | /0           | VOII/II | 70                         | 110                 | 000                   |                     | Voli                          |     |              |                      |                           | 1111/1                |
| 1         | L2     | All MCs      | 1       | 0.0          | 1       | 0.0                        | 0.003               | 4.0                   | LOS A               | 0.0                           | 0.1 | 0.10         | 0.56                 | 0.10                      | 52.                   |
| 2         | T1     | All MCs      | 1       | 0.0          | 1       | 0.0                        | 0.003               | 4.1                   | LOS A               | 0.0                           | 0.1 | 0.10         | 0.56                 | 0.10                      | 52.8                  |
| 3         | R2     | All MCs      | 1       | 0.0          | 1       | 0.0                        | 0.003               | 8.8                   | LOS A               | 0.0                           | 0.1 | 0.10         | 0.56                 | 0.10                      | 52.                   |
| 3u        | U      | All MCs      | 1       | 0.0          | 1       | 0.0                        | 0.003               | 10.8                  | LOS A               | 0.0                           | 0.1 | 0.10         | 0.56                 | 0.10                      | 52.                   |
| Appro     | ach    |              | 4       | 0.0          | 4       | 0.0                        | 0.003               | 6.9                   | LOS A               | 0.0                           | 0.1 | 0.10         | 0.56                 | 0.10                      | 52.                   |
| East:     | Bulloc | k Road       |         |              |         |                            |                     |                       |                     |                               |     |              |                      |                           |                       |
| 4         | L2     | All MCs      | 1       | 0.0          | 1       | 0.0                        | 0.014               | 3.9                   | LOS A               | 0.1                           | 0.5 | 0.05         | 0.44                 | 0.05                      | 54.                   |
| 5         | T1     | All MCs      | 18      | 0.0          | 18      | 0.0                        | 0.014               | 4.1                   | LOS A               | 0.1                           | 0.5 | 0.05         | 0.44                 | 0.05                      | 54.                   |
| 6         | R2     | All MCs      | 1       | 0.0          | 1       | 0.0                        | 0.014               | 8.7                   | LOS A               | 0.1                           | 0.5 | 0.05         | 0.44                 | 0.05                      | 53.                   |
| 6u        | U      | All MCs      | 1       | 0.0          | 1       | 0.0                        | 0.014               | 10.8                  | LOS A               | 0.1                           | 0.5 | 0.05         | 0.44                 | 0.05                      | 53.                   |
| Appro     | ach    |              | 21      | 0.0          | 21      | 0.0                        | 0.014               | 4.6                   | LOS A               | 0.1                           | 0.5 | 0.05         | 0.44                 | 0.05                      | 54.                   |
| North     | : Purd | ie Parade    | 9       |              |         |                            |                     |                       |                     |                               |     |              |                      |                           |                       |
| 7         | L2     | All MCs      | 1       | 0.0          | 1       | 0.0                        | 0.003               | 4.4                   | LOS A               | 0.0                           | 0.1 | 0.25         | 0.54                 | 0.25                      | 52.                   |
| 8         | T1     | All MCs      | 1       | 0.0          | 1       | 0.0                        | 0.003               | 4.5                   | LOS A               | 0.0                           | 0.1 | 0.25         | 0.54                 | 0.25                      | 52.                   |
| 9         | R2     | All MCs      | 1       | 0.0          | 1       | 0.0                        | 0.003               | 9.2                   | LOS A               | 0.0                           | 0.1 | 0.25         | 0.54                 | 0.25                      | 51.                   |
| 9u        | U      | All MCs      | 1       | 0.0          | 1       | 0.0                        | 0.003               | 11.2                  | LOS A               | 0.0                           | 0.1 | 0.25         | 0.54                 | 0.25                      | 51.                   |
| Appro     | ach    |              | 4       | 0.0          | 4       | 0.0                        | 0.003               | 7.3                   | LOS A               | 0.0                           | 0.1 | 0.25         | 0.54                 | 0.25                      | 51.                   |
| West:     | Bullo  | ck Road      |         |              |         |                            |                     |                       |                     |                               |     |              |                      |                           |                       |
| 10        | L2     | All MCs      | 1       | 0.0          | 1       | 0.0                        | 0.076               | 3.9                   | LOS A               | 0.4                           | 2.5 | 0.04         | 0.40                 | 0.04                      | 54.                   |
| 11        | T1     | All MCs      | 118     | 0.0          | 118     | 0.0                        | 0.076               | 4.1                   | LOS A               | 0.4                           | 2.5 | 0.04         | 0.40                 | 0.04                      | 55.                   |
| 12        | R2     | All MCs      | 1       | 0.0          | 1       | 0.0                        | 0.076               | 8.7                   | LOS A               | 0.4                           | 2.5 | 0.04         | 0.40                 | 0.04                      | 54.                   |
| 12u       | U      | All MCs      |         |              | 1       |                            | 0.076               | 10.8                  | LOS A               | 0.4                           | 2.5 | 0.04         | 0.40                 | 0.04                      | 54.                   |
| Appro     | ach    |              | 121     | 0.0          | 121     | 0.0                        | 0.076               | 4.2                   | LOS A               | 0.4                           | 2.5 | 0.04         | 0.40                 | 0.04                      | 55.                   |
| All Ve    | hicles |              | 151     | 0.0          | 151     | 0.0                        | 0.076               | 4.4                   | LOS A               | 0.4                           | 2.5 | 0.05         | 0.42                 | 0.05                      | 54.                   |
|           |        |              |         |              |         |                            |                     |                       |                     |                               |     |              |                      |                           |                       |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Wednesday, 29 May 2024 2:31:41 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\240529 - SIDRA Modelling\6. Rosedale - Existing+Growth +Dev792 (RMS rates).sip9

### V Site: 106 [(I-6) Princess Highway / Tomakin Road\_Weekday AM (Site Folder: Existing + Growth + Dev792 - Weekday AM)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

New Site Site Category: (None) Give-Way (Two-Way)

| Vehicle Movement Performance |                             |              |                               |              |      |                           |                     |                       |                     |     |                                |              |                      |                           |                        |
|------------------------------|-----------------------------|--------------|-------------------------------|--------------|------|---------------------------|---------------------|-----------------------|---------------------|-----|--------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID                    | Turn                        | Mov<br>Class | Dem<br>Fl<br>[ Total<br>veh/h | lows<br>HV ] |      | rival<br>lows<br>HV]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | Back Of<br>leue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South                        | South: Princess Highway (S) |              |                               |              |      |                           |                     |                       |                     |     |                                |              |                      |                           |                        |
| 2                            | T1                          | All MCs      | 533                           | 4.9          | 533  | 4.9                       | 0.318               | 0.3                   | LOS A               | 0.4 | 3.1                            | 0.10         | 0.12                 | 0.10                      | 59.2                   |
| 3                            | R2                          | All MCs      | 39                            | 5.4          | 39   | 5.4                       | 0.318               | 7.7                   | LOS A               | 0.4 | 3.1                            | 0.10         | 0.12                 | 0.10                      | 56.2                   |
| Appro                        | bach                        |              | 572                           | 5.0          | 572  | 5.0                       | 0.318               | 0.8                   | NA                  | 0.4 | 3.1                            | 0.10         | 0.12                 | 0.10                      | 59.0                   |
| East: Tomakin Road (E)       |                             |              |                               |              |      |                           |                     |                       |                     |     |                                |              |                      |                           |                        |
| 4                            | L2                          | All MCs      | 45                            | 7.0          | 45   | 7.0                       | 0.546               | 9.4                   | LOS A               | 2.9 | 20.5                           | 0.75         | 1.04                 | 1.23                      | 46.2                   |
| 6                            | R2                          | All MCs      | 224                           | 1.4          | 224  | 1.4                       | 0.546               | 16.3                  | LOS B               | 2.9 | 20.5                           | 0.75         | 1.04                 | 1.23                      | 46.2                   |
| Appro                        | bach                        |              | 269                           | 2.3          | 269  | 2.3                       | 0.546               | 15.1                  | LOS B               | 2.9 | 20.5                           | 0.75         | 1.04                 | 1.23                      | 46.2                   |
| North                        | : Princ                     | ess High     | way (N)                       | )            |      |                           |                     |                       |                     |     |                                |              |                      |                           |                        |
| 7                            | L2                          | All MCs      | 125                           | 5.0          | 125  | 5.0                       | 0.228               | 5.7                   | LOS A               | 0.0 | 0.0                            | 0.00         | 0.18                 | 0.00                      | 55.7                   |
| 8                            | T1                          | All MCs      | 292                           | 8.7          | 292  | 8.7                       | 0.228               | 0.1                   | LOS A               | 0.0 | 0.0                            | 0.00         | 0.18                 | 0.00                      | 58.2                   |
| Appro                        | bach                        |              | 417                           | 7.6          | 417  | 7.6                       | 0.228               | 1.7                   | NA                  | 0.0 | 0.0                            | 0.00         | 0.18                 | 0.00                      | 57.4                   |
| All Ve                       | hicles                      |              | 1258                          | 5.3          | 1258 | 5.3                       | 0.546               | 4.2                   | NA                  | 2.9 | 20.5                           | 0.20         | 0.33                 | 0.31                      | 55.2                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Monday, 6 January 2025 4:15:03 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\250106 - SIDRA Modelling\4. Rosedale - Existing+Growth +Dev792 (RMS rates).sip9

### V Site: 106 [(I-6) Princess Highway / Tomakin Road\_Weekday PM (Site Folder: Existing + Growth + Dev792 - Weekday PM)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

New Site Site Category: (None) Give-Way (Two-Way)

| Vehicle Movement Performance |        |              |                               |              |      |                            |                     |                       |                     |     |                                |              |                      |                           |                        |
|------------------------------|--------|--------------|-------------------------------|--------------|------|----------------------------|---------------------|-----------------------|---------------------|-----|--------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID                    | Turn   | Mov<br>Class | Dem<br>Fl<br>[ Total<br>veh/h | lows<br>HV ] |      | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | Back Of<br>leue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South: Princess Highway (S)  |        |              |                               |              |      |                            |                     |                       |                     |     |                                |              |                      |                           |                        |
| 2                            | T1     | All MCs      | 517                           | 5.5          | 517  | 5.5                        | 0.340               | 0.9                   | LOS A               | 0.8 | 5.9                            | 0.17         | 0.21                 | 0.17                      | 58.4                   |
| 3                            | R2     | All MCs      | 46                            | 2.3          | 46   | 2.3                        | 0.340               | 10.5                  | LOS A               | 0.8 | 5.9                            | 0.17         | 0.21                 | 0.17                      | 55.6                   |
| Appro                        | ach    |              | 563                           | 5.2          | 563  | 5.2                        | 0.340               | 1.7                   | NA                  | 0.8 | 5.9                            | 0.17         | 0.21                 | 0.17                      | 58.1                   |
| East:                        | Tomal  | kin Road     | (E)                           |              |      |                            |                     |                       |                     |     |                                |              |                      |                           |                        |
| 4                            | L2     | All MCs      | 41                            | 2.6          | 41   | 2.6                        | 0.559               | 12.1                  | LOS A               | 2.4 | 17.4                           | 0.85         | 1.08                 | 1.35                      | 43.4                   |
| 6                            | R2     | All MCs      | 143                           | 2.9          | 143  | 2.9                        | 0.559               | 22.8                  | LOS B               | 2.4 | 17.4                           | 0.85         | 1.08                 | 1.35                      | 43.2                   |
| Appro                        | ach    |              | 184                           | 2.9          | 184  | 2.9                        | 0.559               | 20.4                  | LOS B               | 2.4 | 17.4                           | 0.85         | 1.08                 | 1.35                      | 43.3                   |
| North                        | Princ  | ess High     | way (N)                       | )            |      |                            |                     |                       |                     |     |                                |              |                      |                           |                        |
| 7                            | L2     | All MCs      | 209                           | 1.0          | 209  | 1.0                        | 0.402               | 5.7                   | LOS A               | 0.0 | 0.0                            | 0.00         | 0.16                 | 0.00                      | 55.8                   |
| 8                            | T1     | All MCs      | 548                           | 3.8          | 548  | 3.8                        | 0.402               | 0.1                   | LOS A               | 0.0 | 0.0                            | 0.00         | 0.16                 | 0.00                      | 58.2                   |
| Appro                        | ach    |              | 758                           | 3.1          | 758  | 3.1                        | 0.402               | 1.7                   | NA                  | 0.0 | 0.0                            | 0.00         | 0.16                 | 0.00                      | 57.6                   |
| All Ve                       | hicles |              | 1505                          | 3.8          | 1505 | 3.8                        | 0.559               | 4.0                   | NA                  | 2.4 | 17.4                           | 0.17         | 0.29                 | 0.23                      | 55.5                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Monday, 6 January 2025 4:15:06 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\250106 - SIDRA Modelling\4. Rosedale - Existing+Growth +Dev792 (RMS rates).sip9

#### V Site: 106 [(I-6) Princess Highway / Tomakin Road\_Weekend Mid-day (Site Folder: Existing + Growth + Dev792- Weekend Mid-day)]

Output produced by SIDRA INTERSECTION Version: 9.1.4.221

New Site Site Category: (None) Give-Way (Two-Way)

| Vehi                   | cle M    | ovemen       | t Perfo                         | rma          | nce  |                            |                     |                       |                     |     |                                |              |                      |                           |                        |
|------------------------|----------|--------------|---------------------------------|--------------|------|----------------------------|---------------------|-----------------------|---------------------|-----|--------------------------------|--------------|----------------------|---------------------------|------------------------|
| Mov<br>ID              | Turn     | Mov<br>Class | Dem<br>Fl<br>[ Total  <br>veh/h | lows<br>HV ] |      | rival<br>lows<br>HV ]<br>% | Deg.<br>Satn<br>v/c | Aver.<br>Delay<br>sec | Level of<br>Service |     | Back Of<br>leue<br>Dist ]<br>m | Prop.<br>Que | Eff.<br>Stop<br>Rate | Aver.<br>No. of<br>Cycles | Aver.<br>Speed<br>km/h |
| South                  | n: Prino | cess High    | nway (S)                        | )            |      |                            |                     |                       |                     |     |                                |              |                      |                           |                        |
| 2                      | T1       | All MCs      | 438                             | 1.2          | 438  | 1.2                        | 0.264               | 0.4                   | LOS A               | 0.4 | 3.1                            | 0.12         | 0.15                 | 0.12                      | 59.0                   |
| 3                      | R2       | All MCs      | 38                              | 0.0          | 38   | 0.0                        | 0.264               | 8.1                   | LOS A               | 0.4 | 3.1                            | 0.12         | 0.15                 | 0.12                      | 56.3                   |
| Appro                  | bach     |              | 476                             | 1.1          | 476  | 1.1                        | 0.264               | 1.0                   | NA                  | 0.4 | 3.1                            | 0.12         | 0.15                 | 0.12                      | 58.8                   |
| East: Tomakin Road (E) |          |              |                                 |              |      |                            |                     |                       |                     |     |                                |              |                      |                           |                        |
| 4                      | L2       | All MCs      | 51                              | 2.1          | 51   | 2.1                        | 0.543               | 9.4                   | LOS A               | 2.9 | 20.5                           | 0.74         | 1.03                 | 1.20                      | 46.9                   |
| 6                      | R2       | All MCs      | 239                             | 0.4          | 239  | 0.4                        | 0.543               | 15.2                  | LOS B               | 2.9 | 20.5                           | 0.74         | 1.03                 | 1.20                      | 46.7                   |
| Appro                  | bach     |              | 289                             | 0.7          | 289  | 0.7                        | 0.543               | 14.2                  | LOS A               | 2.9 | 20.5                           | 0.74         | 1.03                 | 1.20                      | 46.8                   |
| North                  | : Princ  | ess High     | way (N)                         |              |      |                            |                     |                       |                     |     |                                |              |                      |                           |                        |
| 7                      | L2       | All MCs      | 191                             | 1.7          | 191  | 1.7                        | 0.287               | 5.6                   | LOS A               | 0.0 | 0.0                            | 0.00         | 0.21                 | 0.00                      | 55.6                   |
| 8                      | T1       | All MCs      | 355                             | 0.9          | 355  | 0.9                        | 0.287               | 0.1                   | LOS A               | 0.0 | 0.0                            | 0.00         | 0.21                 | 0.00                      | 58.0                   |
| Appro                  | bach     |              | 545                             | 1.2          | 545  | 1.2                        | 0.287               | 2.0                   | NA                  | 0.0 | 0.0                            | 0.00         | 0.21                 | 0.00                      | 57.1                   |
| All Ve                 | hicles   |              | 1311                            | 1.0          | 1311 | 1.0                        | 0.543               | 4.3                   | NA                  | 2.9 | 20.5                           | 0.21         | 0.37                 | 0.31                      | 55.0                   |

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Options tab).

Vehicle movement LOS values are based on average delay per movement.

Minor Road Approach LOS values are based on average delay for all vehicle movements.

NA (TWSC): Level of Service is not defined for major road approaches or the intersection as a whole for Two-Way Sign Control (HCM LOS rule).

Two-Way Sign Control Capacity Model: SIDRA Standard.

Delay Model: SIDRA Standard (Control Delay: Geometric Delay is included).

Queue Model: SIDRA queue estimation methods are used for Back of Queue and Queue at Start of Gap.

Gap-Acceptance Capacity Formula: SIDRA Standard (Akçelik M3D).

HV (%) values are calculated for All Movement Classes of All Heavy Vehicle Model Designation.

Arrival Flows used in performance calculations are adjusted to include any Initial Queued Demand and Upstream Capacity Constraint effects.

SIDRA INTERSECTION 9.1 | Copyright © 2000-2023 Akcelik and Associates Pty Ltd | sidrasolutions.com

Organisation: PARKING AND TRAFFIC CONSULTANTS | Licence: NETWORK / 1PC | Processed: Monday, 6 January 2025 4:15:10 PM Project: S:\PROJECTS\_2023\0674\_WALK\_Rosedale Subdivision\03 WIP\07 SIDRA\250106 - SIDRA Modelling\4. Rosedale - Existing+Growth +Dev792 (RMS rates).sip9

# Appendix 5. Proposed Access Roundabout Drawing

