Annexure A

- 1. In addition to the property details listed on the form for Development Application 294/2018 (**Development Application**), the land to which the Development Application relates is also:
 - (a) Lot 7031 in Deposited Plan 1066257;
 - (b) Lot 7032 in Deposited Plan 1066257; and
 - (c) the part of the unmade paper road comprised in certificate of title Volume 1956 Folio 183 shown highlighted pink in the aerial photo in Annexure A,

2. The Development Application is for Integrated Development pursuant to section 4.46 of the EPA Act and the works proposed in relation the part of the unmade paper road comprised in certificate of title Volume 1956 Folio 183 shown highlighted pink in the aerial photo in Annexure A, require approval under section 138 of the *Roads Act 1993*.

BELL QUARRY REHABILITATION PROJECT PTY LTD v LITHGOW CITY COUNCIL

Proceedings No. 2021/00091361

Statement of Commitment for development application 294/18

This statement of commitment has been prepared for Bell Quarry Rehabilitation Project Pty Ltd, the Applicant of development application 294/18 which seeks consent for the rehabilitation of the former Bell Quarry at Sandham Road, Dargan (**Proposed Development**) on Lot 23 in Deposited Plan 751631 (**Land**).

This statement of commitment will act as a foundation for how the Applicant commits to work with external stakeholders in carrying out the Proposed Development to ensure the proper rehabilitation of the Land in an environmentally satisfactory manner.

The Applicant commits to:

- listening to and understanding any future concerns of nearby residents in relation to the operation of the Proposed Development through the establishment of a Community Consultative Committee (CCC). The CCC will be operated generally in accordance with the Department of Industry & Environment Community Consultative Committee Guidelines for State Significant Projects (January 2019, or its latest version);
- rehabilitate and revegetate areas of land outside the cadastral boundaries of the Land and located in the Blue Mountains National Park which have been disturbed by previous quarrying activities on the Land in accordance with the vegetation management prepared by Cumberland Ecology and dated 16 November 2021, as may be amended in accordance with any requirements of National Parks and Wildlife Service;
- rehabilitate and revegetate areas of land outside the cadastral boundaries of the Land and located on Lots 7031 and 7032 of Deposited Plan 1066257 as well as an unmade part of the public road known as 'Sandham Road' in accordance with the vegetation management plan proposed to be prepared in accordance with the report titled Supplementary Ecological Information prepared by Cumberland Ecology and dated 19 November 2021;
- 4. upgrading parts of Sandham Road in accordance with the offer to Council dated 19 November 2021 under the terms of the proposed voluntary planning agreement annexed to that offer;
- ongoing maintenance of the unsealed portion of Sandham Road over the life of the Proposed Development, as required by consultation and agreement with Lithgow City Council as proposed in the voluntary planning agreement referred to in point 4 above; and
- 6. dedication or reservation of parts of the Land for environmental conservation purposes. The areas and location are to be determined in consultation with Council.

Our Ref: KMG:981456

19 November 2021

The General Manager Lithgow City Council 180 Mort Street LITHGOW NSW 2790

Email: council@lithgow.nsw.gov.au

This document, including any attachments, may contain privileged and confidential information intended only for the addressee named above. If you are not the intended recipient please notify us. Any unauthorised use, distribution or reproduction of the content of this document is expressly forbidden.

Dear Sir/Madam

Bell Quarry Rehabilitation Project Pty Ltd v Lithgow City Council Land and Environment Court Proceedings no. 2021/91361 Property: Lot 23 in DP 751631 - Sandham Road, Newnes Junction Letter of offer to enter into a voluntary planning agreement

- 1. Purpose of this correspondence
- 1.1 This correspondence is a formal of offer on behalf of Bell Quarry Rehabilitation Project Pty Ltd (Applicant) to enter into a Planning Agreement pursuant to section 7.4 of the Environmental Planning and Assessment Act 1979 (EPA Act) in support of development application 294/18 (Development Application) for the rehabilitation of Bell Quarry at Lot 23 in Deposited Plan 751631 (Site)
- 1.2 This letter is provided to Lithgow City Council (**Council**) together with the proposed planning agreement to formalise the offer and if accepted by Council, progress the agreement as expeditiously as possible.

Offer

Upgrade works

- 2.1 Council's Statement of Facts and Contentions filed on 21 July 2021 states at contention 12(c) that traffic impacts in relation to the proposed heavy vehicle movements over Sandham Road may be resolved by condition of consent.
- 2.2 Specifically it is stated that the recommendations of Council's Engineer for the widening and sealing of Sandham Road would address local concerns as to dust and public safety.
- 2.3 The Applicant has considered the matters raised by Council in its Statement of Facts and Contentions filed on 21 July 2021 and sought expert advice from Mr Brett

Brisbane Canberra Darwin

Adelaide

Hobart

Melbourne Norwest

Perth

Sydney

Doc ID 895028773/v1

- Maynard of GTA Consultants in relation to the extent of road improvements reasonably required to address the matters raised by Council in its SOFAC.
- 2.4 Whilst the Applicant does not agree that the wholesale upgrades required by Council are in fact required as a result of proposed development, in an effort to resolve the traffic contention, the Applicant is prepared to make a monetary contribution to Council for the carrying out of the following road upgrades:
 - (a) Widening of Sandham Road in select locations along the existing sealed section to provide passing bays which will allow safe passing between a truck-and-dog and a car and would also address the use of Sandham Road by non-quarry trucks and school buses;
 - (b) The length of the widening would be dependent on the existing road features and would be a minimum of 30 metres long (20 metres plus basic tapes).
- 2.5 The Applicant considers the most appropriate locations for the upgrade works listed in 2.4 are as per the locations shown in the photos in Annexure A.
- 2.6 In addition to the above the Applicant is also prepared to make a monetary contribution to Council for the basic safety upgrade of the approximately 1250 m2 long sealed section of the road comprising of warning signage and guide posts.
- 2.7 The costing of the road upgrade works in paragraphs 2.4 to 2.6 above has been estimated by the Applicant to be \$138,512 plus GST. A cost summary report is provided at Annexure B.

Maintenance of Sandham Road (unsealed section - access to the site)

- 2.8 In addition to the monetary contribution referred to above, the Applicant agrees to maintain specified parts of the unsealed portion of Sandham Road to the standard existing at the date of the commencement of any development consent granted in relation to the Development Application.
- 2.9 A road survey will be carried out and provided to Council prior to the commencement of works under any development consent relating to the Development Application.
- 2.10 It is proposed that annual inspections of Sandham Road will be conducted with a Council officer and the Applicant's representative at its cost, to identify any maintenance works required to be carried out. Any required maintenance works will be carried out within a reasonable time period. This will ensure that Sandham Road is maintained to a safe standard and in accordance with the abovementioned road survey.

Dedication / reservation of parts of the Site for environmental conservation purposes

- 2.11 The Applicant proposes dedication or reservation of parts of the Land once rehabilitated and revegetated for environmental conservation purposes. The areas and location are to be determined in consultation with Council.
- 3. Section 7.12 developer contributions

- 3.1 The development of the Site would otherwise be subject to, and this offer does not propose to affect the application of the provisions of the Section 94A Development Contributions Plan for Lithgow City Council dated October 2015.
- 4. Next steps
- 4.1 The Applicant formally offers to pay a monetary contribution to Council in the amount of \$140,000 for the purposes of the upgrade works listed in paragraphs 2.4 to 2.6 of the letter.
- 4.2 This letter of offer and draft planning agreement is submitted to Council for consideration as part of the Development Application.
- 4.3 We look forward to Council's response in relation to the proposed offer and draft planning agreement.
- 4.4 Please contact the writers should you wish to discuss.

Yours faithfully

Kirston Gerathy

Partner

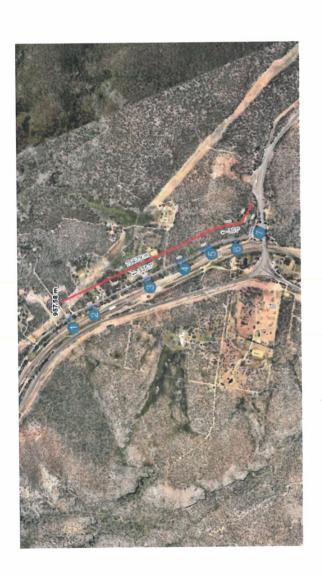
HWL Ebsworth Lawyers

+61 2 9334 8628

kgerathy@hwle.com.au

Kara Mezinec

Senior Associate


HWL Ebsworth Lawyers

+61 2 9334 8737

kmezinec@hwle.com.au

HWEBSWORTH

Annexure A

19 November 2021

Doc ID 895028773/v1

19 November 2021 Doc ID 895028773/v1

Page 8

SUMMARY OF WIDENING

ID1 = 20m

ID2 = 20m

1D3 = 25m

1D5 = 50m

ID6 = 50m

106 = 15m

ID7 = 30m

Total length = 210m

Total area = 210m length x 2m widening = $420m^2$

19 November 2021 Doc ID 895028773/v1

Page 9

Annexure B

Bell Quarry Road Widening

Item	Description	Otto	Unit	Rate	Amount
1	Establishment (site Amenities, Floats)	-	115	\$5,000.00	\$5,000.00
2	2 Survey & supervision	1	LS.	\$12,000.00	\$12,000.00
	Tree prunning including remval of dead				
E.	3 branches along sandham road	-	S	\$30,000.00	\$30,000.00
4	4 Traffic Control (2 men crew)	140 Hrs	Hrs	\$98.00	\$13,720.00
5	5 Earthworks + Swale drain	420 M2	M2	\$55.00	\$23,100.00
9	6 Base and subbase	840 M2	M2	\$25.00	\$21,000.00
7	Asphalt	420 M2	M2	\$43.57	\$18,300.00
89	8 Road Marking and guide posts	1	S	\$2,800.00	\$2,800.00
6	9 Sub total				\$125,920.00
10	10 GST	1	ST	10%	\$12,592.00
11	11 Total inclusive of GST	1	LS		\$138,512.00

Deed

Lot 23 in Deposited Plan 751631, Sandham Road, Dargan NSW 2786

Planning Agreement

Under s7.4 of the Environmental Planning and Assessment Act 1979

Lithgow City Council and Bell Quarry Rehabilitation Project Pty Itd

Date:

Planning Agreement

Table of Contents

Summary	/ Sheet	4
Parties		6
Backgrou	und	6
Operative	e provisions	7
Part 1 -	Preliminary	7
1	Interpretation	7
2	Status of this Deed	
3	Commencement	
4	Application of this Deed	10
5	Warranties	
6	Further agreements	10
7	Application of s7.11, s7.12 and s7.24 of the Act to the Development	
Part 2	- Development Contributions	10
8	Provision of Development Contributions	10
9	Payment of Monetary Development Contributions	
Part 3	- Dispute Resolution	.11
10	Dispute resolution – expert determination	. 11
11	Dispute Resolution - mediation	. 12
Part 4	- Enforcement	. 12
12	Breach of obligations	. 12
13	Enforcement in a court of competent jurisdiction	. 13
Part 5	Registration & Restriction on Dealings	. 13
14	Registration of this Deed	. 13
15	Restriction on dealings	. 14
Part 6	– Risk and Release	. 14
16	Risk	. 14
17	Release	. 15

Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

Part 7	- Other Provisions
18	Review of Deed
19	Notices
20	Approvals and Consent
21	Costs
22	Entire Deed
23	Further Acts
24	Governing Law and Jurisdiction
25	Joint and Individual Liability and Benefits
26	No Fetter
27	Illegality
28	Severability
29	Amendment
30	Waiver
31	GST
32	Explanatory Note
Schedule	20

Summary Sheet

Council:

Name: Lithgow City Council

Address: 180 Mort Street, Lithgow NSW 2790

Telephone:

Email:

Representative: The General Manager

Developer:

Name: Bell Quarry Rehabilitation Project Pty Ltd

Address: Level 1, Suite1, 181 Macquarie Street, Parramatta NSW 2150

Telephone:

Email:

Representative: Robin Chalouhi

Land:

See definition of Land in clause 1.1.

Development:

See definition of *Development* in clause 1.1.

Development Contributions:

See Clause 8.

Application of s7.11, s7.12 and s7.24 of the Act:

See clause 7.

Lot 23 in Deposited Plan 751631, Sandham Road, Dargan Lithgow City Council Bell Quarry Rehabilitation Project Pty Ltd

Registration:

See clause 15.

Restriction on dealings:

See clause 16.

Dispute Resolution:

See Part 3.

Lot 23 in Deposited Plan 751631, Sandham Road, Dargan Lithgow City Council Bell Quarry Rehabilitation Project Pty Ltd

Lot 23 in Deposited Plan 751631, Sandham Road, Dargan

Under s7.4 of the Environmental Planning and Assessment Act 1979

Parties

Lithgow City Council ABN 59 986 092 492 of 180 Mort Street, Lithgow NSW 2790 and

Bell Quarry Rehabilitation Project Pty Ltd ACN 64 614 764 144 of Level 1, Suite 1, 181 Macquarie Street, Parramatta NSW 2150 (**Developer**)

Chalouhi Rural Pty Ltd ACN 603 687 350 of Level 1, Suite 1, 181 Macquarie Street, Parramatta NSW 2150
(Land Owner)

Background

- A The Land Owner owns the Land.
- B On 29 November 2018, the Developer made a Development Application to Council to carry out the Development on the Land.
- C The Land Owner consents to the Development being carried out on the Land.
- D The Developer has offered to make Development Contributions in connection with the Development and in accordance with this Deed.

Operative provisions

Part 1 - Preliminary

1 Interpretation

1.1 In this Deed the following definitions apply:

Act means the Environmental Planning and Assessment Act 1979 (NSW).

Approval includes approval, consent, licence, permission or the like.

Authority means the Commonwealth or New South Wales government, a Minister of the Crown, a government department, a public authority established by or under any Act, a council or county council constituted under the *Local Government Act 1993*, or a person or body exercising functions under any Act including a commission, panel, court, tribunal and the like.

Bank Guarantee means an irrevocable and unconditional undertaking without any expiry or end date in favour of the Council to pay an amount or amounts of money to the Council on demand issued by:

- (a) one of the following trading banks:
 - (i) Australia and New Zealand Banking Group Limited,
 - (ii) Commonwealth Bank of Australia,
 - (iii) Macquarie Bank Limited,
 - (iv) National Australia Bank Limited,
 - (iv) St George Bank Limited,
 - (v) Westpac Banking Corporation, or
- (b) any other financial institution approved by the Council in its absolute discretion.

Claim includes a claim, demand, remedy, suit, injury, damage, loss, Cost, liability, action, proceeding or right of action.

Construction Certificate has the same meaning as in the Act.

Contribution Item means an item of Development Contribution specified in Column 1 of Schedule 1.

Cost means a cost, charge, expense, outgoing, payment, fee and other expenditure of any nature.

CPI means the *Consumer Price Index (All Groups – Sydney)* published by the Australian Bureau of Statistics.

Deed means this Deed and includes any schedules, annexures and appendices to this Deed.

Department means the Department of Planning, Industry and Environment.

Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

Development means the rehabilitation of the former Bell Quarry located at Lot 23 in Deposited Plan 751631 through the importation of VENM, ENM and comparable material.

Development Application has the same meaning as in the Act.

Development Consent has the same meaning as in the Act.

Development Contribution means a monetary contribution, the dedication of land free of cost, the carrying out of work, or the provision of any other material public benefit, or any combination of them, to be used for, or applied towards a public purpose, but does not include any security or other benefit provided by a Party to the Council to secure the enforcement of that Party's obligations under this Deed for the purposes of \$7.4(3)(g) of the Act.

Dispute means a dispute or difference between the Parties under or in relation to this Deed.

GST has the same meaning as in the GST Law.

GST Law has the same meaning as in *A New Tax System* (Goods and Services Tax) Act 1999 (Cth) and any other Act or regulation relating to the imposition or administration of the GST.

Item means an item specified in Column 1 of Schedule 1.

Land means the land comprised in Lot 23 in Deposited Plan 751631.

Maintain means works to bring an item to a state of reasonable condition and in accordance with relevant standards applicable at the time of construction of the item, including:

- (a) repairing any defects due to use of poor materials or due to poor workmanship; and
- (b) removing graffiti or repairing or replacing any item damaged as a consequence of vandalism, provided that works required as a consequence of graffiti or vandalism do not exceed \$100,000 per annum.

Maintained and Maintenance have corresponding meanings.

Monetary Contribution means the total \$ amount specified in Column 1, Item 1 of Schedule 1 indexed quarterly in accordance with the CPI from the date on which this Deed is executed until the Monetary Contribution is provided to Council in accordance with Schedule 1.

Party means a party to this Deed.

Regulation means the *Environmental Planning and Assessment Regulation* 2000.

- 1.2 In the interpretation of this Deed, the following provisions apply unless the context otherwise requires:
 - 1.2.1 Headings are inserted for convenience only and do not affect the interpretation of this Deed.
 - 1.2.2 A reference in this Deed to a business day means a day other than a Saturday or Sunday on which banks are open for business generally in Sydney.
 - 1.2.3 If the day on which any act, matter or thing is to be done under this Deed is not a business day, the act, matter or thing must be done on the next business day.

Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

- 1.2.4 A reference in this Deed to dollars or \$ means Australian dollars and all amounts payable under this Deed are payable in Australian dollars.
- 1.2.5 A reference in this Deed to a \$ value relating to a Development Contribution is a reference to the value exclusive of GST.
- 1.2.6 A reference in this Deed to any law, legislation or legislative provision includes any statutory modification, amendment or re-enactment, and any subordinate legislation or regulations issued under that legislation or legislative provision.
- 1.2.7 A reference in this Deed to any agreement, deed or document is to that agreement, deed or document as amended, novated, supplemented or replaced.
- 1.2.8 A reference to a clause, part, schedule or attachment is a reference to a clause, part, schedule or attachment of or to this Deed.
- 1.2.9 An expression importing a natural person includes any company, trust, partnership, joint venture, association, body corporate or governmental agency.
- 1.2.10 Where a word or phrase is given a defined meaning, another part of speech or other grammatical form in respect of that word or phrase has a corresponding meaning.
- 1.2.11 A word which denotes the singular denotes the plural, a word which denotes the plural denotes the singular, and a reference to any gender denotes the other genders.
- 1.2.12 References to the word 'include' or 'including' are to be construed without limitation.
- 1.2.13 A reference to this Deed includes the agreement recorded in this Deed.
- 1.2.14 A reference to a Party to this Deed includes a reference to the employees, agents and contractors of the Party, the Party's successors and assigns.
- 1.2.15 A reference to 'dedicate' or 'dedication' in relation to land is a reference to dedicate or dedication free of cost.
- 1.2.16 Any schedules, appendices and attachments form part of this Deed.
- 1.2.17 Notes appearing in this Deed are operative provisions of this Deed.

2 Status of this Deed

2.1 This Deed is a planning agreement within the meaning of s7.4(1) of the Act.

3 Commencement

- 3.1 This Deed commences and has force and effect on and from the date when the Parties have:
 - 3.1.1 both executed the same copy of this Deed, or

Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

- 3.1.2 each executed separate counterparts of this Deed and exchanged the counterparts.
- 3.2 The Parties are to insert the date when this Deed commences on the front page and on the execution page.

4 Application of this Deed

4.1 This Deed applies to the Land and the Development.

5 Warranties

- 5.1 The Parties warrant to each other that they:
 - 5.1.1 have full capacity to enter into this Deed, and
 - 5.1.2 are able to fully comply with their obligations under this Deed.

6 Further agreements

The Parties may, at any time and from time to time, enter into agreements relating to the subject-matter of this Deed that are not inconsistent with this Deed for the purpose of implementing this Deed.

7 Application of s7.11, s7.12 and s7.24 of the Act to the Development

- 7.1 This Deed does not exclude the application of ss7.11, 7.12 or 7.24 to the Development.
- 7.2 The benefits under this Deed are to be taken into consideration in determining a Development Contribution under s7.11 of the Act to the Development to the extent provided for in Item 7 in Schedule 1.

Part 2 - Development Contributions

8 Provision of Development Contributions

- 8.1 The Developer is to make Development Contributions to the Council in accordance with Schedule 1, any other provision of this Deed relating to the making of Development Contributions and otherwise to the satisfaction of the Council.
- 8.2 The Council is to apply each Development Contribution made by the Developer under this Deed towards the public purpose for which it is made and otherwise in accordance with this Deed.

Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

9 Payment of Monetary Development Contributions

- 9.1 The Developer is to pay to the Council the Monetary Contribution in the manner and at the time or times specified in Schedule 1.
- 9.2 A Monetary- Contribution is made for the purposes of this Deed when the Council receives the full amount of the contribution payable under this Deed in cash or by unendorsed bank cheque or by the deposit by means of electronic funds transfer of cleared funds into a bank account nominated by the Council.

10 Maintenance of Sandham Road

- 10.1 A dilapidation survey of Sandham Road from the intersection with Bells Line of Road to the Land, must be carried out and provided to Council prior to the commencement of works under any development consent granted in relation to the Development.
- 10.2 The Developer must Maintain the part of Sandham Road between Bells Line of Road and the Land for the life of the Development, to at least the standard reported in the dilapidation survey provided under clause 10.1 of this Deed.
- 10.3 Annual inspections of the part of Sandham Road from Bells Line of Road to the Land must be conducted by a representative of the Developer with a Council officer and traffic engineer engaged by the Developer at its cost present, to identify any Maintenance required to be carried out.
- 10.4 Any Maintenance agreed between the representative of the Developer, the Council officer and the traffic engineer as being required, must be carried out within a reasonable time period relevant to the required Maintenance Work.

Part 3 - Dispute Resolution

11 Dispute resolution – expert determination

- 11.1 This clause applies to a Dispute between any of the Parties to this Deed concerning a matter arising in connection with this Deed that can be determined by an appropriately qualified expert if:
 - 11.1.1 the Parties to the Dispute agree that it can be so determined, or
 - 11.1.2 the Chief Executive Officer of the professional body that represents persons who appear to have the relevant expertise to determine the Dispute gives a written opinion that the Dispute can be determined by a member of that body.
- 11.2 A Dispute to which this clause applies is taken to arise if one Party gives another Party a notice in writing specifying particulars of the Dispute.
- 11.3 If a notice is given under clause 11.2, the Parties are to meet within 14 days of the notice in an attempt to resolve the Dispute.

Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

- 11.4 If the Dispute is not resolved within a further 28 days, the Dispute is to be referred to the President of the NSW Law Society to appoint an expert for expert determination.
- 11.5 The expert determination is binding on the Parties except in the case of fraud or misfeasance by the expert.
- 11.6 Each Party is to bear its own costs arising from or in connection with the appointment of the expert and the expert determination.
- 11.7 The Parties are to share equally the costs of the President, the expert, and the expert determination.

12 Dispute Resolution - mediation

- 12.1 This clause applies to any Dispute arising in connection with this Deed other than a Dispute to which clause 11 applies.
- 12.2 Such a Dispute is taken to arise if one Party gives another Party a notice in writing specifying particulars of the Dispute.
- 12.3 If a notice is given under clause 12.2, the Parties are to meet within 14 days of the notice in an attempt to resolve the Dispute.
- 12.4 If the Dispute is not resolved within a further 28 days, the Parties are to mediate the Dispute in accordance with the Mediation Rules of the Law Society of New South Wales published from time to time and are to request the President of the Law Society to select a mediator.
- 12.5 If the Dispute is not resolved by mediation within a further 28 days, or such longer period as may be necessary to allow any mediation process which has been commenced to be completed, then the Parties may exercise their legal rights in relation to the Dispute, including by the commencement of legal proceedings in a court of competent jurisdiction in New South Wales.
- 12.6 Each Party is to bear its own costs arising from or in connection with the appointment of a mediator and the mediation.
- 12.7 The Parties are to share equally the costs of the President, the mediator, and the mediation.

Part 4 - Enforcement

13 Breach of obligations

- 13.1 If the Council reasonably considers that the Developer is in breach of any obligation under this Deed, it may give a written notice to the Developer:
 - 13.1.1 specifying the nature and extent of the breach,
 - 13.1.2 requiring the Developer to:
 - rectify the breach if it reasonably considers it is capable of rectification, or

Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

- (b) pay compensation to the reasonable satisfaction of the Council in lieu of rectifying the breach if it reasonably considers the breach is not capable of rectification,
- 13.1.3 specifying the period within which the breach is to be rectified or compensation paid, being a period that is reasonable in the circumstances.
- 13.2 Any costs incurred by the Council in remedying a breach in accordance with clause **Error! Reference source not found.** may be recovered by the Council as a debt due in a court of competent jurisdiction.
- 13.3 For the purpose of clause 13.2, the Council's costs of remedying a breach the subject of a notice given under clause 13.1 include, but are not limited to:
 - 13.3.1 the costs of the Council's employees, agents and contractors reasonably incurred for that purpose.
 - 13.3.2 all fees and charges necessarily or reasonably incurred by the Council in remedying the breach, and
 - 13.3.3 all legal costs and expenses reasonably incurred by the Council, by reason of the breach.
- 13.4 Nothing in this clause 13 prevents the Council from exercising any rights it may have at law or in equity in relation to a breach of this Deed by the Developer, including but not limited to seeking relief in an appropriate court.

14 Enforcement in a court of competent jurisdiction

- 14.1 Without limiting any other provision of this Deed, the Parties may enforce this Deed in any court of competent jurisdiction.
- 14.2 For the avoidance of doubt, nothing in this Deed prevents:
 - 14.2.1 a Party from bringing proceedings in the Land and Environment Court to enforce any aspect of this Deed or any matter to which this Deed relates, or
 - 14.2.2 the Council from exercising any function under the Act or any other Act or law relating to the enforcement of any aspect of this Deed or any matter to which this Deed relates.

Part 5 – Registration & Restriction on Dealings

15 Registration of this Deed

- 15.1 The Parties agree to register this Deed for the purposes of s7.6(1) of the Act.
- 15.2 Not later than 10 Business Days after the commencement of this Deed, the Developer is to deliver to the Council in registrable form:

Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

- 15.2.1 an instrument requesting registration of this Deed on the title to the Land duly executed by the Developer, and
- 15.2.2 the written irrevocable consent of each person referred to in s7.6(1) of the Act to that registration.
- 15.3 This Deed is to be lodged for registration- within 21 days from the date of execution of the Deed. The Developer is to do such other things as are reasonably necessary to enable registration of this Deed to occur.
- The Parties are to do such things as are reasonably necessary to remove any notation relating to this Deed from the title to the Land once the Developer has completed its obligations under this Deed to the reasonable satisfaction of the Council or this Deed is terminated or otherwise comes to an end for any other reason.

16 Restriction on dealings

- 16.1 The Developer is not to:
 - 16.1.1 sell or transfer the Land, or
 - 16.1.2 assign the Developer's rights or obligations under this Deed, or novate this Deed,

to any person unless:

- 16.1.3 the Developer has, at no cost to the Council, first procured the execution by the person to whom the Land or part is to be sold or transferred or the Developer's rights or obligations under this Deed are to be assigned or novated, of a deed in favour of the Council on terms reasonably satisfactory to the Council, and
- 16.1.4 the Council has given written notice to the Developer stating that it reasonably considers that the purchaser, transferee, assignee or novatee, is reasonably capable of performing its obligations under this Deed, and
- 16.1.5 the Developer is not in breach of this Deed, and
- 16.1.6 the Council otherwise consents to the transfer, assignment or novation, such consent not to be unreasonably withheld.
- Subject to clause 16.3, the Developer acknowledges and agrees that it remains liable to fully perform its obligations under this Deed unless and until it has complied with its obligations under clause 16.1.
- Clause 16.1 does not apply in relation to any sale or transfer of the Land if this Deed is registered on the title to the Land at the time of the sale.

Part 6 - Risk and Release

17 Risk

17.1 The Developer performs this Deed at its own risk and its own cost.

Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

18 Release

18.1 The Developer releases the Council from any Claim it may have against the Council arising in connection with the performance of the Developer's obligations under this Deed except if, and to the extent that, the Claim arises because of the Council's negligence or default.

Part 7 - Other Provisions

19 Review of Deed

- 19.1 The Parties agree to review this Deed every year, and otherwise if either party is of the opinion that any change of circumstance has occurred, or is imminent, that materially affects the operation of this Deed.
- 19.2 For the purposes of clause 19.1, the relevant changes include (but are not limited to) any change to a law that restricts or prohibits or enables the Council or any other planning Authority to restrict or prohibit any aspect of the Development.
- 19.3 For the purposes of addressing any matter arising from a review of this Deed referred to in clause 19.1, the Parties are to use all reasonable endeavours to agree on and implement appropriate amendments to this Deed.
- 19.4 If this Deed becomes illegal, unenforceable or invalid as a result of any change to a law, the Parties agree to do all things necessary to ensure that an enforceable agreement of the same or similar effect to this Deed is entered into.
- 19.5 A failure by a Party to agree to take action requested by the other Party as a consequence of a review referred to in clause 19.1 (but not 19.4) is not a Dispute for the purposes of this Deed and is not a breach of this Deed.

20 Notices

- Any notice, consent, information, application or request that is to or may be given or made to a Party under this Deed is only given or made if it is in writing and sent in one of the following ways:
 - 20.1.1 delivered or posted to that Party at its address set out in the Summary Sheet, or
 - 20.1.2 emailed to that Party at its email address set out in the Summary Sheet.
- 20.2 If a Party gives the other Party 3 business days' notice of a change of its address or email, any notice, consent, information, application or request is only given or made by that other Party if it is delivered, posted or emailed to the latest address.
- 20.3 Any notice, consent, information, application or request is to be treated as given or made if it is:

Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

- 20.3.1 delivered, when it is left at the relevant address,
- 20.3.2 sent by post, 2 business days after it is posted, or
- 20.3.3 sent by email and the sender does not receive a delivery failure message from the sender's internet service provider within a period of 24 hours of the email being sent.
- 20.4 If any notice, consent, information, application or request is delivered, or an error free transmission report in relation to it is received, on a day that is not a business day, or if on a business day, after 5pm on that day in the place of the Party to whom it is sent, it is to be treated as having been given or made at the beginning of the next business day.

21 Approvals and Consent

- 21.1 Except as otherwise set out in this Deed, and subject to any statutory obligations, a Party may give or withhold an approval or consent to be given under this Deed in that Party's absolute discretion and subject to any conditions determined by the Party.
- 21.2 A Party is not obliged to give its reasons for giving or withholding consent or for giving consent subject to conditions.

22 Costs

- 22.1 The Developer is to pay to the Council the Council's costs of preparing, negotiating, executing and stamping this Deed, and any document related to this Deed up to an amount of \$5,000, within 7 days of a written demand by the Council for such payment.
- 22.2 The Developer is also to pay to the Council the Council's reasonable costs of enforcing this Deed within 7 days of a written demand by the Council for such payment.

23 Entire Deed

- 23.1 This Deed contains everything to which the Parties have agreed in relation to the matters it deals with.
- No Party can rely on an earlier document, or anything said or done by another Party, or by a director, officer, agent or employee of that Party, before this Deed was executed, except as permitted by law.

24 Further Acts

24.1 Each Party must promptly execute all documents and do all things that another Party from time to time reasonably requests to effect, perfect or complete this Deed and all transactions incidental to it.

Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

25 Governing Law and Jurisdiction

- 25.1 This Deed is governed by the law of New South Wales.
- 25.2 The Parties submit to the non-exclusive jurisdiction of its courts and courts of appeal from them.
- 25.3 The Parties are not to object to the exercise of jurisdiction by those courts on any basis.

26 Joint and Individual Liability and Benefits

- 26.1 Except as otherwise set out in this Deed:
 - 26.1.1 any agreement, covenant, representation or warranty under this Deed by 2 or more persons binds them jointly and each of them individually, and
 - 26.1.2 any benefit in favour of 2 or more persons is for the benefit of them jointly and each of them individually.

27 No Fetter

27.1 Nothing in this Deed shall be construed as requiring Council to do anything that would cause it to be in breach of any of its obligations at law, and without limitation, nothing shall be construed as limiting or fettering in any way the exercise of any statutory discretion or duty.

28 Illegality

28.1 If this Deed or any part of it becomes illegal, unenforceable or invalid as a result of any change to a law, the Parties are to co-operate and do all things necessary to ensure that an enforceable agreement of the same or similar effect to this Deed is entered into.

29 Severability

- 29.1 If a clause or part of a clause of this Deed can be read in a way that makes it illegal, unenforceable or invalid, but can also be read in a way that makes it legal, enforceable and valid, it must be read in the latter way.
- 29.2 If any clause or part of a clause is illegal, unenforceable or invalid, that clause or part is to be treated as removed from this Deed, but the rest of this Deed is not affected.

30 Amendment

30.1 No amendment of this Deed will be of any force or effect unless it is in writing and signed by the Parties to this Deed in accordance with clause 25C of the Regulation.

Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

31 Waiver

- 31.1 The fact that a Party fails to do, or delays in doing, something the Party is entitled to do under this Deed, does not amount to a waiver of any obligation of, or breach of obligation by, another Party.
- 31.2 A waiver by a Party is only effective if it:
 - 31.2.1 is in writing,
 - 31.2.2 is addressed to the Party whose obligation or breach of obligation is the subject of the waiver,
 - 31.2.3 specifies the obligation or breach of obligation the subject of the waiver and the conditions, if any, of the waiver,
 - 31.2.4 is signed and dated by the Party giving the waiver.
- 31.3 Without limitation, a waiver may be expressed to be conditional on the happening of an event, including the doing of a thing by the Party to whom the waiver is given.
- 31.4 A waiver by a Party is only effective in relation to the particular obligation or breach in respect of which it is given, and is not to be taken as an implied waiver of any other obligation or breach or as an implied waiver of that obligation or breach in relation to any other occasion.
- 31.5 For the purposes of this Deed, an obligation or breach of obligation the subject of a waiver is taken not to have been imposed on, or required to be complied with by, the Party to whom the waiver is given.

32 GST

32.1 In this clause:

Adjustment Note, Consideration, GST, GST Group, Margin Scheme, Money, Supply and Tax Invoice have the meaning given by the GST Law.

GST Amount means in relation to a Taxable Supply the amount of GST payable in respect of the Taxable Supply.

GST Law has the meaning given by the *A New Tax System* (Goods and Services Tax) Act 1999 (Cth).

Input Tax Credit has the meaning given by the GST Law and a reference to an Input Tax Credit entitlement of a party includes an Input Tax Credit for an acquisition made by that party but to which another member of the same GST Group is entitled under the GST Law.

Taxable Supply has the meaning given by the GST Law excluding (except where expressly agreed otherwise) a supply in respect of which the supplier chooses to apply the Margin Scheme in working out the amount of GST on that supply.

32.2 Subject to clause 32.4, if GST is payable on a Taxable Supply made under, by reference to or in connection with this Deed, the Party providing the Consideration for that Taxable Supply must also pay the GST Amount as additional Consideration.

Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

- 32.3 Clause 32.2 does not apply to the extent that the Consideration for the Taxable Supply is expressly stated in this Deed to be GST inclusive.
- 32.4 No additional amount shall be payable by the Council under clause 32.2 unless, and only to the extent that, the Council (acting reasonably and in accordance with the GST Law) determines that it is entitled to an Input Tax Credit for its acquisition of the Taxable Supply giving rise to the liability to pay GST.
- 32.5 If there are Supplies for Consideration which is not Consideration expressed as an amount of Money under this Deed by one Party to the other Party that are not subject to Division 82 of the *A New Tax System* (Goods and Services Tax) Act 1999, the Parties agree:
 - 32.5.1 to negotiate in good faith to agree the GST inclusive market value of those Supplies prior to issuing Tax Invoices in respect of those Supplies;
 - 32.5.2 that any amounts payable by the Parties in accordance with clause 32.2 (as limited by clause 32.4) to each other in respect of those Supplies will be set off against each other to the extent that they are equivalent in amount.
- 32.6 No payment of any amount pursuant to this clause 32, and no payment of the GST Amount where the Consideration for the Taxable Supply is expressly agreed to be GST inclusive, is required until the supplier has provided a Tax Invoice or Adjustment Note as the case may be to the recipient.
- 32.7 Any reference in the calculation of Consideration or of any indemnity, reimbursement or similar amount to a cost, expense or other liability incurred by a party, must exclude the amount of any Input Tax Credit entitlement of that party in relation to the relevant cost, expense or other liability.
- 32.8 This clause continues to apply after expiration or termination of this Deed.

33 Explanatory Note

- 33.1 The Appendix contains the Explanatory Note relating to this Deed required by clause 25E of the Regulation.
- Pursuant to clause 25E(7) of the Regulation, the Parties agree that the Explanatory Note is not to be used to assist in construing this Planning Deed.

Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

Schedule 1

(Clause 8)

Development Contributions

Column 1	Column 2	Column 3	Column 4
Item/ Contribution	Public Purpose	Manner & Extent	Timing

A. Monetary Contributions

1.\$140,000 (one hundred and forty thousand dollars) including GST

- The following road upgrade works to Sandham Road, Dargan in the locations shown in the photos included in Schedule 2:
 - (a) widening of Sandham Road in select locations along the existing sealed section to provide passing bays which will allow safe passing between a truck-and-dog and a car and would also address the use of Sandham Road by non-quarry trucks and school buses;
 - (b) length of the widening is be dependent on the existing road features and would be a minimum of 30 metres long (20 metres plus basic tapes) as summarised in Schedule 3.
- Safety upgrade of the approximately 1250 m2 long sealed section of Sandham Road, Dargan comprising of warning signage and guide posts.

Payable as a lump sum

Payable upon execution of the Deed.

Schedule 2

Lot 23 in Deposited Plan 751631, Sandham Road, Dargan Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

Lot 23 in Deposited Plan 751631, Sandham Road, Dargan

Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

Lot 23 in Deposited Plan 751631, Sandham Road, Dargan

Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

Schedule 3

Lot 23 in Deposited Plan 751631, Sandham Road, Dargan Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

Summary of Widening

SUMMARY OF WIDENING

ID1 = 20m

ID2 = 20m

ID3 = 25m

ID5 = 50m

ID6 = 50m

ID6 = 15m

ID7 = 30m

Total length = 210m

Total area = 210m length x 2m widening = 420m²

Lot 23 in Deposited Plan 751631, Sandham Road, Dargan Lithgow City Council Bell Quarry Rehabilitation Project Pty Ltd

Execution	
Executed as a Deed	
Dated:	
Executed on behalf of the Council	
General Manager	Witness
Mayor	Witness
Executed on behalf of the Developer in Corporations Act (Cth) 2001	accordance with s127(1) of the
Name/Position Name/Position	
Namen Osition	

Lot 23 in Deposited Plan 751631, Sandham Road, Dargan Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

Executed on behalf of the Land Owner in accordance with s127(1) of the Corporations Act (Cth) 2001

Name/Position

Name/Position

Lot 23 in Deposited Plan 751631, Sandham Road, Dargan

Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

Appendix

(Clause 33)

Environmental Planning and Assessment Regulation 2000 (Clause 25E)

Explanatory Note

Draft Planning Agreement

Under s7.4 of the Environmental Planning and Assessment Act 1979

Parties

Lithgow City Council ABN 59 986 092 492 of 180 Mort Street, Lithgow NSW 2790 (Council)

and

Bell Quarry Rehabilitation Project Pty Ltd ACN 64 614 764 144 of Level 1, Suite 1, 181 Macquarie Street, Parramatta NSW 2150

(Developer)

Chalouhi Rural Pty Ltd [insert details]

(Landowner)

Description of the Land to which the Draft Planning Agreement Applies

The Draft Planning Agreement applies to Lot 23 in Deposited Plan 751631, Sandham Road, Dargan NSW 2786 being the land shown shaded in red in the plan below.

[Plan to be inserted]

Description of Proposed Development

Lot 23 in Deposited Plan 751631, Sandham Road, Dargan

Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

The Draft Planning Agreement is in connection with the proposed rehabilitation of the Land through the importation of clean fill.

Description of Development Contributions

Under the Draft Planning Agreement, the Developer is to pay a monetary Development Contribution to the Council in the amount of \$140,000 excluding GST to be applied towards the upgrade of parts of Sandham Road, Dargan within the Council's local government area as set out below:

- (a) widening of Sandham Road in select locations along the existing sealed section to provide passing bays which will allow safe passing between a truck-and-dog and a car and would also address the use of Sandham Road by non-quarry trucks and school buses:
- (b) length of the widening is be dependent on the existing road features and would be a minimum of 30 metres long (20 metres plus basic tapes); and
- (c) Safety upgrade of the approximately 1250 m2 long sealed section of Sandham Road, Dargan comprising of warning signage and guide posts.

Summary of Objectives, Nature and Effect of the Draft Planning Agreement

Objective, Nature and Effect of Draft Planning Agreement

The Draft Planning Agreement is a planning agreement under s7.4 of the EPA Act. It is a voluntary agreement, under which the Developer makes Development Contributions (as defined in clause 1.1 of the Draft Planning Agreement) for public purposes (as defined in s 7.4(2) of the EPA Act).

The objectives of the Draft Planning Agreement are to provide funding for the upgrade of Sandham Road as set out in the 'Description of Development Contributions'. The Draft Planning Agreement:

- requires the Developer to make monetary development contributions,
- does not exclude the application of s 7.11, s7.12 and 7.24 of the EPA Act to the Development,
- is to be registered on the title to the Land,
- imposes restrictions on the Developer transferring the Land or part of the Land or assigning an interest under the Agreement prior to registration of the planning agreement on the title to the land,
- provides a dispute resolution method where a dispute arises under the agreement, being mediation and expert determination,
- provides that the agreement is governed by the law of New South Wales,

Lot 23 in Deposited Plan 751631, Sandham Road, Dargan Lithgow City Council

Bell Quarry Rehabilitation Project Pty Ltd

Assessment of the Merits of the Draft Planning Agreement

How the Draft Planning Agreement Promotes the Public Interest

The Draft Planning Agreement will provide Council with funding to be applied towards upgrade of Sandham Road as described under 'Description of Development Contributions'.

The Draft Planning Agreement:

- promotes the objects of the EPA Act set out in sections 1.3 (c) and (j); and
- enables the funding and provision of public improvements for the public benefit and to address demand arising from the development of the Land.

The Draft Planning Agreement also promotes the following guiding principles for local councils as set out in s8A of the *Local Government Act 1993* by:

- providing an example of Council working with others, being the Developer, to secure appropriate services for local community needs,
- promoting active engagement with local communities by being required to be publicly notified in accordance with the *Environmental Planning and* Assessment Regulation 2000,
- promoting Council's long-term strategic planning on behalf of the local community.

Whether the Draft Planning Agreement Conforms with the Authority's Capital Works Program

Yes. The Drafting Planning Agreement conforms with Council's Capital Works Program.

Whether the Draft Planning Agreement specifies that certain requirements must be complied with before a construction certificate, occupation certificate or subdivision certificate is issued

Yes. This Draft Planning Agreement specifies that the Developer must pay monetary contributions upon execution of the Deed.

Bell Quarry Rehabilitation Project

Supplementary Environmental Impact Statement

Bell Quarry Rehabilitation Project

19 November 2021

Submission of Supplementary EIS

Prepared under the Environmental Planning and Assessment Act 1979, Section 4.10

Environmental	Name:	Karl Rosen	Anthony Dixon		
Assessment prepared by	Qualification:	Bachelor of Science (hons I) Applied Physical Geography	Bachelor of Chemical Engineering (hons), Master of Environmental Engineering and Master of Groundwater Management		
	Address:	GHD Pty Ltd L15, 133 Castlereagh Street Sydney NSW 2000 GHD Pty Ltd L15, Castlereagh Street Sydney NSW 2000 Sydney NSW 2000			
	In respect of:	Bell Quarry Rehabilitation Project as described in this Supplementary EIS			
Development Application	Applicant's name:	Bell Quarry Rehabilitation Project Pty Ltd			
	Applicant's address:	Level 1, Suite 1, 181 Macquarie Street Parramatta NSW 2150			
	Land to be developed:	The Project is to be carried out within the former Bell Quarry located on Sandham Road as shown in the Supplementary Environmental Impact Statement			
	Lot no, DP/MPS, vol/fol, etc.	DP 751631			
Environmental Impact Statement	A Supplementary Environmen	tal Impact Statement is attached	1.		
Certificate	I certify that I have prepared the Statement and to the best of r	he contents of this Supplementa ny knowledge:	ry Environmental Impact		
	 It is in accordance with the requirements of Schedule 2 of the Environmental Planning and Assessment Regulation. 				
	 It contains all available information that is relevant to the amendments to the original DA as described in the Environmental Impact Statement of the development; and 				
	 That the information conta neither false nor misleadin 	mation contained in the Supplementary Environmental Impact Statement is nor misleading.			
	Signature:	Kullow	a. Dison		
	Name:	Karl Rosen	Anthony Dixon		
	Date:	19/11/2021	19/11/2021		

GHD Pty Ltd | ABN 39 008 488 373

133 Castlereagh Street, Level 15 Sydney, New South Wales 2000, Australia

T +61 2 9239 7100 | F +61 2 9239 7199 | E sydmail@ghd.com | ghd.com

Printed date	19/11/2021 3:49:00 PM
Last saved date	19 November 2021
File name	
Author	Karl Rosen
Project manager	Karl Rosen
Client name	Bell Quarry Rehabilitation Project
Project name	Bell Quarry Appeal
Document title	Bell Quarry Rehabilitation Project Supplementary Environmental Impact Statement
Revision version	Rev 1
Project number	12541317

Document status

	Author	uthor Reviewer		Approved for issue			
		Name	Signature	Name	Signature	Date	
	Karl Rosen	A Dixon	a. Dison	A Dixon	a. Dixon	19/11/2021	

© GHD 2021

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

Subn	nission	of Supplementary EIS	i
1.	Introdu	ction	1
	1.1	Background	1
	1.2	Project overview	1
	1.3	Project amendments	2
	1.4	Purpose of this report	3
2.	Amend	ments to Project and Supplementary Information	4
	2.1	Overview	4
	2.2	Project activities	8
	2.3	Project resources	26
3.	Enviro	nmental considerations	28
	3.1	Emplacement material	2、
	3.2	Water Resources	32
	3.3	Biodiversity	37
	3.4	Traffic	38
	3.5	Noise	38
	3.6	Other environmental matters	39
4.	Conclu	usion	40
Tabl Tabl Tabl	e 2.1 e 2.2 e 2.3 e 2.4 le 2.5	Amendments proposed as part of Supplementary EIS Limiting concentrations in ENM as per the ENM order (EPA 2014b) Predicted peak hour traffic generation Staged quantities and areas (subject to detailed design) Preliminary liner and capping specification	4 9 10 1′ 24
	le 2.6	Anticipated plant and equipment	26
	le 2.7	Operating hours	27
Tab	le 3.1	Comparison of criteria in the ENM order (NSW EPA, 2014b) and the NSW EPA Waste Classification Guidelines (NSW EPA, 2014a)	30
Fiç	gure i	ndex	
Figu	ıre 2.1	Site Area Map	7
_	ure 2.2	Indicative Staging plans	15
Figu	ure 2.3	Aerial taken from six-maps showing the part of the Western Boundary of the	19
		main void which extends beyond the site boundary	20
_	ure 2.4 ure 2.5	Upstream diversion works New access road to be established on the edge of the existing void (once filled)	2

Appendices

SEARs compliance and Response to contentions in EIS
Environmental Management Plan and Staging Plans
Vegetation Management Plan and Ecological Monitoring Program
Hydrological Assessment
Revised Water Resources Assessment
Supplementary Ecological Information
Traffic Considerations

1. Introduction

1.1 Background

Bell Quarry Rehabilitation Project Pty Ltd (the Applicant) seeks to rehabilitate the Bell Quarry site, located on Sandham Road at Newnes Junction, approximately ten kilometres east of Lithgow in NSW. The development application seeks (DA) to achieve the final rehabilitated landform via importation of emplacement material sourced from Sydney and the local regional area which meets:

- the definition of virgin excavated natural material (VENM) as defined by the Protection of the Environment Act, 1997 (POEO Act) from time to time
- the criteria of excavated natural material (ENM) as set out in the Excavated Natural Material Order and Exemption 2014 issued by the Environmental Protection Authority under clause 93 of the Protection of the Environmental Operations (Waste) Regulation 2014; or
- an exemption granted by the Environment Protection Authority (EPA) pursuant to clauses 91 and 92 of the Protection of the Environmental Operations (Waste) Regulation 2014) and which specifically relates to the site (comparable material).

The DA (294/18) is Designated Development and is also defined as Regional Development under clause 7, Schedule 7 of the State Environmental Planning Policy (State and Regional Development) 2011 (SRD SEPP). The DA was notified and assessed by Lithgow City Council (Council), and subject to consent by the Western Regional Planning Panel (WRPP).

An Environmental Impact Statement (EIS) was prepared by GHD Pty Ltd (GHD) to support the DA and submitted to Council in October 2018. The DA and EIS were placed on exhibition for a 60-day period from 19 January to 20 March 2019. A Response to Submissions (RtS) Report was prepared by GHD in June 2019 to address the issues raised in submissions during exhibition and additional responses were provided to Council in October and November 2019.

The WRPP refused the DA on 6 April 2020 following a public panel meeting. The primary reasons for the refusal were based around the potential for adverse environmental impacts upon the downstream receiving environment in the Greater Blue Mountains World Heritage Area and disruption to the amenity of the local community.

Amendments to the development are proposed to address the primary reasons for refusal by the WRPP, with environmental considerations arising from the amended project outlined in this Supplementary EIS. An outline of how the Secretary's Environmental Assessment Requirements (SEARs) for the project have been addressed and a summary of the issues raised as part of Council's response to contentions in EIS and indication as to where they have been addressed as part of this Supplementary EIS is also included in Appendix A.

1.2 Project overview

The development application seeks to achieve the final rehabilitated landform via importation of VENM, ENM and comparable material sourced from projects across Sydney and the local regional area (the Project). The Project aligns with NSW Government's key policy priority actions to increase recycling and reuse of materials and limiting the need for new landfills and reduce landfill disposal.

The key objectives for the Project continue to include:

- Rehabilitate the site to a condition closely representing the pre-quarry original landform and that of the adjoining Blue Mountains National Park.
- Rehabilitation of areas of National Park land adjoining the site to comply with the Blue Mountains National Park Plan of Management.
- Maximise resource recovery through diversion of VENM/ENM and comparable materials away from landfill for beneficial reuse for site rehabilitation.
- Undertake the rehabilitation works to be sympathetic to the surrounding land-use and environmental setting.
- Provide ongoing local employment opportunities.

 Revegetate the site with locally endemic species to provide effective integration with the surrounding landscape.

The rehabilitation process will involve:

- Importation of approximately 1 million m³ of VENM, ENM and comparable material.
- Vehicle haulage at a rate of up to 140,000 tonnes per annum (tpa).
- Staged emplacement and compaction of soil material within the existing quarry voids.
- Shaping of fill to closely represent the pre-quarry landform and to allow surface water drainage across the final landform.
- Development of a water management system including management plans to control surface water discharges throughout the rehabilitation program and from the final landform.
- Revegetation of the site with locally endemic species to provide effective integration with the surrounding landscape.
- Ongoing monitoring and maintenance for life of Project and minimum two years post completion.

1.3 Project amendments

A summary of proposed modifications to the original DA include:

- Defining the acceptance criteria for the site to be limited to VENM, and ENM or material that meets an
 exemption pursuant to clauses 91 and 92 of the Protection of the Environmental Operations (Waste)
 Regulation 2014.
- Implementation of a revised water management system incorporating:
 - Inclusion of an engineered barrier (liner) in the base, sidewalls, and cap to create a barrier to groundwater flow and infiltration of rainfall / surface water into the emplaced material.
 - Groundwater diversion system to promote groundwater movement down-gradient of the basal liner.
 - Management of surface of water flows in three separate streams including:
 - Clean surface water from upstream catchment areas will be conveyed through/around the site to prevent interaction with site operations.
 - Sediment laden run-off from disturbed areas comprising naturally occurring site soils will be treated in sediment basins prior to release to receiving waters.
 - Contact water comprising any surface water flows that have come in contact with emplacement material will be captured in a contact water pond for reuse via on-site irrigation to prevent discharge of surface water from the site.
 - The water management system includes a contingency option for installation of a water treatment plant
 to be triggered based upon storage levels in a contact water pond to ensure any contact water or
 leachate required to be released from the site is treated to background water quality prior to discharge.
- Updated staging plan to reflect the revised surface water management system with the following features:
 - Use of the existing eastern void as a contact water pond contact water pond will be lined with geomembrane (or equivalent).
 - Modification to the site entrance during Stage 1 emplacement activities to facilitate internalisation of haulage activities and revegetation works.
 - A temporary clean water diversion system (headwall and diversion channel) will be constructed to the
 west of the site to allow diversion of upstream catchment around active emplacement areas.
 - Confirmation that the existing sediment basin / constructed wetland immediately downstream from the site does not form part of the water management system proposed as part of the proposed development.
 - Implementation of filling stages has been re-ordered to facilitate surface water flows and internalisation of the site access during Stage 1 of the development.
 - Final landform footprint has been altered to accommodate site access road and use of eastern void as a contact pond. The footprint remains entirely within the footprint previously assessed and there is no change to the proposed maximum height of the final landform.
- Provision of a more detailed revegetation and vegetation management plan for the site.

- Implementation of a vegetation management plan along the eastern and southern boundary of the site to rehabilitate National Parks and Wildlife Service (NPWS) land adjoining the site previously impacted by site operations.
- integration of the Roads Act 1993 (Roads Act) approvals.
- an offer of a planning agreement to contribute to the costs of identified upgrade works to Sandham Road.

1.4 Purpose of this report

This Supplementary EIS has been prepared to respond to the contentions in the Appeal and to consider potential environmental impacts arising from the amendments to the project.

An overview of the key changes from the original development application are outlined in this report.

Key issues raised in submissions and reasons for refusal primarily related to the potential for environmental impacts arising from the development to the adjoining environmentally sensitive areas of the Blue Mountains National Park. Additional hydrological, contact water, leachate, groundwater, and biodiversity investigations have been completed to review the EIS assessment, which have resulted in the amendments proposed in this report. The specialist investigations are included as appendices to this report with findings of the assessment included in Section 3.

2. Amendments to Project and Supplementary Information

2.1 Overview

The Supplementary EIS modifies the original DA to rehabilitate a former Bell Quarry site, located on Sandham Road in Newnes Junction approximately 10 kilometres east of Lithgow in NSW as shown on .

Modifications to the original DA relate to definition of the acceptance criteria for emplacement material to be accepted at the site to increase certainty about the nature of the waste to be emplaced on site and modifications to the proposed water management system and emplacement cell staging to reflect the revised water management system. Relocation of the site access road and a Vegetation Management Plan have been prepared to address boundary irregularities with the adjoining NSW National Parks estate and to facilitate the closure and rehabilitation in of previously disturbed National Park land in accordance with the Blue Mountains National Park Plan of Management. The Applicant has also offered to enter into a planning agreement to contribute to minor upgrade works which have been identified to improve the flow of traffic and safety of haulage vehicles utilising Sandham Road and to undertake routine maintenance of a specified portion of the unsealed section of Sandham Road.

An overview of how each component of the original DA is proposed to be amended by the Supplementary EIS is outlined in with an updated description of the development included in the following section.

Table 2.1 Amendments proposed as part of Supplementary EIS

Table 2.1 Amendments proposed as part of Suppleme	The state of the s
Original DA (294/18)	Supplementary EIS
Acceptance criteria at the site limited to VENM, ENM and other clean fill material	Acceptance material at the site limited to VENM, ENM or comparable material that meets an exemption sought and granted by the EPA pursuant to clauses 91 and 92 of the Protection of the Environmental Operations (Waste) Regulation 2014. 'Clean fill' has been deleted and will not be received unless it meets these requirements.
Emplacement material proposed to be placed directly within the quarry voids and on areas previous quarried with no liner or artificial barrier.	 All areas proposed to be filled will be lined with High Density Polyethylene (HDPE) geomembrane (or equivalent) on the base and clay liner on the sidewalls where they are adjacent to the natural substrate (i.e., in the pits). The basal lining of each stage includes a geonet drainage geocomposite (or equivalent) and leachate riser to allow
	extraction of leachate (if required). Groundwater diversion system to promote groundwater movement down-gradient of the basal barrier layer.
	The contact water dam will be lined with a geomembrane (or equivalent).
	 Areas proposed to be filled will be capped with Linear Low- Density Polyethylene (LLDPE) geomembrane (or equivalent), overlaid with a subsurface drainage system and revegetated.
Surface water management system and site water balance based around mixing of contact water from emplaced material with clean catchment run-off to ensure water quality leaving the site met Australian and New Zealand Guidelines for Fresh and Marine Water	 Water quality criteria has been revised and tightened as a result of which the surface water management system is now based upon separation of natural catchment flows and contact water to meet the objective of neutral or beneficial effect (NorBE) for the catchment.
Quality (ANZECC 2000) ambient water concentrations guideline values for environments of high conservation value.	 All contact water will be captured in the lined contact water pond for reuse in active filling areas to prevent discharge of potentially polluted water from the site.
	 Water balance modelling indicates all contact water will be retained within the site under historical and at least 99.5% of the potential future climate scenarios using best estimate assumptions.

Original DA (294/18)	Supplementary EIS
	 The DA includes a contingency option for a water treatment plant to be installed at the site in the unlikely event that storage levels in the contact water pond reach 45%. The water treatment plant (if required) \will ensure any contact water (or leachate) discharged from the site is treated to background water quality to meet the NORBE standard.
Emplacement activities proposed to be completed in a series of six stages through importation of approximately 1.2 million cubic metres of emplacement material. Excavation of topsoil from the former Stage 1 area for retention and use in rehabilitation activities.	 The amount of fill has been reduced by approximately 200,000 m³ to enable environmentally positive changes to the operation and management of the project. Emplacement activities to be completed in a series of four stages with total emplacement volume of approximately 1 million cubic metres. Emplacement stages have been re-ordered to facilitate management of surface water flows and internalisation of the
	 site access during Stage 1 of the development. Excavation of approximately 60,000 m³ of material within the footprint of the northern stage. This material will be
	progressively won as needed for intermediate cover and for supply of a minimum 600 mm revegetation layer as part of the rehabilitated surface (cap). A stockpile of this material which will fluctuate in size and will be placed in the northeast corner of the site (with erosion and sediment control measures) for intermediate cover (if needed) and capping purposes.
	 A temporary clean water diversion system will be constructed to direct water from the west of the site. The diversion drain will cause clean water to enter further south of the site, over the filled Stage 1 intermediate batter. The water will then flow immediately through the site over surfaces rehabilitated with site won material.
	 The upstream diversion system will be decommissioned and rehabilitated at the end of Stage 3C and the upgradient catchment runoff will be redirected to approximately its pre- quarry flow line, with stormwater passing through the site over rehabilitated surfaces without being impacted by site operations.
	 The existing eastern void will be used as a contact water pond throughout emplacement operations. This pond will be lined with geomembrane (or equivalent).
	 Confirmation that the existing sediment basin / constructed wetland immediately downstream from the site does not form part of the water management system proposed as part of the proposed development.
	 Final landform footprint has been altered to accommodate the site access road and use of eastern void as a contact water storage. The footprint remains entirely within the footprint previously assessed and there is no change to the proposed maximum height of the final landform.
	 The total filling volume including retention of the eastern void has been reduced to approximately 1 million cubic metres.
	Filling of the contact water pond (eastern void) will be considered in the future based upon ongoing monitoring of the performance of the overall rehabilitation project and development of a system for management of contact water during the completion of the filling operations. The filling of the contact water pond does not form part of the Amended Project presented in this report and would be subject to a modification to consent or new DA.
Use of existing haulage route into the quarry for placement of fill material within the quarry void for the duration of the project.	 A new site access road has been included in the design to be developed during the Stage 1 emplacement activities. The existing haulage route is proposed to be utilised under a licence from NPWS to facilitate site access to fill the southern void to a level to allow construction of new road and revegetate the adjoining NPWS land as Stage 1A of the emplacement activities. It will then be revegetated in

Original DA (294/18)	Supplementary EIS
	accordance with the Vegetation Management Plan. This ensures that it meets the obligations of the park manager under the Blue Mountains National Park Plan of Management.
Progressive revegetation of final landform with locally endemic species to provide effective control or erosion and integration with the surrounding landscape.	 Progressive revegetation of the final landform will continue as part of the site ongoing site development process. A Vegetation Management Plan has also been prepared to revegetate and manage an approximate 40 m buffer of land on the eastern and southern boundaries of the site to rehabilitate portions of the site that had been previously impacted by quarry operations.
	 Integration of Roads Act approvals and an offer of a planning agreement to contribute to the costs of identified upgrade works to Sandham Road.
	 Safety improvements to Sandham Road by minor road widening works at seven locations to provide additional passing opportunities and pull over bays for haulage vehicles travelling along Sandham Road.

Further details of activities associated with the projectand the rationale for proposed changes, are provided in Section 2.2, with detailed staging plans for emplacement activities included in the Environmental Management Plan to guide the implementation of the Amended Project is included in Appendix B.

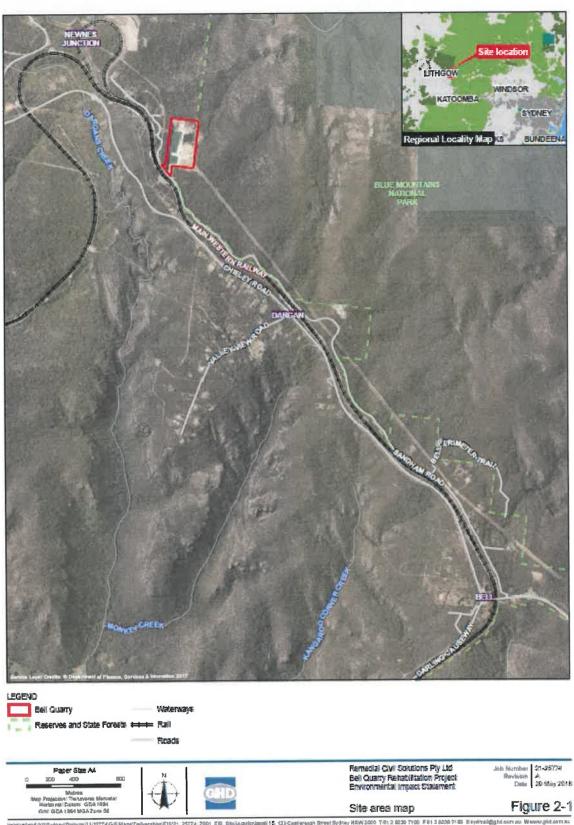


Figure 2.1 Site Area Map

2.2 Project activities

2.2.1 Fill importation

Acceptance Criteria

Rehabilitation of the final landform to be achieved via importation of material sourced across Sydney and the local regional area which meets:

- 1. the definition of VENM as defined by the *Protection of the Environment Operations Act 1997* (PoEO Act) from time to time.
- 2. the criteria of ENM as set out in the Excavated Natural Material Order and Exemption 2014 (ENM Order) issued by the Environmental Protection Authority (EPA) under clause 93 of the Protection of the Environmental Operations (Waste) Regulation 2014.
- an exemption granted by the Environment Protection Authority pursuant to clauses 91 and 92 of the
 Protection of the Environmental Operations (Waste) Regulation 2014 and which specifically relates to the site
 (Comparable Material).

The PoEO Act defines VENM as 'natural' material (such as clay, gravel, sand, soil, or rock fines):

- a. that has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or with process residues, as a result of industrial, commercial, mining or agricultural activities, and
- b. that does not contain any sulfidic ores or soils or any other waste.

ENM refers naturally occurring rock and soil (including but not limited to materials such as sandstone, shale, clay and soil) that has:

- a. been excavated from the ground, and
- b. contains at least 98% (by weight) natural material, and
- c. does not meet the definition of Virgin Excavated Natural Material in the Act.

Excavated natural material does not include material located in a hotspot; that has been processed; or that contains asbestos, Acid Sulfate Soils (ASS), Potential Acid Sulfate Soils (PASS) or sulfidic ores.

Limiting concentrations for ENM in accordance with the ENM Order is included in ...

Table 2.2 Limiting concentrations in ENM as per the ENM order (EPA 2014b)

Chemicals and other attributes	Maximum average concentration for characterisation (mg/kg 'dry weight' unless otherwise specified)	Absolute maximum concentration (mg/kg 'dry weight' unless otherwise specified)		
1. Mercury	0.5	1.0		
2. Cadmium	0.5	1.0		
3. Lead	50	100		
4. Arsenic	20	40		
5. Chromium (total)	75	150		
6. Copper	100	200		
7. Nickel	30	60		
8. Zinc	150	300		
9. Electrical Conductivity	1.5 dS/m	3 dS/m		
10. pH *	5 to 9 pH units	4.5 to 10 pH units		
11. Total PAHs	20	40		
12. Benzo(a)pyrene	0.5	1.0		
13. Benzene	NA	0.5		
14. Toluene	NA	65		
15. Ethyl-benzene	NA	25		
16. Xylene	NA	15		
17. TPH C10-C36	250	500		
18. Rubber, plastic, bitumen, paper, cloth, paint and wood	0.05 %	0.10 %		

^{*} The ranges given for pH are for the minimum and maximum acceptable pH values in the excavated natural material.

The Project has been amended to remove the use of the term "clean fill" to clarify it is intended that any emplacement material would fall within any exemptions regulated by sections 91 and 92 of the Protection of the Environmental Operations (Waste) Regulation 2014 and which specifically relate to the Land.

Haulage

Haulage of emplacement material to the site will remain in accordance with the development described in the EIS and subsequent submission responses.

The Project involves importation of fill material at a maximum rate of 140,000 tpa, using truck and trailer combinations of up to 42.5 tonne capacity. This fill material will be sourced from projects throughout the local region, Greater Sydney area and the Central West Slopes and Plains. It is noted that significant tunnelling works are proposed as part of the Great Western Highway upgrade and the Project may provide a valuable opportunity for reuse of excess material in the local area if it meets waste receipt criteria.

Transport routes to the site will depend upon the origin of the fill material and will vary over the life of the Project. The use of the following regional transport routes are likely to be:

- Material sourced from Sydney's western, southern and south-western suburbs will be transported via the Great Western Highway to Mount Victoria and Darling Causeway to Bell.
- Material sourced from Sydney's northern and north-western suburbs would use the Bells Line of Road to Bell.
- Material sourced the Central Western Slopes and Plains to the west of the site would utilise Chifley Road (Bells Line of Road) between Lithgow and Bell.
- Material sourced from the upgrade to the Great Western Highway would be transferred locally via the Great Western Highway to Mount Victoria and Darling Causeway to Bell.

Access to the quarry via the Sandham Road from Bells Line of Road as shown on . Sandham Road passes through the village of Bell and runs parallel to arterial road Chifley Road on the western side of the Main Western Railway Line and follows a north-western alignment to the access point to the quarry. An average of 37 haulage vehicle movements per day are predicted to occur along Sandham Road as a result of haulage activities for the Project.

To ensure the haulage for the rehabilitation works are equivalent in scale to the former quarry operations approved under the existing consent benefitting the site, it is proposed to limit haulage to a maximum rate of 140,000 tpa. It is estimated that haulage will occur for around 250 days per year accounting for wet days and reduced haulage on weekends with an average transport capacity of 30 tonne. The resulting traffic generated based on this assumption is an average of 19 truck deliveries per day (37 heavy vehicle movements) which is equivalent in scale to the extractive operations approved under the existing consent.

Due to the nature and scale of the proposed operations, it was recognised that haulage to site may occur in campaigns corresponding to generation of excess VENM and ENM from construction projects throughout the region. This has the potential to double the haulage movements for a restricted period of time and generate up to 38 truck deliveries or 74 vehicle movements per day. Any temporary increase in haulage during campaign operations would be followed by a period of reduced haulage to maintain the capacity of the site to accept a maximum of 140,000 tpa.

To ensure a conservative assessment, two traffic generation scenarios were considered as part of the traffic impact assessment for the EIS:

- An average haulage 19 truck deliveries or 37 heavy vehicle movements per day; and
- A worst-case haulage 38 truck deliveries 74 heavy vehicle movements per day.

The predicted peak hour traffic generation for each scenario considered in the EIS is included in .

Table 2.3 Predicted peak hour traffic generation

Traffic Scenario	Light Vehic	es	Heavy Vehic	cles	Total vehicles (veh/h)	
	Inbound	Outbound	Inbound	Outbound	Inbound	Outbound
Average Haulage	2	2	2	2	4	4
Worst Case Haulage	2	2	4	4	6	6

The Applicant is committed to develop a driver code of conduct as part of a Traffic Management Plan for the Project, to guide transport operations on all public roads including Sandham Road. This will include specific requirements such as limiting the speed limit to 40 km/hr for all trucks on Sandham Road and incorporate a haulage route complaint management system.

Additionally, the Applicant makes an offer to enter into a planning agreement under Section 7.4 of the *Environmental Planning and Assessment Act 1979* (EP&A Act) making provision for a monetary contribution to the relevant local government authorities for identified works to upgrade sections of Sandham Road. The Applicant is also willing to maintain the unsealed portion of Sandham Road after weather events or annual inspections in liaison with Council to maintain the road surface.

Seven locations have been identified for widening of Sandham Road to reduce conflict with road users and to accommodate two way passing of haulage vehicles.

2.2.2 Emplacement activities

2.2.2.1 Overview

The emplacement activities will be largely as described in the original DA and located within the disturbance footprint of the former Bell Quarry. Key changes in relation to the emplacement activities are described below:

- The proposed fill staging has been altered to reflect the revised surface water management system.
- The footprint of the landform has been amended but remains fully within the footprint included in the original DA and the maximum height of the final landform has not been altered.
- The eastern void is to be retained throughout the filling of the first 4 stages to allow for storage of contact water prior to disposal via irrigation (or, in the unlikely event a treatment plant is required, via treat and release).
- The fill footprint and final landform in the southern void have been adjusted to provide an alternative access which is developed as part of the filling of Stage 1.
- All areas proposed to be filled will be lined with HDPE geomembrane (or equivalent) on the base and clay on the sidewalls where they are adjacent to the natural substrate (i.e., in the pits).
- The basal lining of each stage includes a geonet drainage geocomposite (or equivalent) and riser to allow extraction of leachate (if required).
- Groundwater diversion system to promote groundwater movement down-gradient of the basal liner.
- A temporary clean water diversion system will be constructed to the west of the site to allow diversion of upstream catchment around active emplacement areas.
- The contact water dam will be lined with a HDPE geomembrane (or equivalent).
- Areas proposed to be filled will be capped with LLDPE geomembrane (or equivalent), overlaid with a subsurface drainage system, and revegetated.
 - Areas of the site have been identified for excavation works to supply site won material for site intermediate capping and a minimum of 600 mm of final capping materials.
- Excavation areas are within the extents of the proposed filling works and includes an area in the northern portion of the site as described in the original DA and a former deposition area in the eastern portion of the site.
- A stockpile of site won material is to be placed in the northeast corner of the site (for the later stages use).
- A potential future final filling stage involves filling the contact water dam at the conclusion of proposed emplacement activities and will be subject to a future application or modification to consent under Section 4.55 of the EP&A Act should development consent be granted by the Land and Environment Court. The future application would be based on an assessment of the facility performance over the first 4 stages and design of a water management system for contact water during the filling of the contact water pond. The assessment would quantify whether all or part of the contact water pond can be removed, and the final landform adjusted to suit.

2.2.2.2 Work stages

A detailed description of Project activities for each work stage and staging plans are included in the Environmental Management Plan included in Appendix B. A summary of staged quantities included in and an overview of emplacement activities for each stage is provided below.

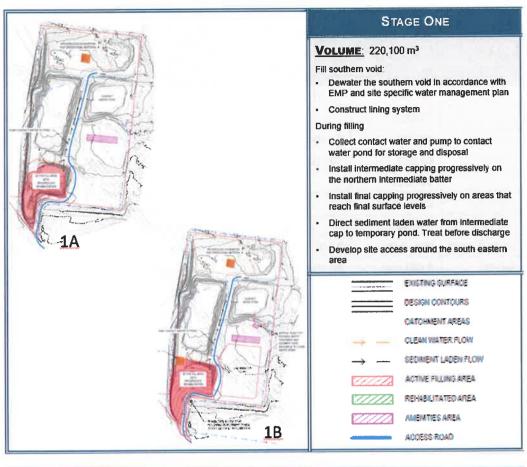
Table 2.4 Staged quantities and areas (subject to detailed design)

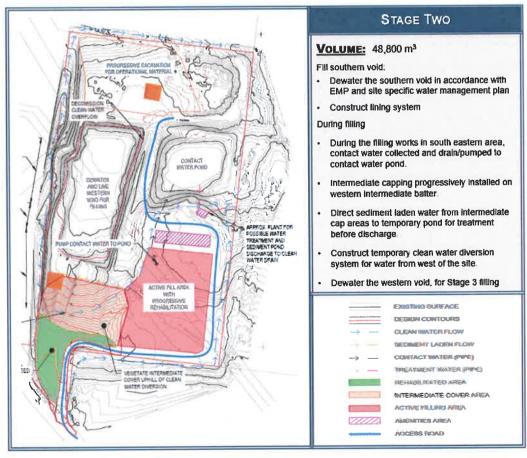
	Excavation ¹ (m ³)	Volume ² (m ³)	Base lining area** (m²)	SidewallI lining area** (m²)	Active filling area* (m²)	New intermediat e cover area** (m²)	Final cap area** (m²)
Stage 1A		104,300	4,100	11,740	12,400	-	-
Stage 1B	3	115,800	-	4,500	12,400	7,390	5840
Stage 2		48,800	11,800	-	12,560	1,820	11,880
Stage 3a		89,850	10,500	3,600	17,900³	4,4005	0
Stage 3b		244,200	-	10,450	16,700 ⁵	8,870 ⁵	11,690
Stage 3c	H .	25,800	-	-	7,660	-	8,150
Stage 3d		169,050	-	8,160	6,500	4,340	10,150
Stage 4	Up to 60,500	255,250	3,800	13,500	15,180 ⁵	-	22,230
Total	60,500	1,053,050	30,200	51,950	-	26,820	69,930

^{*} plan area

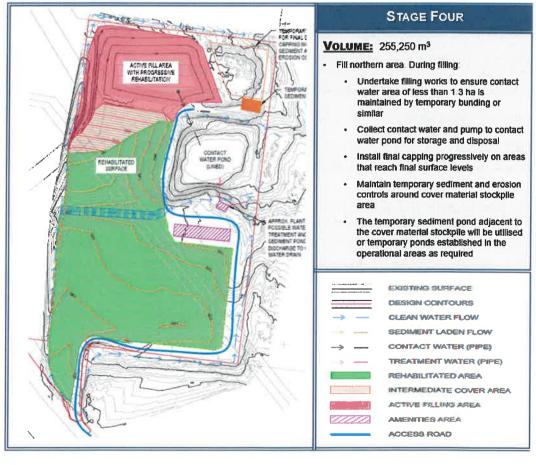
¹ Excavation represents the stage/area where the excavation is achieved. It does not represent the timing of excavation works. All other values in this table assume that this excavation work is undertaken as required.

in this table assume that this excavation work is undertaken as required.


² Volume represents volume from existing surface or design excavation surface to top of final cap. Stage fill capacities must also consider airspace lost to lining, cover and capping works.


^{**} slope area

airspace lost to lining, cover and capping works.


3 Where the entire stage catchment area is greater than 1.3 ha, filling works will be staged and intermediate cover used to maintain an actual contact water area of less than 1.3 ha at any time. Additional intermediate cover material may be required to achieve this requirement.

Additional onsite soil generation has been included for this purpose.

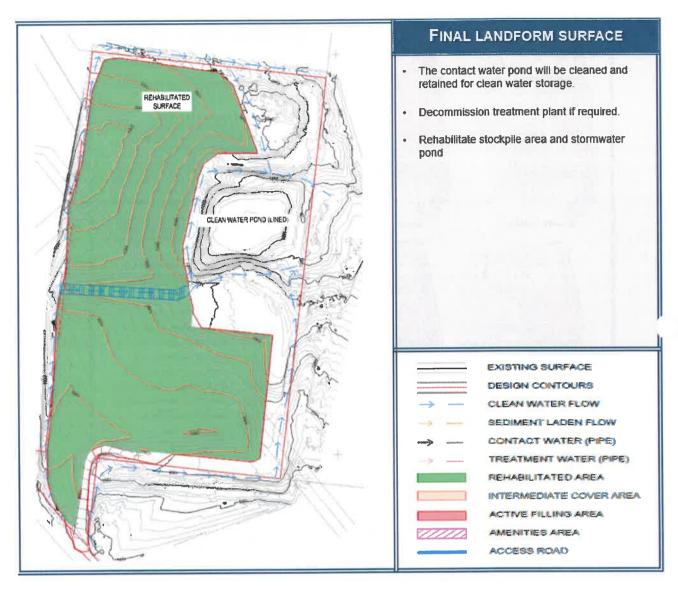


Figure 2.2 Indicative Staging plans

Site establishment works

Before filling occurs, site establishment works are required to prepare the site for filling works. This will involve the following:

- Dewatering of the southern and western voids to separate the water between the voids. A bund will be created, if needed, to ensure future separation and completely dewater the southern void.
- A geomembrane (or equivalent) lining system will be installed in contact water pond after it is dewatered.
- The southern void will be dewatered, and a geomembrane (or equivalent) lining system installed in preparation for Stage 1 filling of the southern void. The liner would be installed above any site won material placed within Stage 1.
- The water in the western void will be drawn down and an overflow channel installed to allow clean water to drain directly offsite by gravity (bypassing the eastern void).

Stage 1

Stage 1 involves filling of the southern void in two stages:

- Stage 1A initially fill against the southern and eastern batters to develop a new site access road which is within the site boundary.
- Stage 1B fill the remaining available capacity in the Stage 1 area.

During filling:

- Contact water will be collected and pumped to the contact water pond for storage and disposal.
- Where filling is being undertaken above surrounding ground level, a soil bund will be constructed at the
 perimeter of each lift to prevent run off and a low point created to collect contact water.
- Intermediate capping will be installed progressively on the northern intermediate batter as each lift is placed.
- Final capping will be installed progressively on areas final surface areas as each lift is placed.
- Sediment laden water will be directed from the intermediate cap areas to the temporary pond (developed (developed when filling proceeds above ground) for settlement before discharge.
- South-eastern area will be lined in preparation for Stage 2 filling works.
- Site access around the south-eastern area will be developed to allow filling in Stage 2 area.

Stage 2

Stage 2 involves filling of the south-eastern area. During filling:

- Contact water will be collected and pumped / directed to the contact water pond for storage and disposal.
- Where filling is being undertaken above surrounding ground level, a soil bund will be constructed at the
 perimeter of the active fill area to prevent run off and a low point created to collect contact water.
- Intermediate capping will be installed progressively on the western intermediate batter.
- Final capping will be installed progressively on areas as they reach final surface levels.
- Sediment laden water will be directed from the intermediate cap areas to the temporary pond (developed in preliminary works) for settlement before discharge.

A temporary clean water diversion system will be constructed to direct water from the west of the site. The diversion drain will cause clean water to enter further south of the site, over the now-filled Stage 1 intermediate batter. The water will then flow through the site and directly offsite. It is expected that the diversion system will require:

- Construction of a shallow open channel on north side of existing entry, flowing south, nominally within 5-10 metres of the crest of the void.
- Construction of a headwall and upstream pond, nominally within 20-30 metres of the crest of the void.
- Construction of a deep open channel to the south of the existing entry, flowing south, nominally within 20-30 metres of the crest of the void.
- Construction of open channel on the Stage 1 batter and across the site to allow discharge of clean water directly offsite.
- Vegetation of all areas of intermediate batter draining into this diversion structure to control erosion.

The western void will be dewatered, the clean water overflow will be decommissioned, and a lining system will be installed in preparation for Stage 3 filling.

Stage 3

Stage 3 involves fill the western void in four stages:

- Stage 3A the entire void area to be filled to approximately RL1032 m.
- Stage 3B the southern section of the void will be filled to final landform levels to allow clean water drainage over the rehabilitated surface.
- Stage 3C once the final clean water drainage pathway over the rehabilitated surface has been established, decommission the temporary clean water diversion drain over the Stage 1 batter and fill the remaining Stage 1 and Stage 2 intermediate batters.
- Stage 3D northern section of the void will be filled in.

During filling:

- Filling works will be undertaken to ensure a contact water area of less than 1.3 hectares is maintained.
- Contact water will be collected and pumped to the contact water pond for storage and disposal.

- Where filling is being undertaken above surrounding ground level, a soil bund will be constructed at the
 perimeter of the active fill area to prevent run off and a low point created to collect contact water.
- Intermediate capping will be installed progressively on the intermediate batters.
- Final capping will be installed progressively on areas that reach final surface levels.
- A temporary sediment pond will be developed in the northern part of site and the Stage 1 temporary pond will be removed when required.
- Sediment laden water will be directed and pumped from intermediate capping areas to the temporary pond for settlement before discharge.
- Additional excavation will be undertaken, as required, between the Stage 3 and Stage 4 areas.
- Lining system will be constructed in the northern area in preparation for Stage 4 filling.
- Temporary cover material stockpile area will be developed in the north-east, including required sediment and erosion controls.

Stage 4

Stage 4 involves filling the northern area. During filling:

- Filling works will be undertaken to ensure a contact water area of less than 1.3 hectares is maintained.
- Contact water will be collected and pumped to the contact water pond for storage and disposal.
- Where filling is being undertaken above surrounding ground level, a soil bund will be constructed at the
 perimeter of the active fill area to prevent run off and a low point created to collect contact water.
- Final capping will be installed progressively on areas that reach final surface levels.
- Temporary sediment and erosion controls will be maintained around the cover material stockpile area.

If Stage 5 is developed for filling, Stage 4 works will also include:

- Cleaning and dewatering of the contact water pond and development of alternative contact water management measures, as required.
- Lining of the Stage 5 area in preparation for filling.

No consent is sought in this DA for the works described in the dot points directly above.

Stage 5 (potential)

A potential final filling stage, Stage 5, will be subject to a further development application or modification. It modification would be based on an assessment of the facility performance over the first 4 stages in relation to water management. The assessment would quantify whether all or part of the contact water pond can be removed, and the final landform adjusted to suit. If developed for filling:

- Filling works will be undertaken to ensure a contact water area of less than 1.3 hectares (or as otherwise determined) is maintained.
- Contact water will be collected and pumped to the contact water pond for storage and disposal.
- Where filling is being undertaken above surrounding ground level, a soil bund will be constructed at the
 perimeter of the active fill area to prevent run off and a low point created to collect contact water.
- Final capping will be installed progressively on areas that reach final surface levels.

Temporary sediment and erosion controls will be maintained around the cover material stockpile area. Final rehabilitation surface

At the conclusion of site filling, the contact water pond (if remaining) will be dewatered and cleaned, and the liner retained and would be a clean water pond.

This clean water pond would only receive direct rainfall and would include an overflow location, show it overflow.

2.2.2.3 Soil placement

VENM/ENM/comparable material will be placed within the former quarry void according to the proposed rehabilitation strategy. The placement procedure addresses potential impacts to the environment and required environmental performance outcomes. Soil placement procedures include the following:

- An active placement area will be established in accordance with the proposed staging plan.
- Soil will be delivered to the placement area by trucks. The unloaded soil will be spread out by bulldozer and compacted by roller.
- Designated vehicle wash down areas will be set up to prevent tracking of placement material outside of the
 active emplacement areas. This will also include cattle grates at entry and exit points of the site.
- Soil will be placed in lifts and compacted to 95% standard maximum dry density. Compaction testing will
 confirm that average compaction is being achieved. The lift height would be developed as part of the detailed
 design to allow for sufficient area for operations and placement of the capping material.
- The horizontal soil lifts will be graded to allow for free draining of surface water and to avoid localised ponding.
- The sidewall liner system will be inspected prior to placement of soil and after any rainfall event for any
 indications of damage such as scouring, tears or punctures. Soil placed against the side wall liner system will
 be pushed against the wall and the compaction limited to avoid damage to the liner system.
- Interim soil batters will be limited to 1(vertical) in 2 (horizontal) and final batters will be per the landform design.
- Intermediate cover material will be placed on all batters that do not form part of the final landform and will
 comprise site won material. Where possible the intermediate cover material will be partially stripped back and
 reused prior to placement of further VENM/ENM material.
- The final landform will be progressively capped to ensure stability of the emplacement areas and control
 erosion.

2.2.2.4 Excavation

Excavation works have been included to provide soil materials for operational uses, including:

- Intermediate cover.
- Final capping and rehabilitation works.

The proposed extents of excavation are wholly within the proposed fill boundary and located within areas proposed to be filled during Stage 2 (if required) and Stage 4. The preliminary design of the excavation surfaces has allowed for:

- Excavation batters of 1 (vertical) in 2 (horizontal).
- Minimum base dimension is around 35 metres to allow for vehicle movements within the base of the voids.

Access into these excavations would need will be considered as part of the development of these voids.

These areas are known to have been previously quarried, and rock materials may be found within the proposed excavation footprint. Historical documents show that the intention was to excavate the quarry to RL1018 m. The base of the current water-filled voids is around RL1023 m. The lowest points of these excavation areas are RL1035 m and RL1027 m. Where rock walls are located around the perimeter of these excavations the batters may be able to be made steeper to follow the steeper rock surface. Appropriate erosion and sediment controls will be installed as part of excavation works.

2.2.2.5 Works outside of site boundary

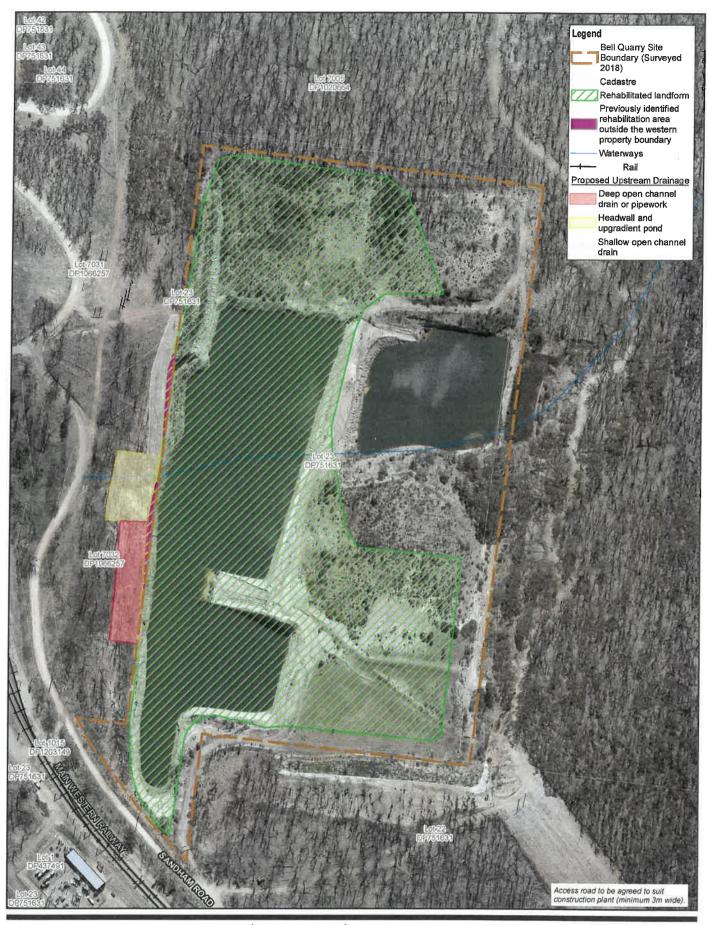
A detailed survey of the site boundary was undertaken during the preparation of the EIS. The disturbance footprint of the previous extractive operations has extended beyond the surveyed site boundary at two locations, as detailed below, which is likely to be a function of the accuracy of survey data at the time of establishment of the former quarry.

First:

- (a) the edge of the main quarry void along the western boundary extends as a thin strip of approximately two metres onto the land legally described as Lot 7031 in Deposited Plan 1066257 which is Crown Land, and
- (b) part of an unmade paper road comprised in certificate of title Volume 1956 Folio 183 as shown in below:

Figure 2.3 Aerial taken from six-maps showing the part of the Western Boundary of the main void which extends beyond the site boundary

It is also noted that establishment of a temporary clean water diversion system will need to be developed in this lot and Lot 7032 in Deposited Plan 1066257 to divert clean water away from active emplacement cell during Stage 2 of the proposed development. The indicative footprint of the water diversion system is shown on .


Secondly:

- (a) the existing haul road at the entrance to the site partially located over Lot 22 in Deposited Plan 751631 and which is owned by Crown Lands and managed by NPWS; and
- (b) a small portion of the existing western void which bisects a section of land within the Blue Mountains National Park.

The Applicant is committed to rehabilitating the site that has been affected by the extraction of materials at the former quarry and therefore emplacement activities will be undertaken within the existing disturbance footprint of the quarry to ensure this.

It will be necessary to fill marginally beyond the surveyed boundary on the western edge of the site to provide effective stability and stormwater management for the final landform.

The Applicant proposes to adjust the site entrance and haul road at the entrance to the site during Stage 1A of the Project. The haul road currently skirts around the edge of the southern void which comprises an approximate 30 metre near vertical drop. An overview of the proposed new haulage road within the site is provided in

Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56

Bell Quarry Rehabilitation Project Pty Ltd Bell Quarry Appeal

Project No. 12541317 Revision No. C Date 10/11/2021

Upstream Diversion Works

FIGURE 2.4

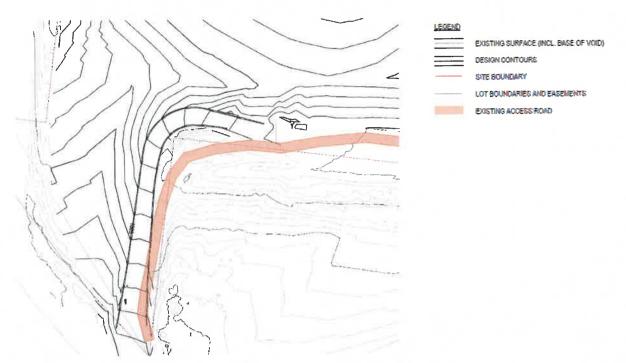


Figure 2.5 New access road to be established on the edge of the existing void (once filled)

The road will be established near the end of the proposed filling of Stage 1A and will result in a slight change in final landform and reduction in filling volume to accommodate the road design.

An indication of the revised final landform overlayed above an existing aerial is included in and indicates how the road cannot be installed until the completion of filling the southern void in Stage 1A of the proposed emplacement sequence due to the steepness of the existing land's surface and close proximity to the quarry walls. The filling of Stage 1A is predicted to be complete within around 12 months from commencement.

Figure 2.6 Revised Final Landform

The existing access road and adjacent disturbed land will be rehabilitated as part of the proposed Vegetation Management Plan, and the fence line adjusted to reflect the updated boundary survey of the site. The

rehabilitation of the existing haulage route is consistent with the requirement to undertake rehabilitation within a 20-metre strip of the adjoining Blue Mountains National Park within the existing quarry operation consent.

The western boundary of the site will be adjusted following the completion of filling of the main void during Stage 3 of the proposed development. The temporary water diversion system will be decommissioned, and the area rehabilitated.

The Applicant acknowledges that:

- 1. filling part of the site which traverses Lot 7032 in Deposited Plan 1066257 requires owner's consent pursuant to clause 49 of the Environmental Planning and Assessment Regulation 2000 (EP&A Regulations); and
- filling of the part of the 'public road' which traverses the main void on its western boundary, and which is comprised in certificate of title Volume 1956 Folio 183 will require an approval under Section 138 of the Roads Act

With respect to point 1 above, it is noted that owner's consent was provided by Department of Industry - Crown Lands and Water, Orange by letter dated 18 March 2019.

With respect to point 2 above, the Applicant will amend the development application to be assessed as integrated development pursuant to Section 138 of the Roads Act.

Landowner consent has also been provided by NPWS subject to acceptable offsite environmental outcomes being achieved for the Project.

2.2.3 Water management

2.2.3.1 Overview

Management of surface water and groundwater resources across the quarry site will be of high importance throughout the Project life.

A revised surface water management system has been developed involving management of surface water within the site in three separate streams:

- Water from upstream catchment (off-site) areas: This water shall be conveyed through/around the site without interaction with site waters wherever practicable, with direct discharge to the downstream receiving system. Where mixing of upstream and site waters is unavoidable, (for example, a cascade of upstream waters currently enters the western void of the site) the upstream waters shall mix only with sediment-laden water (not contact water). Where this mixing occurs the sediment laden water management approach shall include the volumetric contribution of the upstream waters.
- Sediment laden water: This is runoff from areas where disturbed, non-vegetated soil is present but does not consist of foreign imported fill material. In these areas runoff is to be managed in accordance with Managing Urban Stormwater: Soils and Construction Volume 1, Landcom 2004 and Volume 2, DECC 2008. The requirements within the documents that apply to a "sensitive" receiving environment would be adopted.
- Contact water: This water comprises any surface water that has interacted with emplacement material and
 will be captured in a contact water pond for reuse via on-site irrigation to prevent discharge of surface water
 from the site. There will be no discharges of surface contact waters would occur other than when treated to
 background water quality conditions (if this were required).

The revised assessment has adopted an elevated assessment criteria for the works based upon achieving a neutral or beneficial effect, based upon the State Environmental Planning Policy (Sydney Drinking Water Catchment) 2011 as well as the corresponding WaterNSW guideline *Neutral or Beneficial Effect on Water Quality Assessment Guideline*.

It is noted the site is not located within Sydney's drinking water catchment, however the neutral or beneficial effect (NorBE) approach has been applied to the proposed development to achieve the highest level of protection given the sensitivities of receiving waters in the Wollongambe River catchment and the Greater Blue Mountains World Heritage Area.

A NorBE on water quality is satisfied if the development:

a. has no identifiable potential impact on water quality, or

b. will contain any water quality impact on the development site and prevent it from reaching any watercourse, waterbody or drainage depression on the site.

Dewatering works will occur predominantly during the initial site establishment works phase as described in section 2.2.2.2. This water t

Furthermore, the water quality in quarry voids is generally within ANZG criteria for slightly to moderately disturbed freshwater ecosystems. The water quality is broadly described as fresh with a low pH and low concentrations for most water quality parameters considered. Nutrient content is generally low, although higher nitrogen levels were found in the quarry ponds and the upstream gauge site. These do not appear to have impacted water quality within the swamp (Martens and Associates 2021).

The project has been designed such that contact water will not enter the areas being dewatered. The only source of surface water which may enter the areas being dewatered are from upstream of the site and potentially runoff from site soils.

2.2.3.2 Final cover and liner system

The Amended Projectincludes an engineered barrier (liner) system in the base, sidewalls, and cap to create a barrier to groundwater flow and infiltration of rainfall / surface water into the emplaced material. The profile of the final cover and basal and side wall liners are described below:

- Final cover profile (top to bottom):
 - Revegetation layer suitable for the establishment and long-term viability of vegetation.
 - Subsurface drainage layer to ensure stability of the revegetation layer and minimise infiltration.
 - Geosynthetic barrier system (or equivalent) that will minimise infiltration to as low as reasonably practicable and prevent 'bath tubbing' (excessively elevated leachate levels) above the basal liner.
 - Seal bearing layer to support the geosynthetic barrier layer.
- Basal and sidewall liner profile (top to bottom):
 - Compacted clay sidewall barrier progressively placed in lifts to minimise the horizontal seepage of leachate out of the fill and seepage of groundwater into the fill.
 - Geonet drainage geocomposite (or equivalent) to minimise damage of the basal liner barrier system and allow monitoring of leachate in the fill.
 - Geosynthetic basal barrier layer to form a barrier between the placed fill and the groundwater, soil and substrata and minimise seepage to as low as reasonably practicable.
 - Seal bearing layer to support the geosynthetic barrier layer.
 - Groundwater diversion system to promote groundwater movement down-gradient of the lined emplacement.

A construction quality assurance (CQA) Plan for the liner system will be developed that outlines the material specifications, installation and testing requirements.

Individual components of each of these systems are summarised in and are described below.

Table 2.5 Preliminary liner and capping specification

Name	Layer Type	Thickness (mm)	Notes
Revegetation layer	Soil for vegetation	600	Site won or imported material with a similar geochemistry to the surrounding landscape
Subsurface drainage layer	Geonet drainage geocomposite	To be determined as part of detailed design	Designed to prevent saturation of the revegetation layer and minimise infiltration into the fill.
Final cover barrier layer	Textured LLDPE Geomembrane (or equivalent)	2	Manufactured in accordance with GRI - GM17 Standard Specification for "Test Methods, Test Properties and Testing Frequency for Linear Low-Density Polyethylene (LLDPE) Smooth and Textured Geomembranes" (Geosynthetic Institute, 2019).
Seal bearing layer / intermediate cover layer	Cohesive soil material	300	Site won or imported material with a similar geochemistry to the surrounding landscape, made up of fine-grained material or if coarse material with a protection geotextile.
Fill	VENM, ENM or material in accordance with a specific resource recovery order/exemption that is applicable to the site	Variable	Imported material.
Sidewall barrier layer	Compacted clay material	500	Permeability of less than 10 ⁻⁹ m/s.
Subsurface drainage layer	Geonet drainage geocomposite (or equivalent)	To be determined as part of detailed design	Designed to protect the liner and allow extraction of leachate to prevent saturation of the fill causing bath-tubbing during operation and to allow the extraction of leachate if needed.
Basal barrier layer	HDPE Geomembrane (or equivalent)	2	Manufactured in accordance with GRI - GM13 Standard Specification for "Test Methods, Test Properties and Testing Frequency for High Density Polyethylene (HDPE) Smooth and Textured Geomembranes" (Geosynthetic Research Institute, 2003).
Seal bearing layer	Cohesive soil material	300	Compacted site won or imported material with a similar geochemistry to the surrounding landscape.
Groundwater depressurisation layer	Free draining material	300	Free draining site won or imported material with a similar geochemistry to the surrounding landscape.

2.2.3.3 Groundwater diversion system

A groundwater diversion system will be included in the design of the basal lining in the pits to minimise the possibility of liner uplift and allow the flow of groundwater beneath and around the liner. The system will consist of a minimum of 300 mm of free draining site won or imported material with a similar geochemistry to the surrounding landscape. During detailed design of the basal liner the risk of liner uplift will be assessed and, if required, a sump and riser installed to allow depressurisation of the liner.

2.2.3.4 Leachate levels

Numerical groundwater modelling was performed by Martens and Associates (2021).

The modelling established that, taking into consideration groundwater inflow and outflow, infiltration from the cap and seepage through the liner, over the long term, leachate levels are expected to rise and equalise with the surrounding groundwater table level (approximately 1037.5 mAHD).

The basal drainage layer at the base of the quarry void would allow monitoring of leachate in the fill. Monitoring of leachate levels at the riser will be undertaken to confirm that leachate is not accumulating/increasing within the quarry void creating a bathtub effect. As the site is being progressively capped and revegetated this issue will be able to be monitored during site operations and remedial action taken if required.

2.2.3.5 Irrigation management

Contact water will result from runoff from active emplacement areas and minor quantities from any vehicle washdown. All contact water will be contained within the site or treated and discharged at background water quality conditions (if the treatment plant is required). Irrigation of contact water will only be applied within the contact water catchment.

Contact water will be contained by installation of diversion bunds and drained to the contact water storage. The accumulated contact water will be collected for irrigation within the emplacement area by:

- Tanker through application to the active placement area for dust suppression and moisture conditioning to achieve target compaction rates.
- Mobile sprinklers that will be located within the emplacement area outside of haulage routes.

The operation of the sprinklers will consider irrigation demand, wind speed and prevailing wind direction and elevation with the aim to prevent spray drift outside of the emplacement areas or exposure to workers. Irrigation activities will not take place during wet weather periods or during high wind speed condition depending on the elevation of the emplacement area. The mobile sprinklers will be sited within the emplacement area based on fill moisture monitoring by conductivity meter. The irrigation rate will be developed to minimise runoff, and to not exceed the capacity of the fill to absorb the contact water.

A surface water and groundwater monitoring program will be implemented which will be designed to detect any migration of contact water from the site. An outline of the monitoring program is included in the Revised Water Resources Assessment.

2.2.3.6 Water Treatment Plant operation

As part of the precautionary approach, the Amended Project includes a contingency option for a water treatment plant to be installed at the site if storage levels in the contact water pond reach 45% or if required to treat leachate. If required, the water treatment plant will be located in approximately the central portion of the site as shown in the staging plans. The general treatment process for the plant will involve:

- Pump system to remove water from the pond storage to the reverse osmosis (RO) treatment process.
- Ultrafiltration (UF) pre-treatment for the removal of suspended solids, algae and any other potential issues to the membrane.
- Cartridge filtration (CF) used as a polishing step and as a failsafe to protect the RO membrane from any unexpected solids breakthroughs.
- Anti-scalant (AS) dosing for removal of scaling and fouling from the membranes.
- RO membrane for removal of problematic analytes within the water. Vendors estimated RO recovery would be approximately 70% (i.e., 70% of the feed water would report to the treated water stream and 30% of the feed water would report to waste).
- Calcite filter or chemical dosing likely to be required for remineralisation of permeate.
- Associated instrumentation for control and operation of the system.

Concentrated brine will be generated as a by-product of the water treatment plant. The brine will be stabilised prior to on-site disposal by mixing with soil material to maintain a closed circuit with the emplaced materials. Alternative off-site reuse options would be explored should the treatment plant be commissioned.

The soil and brine will be mixed within a lined skip bin such that the resulting consistency is generally capable of being picked up by a spade or shovel. The brine will be pumped directly to the skip bin and soil blended in using an excavator. The mixing area will be bunded to contain any leaks or contact water runoff. The mixed batches will not be stored for extended periods of time. Alternatively, the brine may be pumped directly to the relevant stage and mixed and placed in situ.

The brine mix will be disposed of within the quarry void via the trench and fill method. The spadable material will be unloaded from the skip bin/s and covered with site won soil immediately after placement. The quantity and disposal area location will be recorded. Disposal of stabilised brine will not take place during or immediately following wet weather to control the risk of runoff from the placement area.

2.2.4 Revegetation

The final landform would be progressively revegetated with locally endemic species which will control erosion and integrate the surrounding landscape. Rehabilitation activities aim to progressively provide a landform vegetated by locally occurring grasses, shrubs and trees representative of the native plant community type adjoining the site (PCT 1248 Sydney Peppermint – Silvertop Ash heathy open forest).

Vegetation would be selected by the project ecologists in consultation with the NPWS and a list of species suitable for use in the revegetation works is included in Appendix F.

A vegetation management plan has also been prepared to revegetate and manage an approximate 40 metre buffer of land on the eastern and southern boundaries of the site to rehabilitate portions of the site that had been previously impacted by quarry operations and is included in Appendix C.

Appendix C also includes an Ecological Monitoring Plan which applies to the whole project.

2.3 Project resources

2.3.1 Equipment

Anticipated plant and equipment to be used for the Project is largely consistent with the development described in the EIS and shown in .

Table 2.6 Anticipated plant and equipment

Project Activity	Equipment	Plant
Imported material		Up to 42.5 tonne truck and trailer haulage vehicles
Emplacement activities	Generator, site office / amenities building spill kits, refuelling/spill bunds,	1 grader, 1 tipper truck, 1 dozer, 2 front end loaders, Roller, Fuel delivery truck, water truck
Water management system	Submersible and centrifugal pumps	Contingency water treatment plant (if required)
Revegetation activities	Mechanical and electrical equipment,	Hydro-seeding (and planting of tubestock)

2.3.2 Workforce

The workforce required to operate the site is anticipated to be 4-6 employees in addition to haulage drivers as described in the EIS.

2.3.3 Operational hours

Operation hours for the proposed rehabilitation works will be in accordance with as described in the EIS. Rehabilitation activities and haulage to the site will be restricted to the hour of 7.00 am to 6.00 pm Monday to Friday and 7.00 am to 1.00 pm on Saturdays. Minor site preparation activities involving the use of a grader and roller to prepare the site for haulage vehicles is proposed between 6.00 am and 7.00 am Monday to Saturday.

Table 2.7 Operating hours

Activity	Day of week	Time	Assessment period
Rehabilitation related activities	Monday-Friday	7:00 am to 6:00 pm	Day
and transport of materials	Saturday	7:00 am to 1:00 pm	Day
	Sunday and Public Holidays	None	-
Preparation of ground on-site for	Monday-Friday	6:00 am to 7:00 am	Night
haul trucks	Saturday	6:00 am to 7:00 am	Night
	Sunday and Public Holidays	None	-

3. Environmental considerations

3.1 Emplacement material

3.1.1 Acceptance criteria

Rehabilitation of the final landform to be achieved via importation of material sourced across Sydney and the local regional area which meets:

- 1. the definition of VENM as defined by the PoEO Act from time to time.
- 2. the criteria of ENM as set out in the Excavated Natural Material Order and Exemption 2014 issued by the Environmental Protection Authority under clause 93 of the Protection of the Environmental Operations (Waste) Regulation 2014.
- 3. an exemption granted by the Environment Protection Authority pursuant to clauses 91 and 92 of the Protection of the Environmental Operations (Waste) Regulation 2014 and which specifically relates to the site (Comparable Material).

The original DA has been amended to remove "clean fill".

The term "clean fill" was initially adopted as part of the original DA as it is included in clause 121(3) of the State Environmental Planning Policy (Infrastructure) 2007 (Infrastructure SEPP).

The Infrastructure SEPP recognises the enhanced rehabilitation outcomes that can be achieved through importation of specified fill to sites previously disturbed by extractive operations. The Project is consistent with the aims and objectives of the policy and will allow for recycling and beneficial reuse of fill material.

For the purpose of this DA all fill material will meet the definition of either VENM, ENM or an exemption granted by the EPA specifically related to the site pursuant to clauses 91 and 92 of the Protection of the Environmental Operations (Waste) Regulation 2014.

It is noted that there is currently no site-specific resource recovery order and associated exemption applicable for the site and any future exemption would need to be directly authorised by the EPA. The option provides flexibility to accommodate other potentially exempt material if directly approved by the EPA and would be subject to an application made addressing the requirements in the Guidelines on Resource Recovery Orders and Exemptions (for the land application for waste material as fill) (EPA 2017), and any other requirements stipulated by the EPA. No material will be applied to the site that does comprise either VENM, ENM or comparable material that is specifically authorised by a site-specific resource recovery order and exemption which specially relates to the land pursuant to clauses 91 and 92 of the Protection of the Environmental Operations (Waste) Regulation 2014.

3.1.2 Waste classes and risk of environmental harm

It is important to dispel the perception that the material sought to be received at the site poses the same risks of causing an environmental impact compared to general solid waste permitted at landfills licensed by the EPA.

Emplacement material permitted to be accepted at the site is materially different to waste that has been generated at a site where potentially contaminating activities have or are occurring, and which would be required to be classified in accordance with the NSW EPA Waste Classification Guidelines (NSW EPA, 2014a) and transferred to landfill licensed to accept the classified waste.

VENM, ENM and comparable material permitted under a specific resource recovery order and associated exemption when applied to land are exempt from the licensing requirements under the PoEO Act. These licensing exemptions reflect the intrinsic lower risk of environmental impact that these material types present when applied to land compared to other waste classified such as general solid waste, special waste and restricted waste.

As described above, VENM is material not contaminated with any man-made substances and does not contain sulphidic (acid forming) material or any other waste. The ENM Order states that ENM must comprise at least 98% natural material and other limiting criteria as discussed below. An application for comparable material in the form of a specific resource recovery order and associated exemption must demonstrate as a minimum that the material:

- is fit for purpose in its proposed use
- poses minimal risk of harm to the environment or human health; and
- is not intended to be land applied as a means of disposal (i.e., a landfilling activity).

The ENM Order outlines the maximum concentrations of substances and other attributes for acceptable ENM material, whilst the NSW EPA Waste Classification guidelines (NSW EPA, 2014) identifies the maximum contaminant concentrations for general solid waste permitted at landfills licensed by the EPA.

Emplacement material to be accepted at the site (VENM, ENM and comparable material) present a lower risk of causing an environmental impact at the site than waste that is disposed of at a licensed general solid waste landfill facility.

Table 3.1 Comparison of criteria in the ENM order (NSW EPA, 2014b) and the NSW EPA Waste Classification Guidelines (NSW EPA, 2014a)

Substance	NSW EPA	A ENM order	NSW EPA Waste Classification Guidelines	General solid waste criteria in
	Maximum average concentration for characterisation (mg/kg 'dry weight' unless otherwise specified)	Absolute maximum concentration (mg/kg 'dry weight' unless otherwise specified)	Maximum values of specific contaminant concentration for classification without TCLP General solid waste (mg/kg)	relation to absolute maximum ENM concentration
Mercury	0.5	1	4	4 x larger
Cadmium	0.5	1	20	20 x larger
Lead	50	100	100	Same value
Arsenic	20	40	100	2.5 x larger
Chromium (total)	75	150	1004	0.66 x smaller*
Copper	100	200	No value specified	-
Nickel	30	60	40	0.66 x smaller*
Zinc	150	300	No value specified	-
Electrical conductivity	1.5 dS/m	3 dS/m	No value specified	
рН	5 to 9 ⁵	4.5 to 10 ⁶	No value specified	-
Total Polycyclic Aromatic hydrocarbons	20	40	200	5 x larger
Benzo(a)pyrene	0.5	1	0.8	0.8 x smaller*
Benzene	NA	0.5	10	20 x larger
Toluene	NA	65	288	4.4 x larger
Ethyl-benzene	NA	25	600	24 x larger
Xylene	NA	15	1,000	66.7 x larger
Total Petroleum Hydrocarbons C ₁₀ – C ₃₆	250	500	10,000	20 x larger
Rubber, plastic, bitumen, paper, cloth, paint and wood	0.05%	0.10%	No value specified	-

^{*} Maximum average concentrations are lower than for general solid waste

For the substances that are present in both the Order and Guidelines, the maximum concentrations for all substances in the NSW EPA Waste Classification Guidelines (based on the specific contaminant concentrations) are greater than the maximum average concentrations presented in the ENM Order.

There are, however, three substances which have a higher absolute maximum concentration in the ENM Order compared to the maximum values in the NSW EPA Waste Classification Guidelines for general solid waste. This occurs for Nickel, Benzo(a)pyrene and chromium. However, on average, the concentrations of all three of these substances are still less than those for general solid waste.

The VENM, and ENM sought to be accepted at the site will be required to meet the definition of VENM in the POEO Act and the criteria outlined in the ENM Order, respectively. Any comparable material will be required to

⁴ Cr(VI)

⁵ The ranges given for pH are for the minimum and maximum acceptable pH values in the excavated natural material

⁶ The ranges given for pH are for the minimum and maximum acceptable pH values in the excavated natural material

obtain a specific resource recovery order and exemption from the EPA by demonstrating that it poses minimal risk of harm to the environment or human health and address other criteria stipulated by the EPA.

These waste types (VENM, ENM and comparable material) present a lower risk of causing an environmental impact at the site than waste that is able to be accepted at a licensed general solid waste landfill facility.

Furthermore, additional mitigation measures, monitoring and if needed adaptive controls are proposed for the Project to ensure that the risk of environmental impact is negligible. These are described in detail throughout the Revised Water Resources Assessment (GHD 2021) (Appendix E) and Environmental Management Plan (GHD 2021) (Appendix B).

3.1.3 Requirement for an Environment Protection Licence

The PoEO Act provides for an integrated system of licensing and contains a core list of activities requiring an EPL from the EPA. These activities are called 'scheduled activities' and are listed in Schedule 1 of the PoEO Act. Application of waste to land is considered to be a scheduled activity in accordance with Clause 39 of Schedule 1 of the PoEO Act.

However, whilst the emplacement materials defined as waste under the PoEO Act, they are specifically exempt from licensing for application of waste to land under Clause 39 of Schedule 1 of the PoEO Act. The relevant clauses include:

- Clause 39 2(e) of Schedule 1 for VENM.
- the ENM Exemption 2014 and subject to its requirements turns off the licensing requirements under Clause
 39 of Schedule 1.
- the details of any specific resource recovery exemption, if granted by the EPA pursuant to clauses 91 and 92 of the Protection of the Environmental Operations (Waste) Regulation 2014.

The Project meets all requirements for application of VENM and ENM exempt from licencing provisions under Clause 39 of Schedule 1 of the PoEO Act. Any other comparable material will only be permitted to the applied to the site if specifically authorised by the EPA through application of a site-specific resource recovery exemption which will also be licence exempt.

Further, the integrated provisions under the EP&A Act are elective in that the applicant is not obliged to have an application for a licence under the PoEO Act assessed at the time of assessment of the DA. An application for a licence under the PoEO Act can be made by the applicant separately to the DA, if required.⁷

It is acknowledged that under section 120 of the PoEO Act, a person who pollutes waters is guilty of an offence and that sections 121 and 122 of the PoEO Act provides a defence against prosecution under section 120 where the pollution was regulated by a licence or regulation that was complied with fully.

The definition of water pollution in the PoEO Act sets out general and specific circumstances that constitute water pollution. At its broadest, this means a prohibition on placing anything in waters that changes their chemical, biological or physical nature or is of a prescribed nature, description or class that does not comply with any standard prescribed in respect of the matter.

The "EPA's Licencing Fact Sheet – Using environment protection licensing to control water pollution" states that the EPA does not use licencing to regulate every potential pollutant that could be contained in a discharge such as:

 Those pollutants with little or no potential to be present at levels that pose a reasonable risk of harm to health or the environment.

The EPAs licencing fact sheet also includes a range of matters for considerations in exercising its licencing functions including:

- the pollution that will be caused and its impact on the environment.
- practical measures that can be taken to prevent, control, abate or mitigate the pollution and protect the environment from harm.
- the environmental values of water affected by the proposed discharge.

⁷ See Maule v Liporoni & Anor [2002] NSWLEC 25

practical measures that can be taken to restore or maintain those values.

A revised surface water management system to is proposed to ensure that all surface water released from the site drains only from naturally occurring soils within the catchment or is treated to standard to meet background water quality concentrations. The amended project will achieve a neutral or beneficial effect on the catchment and does not warrant an application for a licence under the PoEO Act.

3.2 Water Resources

3.2.1 Introduction

Management of water released from the site to the sensitive receiving waters in the Greater Blue Mountains National Park has been a key issue considered throughout the development of the Project. The potential for impacts associated with surface water releases and leachate generated by the Project to impact upon an unnamed tributary of the Wollongambe River and a connected hanging swamp located were primary reasons raised in the refusal of the DA by the WRPP in April 2020.

A number of investigations have been completed since the refusal to better characterise the receiving water environment and associated hanging swamp and to develop a revised water management system to ensure the proposed development achieves a neutral or beneficial effect on the catchment.

3.2.2 Existing hydrology characterisation

Surface water hydrology

Martens and Associates (2021) have undertaken detailed site based hydrological investigations to provide an improved understanding of the existing hydrological environment, with a particular focus on the swamp located approximately 200 metres downslope from the site. The assessment also considers hydrological conditions prior to commencement of the quarrying operations at the site and forecasts hydrological conditions after the proposed final landform is established. A summary of the key findings of the Martens and Associates (2021) study is outlined below, and a full copy of the assessment is provided in Appendix D.

The hanging swamp downslope of the site is characterised by the watercourse running through swamp with the catchment originating upstream from the quarry. The watercourse has a poorly defined channel with flows infiltrating into the ground and resurfacing at regular intervals upstream from the swamp. The existing quarry voids capture surface flows from upslope and direct these to the existing overflow point comprising a constructed wetland downstream of the site.

Two stream gauges were set up at the upslope and downslope ends of the hanging swamp to determine flows and assess likely changes to hydrological conditions likely to be realised through filling of the quarry voids and the final rehabilitated landform. The flow regime in the local catchment is characterised as follows:

- Flows to the hanging swamp appear to be directly related to incidence of local rainfall (i.e., flows appear to rely on surface flows from rainfall as opposed to base flows from groundwater).
- Local catchments have a relative rapid response with flows commencing not long after commencement of
 precipitation. This may be explained by the relatively shallow sandy catchment soils and frequent bedrock
 outcropping leading to runoff occurring relatively quickly following precipitation.
- Smaller flows upslope of the existing voids is captured by the voids, with overflows being directed to the hanging swamp downslope.
- Water levels in the voids are influenced largely by groundwater inflows and evaporation.
- Flows tend to be relatively minor (of the order of < 5 L/s) for most of the monitoring period, with the average flow rate skewed by less frequent flow events (median flows much less than average flows).

Development of a calibrated MUSIC (Model for Urban Stormwater Improvement Conceptualisation) model was undertaken determine pre-quarry hydrological conditions and likely impacts upon the catchment from long term quarrying operations.

The modelling results show lower flows appear to be more frequent for pre-quarry conditions when compared to existing conditions, although total daily volumes are comparable for the downstream gauge and higher for the

upstream gauge. This is reasonably expected given the excavation of the quarry voids which would be expected to remove lower flows from the system and overflow larger volumes during higher flow conditions.

Modelling of the final landform surface indicates flows into the swamp will be similar to existing hydrological conditions, with mid-range flows more representative of pre-quarry conditions. The modelling demonstrates that the proposed final surface will not detrimentally impact on the surface hydrological regime in the downstream swamp and closure of the upper void will go some way towards remediating historical changes in flow regime caused through development of the quarry.

Water quality

Water quality monitoring was also undertaken as part of the Martens and Associates (2021) investigations and found the following:

- Water quality of overflows from the quarry voids is generally of relatively good quality when compared with trigger values given in the National Water Quality Management Strategy (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
- Nutrient, heavy metal and hydrocarbon concentrations in surface discharges from the site are low, indicating
 that the existing quarry and associated accesses are not significantly impacting on surface water quality
 downstream at the hanging swamp.
- Surface water is generally slightly acidic, most likely as a result of local geology.

Hydrogeology

The Martens and Associates (2021) investigations included continuous groundwater monitoring at eight wells surrounding the site including shallow and deep wells installed in the vicinity of the downstream hanging swamp to understand the interaction between the shallow, perched aquifer, and the deeper sandstone aquifer. On the basis of investigations, a conceptual hydrogeological model for the downstream swamp was prepared with a commentary on the findings provided below:

- Groundwater within the swamp develops in response to direct rainfall and surface inflows arriving from the catchment which are developed both within the site but also within adjoining valley areas.
- As surface water inflows enter the swamp, these spread out and typically flow in an un-channelised manner over the swamp surface where due to the high sand content of swamp soils, there is a high degree of infiltration.
- Infiltrated surface water causes a perched water table to develop which sits over the underlying sandstone bedrock. This water table is ephemeral and has the capacity to recharge the underlying permanent water table.
- Perched water within the swamp exits at the downstream portion of the swamp into a narrow-formed channel.
- The swamp surface does not appear to have been the subject of any current significant erosion, although
 there is evidence that historical erosive events have occurred.

The following implications arise out of the investigation findings:

- Groundwater flows from the filled quarry voids is not likely to contribute to groundwater flows within the swamp because these are controlled by surface water inflows and direct rainfall.
- Perched groundwater that occurs within the swamp will at times recharge deeper groundwater.
- Surface flows discharged from the site during filling operations and following completion of the final landform will likely enter the swamp area and contribute to the hydrology and water chemistry of the perched water table.

Groundwater modelling indicates that groundwater flow is generally downwards and that the existing quarry voids have significantly altered groundwater levels by lowering the groundwater table by up to 5 metres in the quarry voids and increasing groundwater levels elsewhere by 1 to 2 metres.

Dewatering and filling of the main void at the quarry is expected to lower groundwater levels in the sandstone aquifer beneath the hanging swamp by around 0.5 metres compared to existing conditions and shows that the groundwater levels of the final rehabilitated landform are closest to the pre-quarry conditions as the drawdown extents at the quarry are the smallest. Groundwater levels in the sandstone aquifer will remain beneath the swamp and there will be no connection between groundwater flows from the quarry to the swamp.

The groundwater quality monitoring found that:

- Nitrogen observations are generally higher in the deep wells compared to the shallow wells mostly due to elevated total nitrogen and NOx readings in MB03.
- Total phosphorous observations are higher in the shallow wells compared to the deep wells.
- Heavy metals are generally higher in the shallow groundwater wells than in the deeper groundwater wells.
- Total recoverable hydrocarbons (TRHs) were all below the detection limit except for at MW201 where they
 were observed on four occasions.

3.2.3 Surface water management system

Introduction

A revised water management system has been developed for the site as described in Section 2.2.3. The management system involves separation of surface water flows to ensure that all surface water released from the site drains only from naturally occurring soils within the catchment or is treated to standard to meet background water quality concentrations. A detailed assessment of potential impacts to surface water resources is presented in the Revised Water Resources Assessment included in Appendix E with a summary of the findings outlined below.

The system has been designed to achieve the adopted elevated assessment criteria based on the State Environmental Planning Policy (Sydney Drinking Water Catchment) 2011 as well as the corresponding WaterNSW guideline Neutral or Beneficial Effect (NorBE) on Water Quality Assessment Guideline. The NorBE approach has been applied to the proposed development to achieve the highest level of protection given the sensitivities of receiving waters in the Wollongambe River catchment and the Greater Blue Mountains World Heritage area, although it is noted the site does not fall within Sydney's Drinking Water catchment area.

The assessment criteria is derived based on the following definition from the guideline:

A neutral or beneficial effect on water quality is satisfied if the development:

- a. has no identifiable potential impact on water quality, or
- will contain any water quality impact on the development site and prevent it from reaching any watercourse, waterbody, or drainage depression on the site.

A detailed surface monitoring program has been developed to be implemented throughout site operations to demonstrate how the management of surface water flows in the site achieve NorBE as described below.

Upstream catchment

Upstream catchment flows will be transferred directly through or around the site, without any mixing with contact water from active operational emplacement areas. Where mixing of upstream and site waters is unavoidable (eg. a cascade of upstream waters currently enters the western void of the site) the upstream waters shall mix only with run-off from existing site soils or rehabilitated surfaces with a site won capping material.

Transfer of upstream flows directly through the site will reduce the storage of water within the existing voids during extended dry periods. This will reduce potential stress the downstream receiving waters and sensitive ecological receptors and more closely replicate the natural base flow conditions to support the downstream hanging swamp.

Where the upstream water does not come into contact with any site waters it is anticipated to have no identifiable potential impact on water quality and as such satisfy the NorBE criteria adopted for the site.

The initial quarry dewatering works will be undertaken in a manner to ensure that the flow rate does not exceed the guidance provided by Martens and Associates (2021). This will ensure that the dewatering works would not cause any detrimental impact on the geomorphology of the downstream swamp (for example, not create a 'nick point').

The water quality that will be released from dewatering the quarry void from the site establishment phase will be of the same quality as exists in the ponds and that is discharged currently. Martens and Associates (2021) have identified that the quality of the water in the voids has not impacted the water quality within the swamp.

Therefore, dewatering of the quarry voids prior to operations will satisfy NorBE criteria adopted for the site.

Existing site soils

Sediment laden water has been characterised as run-off originating from areas where disturbed, non-vegetated soil is present, but does not consist of imported fill material or run-off from active emplacement areas. For naturally occurring site soils, runoff is to be managed in accordance with *Managing Urban Stormwater: Soils and Construction Volume 1, Landcom 2004 and Volume 2, DECC 2008* as applicable to a "sensitive" receiving environment. The guidelines are considered current recommended practices (CRPs) endorsed by WaterNSW and are applicable to be applied to site to achieve NorBE.

During the quarry dewatering works occurring during the site operations, the only potential source of water than may influence its water quality is runoff from the site's soils and potentially introducing suspended solids. The total suspended solids concentration of this water will be adjusted as needed to meet the guidance WaterNSW current recommended practice and will satisfy NorBE criteria adopted for the site.

Contact Water

A key change adopted as part of the revised water management system is to ensure that all contact water draining from operational areas will be captured in a contact water pond for reuse via on-site irrigation in the active emplacement cell.

A water balance has been prepared and indicates all contact water can be retained on site for the life of the project under best estimate assumptions emplacement operations when assessed against historical and potential future climate scenarios. Containment of contact water on site will meet the NorBE criteria of preventing any potentially impacted water from reaching receiving waters and assist with site operations through dust suppression and compaction and ensure all emplacement material is retained entirely within the site. Contingency for the provision of a water treatment plant has also been included as part of the proposed development if best estimate assumptions for site water use are not realised. The water treatment plant will be triggered if the contact water pond reaches 45% capacity to provide time for commissioning and treatment of water in the contact water pond prior to release from the site. This will ensure that any releases from the site are treated to meet background water quality standards and result in no identifiable impact upon water quality.

Containment of contact water within site operations or treatment to meet background water quality will meet the NorBE assessment criteria adopted for the Project.

Management approach

The water management system as depicted in the staging plans is designed to control surface flows and erosion risks within the site.

A Soil and Water Management Plan will be developed prior to the commencement of any soil disturbance or water management works. This would be developed in accordance with the WaterNSW CRP Managing Urban Stormwater: Soils and Construction Volume 1, Landcom 2004 and Volume 2, DECC 2008. It should be noted that the key basis of this plan (and therefore the feasibility of appropriately implementing it) has been confirmed through development of the Revised Water Resources Assessment (GHD 2021). This includes:

- Confirming the appropriate separation of water types (e.g. clean, contact, sediment-laden) during the different stages of the project
- The sizing and inclusion of sediment basins in accordance with the WaterNSW CRP based on the contributing sediment-laden catchment areas for each stage
- Review of the receiving water quality and imposing of the required discharge standard for sediment laden water
- Inclusion of contingency measures in the event of initial sediment laden water quality treatment not satisfying the discharge criteria
- Identifying that the dewatering would be undertaken at a rate that is within the general existing range of downstream flow rates (Martens and Associates 2021).

3.2.4 Groundwater

The amended project includes the adoption of a lining system within the emplacement cell and contact water dam. All areas proposed to be filled will be lined with a geomembrane on the base and clay liner on the sidewalls where they are adjacent to the natural substrate within the pits. The final rehabilitated surface will also be capped with geomembrane, overlaid with a subsurface drainage system and revegetated.

A detailed assessment of the potential impacts to groundwater is presented in the Revised Water Resources Assessment included in Appendix E with a summary of the findings outlined below.

The adoption of a lining system within the emplacement cell will also limit the potential for leachate within the emplacement cell to impact upon local or regional groundwater systems. The limited potential for seepage through the lined emplacement cell will result in less than a 0.2% contribution to groundwater volume at the assessed closest discharge point to surface waters downslope of the hanging swamp, with the remaining 99.81 per cent comprised of background/catchment groundwater. It is noted that the Martens and Associates (2021) assessment has demonstrated that there is no direct connection between groundwater flows from the quarry site and the downstream hanging swamp. The adoption of the closest potential discharge point immediately downstream of the swamp is conservative and is likely to underestimate mixing and attenuation factors within the bedrock aquifer.

The mixing percentages were used to back calculate site-specific target levels for leachate from the fill material within the quarry void. The leachate target levels were conservatively calculated based upon predicted seepage rates and the attenuation capacity within the aquifer prior to the nearest potential discharge point to receiving waters downstream from the swamp. The target levels for leachate generated within the site provides an indication of likely acceptable leachate concentrations that could be developed within the cell and still result in a neutral or beneficial effect upon receiving waters in the catchment.

The site-specific target levels were then compared to estimates for likely leachate generation based upon ASLP testing of select range of indicative soils in the Sydney basin and theoretical soil partitioning values for estimating the potential transfer of inorganic and organic substances in soils into the liquid state using US EPA developed partitioning equations (GHD, 2018).

The ASLP tests considered a range of typical geologies and soil types and involves tumbling the soil/rock sample with water for 18 hours to generate the maximum potential leachability from the samples. The soil-water partition equation (USEPA 1996) was calculated for using the maximum average concentrations (or the absolute maximum concentrations, where no maximum average concentration exists) in the ENM Order which sets the acceptance criteria for emplacement material at the site. The partitioning equations used median values adopted in the EIS to provide another estimate potential leachability that could be generated within the emplacement cell.

All ASLP test results were below the site-specific target levels with the exception of one analyte which is considered as a function of the level of reporting in the laboratory analysis and assumptions adopted in the modelling rather than a realised potential for exceedance.

The soil partitioning results for ENM suggest there is some risk for material to generate leachate. The soil partitioning results for the analytes identified to have residual risks are considered to be highly conservative relative to the ASLP results or representative of contaminated sites, which are not reflective of the VENM and ENM soils proposed to be brought to site. While there may be localised incidence of higher leachable concentrations, when considered from a bulk filling perspective it is expected that concentrations on average would be well below the leachate monitoring criteria adopted for the site as demonstrated by the results of the ASLP analysis.

A monitoring program has been developed to monitor for and respond to the emergence of impacts associated with these analytes and provide an early warning system before any emerging groundwater impacts could arise from the site operations.

Adoption of the liner system to minimise the potential seepage of leachate from the site and a monitoring program with a targeted action response plan will ensure that the operations pose minimal risk to receiving waters and meet the NorBE criteria adopted for the Project.

3.3 Biodiversity

3.3.1 Introduction

A detailed biodiversity assessment was undertaken to consider the potential impact of the project on ecological values of the study area as part of the EIS. The assessment found that the majority of the rehabilitation activities would be undertaken in disturbed areas within the quarry footprint and that direct impacts would be limited to clearance of a total of 0.13 ha of remnant vegetation and 2.48 ha of planted native vegetation.

The assessment included consideration of the downstream swamp which was identified as representative of Prickly Tea-tree – sedge wet heath swamp below the quarry discharge location as a Newnes Plateau Shrub Swamp (Endangered Ecological Community (EEC) under the *Biodiversity Conservation Act 2016* (BC Act)) and Temperate Highland Peat Swamps on Sandstone (EEC under the *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act)).

Consideration of potential for indirect impacts upon the ecological communities within the swamp was undertaken based upon the interpretation of the results of the Water Resources Assessment included in the EIS and concluded there was no potential for significant impacts.

However, the potential for impacts to the swamp associated with altered hydrology and water quality were outlined as a key issue in the refusal of the DA by WRPP in April 2020.

Further ecological investigations have been undertaken by Cumberland Ecology and are reported in Appendix F. The study includes field assessments undertaken following 2019 bushfires and includes consideration of the impacts associated with the amended project presented in the report and the updated hydrology and water resources assessments.

3.3.2 Supplementary analysis

The revised assessment has confirmed the swamp vegetation includes a *Leptospermum*-dominated southern extent and a sedge dominated northern extent and conforms to plant community type (PCT) 1078 Prickly Tea-tree - sedge wet heath on sandstone plateaux, central and southern Sydney Basin Bioregion. This PCT conforms to the Newnes Plateau Shrub Swamp Threatened Ecological Community (TEC) is listed as an EEC under the BC Act and the EPBC Act.

The assessment confirms that the Project will not have potential to directly impact upon the swamp, however indirect impacts associated with an altered hydrological regime may potentially influence the swamp. The Martens and Associates (2021) assessment has confirmed that groundwater flow from the quarry is not likely to contribute to groundwater flows within the swamp. The perched water table at the swamp is fed by surface water flows and rainfall which contributes to the water chemistry within the swamp, which will at times recharge the deeper groundwater systems.

The report outlines that the primary hydrological pathway for impacting the swamp would be the release of uncontrolled flows from the filling operations area. This can be readily managed through the implementation of the revised water management strategy through capture and treatment of any contact water prior to release, reuse of water for dust suppression and irrigation within the active emplacement areas, minimisation of surface water inflows to the void area, and controlled management of site discharges.

At the completion of the Project, there will be return to a hydrological regime co-existent with conditions prior to quarrying operations. This is seen of benefit to the swamp as it ameliorates the historical impacts currently realised at the site as a result of the historical quarrying operations.

The revised water management at the site and the final developed landform will also reduce the storage of low catchment flows within the quarry voids and reduce the stress on the downstream swamp. This is important in ameliorating the potential effects of human induced climate change which is considered the greatest long-term threat to the swamp vegetation.

The Project will reduce the storage of water within the existing voids during extended dry periods. This will reduce potential stress the downstream receiving waters and sensitive ecological receptors and more closely replicate the natural base flow conditions to support the downstream hanging swamp.

Cumberland Ecology have also included a Vegetation Management Plan for the site and portion of land on the adjoining NPWS estate as included in Appendix C.

3.4 Traffic

A detailed Traffic Impact Assessment was prepared as part of the original EIS in accordance with the Roads and Maritime inputs to the Secretary's Environmental Assessment Requirements (SEARs) and RTA's *Guide to Traffic Generating Development* 2002.

The assessment included a haulage analysis based upon the traffic predicted to be generated by the project including detailed modelling undertaken at the intersections likely to be most affected by the proposed development including the intersection of Sandham Road and Bells Line of Road and the intersection of Bells Line of Road and Darling Causeway.

The intersection modelling indicated there would be no change to the level of service of the most affected intersections with the average delay increasing by less than two seconds during AM and PM peak periods. The proposed haulage is not anticipated to impact upon the safety and capacity of the road network.

The haulage traffic represents a relatively small proportional increase to background traffic on the wider regional road network which comprise designated heavy vehicle routes utilising major state and arterial roads. The average percentage increase of between 1 and 3% in comparison to existing vehicle numbers is not expected to impact upon the safety of capacity of the road network. A maximum of four truck deliveries per hour under the Worst Case Haulage scenario will not result in surge or pulse effects on the road network.

The Applicant committed to develop a driver code of conduct as part of a Traffic Management Plan for the Project, to guide transport operations on all public roads including Sandham Road. This will include specific requirements such as limiting the speed limit to 40 km/hr for all trucks on Sandham Road and incorporate a haulage route complaint management system.

There is no change to the haulage operations described in the original EIS as outlined in Section 2.2.1.

An independent review of the findings of the original traffic assessment has been undertaken by GTA Traffic Consultants. The review supported the findings of the original assessment and highlighted that traffic generated by the proposed development will have a negligible impact upon the function of the surrounding road network.

The assessment highlighted that whilst some sections of Sandham Road were narrow, the low traffic volumes associated with the proposed development did not warrant wholesale upgrade of the road. Seven locations have been identified along Sandham Road to provide opportunities for minor shoulder widening or localised widening for the creation of passing bays to improve the two way flow of traffic as shown in Appendix G.

3.5 Noise

A detailed noise impact assessment was undertaken as part of the original EIS in accordance with EPA policies and guidelines. The modelling indicated compliance at all nearby receivers for both emplacement activities within the quarry site and use of Sandham Road as a haulage route.

The Supplementary EIS modifies the staging plan presented in the EIS and the final landform has been altered to accommodate the new site access road and the use of the eastern void as a contact water pond. It is noted that the footprint remains entirely within the footprint previously assessed as part of the noise impact assessment and there is no change to the maximum height of the final landform or equipment used as part of the filling operations.

It is noted that the noise modelling included scenarios for mobile equipment such as the grader, dozer, loaders and roller/compactor operating at the base of each cell at the commencement of filling of each stage and at the highest point on the excavation face as each stage approaches the final landform.

The final landform surface represents the worst-case scenario for noise propagation at each stage and the revised staging and landform will continue to fall within the extent of impacts predicted as part of the original noise assessment.

It is noted that the worst-case scenario noise generation from the site was during filling in Stage 1 as a result of proximity to the nearest sensitive receiver located to the north-west of the site. The worst-case scenario will now be experienced during Stage 4 of the revised staging and be consistent with the model predictions included in the EIS.

An additional diesel generator may be required if the water treatment plant is commissioned at the site. The noise impact assessment included a generator for operating of the water pump with a sound power level of 89 dBA. This is well below all other modelled sources (between 13 dBA and 21 dBA lower) and would not likely have any contribution to noise levels experienced at offsite receptors.

The water treatment plant and associated generator would be located at a distance further away from the nearest sensitive receivers than other louder noise sources and would be unlikely to contribute to overall noise levels generated at the site.

3.6 Other environmental matters

The revisions to the project proposed as part of the Supplementary EIS are not considered to have potential to alter the findings of the original EIS. All assessment outcomes will continue to comply with relevant assessment criteria and fall within the extent of impacts predicted in the original EIS.

4. Conclusion

The Supplementary EIS has been prepared to describe the amendments proposed to the Bell Quarry Rehabilitation Project. The Project will remain largely consistent with original DA and involves rehabilitating a former Bell Quarry site to achieve the final rehabilitated landform via importation of VENM, ENM and comparable material (that meets an exemption pursuant to clauses 91 and 92 of the Protection of the Environmental Operations (Waste) Regulation 2014). The emplacement material will sourced from projects across Sydney and the local regional area and transported to the site at up to 140,000 tpa which is the equivalent scale of the extraction operations previously undertaken at the site.

Modifications to the original DA relate to definition of the acceptance criteria for emplacement material to be accepted at the site and modifications to the proposed water management system and emplacement cell staging to reflect the revised water management system. Relocation of the site access road and a vegetation management plan have been prepared to address boundary irregularities with the adjoining NSW National Parks estate. The applicant is also willing to enter into a planning agreement to contribute to minor upgrade works which have been identified to improve the flow of traffic and safety of haulage vehicles utilising Sandham Road and to undertake maintenance of the unsealed section of Sandham Road.

The Supplementary EIS proposes a revised surface water management system which will ensure that all surface water released from the site drains only from naturally occurring soils within the catchment or is treated to standard to meet background water quality concentrations. All contact water draining from operational areas will be captured in a contact water pond for reuse in the active emplacement cell. A water treatment plant has been included as a contingency to be triggered in the unlikely event that discharge of contact water is required to ensure water quality continues to reflect background water quality.

The Supplementary EIS also includes the adoption of a lining system within the emplacement cell and contact water dam and the final rehabilitated surface will be capped and revegetated. The proposed lining system will greatly reduce the potential for any seepage of leachate generated within the emplacement cell to impact upon the local or regional groundwater systems.

Site based hydrological investigations of groundwater flows from the filled quarry voids is not likely to contribute to groundwater flows within the swamp and that the rehabilitation project will return both the surface and groundwater environments to be more representative of the original catchment conditions prior to the commencement of quarrying operations. This is considered to be of benefit to the ecological health of the downstream swamp and provide additional resilience to drought conditions or human induced climate change.

The remainder of environmental impacts are considered to comply with relevant assessment criteria and fall within the extent of impacts predicted in the original EIS. The benefits of the Project include:

- Beneficial reuse of emplacement materials and reduced landfill disposal
- Revegetated landform more closely matching the adjoining national park
- Revegetation of land adjoining the site that has been impacted by historical quarrying operations
- Return of surface water and groundwater regimes closer to original catchment conditions to provide additional resilience to the receiving waters and downstream swamp.

Overall, the Project is considered to provide a beneficial outcome for site and is recommended to be approved.

Appendices

Appendix A

SEARs compliance and Response to contentions in EIS

Supplementary EIS compliance with SEARs

Category	Secretary's requirements	Where addressed in EIS	Supplementary EIS
General	EIS must meet the minimum form and content requirements in clauses 6 and 7 of Schedule 2 of the Environmental Planning and Assessment Regulation 2000	Throughout	As per original EIS and as supplemented by this assessment
	 assess all potential impacts of the proposed development on the existing environment (including cumulative impacts if necessary) and develop appropriate measures to avoid, minimise, mitigate and/or manage these potential impacts. 	Chapter 7 to 14	for amendments to the project
Planning	assess the Project against the relevant environmental planning instruments, including but not limited to: State Environmental Planning Policy (Infrastructure) 2007; State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007; State Environmental Planning Policy No. 33 Hazardous and Offensive Development; State Environmental Planning Policy No. 55 Remediation of Land; Lithgow Local Environmental Plan 2014; and relevant development control plans and section 94 plans.	Chapter 5	As per original EIS
Strategic context	relevant development control plans and section 94 plans. a detailed justification for the Project and suitability of the site for the development.	Chapter 16	As per original EIS and as
	 a demonstration that the Project is consistent with all relevant planning strategies, environmental planning instruments, development control plans (DCPs), or justification for any inconsistencies a list of any approvals that must be obtained under any other Act or law before the development may lawfully be carried out. 	Chapter 5	supplemented by this assessment for amendments to the project
Consultation	 consult the relevant local, State and Commonwealth government authorities, service providers and community groups, and address any issues they may raise in the EIS. In particular, you should consult with the: Environment Protection Authority; Office of Environment and Heritage; Department of Primary Industries; Roads and Maritime Services; Water NSW; NSW National Parks and Wildlife Services; Lithgow City Council; holder of Mining Lease 1654 and Mineral Exploration Licence 7674 (Kaolin Pty Ltd); holder of Coal Authorisation 307 (Hartley Vale Coal Pty Ltd); holder of Mining Lease 1583 (Coalex Pty Ltd); and the surrounding landowners and occupiers that are likely to be impacted by the proposal. details of the consultation carried out and issues raised must be included in the EIS. 	Chapter 6	As per original EIS
Waste management	details of the type, quantity and classification of waste to be received at the site	Chapters 4 and 14	Section 2.2, Section 3.1 and Appendix B

Category	Secretary's requirements	Where addressed in EIS	Supplementary EIS
	 details of the resource outputs and any additional processes for residual waste 		
	 details of how the proposal would meet the EPAs Excavated Natural Material Order and Exemption 2014 if relevant 		
	 details of waste handling including, transport, identification, receipt, stockpiling and quality control 		
	 the measures that would be implemented to ensure that the proposed development is consistent with the aims, objectives and guidelines in the NSW Waste Avoidance and Resource Recovery Strategy 2014-21. 		
Air quality	a description of all potential sources of air and odour emissions	Chapter 10 and Appendix F	Section 3.6
	 an air quality impact assessment in accordance with relevant Environment Protection Authority Guidelines 		
	 a description and appraisal of air quality impact mitigation and monitoring measures. 		
Noise and vibration	 a description of all potential noise and vibration sources during construction and operation, including road traffic noise 	Chapter 11 and Appendix G	Section 3.5
	 a noise and vibration assessment in accordance with the relevant Environment Protection Authority Guidelines 		
	 a description and appraisal of noise and vibration mitigation and monitoring measures. 		
Soil and water	a description of local soils, topography, drainage and landscapes	Chapter 7 Appendix C	Section 2,2 Section 3.2
	an assessment of potential impacts on the quality and quantity of surface and groundwater resources	пррепак о	Appendix D
	 details of fill material to be imported to the site, including quantity and its waste classification 		Appendix E
	 details of sediment and erosion controls 		
	a detailed site water balance		
	 details of the proposed stormwater and wastewater management systems (including sewage), water monitoring program and other measures to mitigate surface and groundwater impacts 		
0	 a description and appraisal of impact mitigation and monitoring measures. 		
Fraffic and	details of road transport routes and access to the site	Chapter 9	Section 3.4
ransport	 road traffic predictions for the development during construction and operation 	Appendix E	Appendix G
	 assessment of impacts to the safety and function of the road network; and the details of any road upgrades required for the development. 		
Biodiversity	accurate predictions of any vegetation clearing on site or for any road upgrades	Chapter 8 Appendix D	Section 3.3 Appendix C
	 a detailed assessment of the potential impacts on any threatened species, populations, endangered ecological communities or their habitats, groundwater dependent ecosystems and any potential for offset requirements 	NAMERICA D	Appendix F
	 a detailed description of the measures to avoid, minimise, mitigate and offset biodiversity impacts. 		
/isual	an impact assessment at private receptors and public vantage points.	Chapter 14	As per original EIS

Statement of Facts and Contentions	Response	Supplementary Environmental Impact Statement reference
The Proposal 1. Development Application No. DA294/18 seeks to utilise the former Bell Quarry at Sandham Road, Dargan (Lot 23 DP 751631) to accommodate the importation of 1.2 million cubic metres (approximately 2.2 million tonnes) of fill over a 15 year and 9 month period and to rehabilitate the site to a final landform that reflects the original topography prior to quarrying. There are some minor encroachments of the proposed development onto adjoining lands to the west (Crown Land) and to the east (National Park).	As amended, the Development Application seeks consent to achieve the final rehabilitated landform via importation of approximately 1 million m³ of emplacement material sourced from Sydney and the local regional area which meets: • the definition of virgin excavated natural material (VENIM) as defined by the <i>Protection of the Environment Act, 1997</i> (POEO Act) from time to time the criteria of excavated natural material (ENIM) as set out in the Excavated Natural Material Order and Exemption 2014 issued by the Environmental Protection Authority under clause 93 of the Protection of the Environmental Operations (Waste) Regulation 2014; or • an exemption granted by the Environment Protection Authority (EPA) pursuant to clauses 91 and 92 of the Protection of the Environmental Operations (Waste) Regulation 2014) and which specifically relates to the site (Comparable Material) to achieve the final landform that reflects as close as practical the original topography prior to quarrying.	
 The proposed development is defined as a waste or resource management facility. 	In response to paragraph 2 of the SOFAC the applicant says that the proposed development can be characterised as a waste or resource management facility however the purpose of the proposed development is to rehabilitate the former quarry to a landform as close as possible to that which existed prior to quarrying operations.	Section 1.2
3. The proposed fill is to be comprised of both Virgin Excavated Natural Material (ENM).	In response to paragraph 3, the applicant says that the development application originally sought consent to import Virgin Excavated Natural Material (VENM) and Excavated Natural Material (VENM) as well as other 'clean fill', this terminology was undefined. (3a) In response to concerns raised by the Council and the Environment Protection Authority (EPA) during the assessment phase of the development application as to what 'clean fill' comprised, the applicant now proposes amendments to clarify that the proposed fill will be limited to material sourced across Sydney and the local regional area which meets: — the definition of virgin excavated natural material (VENM) as defined by the POEO Act from time to time; — the criteria of excavated natural material (ENM) as set out in the Excavated Natural Material Order and Exemption 2014 issued by the Environmental Protection Authority under clause 93 of the	Section 2.2.1

S	Statement of Facts and Contentions	Response I	Supplementary Environmental Impact Statement reference
		Protection of the Environmental Operations (Waste) Regulation 2014; or	
		 an exemption granted by the Environment Protection Authority pursuant to clauses 91 and 92 of the Protection of the Environmental Operations (Waste) Regulation 2014) and which specifically relates to the Land. 	
4	Fill brought to the site will be from various, currently unknown sources in Sydney and the Central West region of NSW. The haulage route will vary depending on the source of the fill.	Agreed.	
ιςi	. The development involves the haulage of up to 140,000 tonnes of material per annum. It is estimated that the development will generate an average of 37 heavy vehicle trips (74 heavy vehicle movements) per day.	Agreed.	
9	. The development also involves the dewatering of the existing quarry voids and discharge of that water off site.	Agreed.	
7.	. The development is to be undertaken in 6 stages.	The Supplementary EIS is to be completed in 4 key stages.	Section 2.2.2
ω		The integrated development provisions of the <i>Environmental Planning and Assessment 1979</i> (EPA Act) are facilitative, they do not mandate that an application must be assessed as integrated. The applicant did not elect the development to be dealt with as integrated, otherwise than in relation to the <i>Water Management Act 2000</i> . 8(a) As part of the proposed amendments to the development application the applicant will seek to integrate s138 of the <i>Roads Act 1993</i> in relation to the part of Sandham Road that traverses the site. 8(b) The applicant rejects the assertion that the development requires an Environment Protection Licence under the <i>Protection of the Environment Operations Act 1997</i> (PDEO Act) as the fill proposed to be imported is exempt from licensing for application of waste to land: a. under clause 39 of Schedule 1 to the POEO Act in respect of VENM: b. pursuant to <i>The Excavated Natural Material Exemption 2014</i> in respect of ENM; and c. pursuant to Part 9 of the <i>Protection of the Environment Operations (Waste) Regulation 2014</i> with respect to future fill material that may be imported.	
တ်	The development is Designated Development as the amount of fill exceeds the limits identified under clause 32, Schedule 3 of the Environmental Planning and Assessment Regulation 2000.	The development is Designated Development under Clause 32, Schedule 3 of the Environmental Planning and Assessment Regulation 2000 under Clause 32(d) as the site is located within 100 metres of the Blue Mountains National Park which is considered a sensitive	

Statement of Facts and Contentions	Response Supplementary Environmental Impact Stateme	Supplementary Environmental Impact Statement reference
	environmental area. The development comprises more than 100,000 tonnes of "clean fill" but is not likely to cause a significant impact on flooding or drainage.	
The Site Street Address: Sandham Road, Dargan Property Description: Lot 23 DP 751631		
10. The subject site consists of one lot with an approximate area of 14.29 hectares.	Agreed.	
11. That part of the site the subject of the proposed development is located to the east of the Main Western Railway Line and Bells Line of Road. This part of the site contains a number of quarry voids that are currently filled with water.	Agreed.	
12. Access to the site is via Sandham Road from its intersection with Bell's Line of Road. Part of the access road traverses Crown Land.	Agreed.	
The Locality		
13. To the east of the subject site is the Blue Mountains National Park. To the west is Crown Land and the Main Western Railway Line. To the south is land owned by Lithgow City Council. To the north is land associated with the Clarence Colliery.	The applicant agrees with paragraph 13 of the SOFAC except also says that part of Sandham Road also adjoins and traverses the site to the West and the site of the approved Newnes Kaolin project is located to the north	
14. Much of the surrounding land comprises areas of native vegetation.	In response to paragraph 14 of the SOFAC the applicant says the surveys provided in the Biodiversity Assessment as supplemented by Appendix F additional information speak for themselves.	a.3.3 and dix F
Statutory Controls Environmental Planning and Assessment Act 1979		
15. The Western Joint Regional Planning Panel is the consent authority (Section 4.5)	Agreed.	
16. The development is designated development (Section 4.10)	Agreed.	
17. The development requires an environmental impact statement (Section 4.12)	Agreed.	
18. The development is to be assessed in accordance with the relevant matters for consideration (Section 4.15)	Agreed.	
19. The development is integrated development (Section 4.46)	In response to paragraph 19 the applicant reiterates that whether or not the development should be assessed as integrated development relies solely on whether the applicant has made the relevant election.	

Statement of Facts and Contentions	Response Supplementary Environmental Impact Stateme reference	Supplementary Environmental Impact Statement reference
	19(a) The applicant agrees with paragraph 19 of the SOFAC to the extent that an approval pursuant to section 138 of the <i>Roads Act 1993</i> is required to be obtained from Council.	
	19(b) The proposed development does not need to be licensed under Section 3.1.1 the POEO Act.	3.1.1
	19(c) The applicant will amend the development application to integrate s138 of the <i>Roads Act 1993</i> for the part of unmade Sandham Road which traverses the site and offsite works.	
20. The development is to be exhibited and notified (Schedule 1)	Agreed.	
Environmental Planning & Assessment Regulation 2000		
21. The proposal requires an environmental impact statement (Schedule 2)	Agreed.	
22. The proposal is designated development (Section 4 and Clause 32 of Schedule 3)	Agreed.	
Protection of the Environment Operations Act 1997		
23. An environmental protection licence is required for the regulation of water pollution from any non-scheduled activity (Section 43 (d))	The applicant does not agree with paragraph 23 of the SOFAC and repeats paragraph 3 of this document.	3.1.3
Water Management Act 2000		
24. A controlled activity approval is required for any works within 40m of a watercourse (Section 91 (2))	Agreed.	
25. An aquifer interference approval is required for any aquifer interference activity (Section 91 (3))	Agreed.	
Crown Land Management Act 2016		
26. A licence is required to use Crown Land (Section 5.21)	The Applicant agrees with paragraph 26 of the SOFAC. The Applicant notes that the Office of Environment and Heritage including National Parks and Wildlife Services expressed support of the rehabilitation of the areas of the park that have been impacted by the quarry's operations and the restoration of a stable landform in a letter from Ms Samantha Wynn of the Office of Environment and Heritage dated 5 February 2020 and indicated a license will be granted.	
Threatened Species Conservation Act 1997 / Biodiversity Conservation Act 2006	1,2006	
27. The Biodiversity Conservation (Savings and Transitional) Regulation 2017 is relevant as it excludes (under Part 7) the development application from the provisions under the Biodiversity Conservation Act 2016 which came into effect on 25 August 2017. Accordingly, the former sections 5A-5D of	Agreed.	

Contentions in EIS
Response to
12541317
tation Project
GHD Bell Quarry Re

Statement of Facts and Contentions	Response E	Supplementary Environmental Impact Statement reference
the Environmental Planning and Assessment Act 1979 continue to apply to the development application, including the factors and assessment guidelines referred to in the former section 5A of that Act (which must be taken into account in deciding whether there is likely to be a significant effect on threatened species, populations or ecological communities).		
28. A biodiversity conservation licence is required to damage habitat of threatened species (Section 2.11 of BC Act).	The applicant agrees with paragraph 28 of the SOFAC as a legal proposition. However, pursuant to clause 2.8 of the BCA Act a biodiversity conservation licence is not required where carrying out of development is in accordance with a development consent within the meaning of the EPA Act. Therefore, if development consent is granted to the DA, a biodiversity conservation licence will not be required. The Applicant disputes habitat of threatened species will be damaged.	
Lithgow Local Environmental Plan 2014 ("LLEP 2014")		
29. The site is situated within Zone E3 Environmental Management.	The applicant agrees with paragraph 29 of the SOFAC.	
30. An extract of the Land Zoning map referred to in Clause 2.2 of the LLEP 2014 with the subject site included is provided in Figure 2 below: An extract of the Land Zoning map referred to in Clause 2.2 of the LLEP 2014 with the subject site included is provided in Figure 2 below:	The applicant agrees that the extract of the zoning map in paragraph 30 is correct.	

Supplementary Environmental Impact Statement reference					Section 3.3 and Appendix F
Response		In response to paragraph 31 of the SOFAC the applicant repeats paragraph 2 of this document. The applicant agrees that waste management facilities are prohibited in the E3 Environmental Management Zone under LLEP 2014 but are permissible with consent under State Environmental Planning Policy (Infrastructure) 2007 (ISEPP).	The applicant agrees with paragraph 32 of the SOFAC. It is noted that the site does not appear to be mapped a an environmentally sensitive area for Terrestrial Biodiversity, however comprehensive biodiversity assessments have been completed to satisfy this clause.		The applicant rejects paragraph 33 of the SOFAC. SEPP 44 defines potential habitat as "areas of native vegetation where the trees of the
Statement of Facts and Contentions	Figure 2: Extract of Land Zoning Map (Source: eplanning spatial viewer).	31. The development is defined as a waste or resource management facility. This use is prohibited in the E3 Environmental Management Zone under LLEP 2014. However, the use is permitted with consent under State Environmental Planning Policy (Infrastructure) 2007.	32. The following clauses of LLEP 2014 are relevant to the determination of the development application: a. Clause 7.1 Earthworks b. Clause 7.4 Terrestrial Biodiversity c. Clause 7.7 Sensitive Lands d. Clause 7.10 Essential Services	State Environmental Planning Policy 44 - Koala Habitat Protection	33. The subject land is potential koala habitat (clause 7)

Supplementary Environmental Impact Statement reference	by the by the red by ion ritain									he	
Response	types listed in Schedule 2 constitute at least 15% of the total number of trees in the upper or lower strata of the tree component". None of the eucalypts listed in Schedule 2 have been recorded within the Site by the authors of Appendix D to the EIS - Biodiversity Assessment prepared by GHD nor by the authors of the Supplementary Ecological Information prepared by Cumberland Ecology. Therefore, the Site does not contain potential koala habitat and SEPP 44 does not apply.	Agreed.		Agreed.	Agreed.	_	Agreed.		Agreed.	The applicant neither agrees nor disagrees with paragraph 39 of the SOFAC.	Agreed.
Statement of Facts and Contentions		34. The subject land is not core koala habitat (clause 8)	State Environmental Planning Policy (Infrastructure) 2007	35. Development for the purpose of the disposal of virgin excavated natural material (within the meaning of Schedule 1 to the Protection of the Environment Operations Act 1997) or clean fill, may be carried out by any person with consent on land on which development for the purpose of extractive industries may be carried out with consent under any environmental planning instrument. Clause 7(3) of State Environmental Planning Policy (Mining, Petroleum Production and Extractive Industries) 2007 provides for extractive industries to be carried out with development consent on land where agriculture is permitted with or without consent. Extensive agriculture is permitted without consent in the E3 Environmental Management zone under LLEP 2014. Therefore, a waste or resource management facility is permitted with consent.	36. The development is traffic generating development (Clause 104 and Schedule 3)	State Environmental Planning Policy (State and Regional Development) 2011	37. The development is regional development (Clause 7 and Schedule 7)	Actions of the Respondent	38. On 27 November 2018, Development Application No. DA294/18 was lodged with the Respondent.	39. The Western Joint Regional Planning Panel were advised on 29 November 2019 of the application being lodged as the Panel would be the determining authority	40. The application did not include owner's consent in relation to the encroachments onto Crown Land and the Blue Mountains National Park. On 4 December 2019, Council wrote to the applicant requesting additional information, including owner's consent.

Statement of Facts and Contentions	Response	Supplementary Environmental Impact Statement reference
 41. The application was referred on 9 January 2019 to: a. NSW Rural Fire Service b. Water NSW c. Natural Resources Access Regulator d. Roads and Maritime Services (now Transport for New South Wales (TfNSW)) e. Sydney Trains f. NSW Department of Planning (now Department of Planning, Infrastructure and Environment) g. Office of Environment and Heritage h. National Parks and Wildlife Service i. Endeavour Energy j. Environment Protection Authority k. Department of Primary Industries – Agriculture m. Department of Primary Industries – Lands o. Blue Mountains City Council p. Hawkesbury City Council q. NSW Local Land Services r. Bathurst Local Aboriginal Land Council s. Mingaan Aboriginal Corporation. 	The applicant agrees that the application was referred to the agencies listed in paragraph 41 of the SOFAC however does not agree that all of the referrals were necessarily required.	
42. The application was notified to surrounding land owners on 16 January 2019. The closing date for submissions was 18 February 2019.	The applicant neither agrees or disagrees with paragraph 42 of the SOFAC.	
43. Council extended the exhibition period until 20 March 2019 and informed all agencies and notified surrounding land owners accordingly.	The applicant neither agrees or disagrees with paragraph 43 of the SOFAC	
44. Owner's consent from the Department of Industry – Crown Lands and Water was received by Council on 18 March 2019 (Note that owner's consent was valid for a period of 12 months if not acted upon and if not extended. It is not known if owner's consent has been extended and therefore it may have expired).	In response to paragraph 44 the applicant agrees that owner's consent from the Department of Industry - Crown Lands and Water was provided on 18 March 2019. The applicant does not agree that it is valid only for a period of 12 months.	
45. On 20 March 2019, Council received a letter from the NSW Environment Protection Authority (EPA) advising that they do not support the project and recommend that the development application be refused. Issues raised by the EPA included the following:	The EPA's objections have been considered and answered by the additional material in the Supplementary EIS	

Statement of Facts and Contentions	Response	Supplementary Environmental Impact Statement reference
 a. Lack of clarification in the application as to the nature of the "clean fill" b. Environmental impacts of development have not been fully identified. c. The development poses an unacceptable water pollution risk to the Greater Blue Mountains World Heritage Area, including the Wollangambe River / Colo River. 		
 d. The application does not identify any water treatment of the existing water in the quarry voids, or of the leachates associated with filling the quarry voids with waste. 		
 The development presents a risk to two groundwater dependent ecosystems that are listed as endangered ecological communities downstream of the site and the application has not adequately assessed this risk. 		
46. During the notification period, Council received 470 submissions (excluding duplicates) to the development application. Issues raised in submissions included the following:	The applicant neither disagrees or agrees with paragraph 46 of the SOFAC.	
a. Adverse impact of the Greater Blue Mountains World Heritage Area;		
 b. Impacts of the importation of the fill on groundwater; c. Impacts of dewatering on Blue Mountains National Park; 		
 d. Potential contamination of Wollangambe and Colo Rivers, including domestic water supply from Colo River; 		
 Spraying of water to mitigate dust and washdown of trucks will flow into Wollangambe River, part of the Hawkesbury-Nepean catchment; 		
 Loss of water source in quarry will increase bushfire risk for local communities and restrict RFS aircraft capabilities to fight local fires; 		
 g. Traffic impacts on Bells Line of Road and Great Western Highway, in particular in Mount Victoria from additional heavy truck movements; 		
 Existing condition and width of Sandham Road unable to safely accommodate heavy truck movements, particularly in respect to the school bus, pedestrians, cyclists and local resident vehicle movements and needs to be uncreded if the proposal is approved: 		
i. Intersection of Sandham Road and Bells Line of Road has poor sight lines and needs to be improved;		
 j. Potential for queuing of trucks in Sandham Road and Bells Line of Road prior to 7.00am opening of facility; 		
 k. Amenity impacts on Sandham Road residences with dust, noise and public safety; and 		
 Proposed development is not a continuation of the earlier development consent (108/94) as it has been abandoned upon satisfaction of 		

Statement of Facts and Contentions	Response Envir Envir Impa	Supplementary Environmental Impact Statement reference
condition 12 of that consent relating to the rehabilitation of the site and retained ponds as a water source for bush fire purposes.		
47. Council wrote to the applicant on 16 April 2019 outlining the concerns raised regarding the proposed development by the NSW EPA and the issues raised in submissions and requesting a response to these issues.	Agreed.	
48. The applicant prepared a Submissions Report and provided this to Council on 13 June 2019.	Agreed.	
49. The Submissions Report was forwarded by Council to the NSW EPA, Blue Mountains City Council and Hawkesbury Council on 3 July 2019.	The applicant neither disagrees or agrees with paragraph 49 of the SOFAC.	
 50. The NSW EPA wrote to Council on 2 September 2019 maintaining their concerns regarding the proposed development. The EPA advised that: a. The Submissions Report does not provide the required high level of confidence that discharges related to the Project will not adversely impact the Wollangambe River and the Greater Blue Mountains World Heritage Area as minimal additional scientific information has been provided to establish the local water quality and local water quality criteria. 	The EPA's objections have been considered and answered by the Sectional material in the Supplementary EIS. Appe	Section 3.2 and Appendix D
b. Given the ecological sensitivity of the receiving environment, the EPA strongly recommends that local water quality and local water quality objectives are established consistent with the current ANZECC guidelines [2018] and contemporary guidance notes such as Deriving site-specific guideline values for physico-chemical parameters and toxicants (IESC, 2019).		
c. On 6 September 2019, Council wrote to the applicant requesting additional information.	Agreed.	
 d. On 3 October 2019, a meeting was held between the applicant, the respondent and the NSW EPA regarding the proposed development. 	Agreed.	
e. On 11 October 2019, the applicant responded to the request for additional information.	Agreed.	
 Owner's consent from the National Parks and Wildlife Service was received by Council on 14 October 2019. 	Agreed.	
51. The NSW EPA again wrote to Council on 15 October 2019 maintaining their objection to the development application. The EPA noted the following: a. The inherent difficulty in managing waste over the fifteen-year life of the project to ensure no contaminated waste is taken to the site	In response to paragraph 51 of the SOFAC, the applicant agrees that that a letter was provided by the EPA dated 15 October 2019.	

Supplementary Environmental Impact Statement reference			
Response		The EPA's objections have been considered and answered by the additional material in the Supplementary EIS	In response to paragraph 53 of the SOFAC the applicant says that the letter dated 1 November 2019 did not provide additional information but rather responded to comments made by the EPA in its letter date 15 October 2019. The letter speaks for itself.
Statement of Facts and Contentions	 b. Potential risks to surface and groundwater within the World Heritage Area downstream of the site c. Potential risk of erosion from discharges impacting on the receiving drainage line and an endangered ecological community located within the World Heritage Area d. No commitment to establishing a liner to reduce potential impacts to groundwater within the World Heritage Area e. Improvement to the aesthetic appeal of the site will only be achieved following the life of the project and an undefine regeneration period; and f. The environmental assessment does not demonstrate there will be an improved environmental outcome in the long term, when compared to the current stabilised site. 	 a. When assessing any proposal which involves the use of waste in accordance with the NSW resource recovery framework, the consent authority, like the EPA, must be satisfied it is a genuine re-use opportunity rather than simply a method of opportunistic waste disposal and does not cause harm to the environment or human health. b. Recently, the UNESCO World Heritage Committee (Forty-third session, 30 June to 10- July 2019) articulated concerns about mining projects and activities in the vicinity of the World Heritage Area which might cumulatively result in significant impact on the outstanding universal value of the World Heritage Area. The Committee specifically noted the World Heritage Area's increased vulnerability to edge effects as it does not have a formal buffer zone, and the need to assess the potential cumulative impacts of existing and planned mining projects in its vicinity. c. Having regard to the legitimacy of the Project under the NSW waste framework, the principles of ecologically sustainable development including the precautionary principle, and the sensitivity of the World Heritage Area including its vulnerability to edge effects, the EPA does not support the project and maintains its recommendation that the project be refused. 	53. On 1 November 2019, the applicant provided additional information to Council. In the letter, the applicant offered to demonstrate further via additional studies that the predictions detailed in the EIS are achievable and that the Project would not result in an unacceptable impact on water quality and aquatic ecology of the receiving environment. It was proposed

Statement of Facts and Contentions	Response E	Supplementary Environmental Impact Statement reference
that these additional studies be undertaken as part of a deferred commencement consent under Section 4.16 (3) of the EP&A Act.		
54. On 1 November 2019, Council forwarded the applicant's response to the EPA for further comment.	The applicant neither agrees or disagrees with paragraph 54 of the SOFAC.	
55. On 14 November 2019, the applicant provided additional information to Council in response to issues raised by Transport for NSW.	Agreed.	
56. Copies of submissions received to the development application were provided to the Department of Planning, Industry and Environment (DPIE) on 14 November 2019.	The applicant neither agrees or disagrees with paragraph 56 of the SOFAC.	
57. DPIE advised Council in writing on 20 November 2019 to ensure that the concerns raised in submissions are adequately addressed before determining the development application.	The applicant neither agrees or disagrees with paragraph 57 of the SOFAC.	
58. On 13 December 2019, Council again requested any further comments from the EPA in response to the applicant's letter dated 1 November 2019.	The applicant neither agrees or disagrees with paragraph 58 of the SOFAC.	
59. The EPA wrote again to Council on 13 January 2020 maintaining its objection to the development and its recommendation that the application be refused.	Agreed.	
 60. The development application was considered and determined by the Western Joint Regional Planning Panel on 6 April 2020. The determination was by way of refusal of the application for the following reasons: 1. The Environment Protection Authority has concluded that the SEARS (1105) requirements have not been satisfied and that the proposal will have unacceptable environmental impacts on the adjoining Blue Mountains National Park and the Wollangambe and Colo River systems. 2. The Environment Protection Authority considers, based on its submissions to Council, that the proposal will have unacceptable environmental impacts on the Greater Blue Mountains World Heritage Area and the Colo River, Greater Blue Mountains World Heritage Area and the Colo River, Greater Blue Mountains World Heritage Area and the Colo River, Greater Blue Mountains World Heritage Area and the Colo River, Greater Blue Mountains World Heritage Area (GBMWHA). ii. proposed discharges into a tributary of the Wollangambe River were identified that would impact on a swamp located on the tributary approximately 200m downstream of where the discharge is proposed. The tributary (and its connected swamp) is proposed to receive pumped out wafer from the quarry pits, any leachate from the material that is emplaced 	Agreed.	

		reference
in the pits and overland flow once the area is rehabilitated. The tributary and swamp are in the GBMWHA. iii. The Biodiversity Impact Assessment identified the Prickly Tea-tree – sedge wet heath swamp below the quarry discharge location as a Newnes Plateau Shrub Swamp (EEC under the TSC Act) and Temperate Highland Peat Swamps on Sandstone (EEC under the EPBC Act).		
iv. The existence of the swamp in the headwaters of the drainage line downstream of Bell Quarry strongly suggests that there is a groundwater source which helps support/maintain the swamp in this location.		
v. The Water Resources Assessment Section of the EIS has not clearly defined the downstream swamp as a Groundwater Dependent Ecosystem (GDE); it has not assessed the level of groundwater dependence for the swamp and the likely pathways (e.g. disruption of groundwater connections, reduction in groundwater quality) by which the project might impact on the swamp; and it does not consider issues surrounding water discharge rates or their effect on geomorphic stability for the swamp. It has therefore not appropriately assessed the risk the project will have on the THPS swamp.		
vi. The dewatering of the quarry voids is likely to present a significant potential to destabilise sediments in the downstream swamp. If an erosional nick-point is established in the swamp, it could lead to the loss of the swamp in its entirety through erosion and gullying.		
3. The proposed development will not be consistent with the objectives of the E3 Environmental Management zone under the Lithgow LEP 2014 due to the adverse environmental impacts to the GBMWHA arising from the dewatering of the former quarry voids and importation of fill to the site as detailed by the EPA in its submissions, contrary to s4.15(1)(a)(i) of the Environmental Planning and Assessment Act 1979.		
4. The proposed development fails to satisfy the requirements of Clause 7.1 Earthworks (1) of the Lithgow LEP 2014 in that the proposal will have a detrimental impact on environmental functions and processes, contrary to s4.15(1)(a)(i) of the Environmental Planning and Assessment Act 1979.		
5. The proposed development fails to satisfy the provisions under Clause 7.1 Earthworks (3) (a), (c), (d), (e) and (g) of the Lithgow LEP 2014 given the adverse environmental impacts on the GBMWHA and the Wollangambe and Colo Rivers arising from the dewatering of the site and the importation of fill to the site, contrary to s4.15(1)(a)(i) of the Environmental Planning and Assessment Act 1979.		
6. The proposed development fails to satisfy the requirements of Clause 7.4 Terrestrial Biodiversity of the Lithgow LEP 2014 given the comprehensive assessment of likely environmental impacts of the		

Statement of Facts and Contentions	Response	Supplementary Environmental Impact Statement
proposed development detailed by the EPA in its submissions, contrary to 4.15(1)(a)(i) of the Environmental Planning and Assessment Act 1979. 7. The proposed development fails to satisfy the requirements under Clause 7.7 Sensitive Lands of the Lithgow LEP 2014 given the comprehensive assessment of likely environmental impacts of the proposed development detailed by the EPA in its submissions, contrary to \$4.15(1)(a)(i) of the Environmental Planning and Assessment Act 1979.		
8. The proposed development will have unacceptable environmental and amenity impacts arising from the activity associated with the importation of fill to the former quarry site contrary to s4.15(1)(b) of the Environmental Planning and Assessment Act 1979. 9. The scope of the likely adverse environmental impacts on the GBMWHA		
and Wollangambe and Colo Rivers arising from the proposed development indicates that the site is not suitable for the proposed use, contrary to s4.15(1)(c) of the Environmental Planning and Assessment Act 1979. 10. The site is acknowledged as stable and its condition is manageable in its current form. As a result, the public interest justification of the proposal as a necessary rehabilitation project is not compelling.		
11. The notification of the Designated Development application attracted submissions from relevant Government agencies, local government, special interest groups and individuals. A total of 470 submissions of objection, excluding duplicates, were received by Council including 321 individual submissions and 149 form letters, expressing concerns in relation to:		
 Adverse environmental impacts on Greater Blue Mountains World Heritage Area. 		
 Impacts of the Importation of the IIII on groundwater. Impacts of dewatering on Blue Mountains National Park. 		
 Potential contamination of Wollangambe and Colo Rivers, including domestic water supply from Colo River. 		
 Spraying of water to mitigate dust and washdown of trucks will flow into Wollangambe River, part of the Hawkesbury-Nepean Catchment; 		
 Loss of water source in quarry will increase bushfire risk for local communities and restrict RFS aircraft capabilities to fight local fires; 		
 Traffic impacts on Bells Line of Road and Great Western Highway, in particular in Mt Victoria from additional heavy truck movements; 		
 Existing condition and width of Sandham Road unable to safely accommodate heavy truck movements, particularly in respect to the school 		

Statement of Facts and Contentions	Response Supple Enviro Enviro Impac Impac referen	Supplementary Environmental Impact Statement reference
 bus, pedestrians, cyclists and local resident vehicle movements and needs to be upgraded if the proposal is approved; Intersection of Sandham Road and Bells Line of Road has poor sight lines and needs to be improved; Potential for queuing of trucks in Sandham Road and Bells Line of Road prior to 7.00am opening of facility; and Amenity impacts on Sandham Road residences with dust, noise and public safety. In the circumstances it is considered that approval of the designated development application would not be in the public interest under s4.15(1)(e) of the Environmental Planning and Assessment Act 1979. 		
61. On 1 April 2021, the Applicant commenced proceedings in Class 1 of the Land and Environment Court's jurisdiction appealing against the Respondent's refusal of the development application. Council notified the Panel of the appeal on 16 April 2021, and was directed by the Panel on 13 May 2021 to:	The applicant agrees with paragraph 61 of the SOFAC insofar as the Class 1 Appeal was filed on 1 April 2021. The Applicant has no knowledge of when the Panel was notified or its direction in relation to the proceedings.	
 provide the Panel with the Council's SOFAC at least 7 days before it is to be filed with the Court. The Council is directed to identify in the draft SOFAC the steps taken by Council to notify the Panel of the appeal and any response from the Panel; 		
2. provide updates as to any directions, orders or judgments issued by the Court in the appeal proceedings within 7 days of the date of those directions, orders or judgments;		
 advise of any change in position from the SOFAC after it is filed and provide any draft Amended SOFAC to the Panel at least 7 days before filing if Council intends to file one; 		
 4. provide a copy of any proposed in principle agreement between the parties following a conciliation conference within 3 days of the proposed agreement being reached and before any written agreement is executed. 		
Part B - Contentions		
The Respondent contends that the Application should be refused on the following basis:-		
Unacceptable Environmental Impacts		
Contention 1: The Environment Protection Authority has concluded that the SEARs have not been satisfied and that the proposal will have unacceptable environmental impacts on the adjoining Blue Mountains National Park and the Wollangambe	The SEARS have been satisfied. The proposed development will not have unacceptable environmental impacts on the adjoining Blue Mountains National Park and the Wollangambe and Colo River Systems.	

Statement of Facts and Contentions	Response	Supplementary Environmental Impact Statement
and Colo River systems. In the circumstances of the case, the Court should refuse the application because of this.		
Particulars i. That the SEARs have not been satisfied	The SEARS have been satisfied. Further and better particulars should be provided to specify the ways in which it is alleged that the SEARS have not been complied with.	
ii. That the proposal will have unacceptable environmental impacts on the adjoining Blue Mountains National Park, the Greater Blue Mountains World Heritage Area and the Wollangambe and Colo Rivers systems through the dewatering process and the importation of fill over the life of the project and beyond; and	The proposed development will not have unacceptable environmental impacts on the adjoining Blue Mountains National Park, the Greater Blue Mountains World Heritage Area and the Wollangambe and Colo River systems through the dewatering process nor the importation of fill over the life of the project and beyond. The applicant has established by the additional surface and groundwater monitoring and analysis contained in the Revised Water Resources Assessment prepared by GHD and dated 18 November 2021, the Hydrology Report prepared by Martens & Associates and dated 19 November 2021 and the Supplementary Ecological Report prepared by Cumberland Ecology and dated 18 November 2021, that the proposed final landform will have a beneficial impact on surrounding land.	Section 3.2 and 3.3 Appendix D, E and F
iii. That the EPA will not provide an Environment Protection Licence for the discharging of water under section 43(d) of the Protection of the Environment Operations Act 1997 nor its General Terms of Approval required for the development under Division 4.8 of the EP&A Act.	An EPL is not required under s48 of the POEO Act as the fill proposed to be imported is exempt from licensing for application of waste to land: a. under clause 39 of Schedule 1 to the POEO Act in respect of VENM: b. pursuant to The Excavated Natural Material Exemption 2014 in respect of ENM; and c. pursuant to Part 9 of the Protection of the Environment Operations (Waste) Regulation 2014 with respect to future fill material that may be imported (iv) An EPL is not required under s43(d) of the POEO Act as the dewatering process, site operations and post closure will not change the water chemistry in the downstream waters including the swamp, creeks and rivers. d. For the reasons set out above, general terms of approval are not required from the Environment Protection Authority and in any event, the Court is not bound to refuse an application for development consent because an approval body has decided not to grant its approval.	Section 3.1.3
Contention 2: The Environment Protection Authority considers, based on its submissions to Council, that the proposal will have unacceptable environmental impacts on	The proposal will not have unacceptable impacts on the Greater Blue Mountains World Heritage Area.	

Statement of Facts and Contentions	Response	Supplementary Environmental Impact Statement reference
the Greater Blue Mountains World Heritage Area. In the circumstances of the case, the Court should refuse the application because of this.		
Particulars i. It is likely that some of the soil leachates will adversely alter the natural characteristics and ionic balance of water draining into the Greater Blue Mountains World Heritage Area and the Colo River, Greater Blue Mountains World Heritage Area (GBMWHA).	The application is amended to incorporate a number of elements to prevent leachate entering groundwater or stormwater off-site. The entire emplacement area will be lined with an engineered barrier to separate leachate from groundwater. Any stormwater which contacts the exposed emplaced material be able to be contained and managed on site and should there be excess water it would be treated to prevent adverse impacts on any water eventually draining into the GMBWH or the Colo River. A construction, operations and post closure plan will detail the proposed controls and how they would be implemented in practice. In addition, modification to surface flows within the drainage line exiting the site will be minor and temporary. Following completion of enhabilitation there will be no adverse impacts on receiving environments caused by stormwater runoff. Part of the alleged impacts are premised on an assumption of a hydraulic connectivity between the groundwater in the voids and the Newnes Plateau Shrub swamp located downstream of the site. Further data collection and monitoring data confirms that the swamp and groundwater from the quarry (before, during and after operations cease) are disconnected. Potential impacts on erosion of the downstream swamp from dewatering of the voids or from stormwater runoff from upgradient and clean areas will be minimised by erosion and sediment controls implemented as part of an operations management plan and protocols.	Section 3.2
ii. Proposed discharges into a tributary of the Wollangambe River were identified that would impact on a swamp located on the tributary approximately 200m downstream of where the discharge is proposed. The tributary (and its connected swamp) is proposed to receive pumped out water from the quarry pits, any leachate from the material that is emplaced in the pits and overland flow once the area is rehabilitated. The tributary and swamp are in the GBMWHA.	Any stormwater which contacts the exposed emplaced material be able to be contained and managed on site and should there be excess water it would be treated to prevent adverse impacts on any water eventually draining into the GMBWH or the Colo River. A construction, operations and post closure plan (updated EMP) will detail the proposed controls and how they would be implemented in practice. In addition, dewatering rates will be within the existing range of flow conditions. Following completion of rehabilitation, flows will be returned to as close as practical to pre-quarrying conditions. There will be no adverse impacts on the receiving environment caused by the quarry void dewatering activity. A Soil and Water Management Plan will be developed prior to the commencement of any soil disturbance or water management works. This would be developed in accordance with the WaterNSW current recommended practices (CRPs) Managing Urban Stormwater: Soils and Construction Volume 1, Landcom 2004 and Volume 2, DECC 2008. The	Section 2.2, 3.2 and 3.3

Statement of Facts and Contentions	Response	Supplementary Environmental Impact Statement
	key basis of this plan (and therefore the feasibility of appropriately implementing it) has been confirmed through development of the site staging plans and Revised Water Resources Assessment (GHD 2021). Part of the alleged impacts are premised on an assumption of a hydraulic connectivity between the groundwater in the voids and the Newnes Plateau Shrub swamp located downstream of the site. Further data collection and monitoring data confirms that the swamp and groundwater from the quarry (before, during and after operations cease) are disconnected.	
iii. The Biodiversity Impact Assessment identified the Prickly Tea-tree – sedge wet heath swamp below the quarry discharge location as a Newnes Plateau Shrub Swamp (EEC under the TSC Act) and Temperate Highland Peat Swamps on Sandstone (EEC under the EPBC Act).		Section 3.3
iv. The existence of the swamp in the headwaters of the drainage line downstream of Bell Quarry strongly suggests that there is a groundwater source which helps support/maintain the swamp in this location.	Further data collection and monitoring data confirms that the swamp and groundwater from the quarry (before, during and after operations cease) are disconnected.	
v. The Water Resources Assessment Section of the EIS has not clearly defined the downstream swamp as a Groundwater Dependent Ecosystem (GDE); it has not assessed the level of groundwater dependence for the swamp and the likely pathways (e.g. disruption of groundwater connections, reduction in groundwater quality by which the project might impact on the swamp; and it does not consider issues surrounding water discharge rates or their effect on geomorphic stability for the swamp. It has therefore not appropriately assessed the risk the project will have on the THPS swamp.	The Water Resources Assessment in the EIS clearly identified the downstream swamp as a GDE and conservatively assessed the potential for a hydraulic connection. Further studies have confirmed there is no direct connection between the groundwater in the quarry voids and the swamp.	Section 3.3
vi. The dewatering of the quarry voids is likely to present a significant potential to destabilise sediments in the downstream swamp. If an erosional nick-point is established in the swamp, it could lead to the loss of the swamp in its entirety through erosion and gullying.	In addition, dewatering rates will be within the existing range of flow conditions. Following completion of rehabilitation, flows will be returned to as close as practical to pre-quarrying conditions. There will be no adverse impacts on the receiving environment caused by the quarry void dewatering activity.	Sections 2.2, 3.2 and 3.3
Contention 3: The scope of the likely adverse environmental impacts on the GHBMWHA and Wollangambe and Colo Rivers arising from the proposed development indicates that the site is not suitable for the proposed use, contrary to s.4.15(1)(c) of the EP&A Act.	 a. The particulars of all other contentions are repeated here. b. The proposed development will not have any adverse environmental impacts on the GHBMWHA, Wollangambe or Colo Rivers. c. The site is suitable for the proposed development and will result in a final landform which better mimics the original landform and rectifies historical and current quarry impacts on surface and groundwater hydrology arising out of historical mining activities. The north eastern quarry void will be retained in the long term 	Section 3.3

Statement of Facts and Contentions	Response Supp Envir Impar	Supplementary Environmental Impact Statement reference
	and would be available to provide a long term source of clean water.	
Contention 4: The site is acknowledged as stable and its condition is manageable in its current form. As a result, the public interest justification of the proposal as a necessary rehabilitation project is not compelling.	There is a public interest in restoring the site to a condition similar to its natural state and contributing to the sustainable disposal needs of Sydney over the next 15 years. The project will return the surface water and groundwater flows to be more representative of pre-quarry conditions and provide additional resilience to climate change and drought for the downstream swamp.	Section 3.4
Lithgow Local Environmental Plan 2014 Objectives of E3 Environmental Management Zone	anagement Zone	
Contention 5: The proposed development will not be consistent with the objectives of the E3 Environmental Management zone under the Lithgow LEP 2014 due to the adverse environmental impacts to the GBMWHA arising from the dewatering of the former quarry voids and importation of fill to the site as detailed by the EPA in its submissions, contrary to s4.15(1)(a)(i) of the EP&A Act.	The proposed development is consistent with the objectives of the E3 Environmental Management zone under LLEP. a. The proposed development will not have adverse environmental impacts on to the GBMWHA arising from the dewatering of the former quarry voids or importation of fill to the site and the final form of the site following the rehabilitation will be beneficial to the surrounding environments. b. There is no requirement in the LLEP for the proposed development to be consistent with the zone objectives. Rather, pursuant to clause 2.3(2) the consent authority must have regard to the objectives.	
 (a) The land is zoned E3 Environmental Management under Lithgow Local Environmental Plan (LEP) 2014. The objectives of the E3 zone are: "Zone E3 Environmental Management 1. Objectives of zone • To protect, manage and restore areas with special ecological, scientific, cultural or aesthetic values. • To provide for a limited range of development that does not have an adverse effect on those values. • To protect and conserve the wegetation and escarpment landscape surrounding Lithgow. • To maintain or improve the water quality of receiving water catchments." 	 c. The first objective of the E3 Environmental Management zone is irrelevant because the site does not have special ecological, scientific, cultural or aesthetic values. It is a modified landform that has been cleared of endemic vegetation. While 2.48 ha of planted vegetation and 0.13 ha of remnant vegetation will be temporarily removed with progressive revegetation the end result will be a substantial net increase in indigenous vegetation. To the extent that it is relevant, the project development meets the first objective as it seeks to 'restore' the site to its previous landform whilst retaining one of the three quarry voids in a stable form. d. For the reasons set out in (c) above, the second objective of the E3 Environmental Management zone is not relevant however to the extent that it is, the second objective is met as the proposed development will not have an adverse impact on any ecological, scientific, cultural or aesthetic values. e. The proposed development meets objective 3 of the E3 Environmental Management zone as it will facilitate the management of environmentally sensitive lands by restoring the site to a final land form consistent with the original land form 	

Statement of Facts and Contentions	Response Supplementary Environmental Impact Statement reference
	which will be beneficial to receiving environments. The applicant will also offer to revegetate adjoining National Park land. 1. With respect to objective 4 the proposed development provides a net increase in indigenous vegetation on the site and there is no impact on the escarpment landscape surrounding Lithgow. 1. In relation to objective 5 of the E3 Environmental Management zone, the proposed development will not have adverse impacts on the water quality of receiving water catchments. Further, the end state of the site will restore flow regimes to as close as possible to site conditions existing prior to the quarrying operations.
(b) Arising from the issues and concerns raised by the EPA in the four (4) submissions lodged with Council in response to the proposed development, it is considered that the proposed development will not be consistent with the objectives of the E3 Environmental Management zone under the Lithgow LEP 2014.	See response above.
Clause 7.1 Earthworks	
Contention 6: The proposed development fails to satisfy the requirements of Clause 7.12 Earthworks (1) of the Lithgow LEP 2014 in that the proposal will have a detrimental impact on environmental functions and processes, contrary to s4.15(1)(a)(i) of the EP&A Act.	The proposed development meets the requirements of clause 7.1 of LLEP and will not have detrimental impacts on environmental functions and processes.
Particulars (a) Clause 7.1(1) states:- "(1) The objective of this clause is to ensure that earthworks for which development consent is required will not have a detrimental impact on environmental functions and processes, neighbouring uses, cultural or heritage items or features of the surrounding land."	 a. Present investigations and monitoring of the swamp in the Blue Mountains National Park indicate that: shallow groundwater within the soil profile above the rock surface is hydraulically separated from deeper ground water; shallow groundwater within the swamp soils is supplied by direct rainfall and surface water inflows and not deeper groundwater; and therefore the swamp is not hydraulically connected to the groundwater system. b. On the basis of the above and as the swamp does not appear to be hydraulically connected to the groundwater, there will be no impacts on groundwater dependent ecosystems. c. The proposed development has been appropriately designed to avoid and will not have any detrimental impacts on environmental functions and processes. All material to be emplaced at the site would be contained with an engineered

Statement of Facts and Contentions	Response	Supplementary Environmental Impact Statement reference
	barrier to separate the material from the groundwater. The final landform will have beneficial impacts on the environmental functions and processes as it will restore the land to its more natural state.	
(b) The development proposes the importation of 1.2 million cubic metres of VENM and ENM fill material for the old quarry site over a period of 15 years. The proposed importation of fill is not expected to impact any heritage items, archaeological sites or heritage conservation areas, as the earthworks will be retained within the footprint of the former quarry works and where no heritage items are identified.	As amended, the Development Application proposes the importation of approximately 1 million m ³ of VENM, ENM and Comparable Material.	
(c) Submissions from the EPA, the Office of Environment & Heritage and others detailed later in the Assessment Report considered by the Panel in determining to refuse the application have raised significant concerns relating to unacceptable environmental impacts on groundwater dependent ecosystems downstream of the development site arising from the importation of the fill, and likely adverse impacts on the adjoining Blue Mountains National Park, Greater Blue Mountains World Heritage Area and Wollangambe and Colo Rivers. Accordingly, it is considered that the proposal fails to satisfy the requirements of Clause 7.1(1) in that the proposal will have a detrimental impact on environmental functions and processes.	See responses to contentions above.	Section 3.2 and 3.3 Appendix D, E and F
Contention 7: The proposed development fails to satisfy the provisions under Clause 7.1 The proposed development fails to satisfy the provisions under Clause 7.1 Earthworks (3)(a), (c), (d), (e) and (g) of the Lithgow LEP 2014 given the adverse environmental impacts on the GBMWHA and the Wollangambe and Colo Rivers arising from the dewatering of the site and the importation of fill to the site, contrary to s4.15(1)(a)(i) of the EP&A Act.	See responses to contentions above The development application should be approved having regard to the matters listed in clause 7.1(3) of LLEP.	
Particulars (a) Clause 7.1(3) provides for the following: "(3) In deciding whether to grant development consent for earthworks (or for development involving ancillary earthworks), the consent authority must consider the following matters: (a) the likely disruption of, or any detrimental effect on, drainage patterns and soil stability in the locality of the development, (b) the effect of the development on the likely future use or redevelopment of the land, (c) the quality of the fill or the soil to be excavated, or both, (d) the effect of the development on the existing and likely amenity of adjoining properties,	 a. The particulars of all other contentions are repeated here. b. Clause 7.1(3) does not prohibit the consent authority from granting consent to a development application that does not meet the requirements listed in that clause. Rather consideration of the matters in clause 7.1(3) are required. c. The applicant says that upon proper consideration of the matters in clause 7.1(3) the proposed development is acceptable. d. In particular: in relation to clause 7.1(3)(a) - the information filed in support of the application shows that there will be no disruption or detrimental impact on drainage patterns or soil stability in the locality of the development. Further modelling has been provided to confirm the information already provided 	Section 3.2 and 3.3 Appendix D, E and F

Statement of Facts and Contentions	Response Env Env Imp	Supplementary Environmental Impact Statement reference
 (e) the source of any fill material and the destination of any excavated material, (f) the likelihood of disturbing relics, (g) the proximity to, and potential for adverse impacts on, any waterway, drinking water catchment or environmentally sensitive area, (h) any appropriate measures proposed to avoid, minimise or mitigate the impacts of the development, (i) the proximity to, and potential for adverse impacts on, any heritage item, archaeological site or heritage conservation area." 	ii. In relation to clause 7.1(3)(d) the effect of the development in terms of earthworks will not have any detrimental impacts on the amenity of adjoining properties iii. In relation to clause 7.1(3)(e) the fill material is proposed to be sourced from projects in Sydney and the regional area and the fill meeting specified criteria. iv. In relation to clause 7.1(3)(g), whilst the site is in proximity to a waterway and environmentally sensitive area, the assessment and further reports, and information filed in support of the application evidences that there will be no adverse impacts on any receiving environment.	
(b) Based on the concerns raised in comprehensive submissions from the EPA and others, it is considered that the proposal, including the dewatering of the site, will fail to satisfy the requirements under Clause 7.1(3)(a), (c), (d), (e) and (g) of the Lithgow LEP 2014.	Sec	Section 3.2 and 3.3 Appendix D, E and F
Clause 7.4 Terrestrial Biodiversity		
Contention 8: The proposed development fails to satisfy the requirements of Clause 7.4 Terrestrial Biodiversity of the Lithgow LEP 2014 given the comprehensive assessment of likely environmental impacts of the proposed development detailed by the EPA in its submissions, contrary to s4.15(1)(a)(i) of the EP&A Act.	The proposed development satisfies clause 7.4 of LLEP	
Particulars (a) Clause 7.4 Terrestrial Biodiversity provides:- "7.4 Terrestrial biodiversity (1) The objective of this clause is to maintain terrestrial biodiversity by:- (a) protecting native fauna and flora, and (b) protecting the ecological processes necessary for their continued existence, and (c) encouraging the conservation and recovery of native fauna and flora and their habitats. (2) This clause applies to land identified as ":biodiversity" on the Environmentally Sensitive Areas – Biodiversity Overlay Map. (3) In deciding whether to grant development consent for development on land to which this clause applies, the consent authority must consider:- (a) Whether the development is likely to have:-	 a. Clause 7.4 applies to land identified as "Biodiversity" on the Environmentally Sensitive Areas—Biodiversity Overlay Map. Most of Lot 23 that contains the quarry and parts of Sandham Road required for access is not mapped as Biodiversity on this map. Only a small portion in the North West corner is mapped and that area has been significantly impacted by previous quarrying activities. b. The rehabilitation of the site meets the objectives of clause 7.4 as it will encourage and result in a final landform more closely reflective of the natural landform. The proposed development will protect native fauna and flora, the ecological processes for their continued existence and will encourage recovery of native fauna and flora and their habitats by the revegetation of the site with native plant species representative of vegetation communities in the local area. 	Section 3.3 and Appendix F

Statement of Facts and Contentions		Supplementary Environmental Impact Statement reference
(i) any adverse impact on the condition, ecological value and significance of the fauna and flora on the land, and habitat and survival or native fauna, and habitat and survival or native fauna, and (iii) any potential to fragment, disturb or diminish the biodiversity structure, function and composition of the land, and (iv) any adverse impact on the habitat elements providing connectivity on the land, and (iv) any adverse impact on the habitat elements providing connectivity on the land, and (iv) any appropriate measures proposed to avoid, minimise or mitigate the impacts of the development. (b) any appropriate applies unless the consent authority is satisfied that: (c) the development is designed, sited and will be managed to avoid any significant adverse environmental impact, or (b) if that impact cannot be reasonably avoided by adopting feasible alternatives – the development is designed, sited and will be managed to minimise that impact, or (c) if that impact cannot be minimised – the development will be managed to mitigate that impact."	c. Clause 7.4(3) does not prohibit the consent authority from granting consent to a development application that does not meet the requirements listed in that clause. Rather consideration of the matters in clause 7.4(3) is required. d. Upon proper consideration of the matters in clause 7.4(3) the proposed development is acceptable. In particular: v. In relation to clause 7.4(3)(a)(i) the proposed development will not result in any adverse impacts on the condition, ecological value or significance of the fauna and flora on the land; vi. In relation to clause 7.4(3)(a)(ii) the proposed development will not result in any adverse impact on the importance of the vegetation on the land to the habitat and survival of native fauna. It is noted that the site is largely disturbed consisting of predominantly planted and sub-mature vegetation and only a small area of intact remnant vegetation. The proposed development will not fragment, disturb or diminish the biodiversity structure, function or composition of the land but will rather, provide a significant improvement in relation to these matters. viii. In relation to clause 7.4(3)(a)(iv) the proposed development will result in a landform that more closely resembles the natural or pre-quarrying conditions and therefore will in the long term improve the extent and connectivity of habitat in the locality it. In relation to clause 7.4(3)(v), appropriate measures will be undertaken in accordance with appropriate measures will be undertaken in accordance with appropriate environmental management plans and a surface and stormwater management plan. e. In accordance with clause 7.4(4), the consent authority can be satisfied that the development has been designed, sited and will be managed to avoid significant adverse impacts on the environment.	
(b) The EIS states that a detailed assessment of impacts upon biodiversity values within the site and the adjoining Blue Mountains National Park has		

Statement of Facts and Contentions	Response	Supplementary Environmental Impact Statement
been undertaken. The majority of the site has been previously disturbed, with some areas of revegetation undertaken to assist with the stabilisation of soils and some limited remnant vegetation around the periphery of the site. A total of 2.48 hectares of planted vegetation and 0.13 hectares of remnant vegetation will be removed and reinstated with progressive revegetation undertaken over the 15 year life of the development.		
(c) A total of 105 flora species from 38 families, comprising 95 native and 10 exotic species were recorded within the study area encompassing the Project area within the existing quarry footprint and the surrounding bushland and drainage line flowing from the site.		
(d) A total of 55 native fauna species were positively recorded during the field survey, including 38 bird species, 4 terrestrial mammal species, 3 bat species, 7 reptiles species, 6 frog species and 6 dragonfly species.		
(e) Two additional bat species were possibly recorded using echolocation call analysis, including one threatened species, the Eastern Bentwing Bat (Miniopterus schreibersii oceanensis), but poor data quality and/or interspecific call similarities precluded reliable identification of this species. No introduced species were recorded during the survey.		
(f) Based on the comprehensive assessment of likely environmental impacts of the proposed development by the EPA dated 20 March 2019 and subsequent submissions, it is considered reasonable to accept that the proposal fails to satisfy the provisions under Clause 7.4 of the LEP.	The Biodiversity assessment in the EIS and the supplementary ecological assessment both conclude there is unlikely to be a significant impact upon biodiversity values	Section 3.3 and Appendix F
Clause 7.7 Sensitive Lands		
Contention 9: The proposed development fails to satisfy the requirements under Clause 7.7 Sensitive Lands of the Lithgow LEP 2014 given the comprehensive assessment of likely environmental impacts of the proposed development detailed by the EPA in its submissions, contrary to s4.15(1)(a)(i) of the EP&A Act.	The proposed development satisfies the requirements of clause 7.7 Sensitive Lands of LLEP.	
Particulars (a) Clause 7.7 Sensitive Lands provides: "7.7 Sensitive lands (1) The objective of this clause is to protect, maintain and improve the diversity and stability of landscapes including the restriction of: a. development on land generally unsuitable for development due to steep slopes or shallow soils, and b. development on land subject to salinity, and	 a. This clause is intended to apply to naturally formed steep slopes or Karst landscapes, not man-made landscapes such as the subject site, notwithstanding it is considered that the to the extent the objectives are relevant, they are met. b. Mitigation strategies are proposed including sequencing, management plans (to be provided), erosion and sediment control and revegetation. c. The site is highly disturbed as a result of the many years of quarrying. Little intact native vegetation is present on the site. 	Section 3.3

Statement of Facts and Contentions	Response Suppleme Environm Impact St. Impact St. reference	Supplementary Environmental Impact Statement reference
 c. the removal of native vegetation, and d. development on land that is subject to regular or permanent inundation, and e. development on land that is within significant karst environments. (2) This clause applies to land identified as "Sensitive Land Areas" on the Environmentally Sensitive Areas – Land Overlay Map. (3) Before determining a development application for development on land to which this clause applies, the consent authority must consider whether the development is likely to have any adverse impact on the following: a. any land with slopes greater than 25%, (b. any land subject to high erosion potential, c. any land subject to regular or permanent inundation, e. any significant karst environment (including ecological, air quality and movement, water quality, biodiversity, geodiversity (geomorphical and geological), heritage, recreational and sociological values). (4) Development consent must not be granted to development on land to which this clause applies unless the consent authority is satisfied that: a. the development is designed, sited and will be managed to avoid significant adverse environmental impact, or b. if that impact cannot be avoided – the development will be managed to minimise that impact, or c. if that impact cannot be minimised – the development will be managed to minimised to mitigate that impact." 	The proposed development includes reprofiling following emplacement of fill to create a more natural landform, and the revegetation of the final landform with locally andemic species to re-create the woodland to improve site biodiversity. Flows will return close to natural conditions (improved from existing conditions). d. The dewatering of the quarry voids will be progressive. Dewatering of the existing voids will be fluctuated and will typically be limited to 10 to 15% of the existing storm flows and will not impact upon downstream geomorphology. Restoring the landform to be representative of its original topography will return the site to more natural run-off and flow conditions at the conclusion of the project. e. In accordance with clause 7.7(4), the consent authority can be satisfied that the development has been designed, sited and will be managed to avoid significant adverse impacts on the development.	
(b) The proposal involves the removal of 2.48 hectares of planted vegetation, which formed the rehabilitation planting undertaken in 2014 arising from the consent conditions under Development Application 108/1994, and 0.13 hectares of remnant vegetation.	Rehabilitation of the site has not been undertaken strictly in accordance with the previous consent conditions and in particular, parts of the site which are outside the cadastral boundaries of the land remain disturbed. The OEH has indicated that it supports the rehabilitation of the site to a more stable which reflects pre-quarrying conditions.	
(c) The proposal seeks approval for the site, post importation of fill to be reinstated with progressive revegetation undertaken over the 15-year life of the development.		
(d) The dewatering of the quarry voids has been assessed by the EPA as having the potential to erode the existing intermittent watercourse and swamp located downstream of the site through increased water flows during the dewatering program planned over Stages 1 to 5 of the Project.	Dewatering will be managed and not cause downstream erosion.	

Statement of Earts and Contentions		
	Kesponse	Supplementary Environmental Impact Statement reference
(e) Based on the comprehensive assessment of likely environmental impacts of the proposed development by the EPA dated 20 March 2019 and subsequent submissions, it is considered reasonable to accept that the proposal fails to satisfy the provisions under Clause 7.7 of the LEP.	The documents supporting the amended application conclude that the Proposed Development will not result in detrimental environmental impacts and that the proposed development satisfies the requirements of clause 7.7 Sensitive Lands of LLEP.	
Adverse Environmental and Amenity Impacts on Residential Properties		
Contention 10: The proposed development will have unacceptable environmental and amenity impacts arising from the activity associated with the importation of fill to the former quarry site, contrary to s4.15(1)(b) of the EP&A Act.	The proposed development will not have unacceptable environmental and amenity impacts arising from the proposed development contrary to s4.15(1)(b) of the EPA Act.	
a. There are a number of residences located on Sandham Road, between Bells Line of Road and the subject site, and others proximate to Sandham Road/Chifley Road that will be impacted by the following amenity concerns: i. noise, dust and vibration impacts arising from the 74 heavy vehicles (up to 42.5 tonnes) daily trips to and from the site over the 15 year life of the Project; ii. public safety issues for school buses, cyclists and residents using Sandham Road given the existing condition and character of the road; iii. increase in bushfire risk due to loss of water source in existing quarry for local firefighting; iv. potential for noise disturbance from trucks queuing to enter the site prior to 7.00am opening. b. Adverse traffic impacts on residents located on Bells Line of Road and Great Western Highway east of Mt Victoria from increase in heavy truck movements associated with the Project.	a. The proposed development complies with the EPA's Road Noise Policy. Notwithstanding, the applicant is prepared to accept the condition in contention 12(b) and therefore considers that the development application will be acceptable with respect to noise impacts. b. Current traffic volumes along Sandham Road are understood to be around 30 vehicles per day (or three vehicles during the peak hour assuming a 10 per cent peak hour conversion factor) and trips would largely be contained within the sealed section of the road. As mentioned previously, the proposed increase of 37 vehicle movements per day on average (six vehicle movements in the peak hour) and 74 vehicle movements during peak activities (12 vehicle movements in a peak hour) is considered minor, with a low frequency of two opposing vehicles meeting on Sandham Road at the same time. Further, this road is understood to have been satisfactorily used by Bell Quarry vehicles when previously operational over many years since the 1960s. In the event of opposing vehicles meeting along Sandham Road, a vehicle would be able to pull to one side of the road to allow for the other vehicle to pass. This is not dissimilar to what occurs on narrow local roads in urban areas. The applicant has made an offer of a Voluntary Planning Agreement to contribute to specified upgrades to road works.	Section 3.4 and Appendix G
	c. Dewatering of the voids will not increase the bushfire risk in the local area and a landowner is not obliged to maintain a water source on privately owned land for firefighting purposes. This was the position stated in the RFS submission. However the proposed filling volume has been reduced and the north western void will be retained and be available to provide a supply of clean water for firefighting purposes, as needed	

Statement of Facts and Contentions	Response En	Supplementary Environmental Impact Statement reference
	 The anticipated average traffic activity is consistent with historical quarry operations and the Traffic Impact Assessment prepared by GHD dated July 2018 evidences that the proposed development will have a negligible impact on function of the surrounding road network. 	
Public Interest		
Contention 11:	The proposed development is in the public interest.	
The notification of the Designated Development application attracted	 a. The particulars of all other contentions are repeated here. 	
submissions from relevant Government agencies, local government, special	b. The proposed development is permissible with consent and the	
Interest groups and individuals. A total of 47 o submissions of objection, excluding duplicates, were received by Council including 321 individual others.	some form, development which is consistent with statutory	
Adverse environmental impacts on Greater Blue Mountains World Heritage Area.	c. There are no matters under LLEP or the ISEPP that when taken into consideration should lead to refuse!	
Impacts of the importation of the fill on groundwater;	d. Mere opposition does not mean that the proposed development	
 Impacts of dewatering on Blue Mountains National Park; 	is not in the public interest.	
 Potential contamination of Wollangambe and Colo Rivers, including domestic water supply from Colo River; 	 The carrying out of the proposed development will result in an acceptable landform, re-establishment of soils and vegetation 	
 Spraying of water to mitigate dust and washdown of trucks will flow into Wollangambe River, part of the Hawkesbury-Nepean Catchment; 	communities over current quarry voids, and a return to prequarry surface and groundwater hydrological regimes. This is a	
 Loss of water source in quarry will increase bushfire risk for local communities and restrict RFS aircraft capability to fight local fires; 	f. Revegetation of off-site areas to restore and rehabilitated land in	
 Traffic impacts on Bells Line of Road and Great Western Highway, in particular in Mt Victoria from additional heavy truck movements; 	g. The proposed development will not compromise the safety or	
 Existing condition and width of Sandham Road unable to safely accommodate heavy truck movements, particularly in respect to the school 	amenity of sufficiently afters.	
bus, pedestrians, cyclists and local resident movements and needs to be upgraded if the proposal is approved;		
 Intersection of Sandham Road and Bells Line of Road has poor sight lines and needs to be improved: 		
 Potential for queuing of trucks in Sandham Road and Bells Line of Road prior to 7.00am opening of facility; and 		
 Amenity impacts on Sandham Road residences with dust, noise and public safety. 		
Colory.		

GHD Bell Quarry Rehabilitation Project 12541317 Resnonse to Contentions in El	U	
4D Bell Quarry Rehabilitation Project 12541317	<u>U</u>	l
4D Bell Quarry Rehabilitation Project 12541317	.9	
4D Bell Quarry Rehabilitation Project 12541317	Š	
4D Bell Quarry Rehabilitation Project 12541317	Ţ	
4D Bell Quarry Rehabilitation Project 12541317	ż	
4D Bell Quarry Rehabilitation Project 12541317	ځ	
4D Bell Quarry Rehabilitation Project 12541317	\$	
4D Bell Quarry Rehabilitation Project 1254131	Beenonee	
4D Bell Quarry Rehabilitation Project 125	17	
4D Bell Quarry Rehabilitation Project 125	5	
4D Bell Quarry Rehabilitation	1254	
4D Bell Quarry Rehabilitation	-	
4D Bell Quarry Rehabilitation	rojec	
4D Be	_ H	
4D Be	atio	
4D Be	abilit	
4D Be	Reh	
4D Be	Quarry	
GFB	ള	
	GHD	

Statement of Facts and Contentions	Response	Supplementary Environmental Impact Statement
Contention 12:		
The key matters to be addressed by conditions would include the following: (a) Surrounding land use: Conditions should be imposed to the effect recommended by the former OEH in relation to the following matters: (i) Work within the Blue Mountains National Park (ii) Introduction of pathogens to the site (iii) Monitoring and adaptive management (iv) Mittgation of impacts (v) Boundary survey and fencing.	The applicant accepts the conditions to the effect recommended by the former OEH in relation to the matter raised in contention 12(a).	
As noise disturbance from truck movements is the primary concern for residential properties located on Sandham Road at Bell during the night-time period (10.00pm to 7.00am) the potential for trucks to queue in Sandham Road prior to the opening of the quarry at 7.00am could lead to a significant noncompliance with the relevant noise standard for night-time given the relatively low background noise levels currently enjoyed by residents since the closure of the Rocla quarry nearly 10 years ago. A condition that prevented truck access to Sandham Road at its intersection with the Bells Line of Road prior to 7.00am would resolve that issue in respect to noise disturbance during the hours of 10.00pm and 7.00am. Conditions should be imposed on any consent to ensure that the development complies with the EPA's Road Noise Policy at all receivers	The applicant accepts conditions to the effect of those in contention 12(b).	
(c) Traffic and Transport. The development involves significant heavy vehicle movements over an extended period of time. This will impact on the required maintenance of the road and the safety of other road users. If the development were to be approved, significant measures would be required to mitigate these impacts. The recommendations of Council's Engineer for the widening and sealing of Sandham Road would address local concerns as to dust and public safety in the event of the approval of the development embodying the Council Engineer recommendations.	The existing condition of Sandham Road is considered suitable for supporting the Proposed Development with only minor improvement works and is it not considered appropriate to put the onus of any wholesale upgrades to the road solely on the Applicant. Notwithstanding, the Applicant has made an offer to enter into a planning agreement with Council in relation to contributions to be applied by Council towards specified upgrades of the sealed section of Sandham Road and is prepared to undertake maintenance and repair (such as potholes and dust suppression) on the unsealed portion of Sandham road biannually and/or after weather events as required.	Section 3.4 and Appendix G.

Appendix B


Environmental Management Plan and Staging Plans

Environmental Management Plan

Bell Quarry Appeal

Bell Quarry Rehabilitation Project Pty Ltd 19 November 2021

GHD Pty Ltd | ABN 39 008 488 373

133 Castlereagh Street, Level 15
Sydney, New South Wales 2000, Australia
T +61 2 9239 7100 | F +61 2 9239 7199 | E sydmail@ghd.com | ghd.com

Printed date	19/11/2021 4:18:00 PM		
Last saved date	19 November 2021		
File name	https://projectsportal.ghd.com/sites/sp01_02/bellquarrywastefacil/ProjectDocs/12541317-RPT_Environmental Management Plan.docx		
Author	Adrian Roberts		
Project manager	Karl Rosen		
Client name	Bell Quarry Rehabilitation Project Pty Ltd		
Project name	Bell Quarry Appeal		
Document title	Environmental Management Plan Bell Quarry Appeal		
Revision version	Rev 1		
Project number	12541317		

Document status

Revision Author		Reviewer		Approved for issue		
		Name	Signature	Name	Signature	Date
1	A Roberts	A Dixon	mexid. D	A Dixon	a. Aran	19/11/2021

© GHD 2021

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

1.	Intro	duction	1
	1.1	Overview	1
	1.2	Purpose of this environmental management plan	1
2.	Proje	ect Design	3
	2.1	Staging	3
	2.2	Water system operations	10
	2.3	Site management and safety	13
	2.4	Incident and complaints protocols	14
	2.5	Traffic management	15
	2.6	Site facilities	15
	2.7	Noise and vibration	17
	2.8	Air quality	17
	2.9	Vegetation	17
3.	Envir	onmental management plan	18
	3.1	Noise and vibration	18
	3.2	Air quality	19
	3.3	Water Resources	20
	3.4	Biodiversity	20
	3.5	Traffic and transport	21
	3.6	Land resources and contamination	23
	3.7	Waste management	24
	3.8	Visual	25
	3.9	Bushfire management	25
4.	Closu	re	27
	4.1	Final capping	27
	4.2	Progressive Closure Plan	27
5.	imple	menting the EMP	29
	5.1	Roles and responsibilities	29
	5.2	Training	30
	5.3	Inspections and audits	31
6.	Refer	ences	33
Tal	ble in	dex	
Tabl	e 2.1	Staged quantities and areas (subject to detailed design)	4
	e 2.2	Anticipated plant and equipment	7
Tabl	e 2.3	Operating hours	8
Tabl	e 2.4	Limiting concentrations in ENM as per the ENM order (EPA 2014b)	9
Tabl	e 2.5	Operational waste	14
Tabl	e 2.6	Predicted peak hour traffic generation	15

Table 2.7	Project noise trigger levels – residential noise receivers, dBa	17
Table 2.8	Air quality impact assessment criteria	17
Table 3.1	Noise CEMP	18
Table 3.2	Air Quality CEMP	19
Table 3.3	Biodiversity CEMP	20
Table 3.4	Traffic and transport CEMP	22
Table 3.5	Land resources and contamination	23
Table 3.6	Waste management CEMP	24
Table 3.7	Visual CEMP	25
Table 3.8	Bushfire management CEMP	26
Table 5.1	Roles and responsibilities	29
Table 5.2	Environmental Inspection Program	32

Figure index

Figure 1.1 Site Area Map (GHD, 2018)

2

Appendices

Appendix A Staging Plans

1. Introduction

1.1 Overview

Bell Quarry Rehabilitation Project Pty Ltd (the Applicant) seeks to rehabilitate the Bell Quarry site, located on Sandham Road at Newnes Junction, approximately ten kilometres east of Lithgow in NSW as shown on Figure 2-1. The development application seeks (DA) to achieve the final rehabilitated landform via importation of emplacement material sourced from Sydney and the local regional area which meets:

- the definition of virgin excavated natural material (VENM) as defined by the Protection of the Environment Act, 1997 (POEO Act) from time to time
- the criteria of excavated natural material (ENM) as set out in the Excavated Natural Material Order and Exemption 2014 issued by the Environmental Protection Authority under clause 93 of the Protection of the Environmental Operations (Waste) Regulation 2014; or
- an exemption granted by the Environment Protection Authority (EPA) pursuant to clauses 91 and 92 of the Protection of the Environmental Operations (Waste) Regulation 2014) and which specifically relates to the site (comparable material).

The key objectives for the Project include:

- Rehabilitate the site to a condition closely representing the pre-quarry original landform and that of the adjoining Blue Mountains National Park.
- Maximise resource recovery through diversion of fill and comparable materials away from landfill for beneficial reuse in site rehabilitation activities.
- Undertake the rehabilitation works to be sympathetic to the surrounding land-use and environmental setting.
- Provide ongoing local employment opportunities.
- Revegetation of the site with locally endemic species to provide effective integration with the surrounding landscape.

The rehabilitation process will involve:

- Importation of approximately 1 million m³ of VENM, ENM and comparable material).
- Vehicle haulage at a rate of up to 140,000 tonnes per annum (tpa).
- Staged emplacement and compaction of fill within the existing quarry voids.
- Shaping of fill to closely represent the pre-quarry landform and to allow surface water drainage across the final landform.
- Development of a water management system including management plans to control surface water discharges throughout the rehabilitation program and from the final landform.
- Revegetation of the site with locally endemic species to provide effective integration with the surrounding landscape.
- Ongoing monitoring and maintenance for life of Project and minimum two years post completion.

1.2 Purpose of this environmental management plan

The purpose of this environmental management plan (EMP) is to provide an environmental management framework and associated management procedures to avoid or minimise the potential environmental impacts associated with rehabilitation of the quarry during establishment, operation, and closure.

The EMP has been prepared based upon the concept design details presented in Section 2, principles of water management contained in the Revised Water Resources Assessment (GHD 2021) and will be updated during detailed design of the construction and emplacement works and to reflect any approval conditions for the DA.

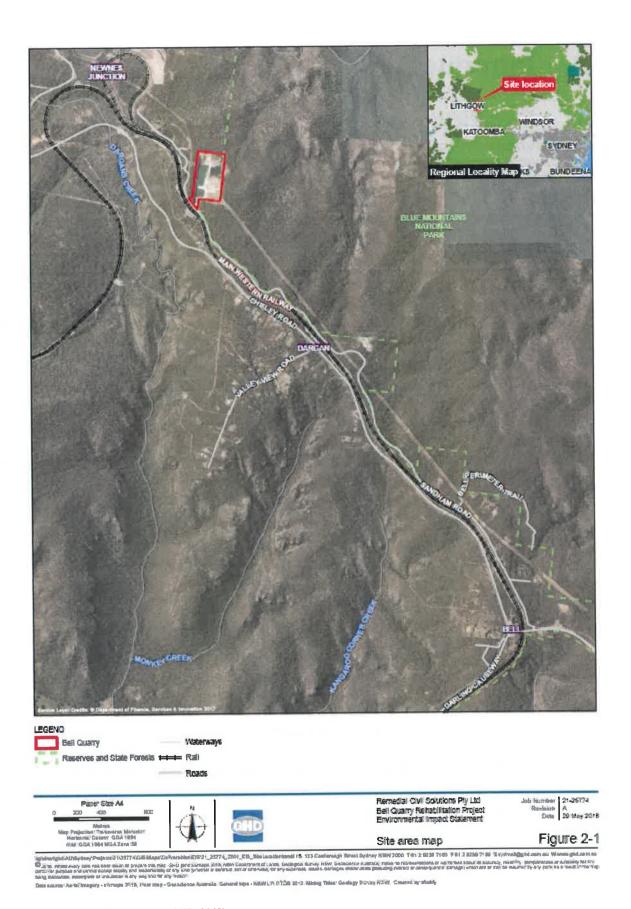


Figure 1.1 Site Area Map (GHD, 2018)

2. Project Design

2.1 Staging

2.1.1 Overview of changes from EIS submission

Changes were made to the staging plans presented in the EIS for the initial development application. These changes have been summarised below:

- The proposed fill staging has been altered to reflect the revised surface water management system
- The footprint of the landform has been amended but remains fully within the footprint included in the original DA and the maximum height of the final landform has not been altered
- The eastern void is to be retained throughout the filling of the first 4 stages to allow for storage of contact water prior to disposal via irrigation (or, in the event a treatment plant is required, via treat and release).
- The fill footprint and final landform in the southern void have been adjusted to provide an alternative access which is developed as part of the filling of Stage 1.
- All areas proposed to be filled will be lined with HDPE geomembrane (or equivalent) on the base and clay on the sidewalls where they are adjacent to the natural substrate (i.e., in the pits).
- The basal lining of each stage includes a geonet drainage geocomposite (or equivalent) and riser to allow extraction of leachate (if required).
- Groundwater diversion system to promote groundwater movement down-gradient of the basal liner
- A temporary clean water diversion system will be constructed to the west of the site to allow diversion of upstream catchment around active emplacement areas.
- The contact water dam will be lined with a HDPE geomembrane (or equivalent)
- Areas proposed to be filled will be capped with LLDPE geomembrane (or equivalent), overlaid with a subsurface drainage system, and revegetated
 - Areas of the site have been identified for excavation works to supply site won material for site intermediate capping and a minimum of 600 mm of final capping materials
- Excavation areas are within the extents of the proposed filling works and includes an area in the northern
 portion of the site as described in the original DA and a former deposition area in the eastern portion of the
 site.
- A stockpile of site won material is to be placed in the northeast corner of the site (for the later stages use)
- A potential future final filling stage involves filling the contact water dam at the conclusion of proposed emplacement activities and will be subject to a future application or modification under Section 4.55 of the *Environmental Planning and Assessment Act, 1979* (EP&A Act) should development consent be granted by the Land and Environment Court. The modification application would be based on an assessment of the facility performance over the first 4 stages and development of a system for management of contact water during the completion of the filling operations. The assessment would quantify whether all or part of the contact water pond can be removed, and the final landform adjusted to suit.

2.1.2 Work stages

The rehabilitation work is split into Site Establishment works and 4 stages of filling works. Staging descriptions below are to be read in conjunction with the staging plan sketches SK001 to SK011, as included in Appendix A.

Table 2.1 shows a summary of the staged quantities and areas. Stage 5 has not been included as its development will be subject to ongoing assessment of the facility performance during the filling of Stages 1 to 4.

Table 2.1 Staged quantities and areas (subject to detailed design)

	Excavation ¹ (m³)	Volume ² (m³)	Base lining area ^{3**} (m ²)	Sidewall lining area** (m²)	Active filling area* (m²)	New intermediat e cover area** (m²)	Final cap area** (m²)
Stage 1A		104,300	4,100	11,740	12,400	-	-
Stage 1B		115,800	-	4,500	12,400	7,390	5840
Stage 2		48,800	11,800	-	12,560	1,820	11,880
Stage 3a		89,850	10,500	3,600	17,9004	4,4004	0
Stage 3b		244,200	-	10,450	16,700 ⁴	8,8704	11,690
Stage 3c		25,800	-	-	7,660	-	8,150
Stage 3d		169,050	-	8,160	6,500	4,340	10,150
Stage 4	Up to 60,500	255,250	3,800	13,500	15,180 ⁵	-	22,230
Total	60,500	1,053,050	30,200	51,950	-	26,820	69,930

^{*} plan area

2.1.2.1 Site establishment works

Before filling occurs, site establishment works are required to prepare the site for filling works. This will involve the following:

- Dewatering of the southern and western voids to separate the water between the voids. A bund will be created, if needed, to ensure future separation and completely dewater the southern void.
- A geomembrane (or equivalent) lining system will be installed in contact water pond after it is dewatered.
- The southern void will be dewatered, and a geomembrane (or equivalent) lining system installed in preparation for Stage 1 filling of the southern void.
- The water in the western void will be drawn down and an overflow channel installed to allow clean water to drain directly offsite by gravity (bypassing the eastern void).

2.1.2.2 Stage 1

Stage 1 involves filling of the southern void in two stages:

- Stage 1A initially fill against the southern and eastern batters to develop a new site access road which is within the site boundary.
- Stage 1B fill the remaining available capacity in the Stage 1 area.

During filling:

- Contact water will be collected and pumped to the contact water pond for storage and disposal.
- Where filling is being undertaken above surrounding ground level, a soil bund will be constructed at the perimeter of each lift to prevent run off and a low point created to collect contact water.
- Intermediate capping will be installed progressively on the northern intermediate batter as each lift is placed.
- Final capping will be installed progressively on areas final surface areas as each lift is placed.
- Sediment laden water will be directed from the intermediate cap areas to the temporary pond (developed when filling proceeds above ground) for management before discharge.

^{**} slope area

Excavation represents the stage/area where the excavation is achieved. It does not represent the timing of excavation works. All other values in this table assume that this excavation work is undertaken as required.

² Volume represents volume from existing surface or design excavation surface to top of final cap. Stage fill capacities must also consider airspace lost to lining, cover and capping works.

³ Material required for groundwater depressurisation and seal bearing layers under the base lining system are assumed to be won from within the filling footprint as part of stage preparation works.

⁴ Where the entire stage catchment area is greater than 1.3 ha, filling works will be staged, and intermediate cover used to maintain an actual contact water area of less than 1.3 ha at any time. Additional intermediate cover material may be required to achieve this requirement. Additional onsite soil generation has been included for this purpose.

- South-eastern area will be lined in preparation for Stage 2 filling works.
- Site access around the south-eastern area will be developed to allow filling in Stage 2 area.

2.1.2.3 Stage 2

Stage 2 involves filling of the south-eastern area. During filling:

- Contact water will be collected and pumped / directed to the contact water pond for storage and disposal.
- Where filling is being undertaken above surrounding ground level, a soil bund will be constructed at the
 perimeter of the active fill area to prevent run off and a low point created to collect contact water.
- Intermediate capping using site won material will be installed progressively on the western intermediate batter.
- Final capping will be installed progressively on areas as they reach final surface levels.
- Sediment laden water will be directed from the intermediate cap areas to the temporary pond (developed in preliminary works) for settlement before discharge.

A temporary clean water diversion system will be constructed to direct water from the west of the site. The diversion drain will cause clean water to enter further south of the site, over the now-filled Stage 1 intermediate batter. The water will then flow through the site and directly offsite. It is expected that the diversion system will require:

- Construction of a shallow open channel on north side of existing entry, flowing south, nominally within 5-10 metres of the crest of the void.
- Construction of a headwall and upstream pond, nominally within 20-30 m of the crest of the void.
- Construction of a deep open channel to the south of the existing entry, flowing south, nominally within 20-30 metres of the crest of the void.
- Construction of open channel on the Stage 1 batter and across the site to allow discharge of clean water directly offsite.
- Vegetation of all areas of intermediate batter draining into this diversion structure to control erosion.

The western void will be dewatered, the clean water overflow will be decommissioned, and a lining system will be installed in preparation for Stage 3 filling.

2.1.2.4 Stage 3

Stage 3 involves fill the western void in four stages:

- Stage 3A the entire void area to be filled to approximately RL1032 m.
- Stage 3B the southern section of the void will be filled to final landform levels to allow clean water drainage over the rehabilitated surface.
- Stage 3C once the final clean water drainage pathway over the rehabilitated surface has been established, decommission the temporary clean water diversion drain over the Stage 1 batter and fill the remaining Stage 1 and Stage 2 intermediate batters.
- Stage 3D northern section of the void will be filled in.

During filling:

- Filling works will be undertaken to ensure a contact water area of less than 1.3 hectares is maintained (where filling occurs above grade and not within a below grade void).
- Contact water will be collected and pumped to the contact water pond for storage and disposal.
- Where filling is being undertaken above surrounding ground level, a soil bund will be constructed at the
 perimeter of the active fill area to prevent run off and a low point created to collect contact water.
- Intermediate capping will be installed progressively on the intermediate batters.
- Final capping will be installed progressively on areas that reach final surface levels.
- A temporary sediment pond will be developed in the northern part of site and the Stage 1 temporary pond will be removed when required.

- Sediment laden water will be directed and pumped from intermediate capping areas to the temporary pond for settlement before discharge.
- Additional excavation will be undertaken, as required, between the Stage 3 and Stage 4 areas.
- Lining system will be constructed in the northern area in preparation for Stage 4 filling.
- Temporary cover material stockpile area will be developed in the north-east, including required sediment and erosion controls.

2.1.2.5 Stage 4

Stage 4 involves filling the northern area. During filling:

- Filling works will be undertaken to ensure a contact water area of less than 1.3 hectares is maintained by temporary bunding or similar (where filling occurs above grade and not within a below grade void).
- Contact water will be collected and pumped to the contact water pond for storage and disposal.
- Where filling is being undertaken above surrounding ground level, a soil bund will be constructed at the
 perimeter of the active fill area to prevent run off and a low point created to collect contact water.
- Final capping will be installed progressively on areas that reach final surface levels.
- The temporary sediment pond adjacent to the cover material stockpile will be utilised or temporary ponds established in the operational areas as required.
- Temporary sediment and erosion controls will be maintained around the cover material stockpile area.

If Stage 5 is developed for filling, Stage 4 works will also include:

- Cleaning and dewatering of the contact water pond and development of alternative contact water management measures, as required.
- Lining of the Stage 5 area in preparation for filling.

2.1.2.6 Stage 5 (potential)

A potential final filling stage, Stage 5, will be subject to a future application or modification. Any subsequent application would be based on an assessment of the facility performance over the first 4 stages in relation to water management. The assessment would quantify whether all or part of the contact water pond can be removed, and the final landform adjusted to suit. If developed for filling:

- Filling works will be undertaken to ensure a contact water area of less than 1.3 hectares (or otherwise determined) is maintained.
- Contact water will be collected and pumped to the contact water pond for storage and disposal.
- Where filling is being undertaken above surrounding ground level, a soil bund will be constructed at the
 perimeter of the active fill area to prevent run off and a low point created to collect contact water.
- Final capping will be installed progressively on areas that reach final surface levels.
- Temporary sediment and erosion controls will be maintained around the cover material stockpile area.

2.1.2.7 Final rehabilitation surface

At the conclusion of site filling, the contact water pond (if remaining) will be dewatered and cleaned, and the liner retained and would be a clean water pond available.

2.1.3 Excavation

Excavation works have been included to provide soil materials for operational uses, including:

- Intermediate cover.
- Final capping and rehabilitation works.

These excavation works would be undertaken on an as-needs basis from the Stage 4 footprint area.

The proposed extents of excavation are wholly within the proposed fill boundary and located within areas proposed to be filled during Stage 4. The preliminary design of this excavation surface has allowed for:

Excavation batters of 1 (vertical) in 2 (horizontal).

Minimum base dimension is around 35 metres to allow for vehicle movements within the base of the voids.

Vehicle access into this excavation will be considered as part of the detailed design and development of this void.

This area is known to have been previously quarried, and rock materials may be found within the proposed excavation footprint. Historical documents show that the intention was to excavate the quarry to RL1018 m. The base of the current water-filled voids is around RL1023 m. The lowest point of this excavation area is RL1030 m. Where rock walls are located around the perimeter of these excavations the batters may be able to be made steeper to follow the steeper rock surface.

Appropriate erosion and sediment controls will be installed as part of excavation works. These would be developed as part of the detailed design and will include construction and operation of a temporary sediment basin within the excavation void while excavation, bunding and diversion of surface water, sediment fencing and dust suppression.

2.1.4 Machinery/equipment to be used

Anticipated plant and equipment to be used for the project is shown in Table 2.2.

Table 2.2 Anticipated plant and equipment

Project Activity	Equipment	Plant	
Imported material		Up to 42.5 tonne truck and trailer haulage vehicles	
Emplacement activities	Generator, site office / amenities building spill kits, refuelling/spill bunds,	1 grader, 1 tipper truck, 1 dozer, 2 front end loaders, Roller, Fuel delivery truck, water truck	
Water management system	Submersible and centrifugal pumps	Contingency water treatment plant (if required)	
Revegetation activities	Mechanical and electrical equipment,	Hydro-seeding (and planting of tubestock)	

2.1.5 Estimated duration of work and operating hours

The Project is expected to take approximately 15 years to complete.

Operation hours for the proposed rehabilitation works will be in accordance with Table 2.3.

Rehabilitation activities and haulage to the site will be restricted to the hour of 7.00 am to 6.00 pm Monday to Friday and 7.00 am to 1.00 pm on Saturdays. Minor site preparation activities involving the use of a grader and roller to prepare the site for haulage vehicles is proposed between 6.00 am and 7.00 am Monday to Saturday.

Table 2.3 Operating hours

Activity	Day of week	Time	Assessment period
Rehabilitation related activities	Monday-Friday	7:00 am to 6:00 pm	Day
and transport of materials	Saturday	7:00 am to 1:00 pm	Day
	Sunday and Public Holidays	None	-
Preparation of ground on-site for	Monday-Friday	6:00 am to 7:00 am	Night
haul trucks	Saturday	6:00 am to 7:00 am	Night
	Sunday and Public Holidays	None	-

2.1.6 Acceptance of fill

Rehabilitation of the final landform to be achieved via importation of material sourced across Sydney and the local regional area which meets:

- 1. the definition of VENM as defined by the *Protection of the Environment Operations Act 1997* (PoEO Act) from time to time.
- the criteria of ENM as set out in the Excavated Natural Material Order and Exemption 2014 (ENM Order) issued by the Environmental Protection Authority (EPA) under clause 93 of the Protection of the Environmental Operations (Waste) Regulation 2014.
- 3. an exemption granted by the Environment Protection Authority pursuant to clauses 91 and 92 of the Protection of the Environmental Operations (Waste) Regulation 2014 and which specifically relates to the site (Comparable Material).

The PoEO Act defines VENM as 'natural' material (such as clay, gravel, sand, soil, or rock fines):

- a. that has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or with process residues, as a result of industrial, commercial, mining or agricultural activities, and
- b. that does not contain any sulfidic ores or soils or any other waste.

ENM refers naturally occurring rock and soil (including but not limited to materials such as sandstone, shale, clay and soil) that has:

- c. been excavated from the ground, and
- d. contains at least 98% (by weight) natural material, and
- e. does not meet the definition of Virgin Excavated Natural Material in the Act.

Excavated natural material does not include material located in a hotspot; that has been processed; or that contains asbestos, Acid Sulfate Soils (ASS), Potential Acid Sulfate Soils (PASS) or sulfidic ores.

Limiting concentrations for ENM in accordance with the ENM Order is included in Table 2.4.

Table 2.4 Limiting concentrations in ENM as per the ENM order (EPA 2014b)

Chemicals and other attributes	Maximum average concentration for characterisation (mg/kg 'dry weight' unless otherwise specified)	Absolute maximum concentration (mg/kg 'dry weight' unless otherwise specified)
1. Mercury	0.5	1.0
2. Cadmium	0.5	1.0
3. Lead	50	100
4. Arsenic	20	40
5. Chromium (total)	75	150
6. Copper	100	200
7. Nickel	30	60
8. Zinc	150	300
9. Electrical Conductivity	1.5 dS/m	3 dS/m
10. pH *	5 to 9 pH units	4.5 to 10 pH units
11. Total PAHs	20	40
12. Benzo(a)pyrene	0.5	1.0
13. Benzene	NA	0.5
14. Toluene	NA	65
15. Ethyl-benzene	NA	25
16. Xylene	NA	15
17. TPH C10-C36	250	500
18. Rubber, plastic, bitumen, paper, cloth, paint and wood	0.05 %	0.10 %

^{*} The ranges given for pH are for the minimum and maximum acceptable pH values in the excavated natural material.

Sampling, testing and certification of the fill would be per the requirements of the POEO Act and NSW EPA website guidance for VENM; excavated natural material order and exemption 2014 (NSW EPA, 2014b) for ENM and as stipulated in any specific resource recovery order and exemption approved by the EPA for the site.

The incoming fill will be visually inspected by the operator at the tipping face for signs of contamination such as excessive foreign materials. Any non-conforming fill will be segregated and temporarily stockpiled within the emplacement area for transfer offsite to an appropriately licensed facility.

Incoming fill audits will be undertaken for every 50,000 tonnes of fill placed at the site.

It is noted that under Section 144AA of the POEO Act it is an offence to misclassify waste with penalties for an individual up to \$240,000, or 18 months imprisonment, or both.

2.1.7 Fill placement procedure

Fill will be placed within the former quarry void according to the proposed rehabilitation strategy and filling plans to be developed as part of operations (refer Section 2.1.8). The placement procedure will address potential impacts to the environment and required environmental performance outcomes. Management measures include the following:

- An active placement area no larger than 1.3 ha will be established in accordance with the proposed staging plan.
- Fill will be delivered to the placement area by trucks. The unloaded fill will be spread out by bulldozer and compacted by roller.
- Designated vehicle wash down areas will be set up to prevent tracking of fill outside of the active emplacement areas. This will also include cattle grates at the site entry and exit points.

- A mapping system will be developed to document the location of material deposited on site from each off-site location it originated from. This will facilitate the development of management measures should SSTLs be exceeded.
- Fill will be placed in lifts and compacted to a minimum of 95% standard maximum dry density. Compaction
 testing will confirm that average compaction is being achieved. The lift height would be developed as part of
 the detailed design to allow for sufficient area for operations and placement of the capping material.
- The horizontal fill lifts will be graded to allow for free draining of surface water and to avoid localised ponding.
- Dust suppression controls will be implemented to manage the generation of dust during placement. This will
 include water trucks for roads and active tipping areas and spray irrigation on non-active areas/
- The sidewall liner system will be inspected prior to placement of fill and after any rainfall event for any
 indications of damage such as scouring, tears or punctures. Fill placed against the side wall liner system will
 be pushed against the wall and the compaction limited to avoid damage to the liner system.
- Interim fill batters will be limited to 1(vertical) in 2 (horizontal) and final batters will be per the landform design.
- Intermediate cover material will be placed on all batters that do not form part of the final landform and will
 comprise site won material. Where possible the intermediate cover material will be stripped back and reused
 prior to placement of additional fill.
- The final landform will be progressively capped to ensure stability of the emplacement areas, control erosion and minimise rainfall infiltration into the fill.

2.1.8 Filling Plan

Filling plans will be developed for each stage identified in Table 2.1 and updated as required during operations. The plans will address the fill placement procedure requirements in Section 2.1.7 and following key factors:

- Access for construction and operational plant and vehicles
- Spatial allowance for truck turning circles
- Maintenance of contact water area of less than 1.3 hectares
- Erosion and sediment control including surface water diversion and bunding around the active area to capture contact water, sediment fencing and vegetative matting on areas of final capping and dust control measures on non-active areas and access points
- Lift height and compaction requirements
- Final and intermediate cover stockpile management and placement requirements
- Interfacing requirements with other stages and irrigation areas
- Additional excavation requirements, as required

2.2 Water system operations

2.2.1 Surface water

Overview

A revised surface water management system has been developed involving management of surface water within the site in three separate streams:

- Water from upstream catchment (off-site) areas: This water shall be conveyed through/around the site without interaction with site waters wherever practicable, with direct discharge to the downstream receiving system. Where mixing of upstream and site waters is unavoidable, (for example, a cascade of upstream waters currently enters the western void of the site) the upstream waters shall mix only with sediment-laden water (not contact water). Where this mixing occurs the sediment laden water management approach shall include the volumetric contribution of the upstream waters.
- Sediment laden water: This is runoff from areas where disturbed, non-vegetated soil is present but does not consist of foreign imported fill material. In these areas runoff is to be managed in accordance with Managing Urban Stormwater: Soils and Construction Volume 1, Landcom 2004 and Volume 2, DECC 2008. The requirements within the documents that apply to a "sensitive" receiving environment would be adopted.

Contact water: This water comprises any surface water that has interacted with emplacement material and
will be captured in a contact water pond for reuse via on-site irrigation to prevent discharge of surface water
from the site. There will be no discharges of surface contact waters would occur other than when treated to
background water quality conditions (if this were required).

Adopted assessment criteria

The revised assessment has adopted an elevated assessment criteria for the works based upon achieving a neutral or beneficial effect, based upon the State Environmental Planning Policy (Sydney Drinking Water Catchment) 2011 as well as the corresponding WaterNSW guideline *Neutral or Beneficial Effect on Water Quality Assessment Guideline*.

It is noted the site is not located within Sydney's drinking water catchment, however the neutral of beneficial effect (NoRBE) approach has been applied to the proposed development to achieve the highest level of protection given the sensitivities of receiving waters in the Wollongambe River catchment and the Greater Blue Mountains World Heritage Area.

A neutral or beneficial effect on water quality is satisfied if the development:

- (a) has no identifiable potential impact on water quality, or
- (b) will contain any water quality impact on the development site and prevent it from reaching any watercourse, waterbody or drainage depression on the site

The criteria above have been developed based on the State Environmental Planning Policy (Sydney Drinking Water Catchment) 2011 as well as the corresponding WaterNSW guideline *Neutral or Beneficial Effect on Water Quality Assessment Guideline*. This has been applied to each category of water as follows:

- Where upstream water does not come into contact with site waters it is anticipated to have no identifiable
 potential impact on water quality and as such satisfy the Neutral or Beneficial requirement of the SEPP (refer
 Section 3.1a of the guideline).
- Sediment laden water would be managed in accordance with Managing Urban Stormwater: Soils and
 Construction Volume 1 and Volume 2 which are current recommended practices (CRPs) in accordance with
 the SEPP. The SEPP states that new developments or activities should incorporate CRPs and standards
 endorsed by Water NSW or adopt approaches that achieve the same or better water quality outcomes.
 Inferring that the outcomes achieved through implementation of the CRPs constitute the appropriate
 environmental outcomes under the SEPP.
- It is noted that the risk posed through leaching of substances from foreign imported materials is not fully covered under the abovementioned CRPs. As such, for contact runoff areas surface waters would either be contained or treated to achieve background conditions before discharge (if this contingency treatment option is triggered).

2.2.2 Final cover and basal liner profile

Final cover profile (top to bottom):

- Revegetation layer suitable for the establishment and long-term viability of vegetation.
- Subsurface drainage layer to ensure stability of the revegetation layer and minimise infiltration.
- Geosynthetic barrier system that will minimise infiltration to as low as reasonably practicable and prevent 'bath tubbing' above the basal liner.
- Seal bearing layer to support the geosynthetic barrier layer.

Basal and sidewall liner profile (top to bottom):

- Compacted clay sidewall barrier progressively placed in lifts to minimise the horizontal migration of leachate out of the fill and seepage of groundwater into the fill.
- Geonet drainage geocomposite (or equivalent) to minimise damage of the basal liner barrier system and allow monitoring of leachate in the cells.
- Geosynthetic basal barrier layer to form a barrier between the placed fill and the groundwater, soil and substrata and minimise seepage to as low as reasonably practicable.
- Seal bearing layer to support the geosynthetic barrier layer.

Groundwater diversion system to promote groundwater movement down-gradient of the basal barrier layer.

2.2.3 Leachate levels

Numerical groundwater modelling was performed Martens and Associates (2021).

The modelling established that, taking into consideration groundwater inflow and outflow, infiltration from the cap and seepage through the liner, over the long term, leachate levels are expected to rise and equalise with the surrounding groundwater table level (approximately 1037.5 mAHD).

The basal drainage layer at the base of the quarry void would allow monitoring of leachate in the fill. Monitoring of leachate levels at the riser will be undertaken in accordance with the details provided in the Revised Water Resources Assessment (GHD 2021) to confirm that leachate is not accumulating/increasing within the quarry void creating a bathtub effect. As the site is being progressively capped and revegetated this issue will be able to be monitored during site operations.

2.2.4 Irrigation management

Contact water will result from runoff from active emplacement areas and minor quantities from any vehicle washdown. All contact water will be contained within the site or treated and discharged at background water quality conditions. Irrigation of contact water will only be applied within the contact water catchment.

Contact water will be contained by installation of diversion bunds and drained to the contact water storage. The accumulated contact water will be collected for irrigation within the emplacement area by:

- Tanker through application to the active placement area for dust suppression and moisture conditioning to achieve target compaction rates.
- Mobile sprinklers that will be located within the emplacement area outside of haulage routes.

The operation of the sprinklers will consider irrigation demand, wind speed and prevailing wind direction and elevation with the aim to prevent spray drift outside of the emplacement areas or exposure to workers. Irrigation activities will not take place during wet weather periods or during high wind speed condition depending on the elevation of the emplacement area. The mobile sprinklers will be sited within the emplacement area based on fill moisture monitoring by conductivity meter. The irrigation rate will be developed to minimise runoff, and to not exceed the capacity of the fill to absorb the contact water. A surface water and groundwater monitoring program will be implemented (refer Section 2.2.1 and 2.2.3) which will be designed to detect any migration of contact water from the site.

2.2.5 Water Treatment Plant operation

As part of the precautionary approach, the Supplementary EIS includes a contingency option for a water treatmen plant to be installed at the site if storage levels in the contact water pond reach 45% or if required to treat leachate. The following measures will be undertaken to identify inform whether the water treatment plant is required.

- Monthly monitoring of contact water levels from when 30% contact water storage capacity is reached
- Six months of contact water and leachate sampling and analysis for the analytes identified in table 4 of the
 water options technical memorandum (GHD 2021). Leachate levels in the contact water pond and quality will
 be monitored on a quarterly basis during operation.
- Review of the water balance assessment (detailed on the Revised Water Resources Assessment GHD 2021)
 based on contact water level monitoring to inform long-term management procedures for the site and adjust site operations to contain untreated contact water onsite, as required

If required, the water treatment plant will be located in the central portion of the site as shown in the staging plans. The general treatment process for the plant will involve:

- Pump system to transfer water from the contact water storage to the Plant.
- Contact water will be treated via reverse osmosis (RO) treatment process where the contaminants are removed by filtration.
- Pre-treatment filtration for RO membrane protection from any unexpected solids that pass through the RO treatment system.

- The filter membranes will be regularly maintained and replaced as required to prevent clogging.
- Associated instrumentation for control and operation of the system.
- Wastewater from the process will be returned to the lined emplacement for containment (refer Section 2.2.6)
 with treated water discharged to the downstream system.
- The treated discharge water will be tested for compliance with the target 80th percentile water quality data for the background water quality (Office of Environment and Heritage 2015).
- In the event the unit is required to be stopped due to no or low level in the storage pond, it is recommended that the membranes are flushed and kept hydrated even if the system itself is not operational for a period of days. If the plant is not operational for a period of weeks, the RO membranes will need to be preserved in a sodium bisulphate solution or similar.

Once the project commences, as more water quality data is obtained from the in-situ runoff, contact water and leachate and refinement of the water quality data occurs, further assessment will be undertaken to better inform subsequent design stages (if treatment is required).

Contingencies are available and achievable if additional water quality data indicates contact water or leachate water has higher contaminant concentrations than the RO system can treat to achieve the required limits. These include blending of clean water runoff with RO system feed water (contact water or a combination of contact and leachate water) or blending of treated water with RO feed water to aid in achieving treated water discharge limits.

2.2.6 Brine management

Concentrated brine will be generated as a by-product of the plant (should the plant be needed). The brine will be stabilised prior to on-site disposal by mixing with fill to maintain a closed circuit with the emplaced materials. The beneficial reuse of the brine waste will be explored to determine if a commercial solution is available and if it is it may be adopted.

The fill and brine will be mixed within a lined skip bin such that the resulting consistency is generally capable of being picked up by a spade or shovel. The brine will be pumped directly to the skip bin and fill blended in using an excavator. The mixing area will be bunded to contain any leaks or contact water runoff. The mixed batches will not be stored for extended periods of time. Alternatively, the brine may be pumped directly to the relevant stage and mixed and placed in situ.

The brine mix will be disposed of within the quarry void via the trench and fill method. The spadable material will be unloaded from the skip bin/s and covered immediately after placement. The quantity and disposal area location will be recorded in the waste placement mapping system. Disposal of stabilised brine will not take place during or immediately following wet weather to control the risk of runoff from the placement area.

2.3 Site management and safety

2.3.1 Site offices/amenities

A portable site office and amenities building will be established in the central portion of the site as shown in the staging plan (refer to Appendix A). The site office caters for staff requirements and single administration / first aid area and amenities area. The amenities area will be serviced with a pump-out sewerage system with the sewage to be disposed off-site.

2.3.2 Waste management

Limited waste is anticipated to be generated through undertaking the project as summarised in Table 2.5.

Table 2.5 Operational waste

Source Waste		Disposal/recycling		
Operation of the site office	General waste (such as food scraps, cans, glass bottles, plastic and paper containers, paper, cardboard, and other office wastes)	Appropriately licensed recycling facility or landfill facility		
On-site amenities	Wastewater	Licensed sewage treatment plant		
Imported fill	Any non-conforming waste	Appropriately licensed waste facility		
Water treatment plant	Brine RO filter cakes	Contained within the lined quarry void Possible off-site reuse		

2.3.3 Site access and fencing

Access to the quarry is via the Sandham Road from Bells Line of Road as shown in Figure 1.1. Sandham Road passes through the village of Bell and runs parallel to arterial road Chifley Road on the western side of the Main Western Railway Line and follows a north-western alignment to the access point to the quarry.

A new site access road has been included in the design to be developed during filling of the Stage 1. The existing fence line will be relocated to align with the updated boundary survey and the access road that transect the adjacent lot will be rehabilitated in accordance with the Vegetation Management Plan developed by Cumberland Ecology.

Temporary internal roads will be built on an ad hoc basis based on filling profile and decommissioned as filling progresses. The location, maintenance and management of temporary roads will be included in the relevant stage filling plan (refer Section 2.1.8).

2.3.4 Public safety

Site access will be restricted during rehabilitation works for safety reasons. There will be no general public or pedestrian access to the site.

2.4 Incident and complaints protocols

2.4.1 Incident reporting

All personnel shall report all environmental incidents to the Project Manager and complete an environmental incident report form. The Proponent may use internal Health, Safety and Environment (HSE) incident management systems for recording, investigation, and close-out of incidents. Examples of environmental incidents include the following:

- Fuel, oil and/or chemical spills.
- Fire and/or explosions.
- Unearthing of historical or Indigenous cultural heritage.
- Major erosion and sediment control failure.

The Proponent shall be responsible for investigating environmental incidents and maintaining records of actions taken. Where applicable, environmental incidents shall be reported to the relevant Regulatory Authority by the Proponent, or in accordance with relevant contractual obligations.

2.4.2 Complaints

Complaints represent an opportunity for improvement or enhancement of project environmental performance. All project complaints, including those from members of the public, stakeholder groups and regulatory authorities, shall be recorded by the Proponent. The Proponent may use internal management systems for investigating and responding to complaints in a timely manner.

As a minimum, a standardised Environmental Complaint Record Form will be created as part of the detailed design development to record all complaints and will include the contact details and requirements to notify the

relevant Regulatory Authority. The Project Manager shall be responsible for investigating and responding to complaints in a timely manner.

2.4.3 Non-conformance and preventative/corrective actions

Non-conformances managed by the Proponents CEMP shall include the following:

- An incident or near miss with potential or actual environmental impact.
- Complaints regarding project activities.
- Not meeting an objective or target or conformance testing criteria.
- Acceptance of non-conforming fill.
- Management review not being undertaken.

The Project Manager shall be responsible for identifying and implementing any preventative and/or corrective actions in response to any non-conformance. Preventative and correction actions shall be incorporated into the Proponents CEMP as required.

2.5 Traffic management

2.5.1 Vehicle movements

The traffic and truck haulage routes will be consistent with that presented in the EIS.

Table 2.6 Predicted peak hour traffic generation

Traffic Scenario	Light Vehicles (veh/h)		Heavy Vehicles (veh/h)		Total vehicles (veh/h)	
	Inbound	Outbound	Inbound	Outbound	Inbound	Outbound
Average Haulage	2	2	2	2	4	4
Worst Case Haulage	2	2	4	4	6	6

2.5.2 Adherence to Traffic Management Plan

A detailed Traffic Management Plan (TMP) will be prepared by the Proponent prior to site establishment. The TMP will include the following:

- Traffic control measures on the access road to allow single lane entry/exit procedures (such as traffic lights)
- Traffic control measures in works areas
- Restrictions on the delivery of heavy plant and materials to site during peak traffic periods
- Appropriate entry/exit points for proposed compound area(s)
- Advising motorists of the change in traffic conditions associated with the work.

The applicant is committed to develop a driver code of conduct as part of a Traffic Management Plan for the Project, to guide transport operations on all public roads including Sandham Road. This will include specific requirements such as limiting the speed limit to 40 km/hr for all trucks on Sandham Road and incorporate a haulage route complaint management system.

2.6 Site facilities

2.6.1 Equipment and fuel storage

Plant, equipment and fuel will be stored at the designated plant parking and refuelling area located on the eastern side on the site adjacent to a portable site office/amenities building. Appropriate bunding will be installed to manage any runoff from this area. A refuelling procedure will be prepared to manage potential spills and leaks.

2.6.2 Loading/unloading

Plant and equipment loading and unloading will occur at the designated loading area located near the on-site parking area. Sufficient area will be allowed for heavy vehicle to enter and exit in a forward motion.

2.7 Noise and vibration

A detailed Noise and Vibration Management Plan (NVMP) will be prepared by the Proponent prior to site establishment commencing. The NVMP will describe the methods that will be implemented for each work phase to minimise noise and vibration impacts and will identify any noise monitoring requirements as part of the works.

Environmental management measures identified in Section 3.1 will be implemented to comply with project noise trigger levels identified in the EIS (GHD 2018) (refer Table 2.7).

Table 2.7 Project noise trigger levels – residential noise receivers, dBa

Criteria LAeg(15min)	Residential receivers				
	Day	Evening	Night		
Intrusiveness noise level	40	35	35		
Project amenity noise level (rural)	48	43	38		
Project noise trigger levels	40	35	35		

Notes

The Noise Policy for Industry (NPI) defines Day as 7 am to 6 pm Monday to Friday and 8 am to 1 pm Sunday and Public Holidays, Evening 6pm to 10 pm and Night as the remaining periods.

In accordance with the NPI, the minimum assumed Rating Background Level (RBL) during the daytime is 35 dBA and 30 dBA for the evening and night periods (measured background noise levels are lower than these RBLs) Noise from the site is to be measured at the most affected point within the residential boundary, or at the most affected point within 30 metres of the dwelling where the dwelling is more than 30 metres from the boundary, to determine compliance with the project noise trigger levels, except where otherwise specified below.

The Blue Mountains National Park area directly to the south and east of the site is classified as a passive recreation area with a recommended amenity noise level of LAeq 50 dB (when in use). However, the national park area to the south and east of the site is not easily accessible by the public.

2.8 Air quality

During site establishment and operation, daily monitoring of climate conditions will be undertaken to inform dust mitigation measures. Inspections will be carried out during emplacement activities to detect any visible dust plumes. Visual monitoring on Sandham Road will be undertaken to observe as visible plumes from heavy vehicles travelling towards sensitive receivers (R18 and R28). Dust suppression mitigation measures as described in Section 3.2 will be implemented to comply with EIS impact assessment criteria (GHD 2018) shown in Table 2.8.

Table 2.8 Air quality impact assessment criteria

	Averaging period	Concentration (µg/m³)
Total suspended particulates	Annual	90
PM10	24 hours	50
	Annual	25
PM2.5	24 hours	25
	Annual	8
Dust deposition	Annual	2 g/m²/month

2.9 Vegetation

Implementation of the Vegetation Management Plan (VMP), Supplementary Ecological Information (SEI) and Ecological Monitoring Plan (EcMP) (Cumberland Ecology, 2021) will be undertaken in accordance with their monitoring and reporting requirements.

3. Environmental management plan

Environmental mitigation, management measures and monitoring requirements that will be undertaken during site establishment and operation of the project are detailed in this section.

3.1 Noise and vibration

A NVMP will be developed in accordance with Table 3.1 below.

Table 3.1 Noise CEMP

Table 3.1 Noise CE	IMP		
Environmental aspect	Noise		
Objective	To minimise noise impac area	To minimise noise impacts to nearby receivers and preserve the noise amenity of the surrounding area	
Issue	Risk	Mitigation and management measures	
Noise generated during rehabilitation works	Excessive noise Noise disturbance and impact to nearby residences	 A detailed NVMP will be prepared by the Proponent prior to site [The NVMP will describe the methods that will be implemented for each work phase to minimise noise and vibration impacts and track compliance against project specific trigger levels developed in accordance with relevant EPA Guidelines as outlines in the EIS. The following measures will be adopted in the plan All activities on site should be confined between the hours: daytime 	
		hours of 7:00 am to 6:00 pm from Monday to Friday and 7:00 am to 1:00 pm on Saturday, with the exception of site preparation works between 6:00 am and 7:00 am Monday to Saturday. Haul trucks should not arrive on site (or depart) before 7:00 am.	
		 Site preparation works should not occur between the hours of 6:00 pm and 6:00 am. 	
		 All personnel on site should be made aware of the potential for noise impacts and should aim to minimise impact or elevated noise levels, where possible. 	
		 Regular identification of noisy activities and adoption of improvement techniques. 	
		 Minimise the need for vehicle reversing. 	
		 All employees, contractors and sub-contractors will receive an environmental induction. 	
		The following measures will be implemented to reduce noise at source:	
		Substitution:	
		 Where reasonably practicable, noisy plant will be replaced by less noisy alternatives 	
		Modification of equipment:	
		 All engine covers will be kept closed while equipment is operating 	
		 Plant and vehicles will be kept properly serviced and fitted with appropriate mufflers and silencers, where applicable 	
		The use of exhaust brakes will be eliminated, where practical	
		 Where practical, plant operating on site will be fitted with broadband reversing alarms. 	
		Acoustic enclosures will be provided for suitable equipment	
		Use and siting of plant	
		Plant used intermittently will be throttled down or shut off	
		Regular and effective maintenance:	
		 Regular inspection and maintenance of equipment to ensure it is in good working order and checking the condition of mufflers 	

Environmental aspect	Noise	
	Ensure air lines on pneumatic equipment do not leak	
	 All trucks entering and exiting the quarry should keep at or below 40 km/hr for haulage on Sandham Road. 	r
	 Machines found to produce excessive noise compared to industry best practice should be removed from the site or s down until repairs or modifications can be made. 	stood
	 Vehicles should be kept properly serviced and fitted with appropriate mufflers. The use of exhaust brakes should be eliminated, where practicable. 	•

3.2 Air quality

Air quality will be managed in accordance with Table 3.2 below.

Table 3.2 Air Quality CEMP

rable 3.2 All Quality		
Environmental aspect	Air quality	
Objective	To minimise air quality (dust) impacts to nearby receptors	
Issue	Risk	Mitigation and management measures
Dust generated during rehabilitation works	Dust impacts to nearby receptors	 Where appropriate, fill will be watered prior to it being loaded for on-site haulage, loads will be covered, and placed fill will be kept moist via irrigation/water trucks. The size of stockpiles and storage piles will be minimised where possible. Cleared areas will be monitored and dust suppression (watering, vegetation) will be used when adverse conditions prevail. Cleared areas of land will be limited where practicable and only cleared when necessary to reduce fugitive dust emissions. On-site traffic will be controlled by designating specific routes for haulage and access and limiting vehicle speeds to below 25 km/h. All trucks hauling fill should be covered before entering the public road network and should maintain a reasonable amount of vertical space between the top of the load and top of the trailer. Operations conducted in areas of low moisture content fill will be suspended during high wind speed events or contact water sprays will be used. Rock saws will be equipped with in built wet control systems that reduce dust generation to negligible levels. These wet control systems will be used during all rock sawing activities. Water will be applied to exposed surfaces that are causing dust generation. Surfaces may include unpaved roads, stockpiles, hardstand areas and other exposed surfaces (for example recently covered areas). Vehicles must travel at appropriate speeds to limit dust generation. Fill spillage on sealed roads should be cleaned up as soon as practicable. These measures will assist in reducing impact on all areas off-site.
Dust generated during rehabilitation works impacting Sandham road	Dust impacts to nearby receptors	 Dust dispersion modelling identified haul trucks operating on unsealed surfaces are a significant source of dust. In order to control potential dust impacts from Sandham Road, and to meet the project criteria, Level 1 (2L/m2/hr) water spraying should be undertaken on Sandham Road whenever visible plumes of dust are observed to be blowing towards nearby receivers (specifically R18 and R28). This should be undertaken during daytime weather conditions that assist dust dispersion (dry and windy). Traffic on Sandham road will be controlled by limiting vehicle speeds to

3.3 Water Resources

A site specific Water Management Plan will be developed consistent with the detailed management, monitoring requirements specified in the Revised Water Resources Assessment (GHD, 2021).

The conceptual details for developing this plan are predominantly based on the staging plans and to ensure that it is tailored for the site it will also be developed around the conditions of consent and the detailed design for the construction (including dewatering of the voids) and material emplacement works. Particular sections that apply from the Revised Water Resources Assessment (GHD, 2021) include sections 5.6, 5.7, 6.5.5, 6.5.6 and 6.5.7.

3.4 Biodiversity

A VMP, SEI and EcMP (Cumberland Ecology, 2021) has been developed for the project.

In addition to the requirements contained in the VMP, SEI and EcMP biodiversity at the site will be managed in accordance with Table 3.3 below.

Table 3.3 Biodiversity CEMP

Environmental aspect	Biodiversity	
Objective	To protect flora and	fauna biodiversity surrounding and within the project site
Issue	Risk	Mitigation and management measures
Clearing of vegetation	Removal of habitat resources and degradation of landscape Disruption and damage to natural habitats Pollution of land	 Disturbance of vegetation will be limited to the minimum necessary to construct the project. Where the project area adjoins native vegetation, mark the limits of clearing and install temporary protective fencing around the vegetated area prior to site establishment to prevent vegetation and habitat removal. All water quality risks associated with disturbance of vegetation is to be managed in accordance with the water management strategy of the Revised Water Resources Assessment. Erosion and sediment control measures will be established prior to site establishment. Erosion and sediment control measures will be regularly inspected, particularly following rainfall events, to ensure their ongoing functionality. Stabilised surfaces will be reinstated as quickly as practicable after works per the proposed staging plan. All stockpiled material should be stored in sediment fenced areas and kept away from waterways to avoid sediment entering the waterway. Stockpiles of fill or vegetation should be placed within existing cleared areas (and not within areas of adjoining native vegetation). Measures to suppress dust would be put in place during site establishment and operation. Vehicles must be appropriately washed prior to work on site to prevent the potential spread of Cinnamon Fungus (Phytophthora cinnamomi) and Myrtle Rust (Pucciniales fungi) in accordance with the national best practic guidelines for Phytophthora (DEH, 2006) and the Myrtle Rust factsheet (DPI 2011) for hygiene control.
Impacts on flora and fauna	Further endanger threated flora and fauna Loss of native species Degrade water quality and thus endanger aquatic habitats	 All workers will be provided with an environmental induction prior to startin work in the project area. This will include information on the ecological values of the study area, protection measures to be implemented to protect biodiversity and penalties for breaches. A Flora and Fauna Management Plan will be prepared for the project, incorporating recommendations below, and expanding where necessary. Equipment storage and stockpiling of resources will be limited to designated areas. A trained ecologist will be present during the clearing of native vegetation removal of potential fauna habitat to avoid impacts on resident fauna and the salvage habitat resources as far as is practicable. Clearing surveys should include:

Environmental aspect	Biodiversity	
		 Any hollow-bearing trees to be felled should be marked prior to clearing of vegetation. The removal of hollow bearing trees is to be undertaken in accordance with a hollow-bearing tree management protocol and would include the presence of a qualified ecologist or wildlife expert experienced in the rescue of fauna. Habitat features (fallen logs and tree hollows) removed from site would
		 be salvaged and relocated within adjacent areas of vegetation. Inspections of native vegetation for resident fauna and/or nests or other signs of fauna occupancy.
		Deferral of vegetation removal and associated activity in areas occupied by more mobile threatened fauna until the fauna has vacated the Project footprint.
		 Water should be applied to exposed surfaces that are causing dust generation. Surfaces may include unpaved roads, stockpiles, hardstand areas and other exposed surfaces (for example recently graded areas). Vehicles must follow appropriate speeds to limit dust generation.
		Spill kits would be made available to site vehicles. A management protocol for accidental spills would be put in place.
Introduction of foreign species	Foreign species (weeds) impact existing biodiversity	 Weed management actions were developed (as part of the EcMP) to manage weeds during the site establishment and operations phase of the project. This included the management and disposal of the weeds that were recorded within the project area including the priority weeds listed in section 11.2.2 of the EIS (GHD, 2019) in accordance with the Biosecurity Act.
		Vehicles and other equipment to be used within the impact area will be cleaned to minimise seeds and plant material entering the site to prevent the introduction of further exotic plant species or disease.
		 Protocols to prevent introduction or spread of chytrid fungus will be implemented (as part of the EcMP following OEH Hygiene protocol for the control of disease in frogs (NSW Department of Environment and Climate Change, 2008).
		No fill is to be imported from areas known to contain Phytophthora, Myrtle Rust or Chytrid fungus
		 Samples of fill from each source location will be tested for pathogens at the point of origin, [and results received prior to transporting to Bell Quarry. In the event that a positive result is returned, the fill will not be imported to the site
		A baseline study of pathogens at the site should be conducted and an ongoing monitoring and review program established.
		 Incorporate control measures in the design of the Project to limit the spread of weed propagules downstream of study area. Wheel washes, cattle grates and sediment control devices, such as silt fences, will be included to assist in reducing the potential for spreading weeds.
		 Exposed soil should be sown with native seed immediately to prevent colonisation by weeds.
		 Locally endemic species typical for the area should be used for rehabilitation.
		 Ongoing management of priority weeds according to legislative requirements.
		 Ongoing management of environmental weeds according to best practice methods.
		Monitoring of rehabilitation outcomes.

3.5 Traffic and transport

A Traffic Management Plan will be prepared by the Proponent in accordance with Table 3.4 below.

Table 3.4 Traffic and transport CEMP

Environmental aspect	Traffic and transport	
Objective	To manage traffic to protect site	worker and road user safety
Issue	Risk	Mitigation and management measures
Additional vehicle movements	Project leads to overcrowding local roadways and disruption to local road users Unsafe traffic conditions	Contribution through a Voluntary Planning Agreement to fund road upgrade works as outlined in Attachment 1 of the Traffic Statement prepared by Stantec (2021) that includes widening of Sandham Road near Old Bells Line of Road by around 2 metres to allow for effective sealed road width of 7 metres. A detailed Traffic Management Plan (TMP) will be prepared by the Proponent and approved by prior
		to site establishment. The TMP will include the following:
		 Traffic control measures in works areas.
		 Restrictions on the delivery of heavy plant and materials to site during peak traffic periods.
		Appropriate entry/exit points for the proposed compound area(s).
		Advising residents and motorists of the change in traffic conditions associated with the work.
		Only existing roads and access roads will be utilised.
		 All traffic control devices will be in accordance with AS 1742.3-2009 – Manual of uniform traffic control devices: traffic control for works on roads and Roads and Maritime Traffic control at worksites manual.
		 A maximum of 37 heavy vehicles per day (74 movements to and from site) will be permitted to haul fill to the site.
		 Minor pruning of trees along the northern side of Bells Line of Road
Interaction between vehicles and public	Risk to pedestrians	 Appropriate exclusion barriers, signage and site supervision to ensure that the site is controlled and that unauthorised vehicles and pedestrians are excluded from the works area.
		The community will be kept informed about the project through advertisements in the local media, notices and/or signs.
		 A heavy vehicle speed limit of 40 km/hour will be adopted for all trucks utilising Sandham Road.
		 Heavy vehicles will have a maximum capacity of 42.5 tonnes.
		 All trucks hauling fill should be covered before entering the public road network and should maintain a reasonable amount of vertical space between the top of the load and top of the trailer.

3.6 Land resources and contamination

Land resources and contamination will be managed as per Table 3.5 below.

Table 3.5 Land resources and contamination

Environmental aspect	Land resources and co	ntamination	
Objective	To minimise the effects of erosion and spread of contamination		
Issue	Risk	Mitigation and management measures	
Erosion control	Excessive erosion	Soil and Water Management Plan which includes erosion and sediment control plans (as discussed in Section 10.4 of the EIS (GHD, 2018) will be prepared by the Proponent prior to commencing work.	
		This plan will be developed for each stage of the works and address the principles for water management detailed in the Revised Water Resources Assessment (GHD 2021). To ensure that it is tailored for the site it will also be developed around the conditions of consent and the detailed design for the construction (including dewatering of the voids) and material emplacement works. Relevant sections from the Revised Water Resources Assessment (GHD 2021) include sections 5.3. 5.6 and 5.7.	
Contamination control	Spread of contamination and hazardous materials Impact to the environment from contamination Exposure of site personnel to hazardous material	Procedures to manage potential contaminants of concern and/or hazardous materials to be used during the project will be developed Potentially contaminated areas directly affected by the project will be managed in accordance with the requirements of the Contaminated Lands Management Act (NSW Government, 2020a) and Contaminated Land Guidelines: Consultants reporting on contaminated land (NSW EPA, 2020).	
Contamination control	Acceptance of non- conforming fill	Incoming fill audits will be undertaken for every 50,000 tonnes of fill placed at the site. The audit will include review of: - VENM/ENM certification records. - Visual inspection of incoming fill.	
		 Representative sampling, testing and recording of import material per the requirements of the excavated natural material order and exemption 2014 (NSW EPA, 2014b). 	
		 Following the requirements of any specific resource recovery order and exemption sought and issued by the EPA for material that may be received at the site. 	
Vehicle refuelling	Fuel spills and leaks contaminate land	A refuelling procedure would be developed by the Proponent. This would include procedures to address spills and leaks from refuelling.	

3.7 Waste management

A Waste Management Plan will be prepared by the Proponent in accordance with Table 3.6 below.

Table 3.6 Waste management CEMP

Environmental aspect	Waste management		
Objective	To manage waste generated on site		
Issue	Risk	Mitigation and management measures	
Waste generation, handling, recovery, storage and disposal	Production of unnecessary waste Inappropriate disposal of site generated waste	A Waste Management Plan will be prepared by the Proponent and included as part of the project. The plan will include procedures for the management of wastes in accordance with relevant NSW legislation and the principles of the waste management hierarchy set out in the NSW Waste Avoidance and Resource Recovery Strategy 2014-21 (EPA 2014a).	
		The plan will be developed in accordance with:	
		 The NSW EPA (2014c) 'Waste Classification Guidelines' 	
		 Relevant regulatory requirements of the Waste Avoidance and Resource Recovery Act 2001 (NSW Government, 2001). 	
		 Relevant regulatory requirements of the Protection of the Environment Operations Act 1997 (NSW Government, 2021d). 	
		 NSW EPA Environmental Guidelines – Solid waste landfills (Second edition, 2016) (NSW EPA, 2016). 	
		Cleared vegetation will be shredded and mulched and used for soil manufacture or reused on site where practicable. Care will be taken to ensure any onsite reuse would not spread weeds.	
		General waste from site personnel will be temporarily stored in mobile skip bins or wheelie bins on the site before being collected for offsite recycling or disposal. Recyclable waste such as containers, paper and cardboard etc would be collected separately to facilitate offsite recycling.	
		Wastewater and sewage from site offices/amenities will be appropriately stored and regularly transported off site for disposal at a licensed facility.	
		Concentrated brine, developed as a by-product of the Plant, will be managed in accordance with Section 2.2.6. It will be stabilised prior to on-site disposal by mixing with fill material. The brine will be disposed of within the quarry void via the trench and fill method.	
Beneficial reuse of waste	Non compliance with VENM/ENM acceptance criteria or other relevant resource recovery orders/exemptions that applies to the site	At the time the fill (VENM) is received at the premises, it must be classified as VENM (for guidance see <u>Virgin excavated natural material (nsw.gov.au)</u>). ENM must meet all the chemical and other material requirements (via stringent sampling and testing) for excavated natural material which are required before the supply of fill under 'the excavated natural material order 2014'.	
	applies to alle sits	 Any comparable material will be required to obtain a specific resource recovery order and exemption from the EPA by demonstrating that it poses minimal risk of harm to the environmen or human health and address any other criteria stipulated by the EPA. The comparable material would need to meet the specific resource recover order before being transported to the site. 	
		 The consumer (Bell Quarry Rehabilitation Pty Ltd) must keep a written record of the following for a period of six years: 	
		The quantity of any excavated natural material received; and	
		 The name and address of the supplier of the excavated natural material received. 	
		 The consumer must make any records required to be kept under this exemption available to authorised officers of the EPA on request. 	

Environmental aspect	Waste management	
		 The consumer must ensure that any application of excavated natural material to land must occur within a reasonable period of time after its receipt.
		 Written records will be maintained in accordance with the requirements of the ENM exemption and applied as fill within the existing quarry voids.
		 All testing of samples will be undertaken by analytical laboratories accredited by the National Association of Testing Authorities (NATA) or equivalent and undertaken in accordance with the test methods in the ENM order.
		The generator of ENM must keep a written record of the following for a period of six years:
		The sampling plan required to be prepared under clause 4.1.1
		 All characterisation sampling results in relation to the excavated natural material supplied
		The volume of detected hotspot material and the location
		The quantity of the excavated natural material supplied
		 The name and address of each person to whom the generator supplied the excavated natural material
		 Fill will be transferred to site at a maximum rate of 140,000 tpa, using truck and trailer combinations of up to 42.5 tonne capacity. Haulage vehicles will enter the site and place material directly within the active rehabilitation cell for each stage of the development.

3.8 Visual

Visual impacts will be managed as per Table 3.7 below.

Table 3.7 Visual CEMP

Environmental aspect	Visual		
Objective	To preserve the visual amenity of the site during site establishment and operations		
Issue	Risk	Mitigation and management measures	
Rehabilitation activities including land clearing and reshaping	Changes to landscape character within the proposed works areas Damage to visual amenity of the site	 Earthwork activities will be limited to standard hours. Screening vegetation will be maintained where practicable. Community updates and newsletters will be provided to nearby properties. Revegetation will be undertaken consistent with the objectives of the VMP and SEI as soon as practical after earthworks have been completed. Maintenance of visual buffers currently in place around pit boundaries. Revegetation with plant species representative of native vegetation in the local area to integrate with the surrounding landscape so that the site becomes sympathetic with the adjoining Blue Mountains National Park. 	

3.9 Bushfire management

Bushfires will be managed as per Table 3.8 below.

Table 3.8 Bushfire management CEMP

Environmental aspect	Visual			
Objective	To manage the risk of bushfire at the site			
Issue	Risk	Mitigation and management measures		
Naturally occurring bushfires	Risks to onsite workers	 From the commencement of rehabilitation until completion of the project, the administration building shall incorporate a 20m APZ, including an Inner Protection Area and Outer Protection Area, in accordance with the dimensions identified in Table A2.5 in Appendix 2 of PBP, and the NSW RFS document 'Standards for asset protection zones'. 		
		The IPA should provide a tree canopy cover of less than 15% and should be located greater than 2 m from any part of the roofline of a dwelling. Garden beds of shrubs are not to be located under trees and should be no closer than 10 m from a exposed window of door. Trees should have lower limbs removed up to a height of 2 metres above ground.		
		 An OPA should provide a tree canopy cover of less than 30% and should have understorey managed (mowed) to treat all shrubs and grasses on an annual basis in advance of the fire season (usually September). 		
		 For the administration building, a dedicated firefighting water supply must be: 		
		 Provided at 10,000 litre capacity. 		
		 Located within the IPA (but away from the structure). 		
		 Fitted with a 65mm Storz outlet (and gate or ball valve fitted). 		
		 Manufactured of concrete or metal (for above ground tanks), with shielding where located on the hazard side of the building. 		
		 With associated external piping and taps made of metal. 		
		 Where located, underground tanks must have an access hole of 200 mm to allow tankers to direct fill from the tank, and a hardened ground surface for truck access within four metres the hole. 		
		 Electricity will be supplied via underground or overhead power lines with 30 m pole spacing and in accordance with Energy Australia specifications (NS179, 2002) (Ausgrid, 2020) and maintained according to National distribution network standards. 		
		 Bottle gas supplies, where installed, will be in accordance wit AS/NZS 1596 (2014). 		
		 An emergency evacuation plan is to be prepared as a condition of consent to cover the site establishment and operation of the site. 		
		 The National Construction Code does not provide for any bus fire specific performance requirements for Class 5 to 8 buildings and therefore they do not apply to the development 		

4. Closure

4.1 Final capping

Final capping will be installed progressively on areas as they reach final surface levels as outlined in Table 2.1. The final cap will be a minimum of 600 mm thick and comprise a suitable thickness of site won material. The material will be sourced from on site where possible or imported from local sources to have a similar geochemistry to the surrounding landscape.

The final landform is to be revegetated in accordance with the requirements of the SEI (Cumberland, 2021). The final landform will have a typical slope of 9-25% to facilitate runoff of surface water and prevent ponding of water over the surface of the final cap.

4.2 Progressive Closure Plan

The concept design provides for progressive closure of the site during operation as fill reaches the final design height. A Progressive Closure Plan (PCP) will be developed as part of detailed design and will detail the steps to be taken to progressively close and stabilise the final landform. The PCP will address:

- the materials to be used and the construction quality assurance plan for the final capping,
- the requirements and timeframe for ongoing closure management and monitoring measures.
- the requirements and timeframe for post-closure management, maintenance, and monitoring measures (refer Section 4.2.4).
- be consistent with all applicable conditions of the development consent or other planning approvals that apply to the premises.

4.2.1 Environmental management

Ongoing management of the rehabilitated areas will be undertaken by the proponent following establishment of the final capping. This would consist primarily of ongoing monitoring and maintenance should it be required.

The proponent will ensure that all stormwater controls and reporting practices are maintained at the same level employed during the operational phase. These environmental management measures will continue until the proponent can demonstrate that the site does not pose a threat to the environment.

The proponent will ensure that fill is not received for disposal at the site after operations cease. Any materials that are intended for use in the rehabilitation will be documented and reported.

4.2.2 Environmental monitoring

The Proponent will review the operational monitoring programs and reporting practices as used throughout the operation of the site. Based on this review, the Proponent will implement a modified monitoring program.

Monitoring will continue until the Proponent is able to demonstrate that the fill no longer has the potential to negatively impact on the environment. The proponent will ensure that all neighbouring residents are advised of contact persons to report any problems. Any complaints that are received will be recorded in the complaints register.

4.2.3 Maintenance

The Proponent will undertake regular maintenance of the final rehabilitated surface to maintain its integrity. This will include the following:

- Monitoring of surface water drains, and undertaking repairs as required.
- Filling of any cracks or slippages that may occur in the rehabilitated surface.
- Filling of depressions created by settlement of the fill (to ensure shedding of surface water runoff).
- Replacement of vegetation, if necessary, to maintain the denseness of the vegetation cover.

Repairing erosion scours.

The above activities will continue until the fill has stabilised.

4.2.4 Post closure management, maintenance, and monitoring

Prior to final closure of the site the PCP will be reviewed and a Post Closure Management and Monitoring Plan (PCMMP) will be developed. The PCMMP will address site specific conditions and environmental performance at the time of closure. The PCMMP will include environmental management, monitoring and maintenance measures required during the post closure period including:

- Visual inspections for cap integrity
- Sampling and testing of surface water
- Sampling and testing of groundwater
- Sampling and testing of leachate
- Visual inspections of established vegetation and management of priority weeds

The frequency and duration of post closure monitoring and maintenance will be subject to the observed trends in monitoring data.

5. Implementing the EMP

5.1 Roles and responsibilities

The roles and responsibilities of the following key participants in the Project are outlined below:

- The Proponent.
- Project Manager.
- Environmental manager.
- Site personnel.

Table 5.1 Roles and responsibilities

and Environmental training to enable staff to safely undertake their work activities and ensure environmental impacts are managed. Ensure staff comply with all relevant environmental guidelines. Keep a register of all environmental accidents, incidents, non-conformances and complaints. Carry out environmental audits, inspections and monitoring to verify compliance with the EM Undertake complaint investigations and report complaint investigation findings to the Relevan Authority. Correct all non-conformances to the satisfaction of Council in the timeframe specified by the Relevant Authority. Report on the implementation and effectiveness of corrective actions specified by the Relevant Authority or implemented to ensure correction of non-compliances. Provide monitoring and reporting to the Relevant Authority on all activities on site as required the EMP. Communicate project need and objectives with the public and residents. Notify the public in advance of any activities likely to impact their amenity (e.g., high noise generating works that are likely to exceed noise criteria). Project Manager A Project Manager will be appointed to oversee all operational requirements and adherence to conditions. The Project Manager will be responsible for incident and complaint management, and remedial actions. Environmental Manager is responsible for overseeing the environmental management of the project and supervision of environmental services. The Environmental management of the project and supervision of environmental services. The Environmental management of the project and supervision of environmental services. The Environmental management of the project and supervision of environmental services. The Environmental management of consent and compliance with such matters De responsible for considering and advising on matters specified in the conditions of consent and compliance with such matters Oversee the receipt and response to complaints about the environmental performance of the project Facilitate an introdu	Table 5.1 Roles	and responsibilities
outcomes identified in this outline EMP. Carry out rehabilitation works in accordance with the requirements of the EMP. Review the EMP periodically during rehabilitation works and update as necessary. Make all staff aware of the requirements of the EMP and provide the required Health, Safety and Environmental training to enable staff to safely undertake their work activities and ensure environmental impacts are managed. Ensure staff comply with all relevant environmental guidelines. Keep a register of all environmental accidents, incidents, non-conformances and complaints. Carry out environmental audits, inspections and monitoring to verify compliance with the EM Undertake complaint investigations and report complaint investigation findings to the Relevan Authority. Correct all non-conformances to the satisfaction of Council in the timeframe specified by the Relevant Authority or the implementation and effectiveness of corrective actions specified by the Relevan Authority or implemented to ensure correction of non-compliances. Provide monitoring and reporting to the Relevant Authority on all activities on site as required the EMP. Communicate project need and objectives with the public and residents. Notify the public in advance of any activities likely to impact their amenity (e.g., high noise generating works that are likely to exceed noise criteria). Project Manager A Project Manager will be appointed to oversee all operational requirements and adherence to conditions. The Project Manager will be responsible for incident and complaint management, and remedial actions. The Environmental Manager is responsible for overseeing the environmental management, and remedial actions. Be responsible for the presentation or certification of all EMP's and procedures Be responsible for considering and advising on matters specified in the conditions of consent and compliance with such matters Oversee the receipt and response to complaints about the environmental performance of the project Facilitate an intr	Title	Role
Review the EMP periodically during rehabilitation works and update as necessary. Make all staff aware of the requirements of the EMP and provide the required Health, Safety and Environmental training to enable staff to safely undertake their work activities and ensure environmental impacts are managed. Ensure staff comply with all relevant environmental guidelines. Keep a register of all environmental accidents, incidents, non-conformances and complaints. Carry out environmental audits, inspections and monitoring to verify compliance with the EMP. Undertake complaint investigations and report complaint investigation findings to the Releval Authority. Correct all non-conformances to the satisfaction of Council in the timeframe specified by the Relevant Authority or implementation and effectiveness of corrective actions specified by the Relevant Authority or implemented to ensure correction of non-compliances. Provide monitoring and reporting to the Relevant Authority on all activities on site as required the EMP. Communicate project need and objectives with the public and residents. Notify the public in advance of any activities likely to impact their amenity (e.g., high noise generating works that are likely to exceed noise criteria). Project Manager A Project Manager will be appointed to oversee all operational requirements and adherence to conditions. The Project Manager will be responsible for incident and complaint management, and remedial actions. Environmental Manager is responsible for overseeing the environmental management of the project and supervision of environmental services. The Environmental management of the project and supervision of environmental services. The Environmental management of the project and supervision of environmental services. The Environmental management of the project and supervision of environmental services. The Environmental performance of the project Be responsible for considering and advising on matters specified in the conditions of consent and compliance wi	The Proponent	 Develop a detailed EMP that is consistent with, and no less stringent than, the intended outcomes identified in this outline EMP.
Make all staff aware of the requirements of the EMP and provide the required Health, Safety and Environmental training to enable staff to safely undertake their work activities and ensure environmental impacts are managed. Ensure staff comply with all relevant environmental guidelines. Keep a register of all environmental accidents, incidents, non-conformances and complaints. Carry out environmental audits, inspections and monitoring to verify compliance with the EM Undertake complaint investigations and report complaint investigation findings to the Releval Authority. Correct all non-conformances to the satisfaction of Council in the timeframe specified by the Relevant Authority or implementation and effectiveness of corrective actions specified by the Relevant Authority or implemented to ensure correction of non-compliances. Provide monitoring and reporting to the Relevant Authority on all activities on site as required the EMP. Communicate project need and objectives with the public and residents. Notify the public in advance of any activities likely to impact their amenity (e.g., high noise generating works that are likely to exceed noise criteria). Project Manager A Project Manager will be appointed to oversee all operational requirements and adherence to conditions. The Project Manager will be responsible for incident and complaint management, and remedial actions. Environmental Manager is responsible for overseeing the environmental management of the project and supervision of environmental services. The Environmental manager has the authority stop work if an adverse impact on the environment has occurred or is likely to occur. The Environmental Manager will: Be responsible for the presentation or certification of all EMP's and procedures		 Carry out rehabilitation works in accordance with the requirements of the EMP.
and Environmental training to enable staff to safely undertake their work activities and ensure environmental impacts are managed. Ensure staff comply with all relevant environmental guidelines. Keep a register of all environmental accidents, incidents, non-conformances and complaints. Carry out environmental audits, inspections and monitoring to verify compliance with the EM Undertake complaint investigations and report complaint investigation findings to the Relevan Authority. Correct all non-conformances to the satisfaction of Council in the timeframe specified by the Relevant Authority. Report on the implementation and effectiveness of corrective actions specified by the Relevant Authority or implemented to ensure correction of non-compliances. Provide monitoring and reporting to the Relevant Authority on all activities on site as required the EMP. Communicate project need and objectives with the public and residents. Notify the public in advance of any activities likely to impact their amenity (e.g., high noise generating works that are likely to exceed noise criteria). Project Manager A Project Manager will be appointed to oversee all operational requirements and adherence to conditions. The Project Manager will be responsible for incident and complaint management, and remedial actions. Environmental Manager The Environmental Manager is responsible for overseeing the environmental management of the project and supervision of environmental services. The Environmental manager has the authority stop work if an adverse impact on the environment has occurred or is likely to occur. The Environmental Manager will: Be responsible for the presentation or certification of all EMP's and procedures Be responsible for the presentation or certification of all EMP's and procedures Be responsible for considering and advising on matters specified in the conditions of consent and compliance with such matters Oversee the receipt and response to complaints about the environmental performance of the project		 Review the EMP periodically during rehabilitation works and update as necessary.
Keep a register of all environmental accidents, incidents, non-conformances and complaints. Carry out environmental audits, inspections and monitoring to verify compliance with the EM Undertake complaint investigations and report complaint investigation findings to the Releval Authority. Correct all non-conformances to the satisfaction of Council in the timeframe specified by the Relevant Authority. Report on the implementation and effectiveness of corrective actions specified by the Relevan Authority or implemented to ensure correction of non-compliances. Provide monitoring and reporting to the Relevant Authority on all activities on site as required the EMP. Communicate project need and objectives with the public and residents. Notify the public in advance of any activities likely to impact their amenity (e.g., high noise generating works that are likely to exceed noise criteria). A Project Manager will be appointed to oversee all operational requirements and adherence to conditions. The Project Manager will be responsible for incident and complaint management, and remedial actions. Environmental Manager is responsible for overseeing the environmental management of the project and supervision of environmental services. The Environmental manager has the authority stop work if an adverse impact on the environment has occurred or is likely to occur. The Environmental Manager will: Be responsible for the presentation or certification of all EMP's and procedures Be responsible for considering and advising on matters specified in the conditions of consent and compliance with such matters Oversee the receipt and response to complaints about the environmental performance of the project Facilitate an introduction and environmental compliance training program for all persons		 Make all staff aware of the requirements of the EMP and provide the required Health, Safety and Environmental training to enable staff to safely undertake their work activities and ensure environmental impacts are managed.
Carry out environmental audits, inspections and monitoring to verify compliance with the EM Undertake complaint investigations and report complaint investigation findings to the Releval Authority. Correct all non-conformances to the satisfaction of Council in the timeframe specified by the Relevant Authority. Report on the implementation and effectiveness of corrective actions specified by the Releval Authority or implemented to ensure correction of non-compliances. Provide monitoring and reporting to the Relevant Authority on all activities on site as required the EMP. Communicate project need and objectives with the public and residents. Notify the public in advance of any activities likely to impact their amenity (e.g., high noise generating works that are likely to exceed noise criteria). Project Manager A Project Manager will be appointed to oversee all operational requirements and adherence to conditions. The Project Manager will be responsible for incident and complaint management, and remedial actions. Environmental Manager The Environmental Manager is responsible for overseeing the environmental management of the project and supervision of environmental services. The Environmental manager has the authority stop work if an adverse impact on the environment has occurred or is likely to occur. The Environmental Manager will: Be responsible for the presentation or certification of all EMP's and procedures Be responsible for considering and advising on matters specified in the conditions of consent and compliance with such matters Oversee the receipt and response to complaints about the environmental performance of the project Facilitate an introduction and environmental compliance training program for all persons		Ensure staff comply with all relevant environmental guidelines.
- Undertake complaint investigations and report complaint investigation findings to the Relevan Authority Correct all non-conformances to the satisfaction of Council in the timeframe specified by the Relevant Authority Report on the implementation and effectiveness of corrective actions specified by the Relevant Authority or implemented to ensure correction of non-compliances Provide monitoring and reporting to the Relevant Authority on all activities on site as required the EMP Communicate project need and objectives with the public and residents. Notify the public in advance of any activities likely to impact their amenity (e.g., high noise generating works that are likely to exceed noise criteria). Project Manager A Project Manager will be appointed to oversee all operational requirements and adherence to conditions. The Project Manager will be responsible for incident and complaint management, and remedial actions. Environmental Manager The Environmental Manager is responsible for overseeing the environmental management of the project and supervision of environmental services. The Environmental manager has the authority stop work if an adverse impact on the environment has occurred or is likely to occur. The Environmental Manager will: Be responsible for the presentation or certification of all EMP's and procedures Be responsible for considering and advising on matters specified in the conditions of consent and compliance with such matters Oversee the receipt and response to complaints about the environmental performance of the project Facilitate an introduction and environmental compliance training program for all persons		 Keep a register of all environmental accidents, incidents, non-conformances and complaints.
Authority. Correct all non-conformances to the satisfaction of Council in the timeframe specified by the Relevant Authority. Report on the implementation and effectiveness of corrective actions specified by the Relevant Authority or implemented to ensure correction of non-compliances. Provide monitoring and reporting to the Relevant Authority on all activities on site as required the EMP. Communicate project need and objectives with the public and residents. Notify the public in advance of any activities likely to impact their amenity (e.g., high noise generating works that are likely to exceed noise criteria). Project Manager A Project Manager will be appointed to oversee all operational requirements and adherence to conditions. The Project Manager will be responsible for incident and complaint management, and remedial actions. Environmental Manager The Environmental Manager is responsible for overseeing the environmental management of the project and supervision of environmental services. The Environmental manager has the authority stop work if an adverse impact on the environment has occurred or is likely to occur. The Environmental Manager will: Be responsible for the presentation or certification of all EMP's and procedures Be responsible for considering and advising on matters specified in the conditions of consent and compliance with such matters Oversee the receipt and response to complaints about the environmental performance of the project Facilitate an introduction and environmental compliance training program for all persons		 Carry out environmental audits, inspections and monitoring to verify compliance with the EMP.
Relevant Authority. Report on the implementation and effectiveness of corrective actions specified by the Relevan Authority or implemented to ensure correction of non-compliances. Provide monitoring and reporting to the Relevant Authority on all activities on site as required the EMP. Communicate project need and objectives with the public and residents. Notify the public in advance of any activities likely to impact their amenity (e.g., high noise generating works that are likely to exceed noise criteria). Project Manager A Project Manager will be appointed to oversee all operational requirements and adherence to conditions. The Project Manager will be responsible for incident and complaint management, and remedial actions. Environmental Manager is responsible for overseeing the environmental management of the project and supervision of environmental services. The Environmental manager has the authority stop work if an adverse impact on the environment has occurred or is likely to occur. The Environmental Manager will: Be responsible for the presentation or certification of all EMP's and procedures Be responsible for considering and advising on matters specified in the conditions of consent and compliance with such matters Oversee the receipt and response to complaints about the environmental performance of the project Facilitate an introduction and environmental compliance training program for all persons		
Authority or implemented to ensure correction of non-compliances. Provide monitoring and reporting to the Relevant Authority on all activities on site as required the EMP. Communicate project need and objectives with the public and residents. Notify the public in advance of any activities likely to impact their amenity (e.g., high noise generating works that are likely to exceed noise criteria). Project Manager A Project Manager will be appointed to oversee all operational requirements and adherence to conditions. The Project Manager will be responsible for incident and complaint management, and remedial actions. Environmental Manager is responsible for overseeing the environmental management of the project and supervision of environmental services. The Environmental manager has the authority stop work if an adverse impact on the environment has occurred or is likely to occur. The Environmental Manager will: Be responsible for the presentation or certification of all EMP's and procedures Be responsible for considering and advising on matters specified in the conditions of consent and compliance with such matters Oversee the receipt and response to complaints about the environmental performance of the project Facilitate an introduction and environmental compliance training program for all persons		
the EMP. Communicate project need and objectives with the public and residents. Notify the public in advance of any activities likely to impact their amenity (e.g., high noise generating works that are likely to exceed noise criteria). Project Manager A Project Manager will be appointed to oversee all operational requirements and adherence to conditions. The Project Manager will be responsible for incident and complaint management, and remedial actions. Environmental Manager The Environmental Manager is responsible for overseeing the environmental management of the project and supervision of environmental services. The Environmental manager has the authority stop work if an adverse impact on the environment has occurred or is likely to occur. The Environmental Manager will: Be responsible for the presentation or certification of all EMP's and procedures Be responsible for considering and advising on matters specified in the conditions of consent and compliance with such matters Oversee the receipt and response to complaints about the environmental performance of the project Facilitate an introduction and environmental compliance training program for all persons		 Report on the implementation and effectiveness of corrective actions specified by the Relevant Authority or implemented to ensure correction of non-compliances.
advance of any activities likely to impact their amenity (e.g., high noise generating works that are likely to exceed noise criteria). Project Manager A Project Manager will be appointed to oversee all operational requirements and adherence to conditions. The Project Manager will be responsible for incident and complaint management, and remedial actions. Environmental Manager The Environmental Manager is responsible for overseeing the environmental management of the project and supervision of environmental services. The Environmental manager has the authority stop work if an adverse impact on the environment has occurred or is likely to occur. The Environmental Manager will: Be responsible for the presentation or certification of all EMP's and procedures Be responsible for considering and advising on matters specified in the conditions of consent and compliance with such matters Oversee the receipt and response to complaints about the environmental performance of the project Facilitate an introduction and environmental compliance training program for all persons		 Provide monitoring and reporting to the Relevant Authority on all activities on site as required in the EMP.
conditions. The Project Manager will be responsible for incident and complaint management, and remedial actions. Environmental Manager is responsible for overseeing the environmental management of the project and supervision of environmental services. The Environmental manager has the authority stop work if an adverse impact on the environment has occurred or is likely to occur. The Environmental Manager will: Be responsible for the presentation or certification of all EMP's and procedures Be responsible for considering and advising on matters specified in the conditions of consent and compliance with such matters Oversee the receipt and response to complaints about the environmental performance of the project Facilitate an introduction and environmental compliance training program for all persons		advance of any activities likely to impact their amenity (e.g., high noise generating works that
 Manager project and supervision of environmental services. The Environmental manager has the authority stop work if an adverse impact on the environment has occurred or is likely to occur. The Environmental Manager will: Be responsible for the presentation or certification of all EMP's and procedures Be responsible for considering and advising on matters specified in the conditions of consent and compliance with such matters Oversee the receipt and response to complaints about the environmental performance of the project Facilitate an introduction and environmental compliance training program for all persons 	Project Manager	conditions. The Project Manager will be responsible for incident and complaint management, and
 Be responsible for the presentation or certification of all EMP's and procedures Be responsible for considering and advising on matters specified in the conditions of consent and compliance with such matters Oversee the receipt and response to complaints about the environmental performance of the project Facilitate an introduction and environmental compliance training program for all persons 		-
 Be responsible for considering and advising on matters specified in the conditions of consent and compliance with such matters Oversee the receipt and response to complaints about the environmental performance of the project Facilitate an introduction and environmental compliance training program for all persons 		
 and compliance with such matters Oversee the receipt and response to complaints about the environmental performance of the project Facilitate an introduction and environmental compliance training program for all persons 		
 project Facilitate an introduction and environmental compliance training program for all persons 		and compliance with such matters
Facilitate an introduction and environmental compliance training program for all persons involved with construction, filling and rehabilitation activities.		project
, 3		 Facilitate an introduction and environmental compliance training program for all persons involved with construction, filling and rehabilitation activities
 Be in charge of establishment and management of environmental monitoring, wet weather monitoring and ad-hoc sampling as required and interpretation and management of monitorin data 		monitoring and ad-hoc sampling as required and interpretation and management of monitoring
All site personnel All site personnel including subcontractors are responsible for day to day implementation of environmental controls and visual monitoring as required and adherence to this EMP.	All site personnel	All site personnel including subcontractors are responsible for day to day implementation of environmental controls and visual monitoring as required and adherence to this EMP.

5.2 Training

All personnel working on the site, including sub-contractors, shall be competent to conduct their work without harm to people, environment or assets. Personnel will complete all necessary site training and induction requirements before commencing work on site.

The Proponent will be responsible for the maintenance and currency of all training material and training registers, encompassing records of all employees' qualifications (and training if occurring both on and off site). Each employee will have copies of certificates of prior training retained on their personal / training file. All training will be supported by the use of attendance records to assist with auditing purposes.

The principal EMP training & awareness methods include, but not limited to:

- Induction protocols
- Daily Pre-Start Meetings
- Toolbox talks.

These methods are described in more detail in the following sections. Other EMP training & awareness methods may include:

- Daily Co-Ordination Simultaneous Operations (SIMOPs) Meetings
- Notice Board bulletins
- Safety Alerts
- Safety Observations
- Weekly Project Meetings.

5.2.1 Induction protocols

All employees, contractors and sub-contractors will receive a site-specific environmental induction prior to commencing any work on site. The induction will include:

- All relevant project specific and standard noise and vibration mitigation measures
- Relevant licence and approval conditions.
- Permissible hours of work.
- Any limitations on high noise generating activities.
- Location of nearest sensitive receivers.
- Employee parking areas.
- Designated loading/ unloading areas and procedures.
- Designated traffic routes.
- Driver code of conduct.
- Site opening/closing times (including deliveries).
- Environmental incident procedures.
- Unexpected find protocols.
- Ecological values of the study area, protection measures to be implemented to protect biodiversity and penalties for breaches.

5.2.2 Toolbox talks

Toolbox meetings will be undertaken weekly and used as a forum for the project team to raise specific health, safety and environmental (HSE) concerns or issues and will also be used to present weekly toolbox topics. Toolbox meetings are used to:

- Obtain feedback on safety performance from the workforce, including subcontractors
- Provide feedback regarding HSE performance and matters
- Communicate the results of HSE activities

30

Extraordinary special Toolbox meetings may follow an incident. These meetings will report on the findings and ensure any risks associated are understood and the necessary precautionary measures have been identified for each task to be conducted.

Participants in toolbox talks will sign the attendance sheet. The attendance sheet will be filed by the Project Manager.

5.2.3 Pre-start meetings

Pre-start meetings will be undertaken every morning in the site office and will address:

- Overview of the work to be performed during the shift
- Review of the Safe Work Method Statement for the task
- Highlight any new hazards
- Health and Safety Issues from the previous day
- Interfaces with other work.
- Work restrictions -time or place.
- Emergency planning or provisions.

A pre-start risk assessment will be undertaken as part of pre-start meetings, as described below.

Pre-start site risk assessment

The pre-start risk assessment is designed to ensure time is taken prior to the start of an activity to review the work-specific environmental aspects and impacts.

The work crew must be included in the process to ensure critical environmental information is communicated and also use their knowledge to identify any additional aspects.

The pre-start risk assessment must be conducted on a daily basis at the start of work and repeated when there is a change in work scope or conditions. The process aims to:

- Communicate site requirements and HSE controls (for example, permits, plans/studies and drawings).
- Identify job site specific aspects not captured and managed in the risk register.
- This meeting itemises the work that will be undertaken during the day, and where applicable, the following environmental related components:
 - Weather observations/forecast.
 - Work area restrictions, activities that may affect the works.
 - Environmental focus for the day (for example, housekeeping/litter clean-up, water management, dust control).
 - Feedback on environmental issues that have recently occurred within the area.
 - Notices about up-and-coming events such as environment and community meetings, audits, environmental inspections.
 - Feedback on previous day's work practices.
 - Feedback from environment, community and stakeholder meetings.

All personnel undertaking work within the project team will sign onto the pre-start attendance record form.

5.3 Inspections and audits

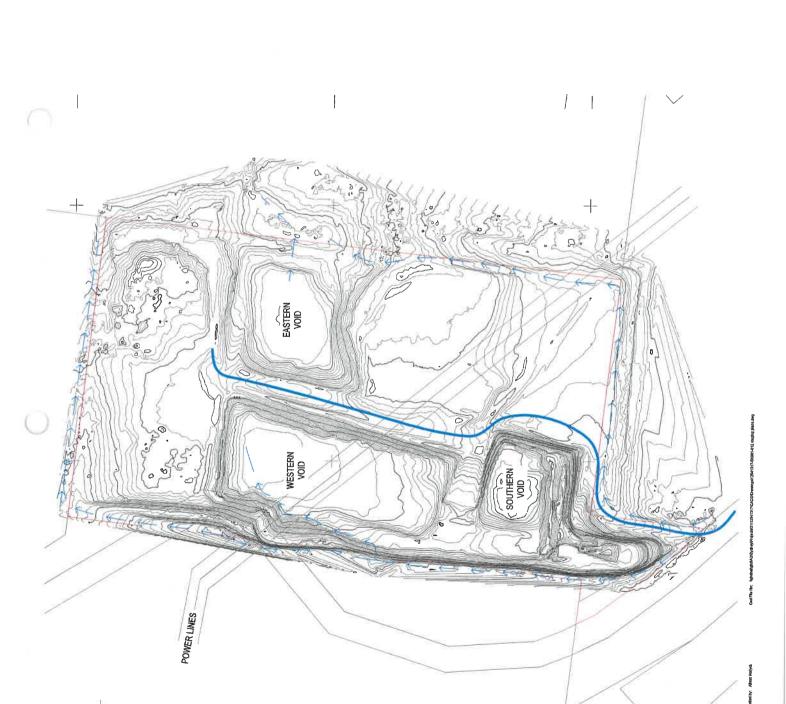
Environmental inspections will be undertaken by the Environmental Manager and Project Manager, in accordance with the program outlined in Table 5.2. The inspections assist to identify areas where improvements to the environmental performance of Bell Quarry operations can be achieved.

Table 5.2 Environmental Inspection Program

Potential Impact	Locations	Frequency	Reporting	Responsibility
nvironmental listed in		Daily	Site inspection report	ProponentProject manager
impacts	plans and the environmental risk assessment	Weekly	Weekly environmental inspection checklist and monthly report	Proponent Environmental manager
Overflow of contact water	Eastern void water storage	After a significant rainfall event (e.g., >10mm in 24 hours)	Inspect current volume in void and initiate treatment protocol if required (refer revised WRA) Include outcomes of each inspection in site inspection report	ProponentEnvironmental manager
Discharge of sediment laden water	All sediment laden water management basins	After a significant rainfall event (e.g., >10mm in 24 hours)	Treat to required environmental standard and discharge if appropriate (refer Revised WRA)	Proponent Environmental Manager
Air, noise, and water	Various	As specified in plans	Weekly environmental inspection checklist and periodic monitoring reports	Proponent Environmental manager

Six monthly audits will be undertaken by the Environmental manager in accordance with the AS/NZ ISO 19011:2003 - Guidelines for Quality and/or Environmental Management Systems Auditing. The audits will incorporate procedures for rectifying any non-compliance issues and will provide mechanisms for recording environmental incidents and the subsequent actions taken.

6. References


- Ausgrid. (2020). NS179 Vegetation Management. GM Asset Management.
- Australia, W. Q. (2000). ANZECC & ARMCANZ (2000) water quality guidelines. Water Quality Australia.
- Committee MS-012, Roads Signs and Traffic Signals. (2009). *Manual of uniform traffic control devices*. Sydney: Standards Australia.
- Department of Environment and Climate Change. (2008). *Managing Urban Stormwater: Soils and construction Volume 2D.* Department of Environment and Climate Change.
- Department of Environment and Climate Change. (2008). *Managing Urban Stormwater: Soils and construction Volume 2E.* Department of Environment and Climate Change.
- Department of Environment and Conservation NSW. (2004). *Use of Effluent by Irrigation*. Sydney: Department of Environment and Conservation (NSW.
- GHD. (2018). Bell Quarry Rehabilitation Project Environmental Impact Statement. Sydney: GHD.
- GHD. (2019). Response to Submission. Sydney: GHD.
- Landcom. (2004). Managing Urban Stormwater: Soils and construction Volume 1. Landcom.
- Lithgow City Council. (2019). DA294/18 Proposed Rehabilitation of Bell Quarry Lot 23 DP 751631. Parramatta: Lithgow City Council.
- NSW EPA . (2020). Contaminated Land Guidelines: Consultants reporting on contaminated land. Parramatta: State of NSW and the NSW EPA.
- NSW EPA. (2014). *NSW Waste Avoidance and Resource Recovery Strategy 2014-21*. Sydney: Environment Protection Authority.
- NSW EPA. (2014). *The excavated natural material exemption 2014*. NSW Environment Protection Authority.
- NSW EPA. (2014). Waste classification guidelines. Sydney: NSW Environment Protection Authority.
- NSW EPA. (2016). Environmental Guidelines Solid Waste landfills (Second edition, 2016). Sydney: NSW Environment Protection Authority.
- NSW Government. (1974). National Parks and Wildlife Act 1974 No 80. NSW Government.
- NSW Government. (2001). Waste Avoidance and Resource Recovery Act 2001 No 58. NSW Government.
- NSW Government. (2020). Contaminated Land Management Act 1997 No 140, NSW Government.
- NSW Government. (2020). Protection of the Environment Operations (Waste) Regulation 2014. NSW Government.
- NSW Government. (2021). Environmental Planning and Assessment Act 1979. NSW Government.
- NSW Government. (2021). Environmental Planning and Assessment Regulation 2000. NSW Government.
- NSW Government. (2021). Heritage Act 1977 No 136. NSW Government.
- NSW Government. (2021). Protection of the Environment Operations Act 1997. NSW Government.

- NSW Government. (2021). Roads Act 1993 No 33. NSW Government.
- NSW Government. (2021). State Environment Planning Polcy (State and Regional Development) 2011.

 NSW Government.
- NSW Rural Fire Service. (n.d.). Standards for asset protection zones. Granville: NSW Rural Fire Service.
- NSW, D. o. (2008). *Hygiene protocol for the control of disease in frogs*. Sydney South: Department of Environment & Climate Change NSW.
- Office of Environment & Heritage. (2011). *Guidelines for Consultants Reporting on Contaminated Sites*. Sydney: NSW Government.
- Office of Environment and Heritage. (2015). Clarence Colliery Discharge Investigation . Sydney.
- Standards New Zealand. (2014). Guidelines for quality and/or environmental management systems auditing. Standards New Zealand.
- Standards New Zealand. (2014). The storage and handling of LP Gas. Standards New Zealand.
- Stantec. (2021). Bell Quarry Preferred Project Traffic Statement.

Appendices

Appendix A Staging Plans

+

EXISTING SURFACE

DESIGN CONTOURS

CLEAN WATER FLOW

CONTACT WATER (PIPE)

TREATMENT WATER (PIPE)

TREATMENT WATER (PIPE)

REHABILITATED AREA

INTERMEDIATE COVER AREA

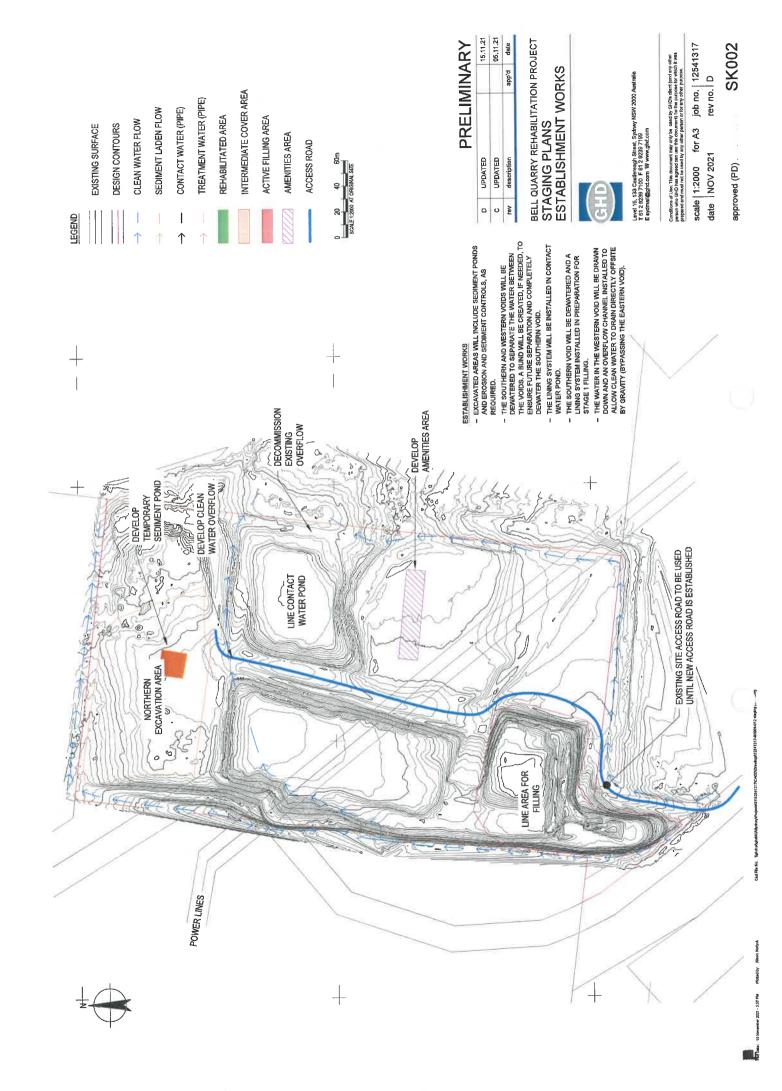
ACTIVE FILLING AREA

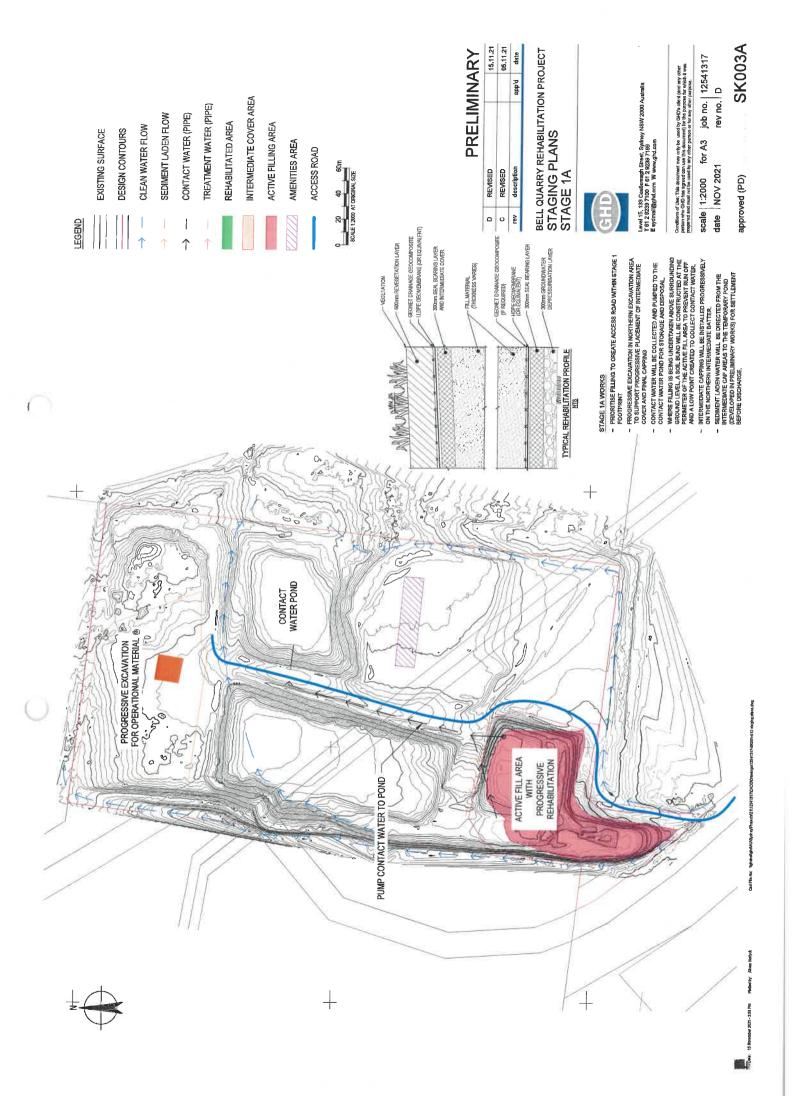
AMENITIES AREA

ACCESS ROAD

PRELIMINARY

	OF DATED		3
8	INCL. EXCAVATION WORKS		03.11.21
rev	description	p,dde	date


BELL QUARRY REHABILITATION PROJECT STAGING PLANS EXISTING SITE LAYOUT



Level 15, 133 Castleragh Streat, Sydney NSW 2000 A T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com

it (and any other a for which it was purpose.	job no. 1254131 rev no. C
ed by GHD's clien ant) for the purpos on or for any other	job no. 12 rev no. C
it may only be use this document of any other pensons	for A3
Conditions of Use; This document may say be used by GHD's client (and any other terms who GHD has appead on a use this document) are tapropes for which it was prepared ann each text be used by any other precises or for may other propes.	scale 1:2000 date NOV 2021
Conditions o person who prepered an	scale

approved (PD) SK001

INTERMEDIATE COVER AREA

ACTIVE FILLING AREA

AMENITIES AREA ACCESS ROAD

TREATMENT WATER (PIPE)

REHABILITATED AREA

SEDIMENT LADEN FLOW CONTACT WATER (PIPE)

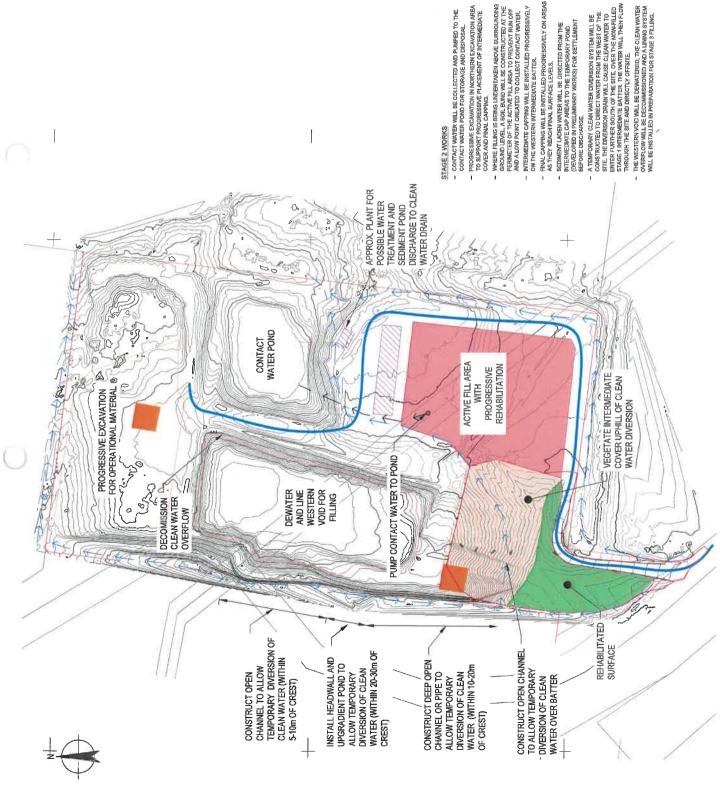
CLEAN WATER FLOW

EXISTING SURFACE DESIGN CONTOURS

app'd date	description	rev
05.11.21	REVISED	v
15.11.21	REVISED	۵

BELL QUARRY REHABILITATION PROJECT STAGING PLANS STAGE 1B

Level 15, 133 Castleneagh Streat, Sydney NSW 2000 Australia T 61 2 8259 7100 F 61 2 9239 7199 E sydnall@ghd.com W www.ghd.com Conditions of Use. This obcount may only be used by CHD's client (and any other person who CHD has agreed can use this document) for he purpose for which it was prepared and must not be used by any other person of for any other purpose.


scale | 1:2000 for A3 job no. | 12541317 date | NOV 2021 rev no. | D

S

approved (PD)

SK003B

15 November 2021 + 3-52 PM Plot

INTERMEDIATE COVER AREA

ACTIVE FILLING AREA

AMENITIES AREA ACCESS ROAD

\$

TREATMENT WATER (PIPE)

REHABILITATED AREA

SEDIMENT LADEN FLOW CONTACT WATER (PIPE)

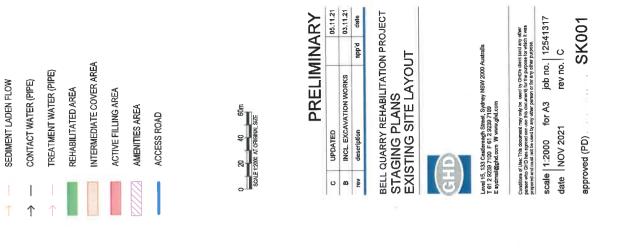
EXISTING SURFACE
DESIGN CONTOURS
CLEAN WATER FLOW

app'd date	description	rev
05.11.2	REVISED	υ
15.11.2	REVISED	۵

BELL QUARRY REHABILITATION PROJECT STAGING PLANS STAGE 2

Level 15, 133 Cadiereagh Street, Sydney NSW 2000 Australia T 61 2 9539 7100 F 61 2 9239 7199 E sydmail@ght.com W www.ght.com

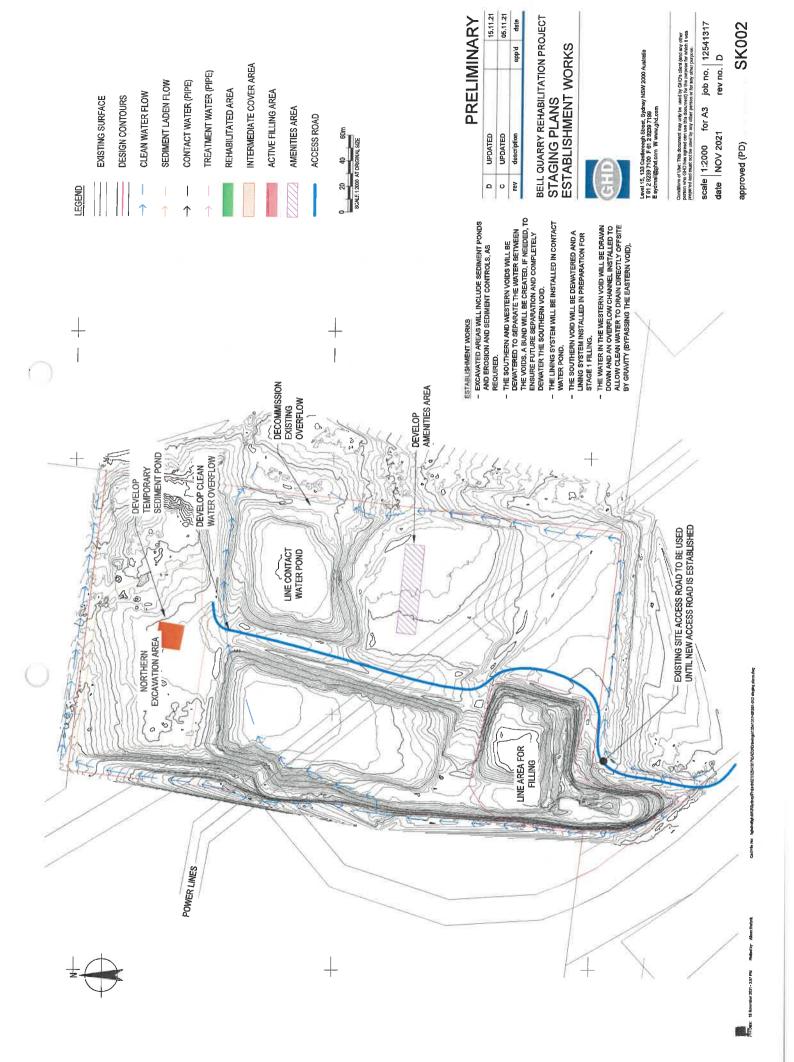
(and any other for which it was purpose.	job no. 12541317
sed by GHD's clien snt) for the purpose on or for any other	job no.
nt may only be us n use this docum by any other persu	for A3
Conditions of Lies: This document may only be used by GH/Ds citent (and say other person who GH/D has agreed can use this document) for the purpose for within it was prepared and must not be used by any other person of for any other purpose.	scale 1:2000
Conditions of person who (prepared and	scale

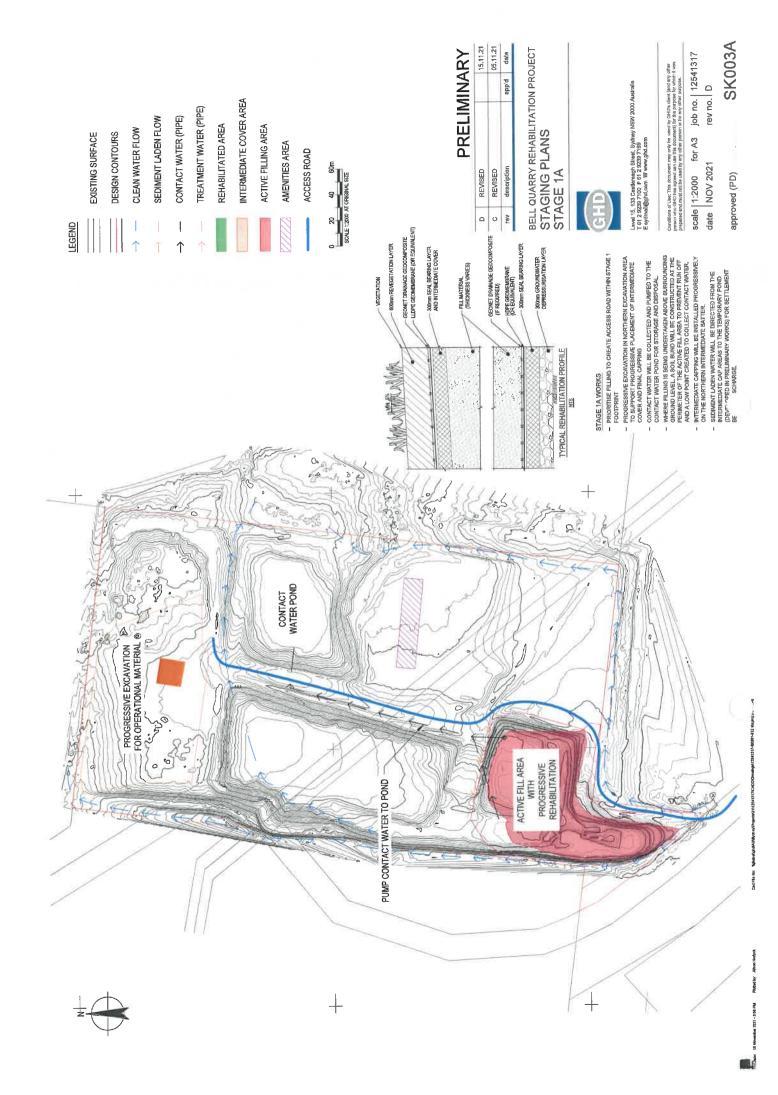

approved (PD)

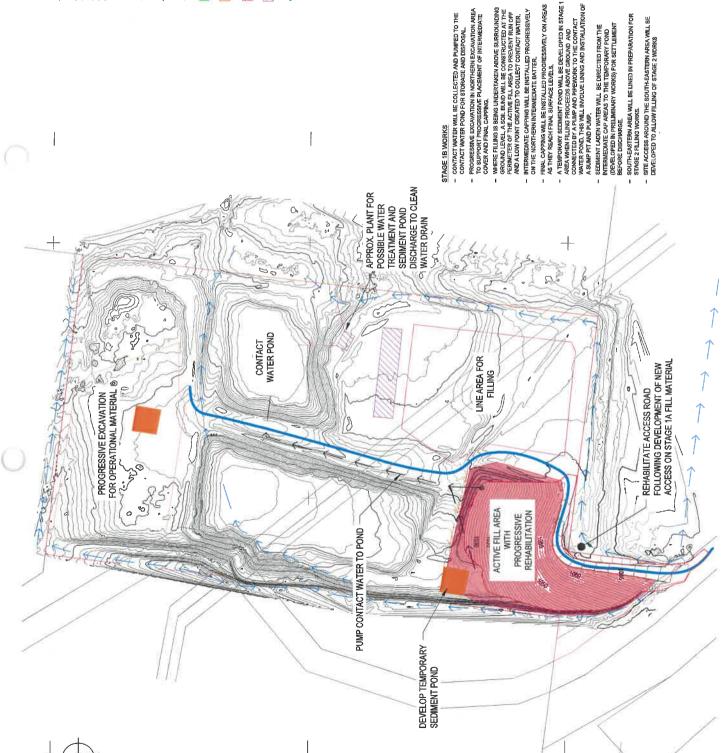
SK0

rev no.

date NOV 2021


15 November 2021 - 12:15 Dal Divined for Abbent Machael




EXISTING SURFACE
DESIGN CONTOURS
CLEAN WATER FLOW

LEGEND

INTERMEDIATE COVER AREA

ACTIVE FILLING AREA

AMENITIES AREA ACCESS ROAD

SEDIMENT LADEN FLOW
CONTACT WATER (PIPE)
TREATMENT WATER (PIPE)

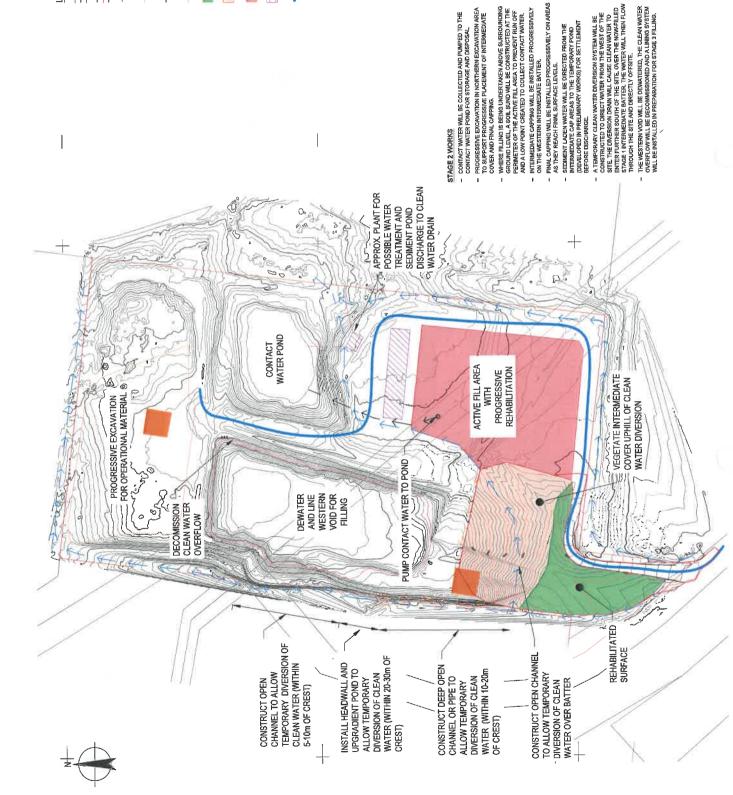
EXISTING SURFACE
DESIGN CONTOURS
CLEAN WATER FLOW

REHABILITATED AREA

app'd date	description	rev
05.11.2	REVISED	υ
15.11.2	REVISED	۵

BELL QUARRY REHABILITATION PROJECT STAGING PLANS STAGE 1B

Lavel 15, 133 Castlereagh Street, Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydnall@ghd.com W www.ghd.com


	ther was
l	and any o or which it
	fa client (purpose il y other pu
	d by GHD t) for the or for an
	Candillons of Use: This accument may only be used by GHD's client (and any other parson who GHD has agreed can use this document) for the purpose for which it was proported and must not be used by any other person or for any other propose.
	ff may on use this y any off
	document greed car
	Jae: This 4D has a must not
	n who GP
	Cond

scale | 1:2000 for A3 job no. | 12541317 date | NOV 2021 rev no. | D

SK003B

approved (PD)

or 2021 - 3:52 PM Photled by: Allem Horlyck

INTERMEDIATE COVER AREA

ACTIVE FILLING AREA

AMENITIES AREA ACCESS ROAD

8

REHABILITATED AREA

TREATMENT WATER (PIPE)

SEDIMENT LADEN FLOW CONTACT WATER (PIPE)

CLEAN WATER FLOW

EXISTING SURFACE DESIGN CONTOURS

LEGEND

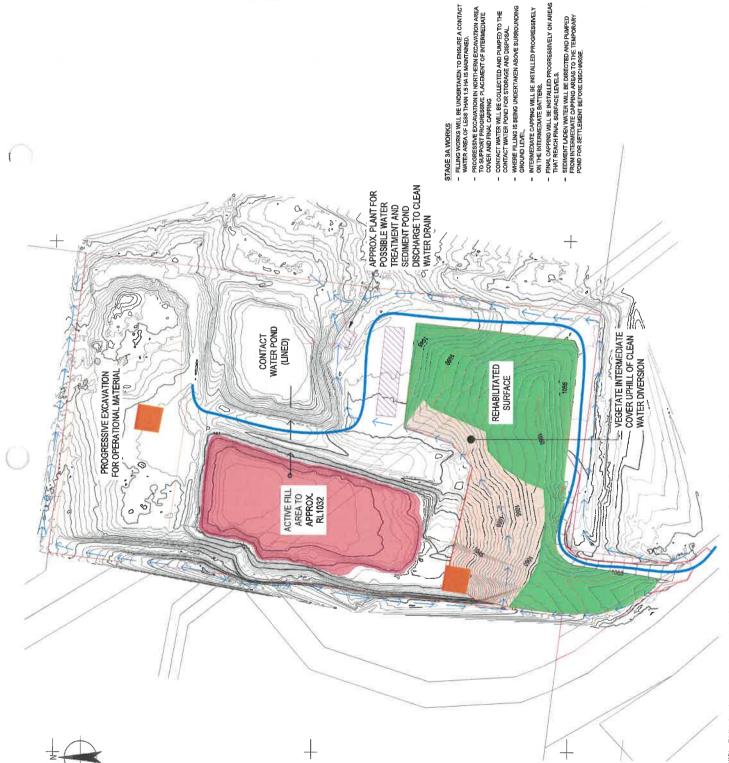
۵	REVISED		15.11.21
o	REVISED		05.11.21
rev	description	p,dda	date

BELL QUARRY REHABILITATION PROJECT STAGING PLANS STAGE 2

Level 15, 133 Castlesseyh Street, Sydney NSW 2000 Australia 161 2523 7100 F 61 25239 7199 Esydnalligghd.com Www.ynd.com

1	
	Conditions of Use: This document may only be used by GHU's client (and any other beson who GHD has agreed one use this document) for the purpose for which it was respected and must not be used by any other person of for any other purpose.
П	≥£ .
ľ	P 4 as
П	100
1	1 2 2
П	흥윤중
П	200
1	845
1	955
ı	3 4 6
1	2 5 5
н	49.5
Т	5 £ £
1	2 8 E
1	200
П	E 2 8
П	1300
ı	2 8 4
1	는 물 등
1	홍수물
1	Conditions of Use; This document may only be used by GHU's client (and an osson who GHD has agreed oan use this document) for the purpose for white paragement and must not be used by any other person of for any other purpose.
1	E 6 9
1	on one
1	5 5 5

rev no. | D


job no. | 12541317

scale | 1:2000 for A3

date | NOV 2021 approved (PD)

SK004

vember 2021 - 12:15 PM Plotted by Altern Hadysk

INTERMEDIATE COVER AREA

ACTIVE FILLING AREA

AMENITIES AREA ACCESS ROAD

SEDIMENT LADEN FLOW
CONTACT WATER (PIPE)
TREATMENT WATER (PIPE)

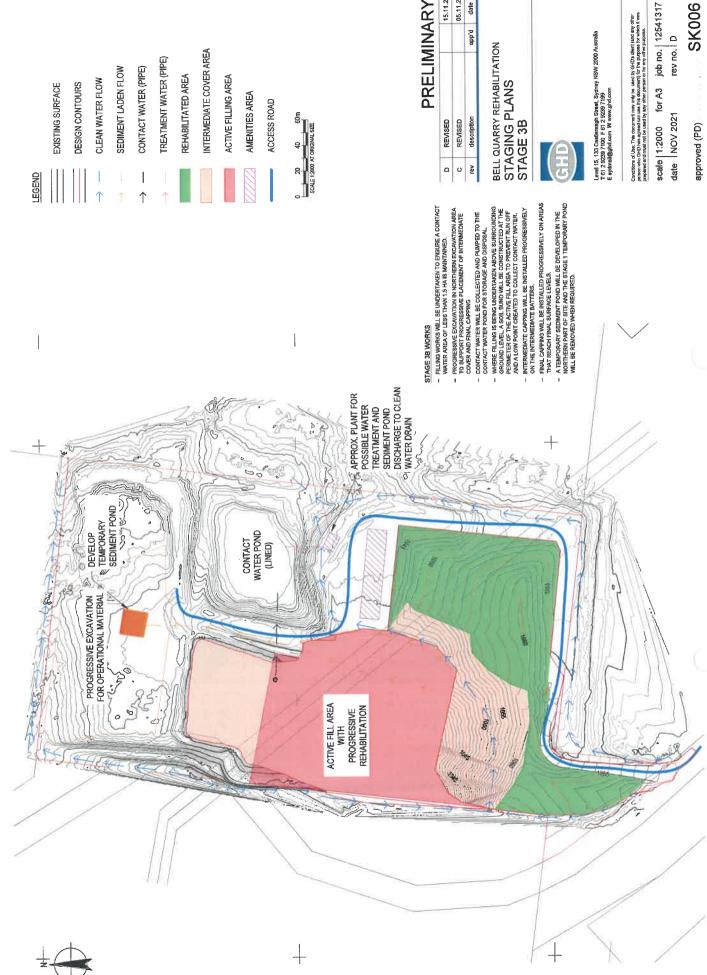
EXISTING SURFACE
DESIGN CONTOURS
CLEAN WATER FLOW

REHABILITATED AREA

REVISED		15.11.21
REVISED		05.11.21
description	p,dde	date

BELL QUARRY REHABILITATION PROJECT STAGING PLANS STAGE 3A

Level 16, 133 Castenagh Street, Sydney NSW 2000 Australia T 61 2929 7100 F 61 2 9239 7199 E sydneil@ghd.com W www.ghd.com


t (and any other of or which it was purpose,	for A3 job no. 12541317	٥
Conditions of User, This document may only be used by GHDs client land any other person who GHD has agreed ean use this document) for the purpose for which it was physherel and must not be used by any other person or for any other purpose.	on doi	rev no. D
ent may only be u an use this docum Iby any other pers	for A3	7
I Use: This docum 3HD has agreed a 3 must not be used	scale 1:2000	date NOV 2021
Conditions of person who is prepared and	scale	date

-

approved (PD)

SK005

mber 2021 - 12:18 PM Plotted by: Altan Horbek

INTERMEDIATE COVER AREA

ACTIVE FILLING AREA

AMENITIES AREA ACCESS ROAD

REHABILITATED AREA

TREATMENT WATER (PIPE)

SEDIMENT LADEN FLOW CONTACT WATER (PIPE)

CLEAN WATER FLOW

DESIGN CONTOURS EXISTING SURFACE

REVISED		15.11.21
REVISED		05.11.21
description	p,dda	date

BELL QUARRY REHABILITATION STAGING PLANS STAGE 3B

Levej 15, 133 Castleragh Street, Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com

Conditions of UBer. This document may only be used by GHD's client (and any other parson who GHD has agreed can use this document) for the purpose for which it was prepared and must not be used by any other person or for any other purpose.

rev no. D date NOV 2021

SK006

INTERMEDIATE COVER AREA

ACTIVE FILLING AREA

AMENITIES AREA ACCESS ROAD

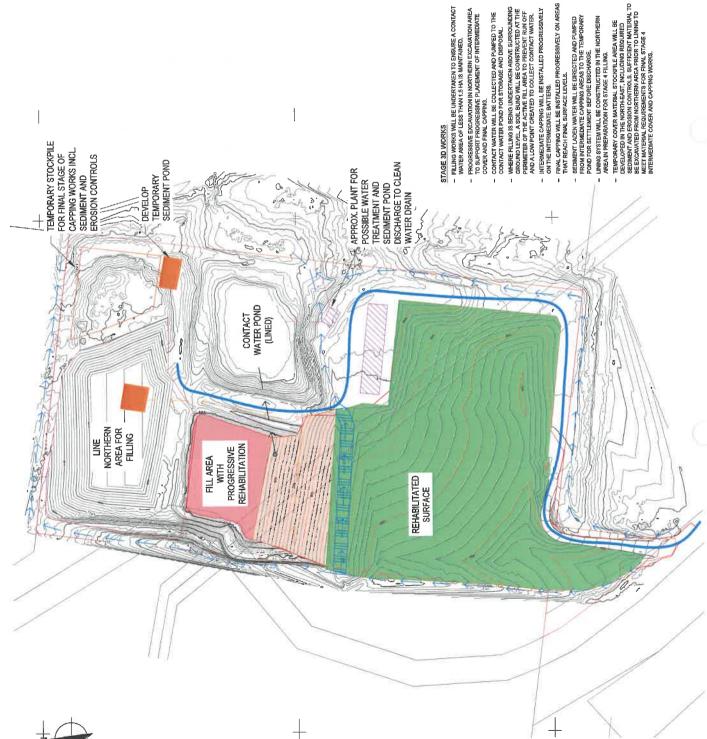
TREATMENT WATER (PIPE) CONTACT WATER (PIPE) SEDIMENT LADEN FLOW

CLEAN WATER FLOW DESIGN CONTOURS EXISTING SURFACE

REHABILITATED AREA

REVISED REVISED description

BELL QUARRY REHABILITATION PROJECT STAGING PLANS STAGE 3C



ш	Conditions of Use: This document may only be used by GHD's dent (and any other peteron who GHD) has agreed can use this document) for the purpose for which it was
	£ £
1	≥€
	2.5
-1	8 8
1	E 3
	충 원
1	83
-	퐀묦
1	25
Т	35
-	활활
1	중중
1	2º 2
-11	5 B
1	E 85
1	ŧś.
-	E 2
-	9 3
-11	0 6
	F 8
- 11	20
	28.
	200
1	o ×
1	282
1	8 2 8

scale | 1:2000 for A3 job no. | 12541317 date | NOV 2021 rev no. | D

SK007

approved (PD)

INTERMEDIATE COVER AREA

ACTIVE FILLING AREA

AMENITIES AREA ACCESS ROAD

TREATMENT WATER (PIPE)

REHABILITATED AREA

SEDIMENT LADEN FLOW CONTACT WATER (PIPE)

CLEAN WATER FLOW

DESIGN CONTOURS EXISTING SURFACE

LEGEND

15.11,21	05.11.21	date
		p,dda
REVISED	REVISED	description

BELL QUARRY REHABILITATION PROJECT STAGING PLANS STAGE 3D

Level 15, 133 Castleragh Streel, Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydmall@ghd.com W www.ghd.com

job no. | 12541317 Conditions of Use; This document may only be used by CHO's allorif (and any other parson who GHO has agreed can use this document) for the purpose for which it was propered and must not be used by any other person or for any other purpose. scale | 1:2000 for A3

SK008 approved (PD).

rev no.

date NOV 2021

INTERMEDIATE COVER AREA

ACTIVE FILLING AREA

AMENITIES AREA ACCESS ROAD

TREATMENT WATER (PIPE) CONTACT WATER (PIPE) SEDIMENT LADEN FLOW

CLEAN WATER FLOW DESIGN CONTOURS EXISTING SURFACE

LEGEND

REHABILITATED AREA

BELL QUARRY REHABILITATION PROJECT STAGING PLANS STAGE 4

ымя 15, 133 Castlereagh Street, Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com

scale 1:2000 for A3 job no. | 12541317 Conditions of Use. This document may only be used by GHD's client (and any other person who GHD has agreed een use this document) for the purpose for which it was prepared and must not be used by any other person or for any other purpose.

approved (PD)

rev no.

date NOV 2021

SK009

15.11.21	05.11.21	date
		p,dds
REVISED	REVISED	description

BELL QUARRY REHABILITATION PROJECT STAGING PLANS REHABILITATED SURFACE

Level 15, 133 Castlereagh Sirred, Sydney NSW 2000 Australia T 61 2 9239 7100 F 61 2 9239 7199 E sydnall@ghd.com W www.ghd.com

Conditions of Use. This document may only be used by GH/D's client (and any other person who GH/D has agreed can use this obcument) for the purpose for which it was proposed and must not be used by any other person or for any other purpose.

SK010

Appendix C

Vegetation Management Plan and Ecological Monitoring Program

Rehabilitation of the Former Bell Quarry – DA 294/19

Vegetation Management Plan

HWL Ebsworth Lawyers

16 November 2021

Final

Report No. 20109RP4

The preparation of this report has been in accordance with the brief provided by the Client and has relied upon the data and results collected at or under the times and conditions specified in the report. All findings, conclusions or commendations contained within the report are based only on the aforementioned circumstances. The report has been prepared for use by the Client and no responsibility for its use by other parties is accepted by Cumberland Ecology.

Version	Date Issued	Amended by	Details
1	16 November 2021	16 November 2021 Fina	

Approved by:	Dr David Robertson
Position:	Director
Signed:	Dand Robertson
Date:	16 November, 2021

Table of Contents

Glo	ossary	\
1.	Introduction	1
	1.1. Purpose	
	1.2. Project Background	= 1
	1.3. Relevant Legislation	2
2.	Methodology	3
	2.1. Desktop Assessment	3
	2.2. Site Inspection	3
3.	Existing Biodiversity Values	4
4.	Management Zones	9
	4.1. Management Zone 1	9
	4.2. Management Zone 2	9
	4.3. Management Zone 3	10
5.	Vegetation Protection Plan	11
	5.1. Fencing	11
	5.2. Erosion and Sediment Control	11
	5.3. Pathogen Management	12
6.	Habitat Reinstatement Plan	13
7.	Weed Management Plan	14
	7.2. Best Management Practice	15
	7.3. Weed Control Methods	16
	7.4. Weed Management in the VMP Area	17
8.	Revegetation Plan	19
	8.1. Introduction	19
	8.2. Revegetation Preparation	19
	8.3. Recommended Revegetation Techniques	19
^	8.4. Maintenance	21
9.	Monitoring and Reporting	23
	9.1. Responsibilities	23
	9.2. Monitoring	23
10	9.3. Reporting	23
10.	Timing and Responsibilities	25
11.	References	29

Table of Tables

Table 1 Plant community types within the VMP Area	4
Table 2 Weed species recorded within the VMP Area and subject land and surrounds	
•	
Table 3 Timing, responsibilities, and performance criteria	25
Table 4 Planting list for revegetation works	A.2

Table of Photographs

Photograph 1 PCT 1248 (Intact Condition) within the VMP Area	. 5
Photograph 2 PCT 1248 (Moderate Condition) within the VMP Area	5
Photograph 3 PCT 1071 within the VMP Area	. 6
Photograph 4 Cleared land within the VMP Area	. 7

Table of Appendices

APPENDIX A: Planting List

Table of Figures

Figure 1 Location of the VMP Area Figure 2 Existing plant community types Figure 3 Management zones Figure 4 Fencing plan Figure 5 Monitoring plot locations

Glossary

Term / Abbreviation	Definition
BC Act	NSW Biodiversity Conservation Act 2016
Biosecurity Act	NSW Biosecurity Act 2015
BQRP	Bell Quarry Rehabilitation Project Pty Ltd
CEMP	Construction Environmental Management Plan
ENM	Excavated natural material
EP&A Act	NSW Environmental Planning and Assessment Act 1979
EPA	NSW Environment Protection Authority
EPBC Act	Commonwealth Environment Protection and Biodiversity Conservation Act 1999
EPL	Environment Protection Licence
MZ1	Management Zone 1
MZ2	Management Zone 2
MZ3	Management Zone 3
NPWS	National Parks and Wildlife Service
NSW	New South Wales
OEH	NSW Office of Environment and Heritage
PCTs	Plant Community Types
Project	The Bell Quarry Rehabilitation Project
Project area	Area within which the Project is being undertaken
Subject land	Lot 23 DP 751631
VENM	Virgin excavated natural material
VMP	Vegetation Management Plan
VMP Area	Area subject to the VMP as shown in Figure 1

1. Introduction

Cumberland Ecology has been requested by HWL Ebsworth Lawyers on behalf of Bell Quarry Rehabilitation Project Pty Ltd (BQRP) to prepare a Vegetation Management Plan (VMP) for the Bell Quarry Rehabilitation Project (the 'Project'). The Project is located within Lot 23 DP 751631, Sandham Road, Dargan (the 'subject land'). The Project sought designated and integrated development consent under Part 4 of the New South Wales (NSW) Environmental Planning and Assessment Act 1979 (EP&A Act). The Development Application for the Project was refused by the Western Regional Planning Panel in April 2020. This VMP has been prepared to provide guidance for the management of land to the east of the subject land's eastern boundary of the Project where previous land use activities has impacted Blue Mountains National Park. The Project is subject to proceedings in the NSW Land and Environment Court (No. 2021/00091361). Development consent for the management and revegetation of the land that is the subject of this VMP is not sought under development application 294/18 (the DA). Approval for the management and revegetation under this VMP will be sought from National Parks and Wildlife Service (NPWS) under Part 5 of the EP&A Act.

In February 2019, the then Office of Environment and Heritage (OEH) indicated that it supported the rehabilitation of the portions of the Blue Mountains National Park that were impacted by the previous quarry operations, and restoration of a stable landform. OEH also indicated that it intended to issue a licence under the *National Parks and Wildlife Act 1974* to enable the proponent to undertake these works. OEH indicated that the licence conditions are to be determined by the NPWS and will be negotiated with BQRP.

The specific area subject to this VMP is referred to as the 'VMP Area' (see **Figure 1**). The VMP Area comprises an approximate 40m buffer from the eastern boundary of the subject land and is approximately 2.74 ha in area.

1.1. Purpose

The purpose of this document is to provide a plan to manage and reinstate vegetation within the VMP Area to a facsimile of the vegetation and condition before the land was previously modified. Specifically, this report will:

- Provide measures for the protection of undisturbed areas of the Blue Mountains National Park;
- Provide weed management measures to enhance the biodiversity values of the VMP Area;
- Provide revegetation measures for cleared and modified areas; and
- Provide for ongoing monitoring to maintain the biodiversity values.

1.2. Project Background

1.2.1. Site Background

Bell Quarry is located on Sandham Road, Dargan (Lot 23 DP 751631), approximately 10 km east of Lithgow, NSW. The quarry was in operation under existing use rights between 1967 and 1994, and subsequently operated under a DA approval from Lithgow City Council and an Environment Protection Licence (EPL) issued by the NSW Environment Protection Authority (EPA) (GHD 2018b). Active operations with the quarry ceased and the EPL was surrendered to the EPA on 24 October 2014 (GHD 2018b). BQRP acquired the quarry site and subsequently undertook future land use planning for the subject land.

The subject land covers a total area of approximately 13.7 hectares (ha) and is divided by the Main Western Railway. The subject land is zoned E3 Environmental Management under *Lithgow Environmental Plan 2014*. It is located adjacent to the Greater Blue Mountains World Heritage Area, and within the upper reaches of the Wollangambe River Catchment, which forms part of the broader Hawksbury-Nepean catchment.

1.2.2. Project Overview

BQRP is seeking to rehabilitate the subject land, with the final rehabilitated landform to be achieved via importation of virgin excavated natural material (VENM), excavated natural material (ENM) or comparable material (that meets an exemption pursuant to clauses 91 and 92 of the *Protection of the Environmental Operations (Waste) Regulation 2014*), sourced from earthworks projects across Sydney and the local regional area.

The key features of the Project, as proposed to be amended are identified by GHD (2021) as follows:

- Importation of approximately 1.2 million cubic metres of VENM, ENM or comparable material (that meets an exemption pursuant to clauses 91 and 92 of the *Protection of the Environmental Operations (Waste) Regulation 2014*), sourced from earthworks projects across Sydney and the local regional area.
- Vehicle haulage at a rate of up to 140,000 tonnes per annum;
- · Emplacement and compaction of soil material within the existing quarry voids;
- Shaping of fill to closely represent the pre-quarry landform and to allow surface water drainage across the final landform;
- Development of a water management system to control surface water discharges throughout the rehabilitation program and from the final landform including a lined contact water pond; and
- Revegetation of the site with locally endemic species to provide effective integration with the surrounding landscape.

These works will be wholly contained within the project area.

1.3. Relevant Legislation

Legislation relevant to this VMP includes:

- NSW Environmental Planning and Assessment Act 1979 (EP&A Act);
- NSW Biodiversity Conservation Act 2016 (BC Act);
- NSW Biosecurity Act 2015 (Biosecurity Act);
- NSW National Parks and Wildlife Act 1974;
- NSW Pesticides Act 1999; and
- Commonwealth Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act).

Methodology

2.1. Desktop Assessment

The preparation of this VMP involved a literature review to determine the most up to date methods of weed control for exotic species that are present in the VMP Area. This literature review involved a variety of sources including government fact sheets and websites. Cumberland Ecology staff with expertise in bushland maintenance were also consulted regarding current best practice weed control methods and techniques.

A review of vegetation community descriptions held within the BioNet Vegetation Classification databases and associated references was also undertaken. The information, in conjunction with the flora species information contained in GHD (2018a) and recent field surveys have been used to determine suitable native plant species for planting, as required for revegetation.

2.2. Site Inspection

A site inspection of the VMP Area was undertaken by Cumberland Ecology on 1 November 2021. The site inspection included walking traverses within the readily accessible portions of the VMP Area. The site inspection included the collection of notes on vegetation and its condition within the VMP Area, and collection of photographs.

The site inspection undertaken within the VMP Area supplemented previous surveys and inspections undertaken within the subject land and surrounds by Cumberland Ecology on 13 July 2020, 21 December 2020 and 15-19 March 2021.

3. Existing Biodiversity Values

This section summarises the existing environment of the VMP Area identified within the Biodiversity Impact Assessment (GHD 2018a) prepared for the Project as well as incorporating findings from the site inspections undertaken by Cumberland Ecology.

3.1.1. Plant Community Types

The VMP Area comprises a matrix of cleared land, native open forest in varying condition, and an artificial wetland. The extent of plant community types (PCTs) identified within the project area and study area are outlined within **Table 1**. None of the vegetation communities within the VMP Area comprise a threatened ecological community listed under the BC Act or EPBC Act.

Table 1 Plant community types within the VMP Area

PCT	Condition	VMP Area (ha)
1248: Sydney Peppermint - Silvertop Ash heathy open forest on sandstone ridges of the upper Blue Mountains, Sydney Basin Bioregion	Good	0.93
1248: Sydney Peppermint - Silvertop Ash heathy open forest on sandstone ridges of the upper Blue Mountains, Sydney Basin Bioregion	Moderate	1.57
*1071: Phragmites australis and Typha orientalis coastal freshwater wetlands of the Sydney Basin Bioregion	-	0.10
Cleared Land	-	0.14
Total		2.74

^{*} PCT identified is considered best-fit as the vegetation occurs within an artificial wetland

3.1.1.1. Sydney Peppermint - Silvertop Ash Heathy Open Forest (PCT 1248)

This PCT is the dominant vegetation type within the VMP Area, and has been affected by the 2019/2020 bushfires. This PCT is characterised by a canopy of *Eucalyptus piperita* (Sydney Peppermint), with other canopy species such as *Eucalyptus sieberi* (Silvertop Ash), *Eucalyptus globoidea* (White Stringybark) and *Eucalyptus oreades* (Blue Mountains Ash) occurring less frequently. This PCT contains a diverse shrub layer and includes *Leptospermum trinervium* (Slender Tea-tree), *Leptospermum polygalifolium* (Tantoon), *Lomatia silaifolia* (Crinkle Bush), *Isopogon anemonifolius* (Broad-leaf Drumsticks), *Hakea dactyloides* (Finger Hakea), *Daviesia latifolia* (Bitter-pea), *Persoonia lanceolata* (Lance Leaf Geebung), *Acacia terminalis* (Sunshine Wattle), and *Amperea xiphoclada*. A ground layer comprise a number of grasses and forbs, including Austrostipa rudis, Echinopogon caespitosus (Bushy Hedgehog-grass), Gahnia sieberiana (Red-fruit Saw-sedge), Lomandra glauca (Pale Matrush), *Pteridium esculentum* (Bracken), *Dampiera stricta*, *Dianella revoluta* (Blueberry Lily), *Goodenia bellidifolia* subsp. *bellidifolia*, *Poranthera microphylla* (Small Poranthera), *Wahlenbergia gracilis* (Sprawling Bluebell) and *Xanthosia pilosa* (Woolly Xanthosia).

Within the VMP Area, this PCT occurs in two broad condition states, being 'intact' and 'moderate'. The intact condition state comprises relatively undisturbed areas (**Photograph 1**), whilst the moderate condition state comprises areas that have had landform modifications (**Photograph 2**).

Photograph 2 PCT 1248 (Moderate Condition) within the VMP Area

3.1.1.2. Phragmites australis and Typha orientalis Coastal Freshwater Wetlands (PCT 1071)

This PCT comprises an artificial wetland in the northern portion of the VMP Area. An existing excavated area has filled with water and native vegetation has established within this area, particularly at the fringes of the wetland. The characteristic species within this PCT is *Typha orientalis* (Broad-leaved Cumbungi). An example of this PCT within the VMP Area is shown in **Photograph 3**.

3.1.1.3. Cleared Land

A number of areas of cleared land occur within the VMP Area and comprise land that was previously quarried or utilised for access. An example of the cleared land within the VMP Area is shown in **Photograph 4**.

Photograph 4 Cleared land within the VMP Area

3.1.2. Flora Species

Over 200 flora species have been recorded within the subject land and surrounding areas. One priority weed, *Cytisus scoparius* subsp. *scoparius* (English Broom), listed under the Biosecurity Act for the Lithgow Local Government Area was recorded within the VMP Area. This species is also classified as a Weed of National Significance. Other weeds recorded within the VMP Area include Pampas Grass (*Cortaderia selloana*), African Lovegrass (*Eragrostis curvula*), *Gamochaeta americana* (Purple Cudweed), *Hypochoeris radicata* (Catsear), *Petrorhagia dubia*, *Sonchus oleraceus* (Common Sowthistle).

No threatened flora species have been recorded within the VMP Area or adjoining areas.

3.1.3. Fauna Habitat

The following broad fauna habitat type have been identified within the VMP Area:

- Regenerating vegetation;
- Intact native vegetation; and
- Quarry voids (aquatic):

Extensive connectivity occurs from the VMP Area through to other areas of the Blue Mountains National Park.

3.1.4. Fauna Species

A suite of native fauna species have been recorded across the subject land and adjoining areas, including six frog species, 30 bird species, six dragonfly and damselfly species, four terrestrial mammal species, three bat species and eight reptile species. A further two bat species had possible call recordings. No introduced fauna species were detected.

One threatened fauna species, the Large Bent-winged Bat (*Miniopterus orianae oceanensis*) had a possible call recording within the study area. The Large Bent-winged Bat is listed as Vulnerable under the BC Act.

4. Management Zones

The following management zones have been identified for the VMP Area:

- Management Zone 1 (MZ1) 0.08 ha;
- Management Zone 2 (MZ2) 0.03 ha; and
- Management Zone 3 (MZ3) 2.63 ha.

The location of each management zone is shown in **Figure 2**. The management objectives of each management zone are summarised below.

4.1. Management Zone 1

This management zone comprises land that is proposed for ongoing use as an access road during Stage 1 of the Project. Following completion of Stage 1, this area of land will be managed to restore native vegetation. This management zone will therefore be managed in two phases, phase 1 being during Stage 1 of the Project, and phase 2 being after the completion of Stage 1.

The objectives for MZ1 include:

- Phase 1:
 - Protection of adjoining vegetation from inadvertent impacts through the implementation of fencing, and erosion and sediment control;
 - Removal of exotic species to prevent spread into adjoining areas;
- Phase 2:
 - o Rehabilitation of landform through removal of road base and emplacement of soils;
 - Revegetation via planting of native canopy, shrub and ground layers;
 - Removal of exotic species within revegetation areas.

4.2. Management Zone 2

This management zone comprises land that is currently cleared and largely devoid of native vegetation.

The objectives for MZ2 include:

- Protection of adjoining vegetation from inadvertent impacts through the implementation of fencing, and erosion and sediment control;
- · Reinstatement of habitat features;
- Removal of exotic species to facilitate natural regeneration of native species;
- Revegetation via planting of native canopy, shrub and ground layers;
- Utilising locally indigenous species of local provenance for plantings;

4.3. Management Zone 3

This management zone comprises land that is contains intact or modified native vegetation. Due to the presence of native vegetation within this management zone (PCT 1248 and PCT 1071), limited management actions are required.

The objectives for MZ3 include:

- Protection of adjoining vegetation from inadvertent impacts through the implementation of fencing, and erosion and sediment control; and
- Removal of exotic species to prevent spread into adjoining areas.

5. Vegetation Protection Plan

The Project has the potential to result in a number of indirect impacts to adjoining vegetation, including to the VMP Area. This chapter outlines the general vegetation protection measures to be undertaken to further minimise these indirect impacts beyond what is proposed for the Project. A suite of other mitigation measures will be undertaken within the project area which will be undertaken in accordance with the Construction Environmental Management Plan (CEMP) to be prepared for the Project. These measures include, but are not limited to environmental inductions, implementation of a flora and fauna management sub-plan, dust management, vegetation clearing protocols, pathogen management, erosion and sedimentation controls, weed management and habitat features salvage. The project area will also be rehabilitated following reprofiling of the land to a condition closely representing the original vegetation.

5.1. Fencing

Due to the interface between the Project and the Blue Mountains National Park, there is a requirement to manage access for both safety and biodiversity management. Fencing for the Project will be undertaken as follows:

- Maintain existing fence that insects the VMP Area during Stage 1 of the Project (to be removed once all boundary fencing established);
- Establish a new permanent boundary fence along the eastern boundary of the subject land from the northern end to the start of the MZ1 boundary;
- Establish temporary fencing between MZ1 and adjoining areas of MZ2 and MZ3 (to be removed once all permanent boundary fencing established); and
- Establish a new permanent boundary fence along the eastern boundary of the subject land following completion of Stage 1 of the Project.

The fencing plan for the VMP Area is shown in Figure 4.

5.2. Erosion and Sediment Control

Erosion and sedimentation from the project area into adjacent vegetation has the potential to smother vegetation, and facilitate weed invasion through the introduction of weed seeds and nutrients that favour weed species. This potential impact will be avoided through the implementation of appropriate erosion and sediment control measures such as:

- Installation and maintenance of sediment fences at the interface to the VMP Area prior to the commencement of the Project. During Stage 1 of the Project, instead of being located at the interface between the subject land and VMP Area, these fences will be located at the interface between MZ1 and the adjoining management zones;
- Relocation of the access road following completion of Stage 1 of the Project; and
- Progressive rehabilitation of the project area.

Specifications of erosion and sediment control measures for the Project will be detailed within the CEMP to be prepared for the Project. Erosion and sediment control measures are to be regularly inspected, particularly following rainfall events, to ensure their ongoing functionality.

5.3. Pathogen Management

A baseline study for pathogens, including Cinnamon Fungus (*Phytophthora cinnamomi*) and Myrtle Rust (*Austropuccinia psidii*), will be undertaken within the VMP Area. Annual testing will also be undertaken for the duration of the Project.

If detected, current hygiene procedures and guidelines will be followed. This may include the *Hygiene* guidelines: Protocols to protect priority biodiversity areas in NSW from Phytophthora cinnamomi, myrtle rust, amphibian chyrtid fungus and invasive plants (DPIE 2020). Measures would likely involve the disinfection of all machinery, clothing (such as boots and gloves) and tools which have been in contact with soil in the vicinity of the pathogen prior to entering and leaving the VMP Area.

A vehicle wash down area will be established at entry points to the pathogen affected areas and all vehicles entering these areas will be required to be hosed down prior to entry. Shoes will also be disinfected. The wash down area will remain in place until the affected area is no longer utilised, or further testing determined the pathogen is no longer present.

Recommended disinfectant products include:

- Non corrosive disinfectants including Coolacide®, Phytoclean®, or Biogram® for cleaning footwear, tools, tyres, machinery and other items in contact with soil;
- 70% Methylated spirits solution in a spray bottle which is suitable for personal use (clothing); and
- Sodium hypochlorite 1%, which is effective, but can damage clothing and degrades rapidly in light.

In order to prevent the introduction of pathogens from outside the VMP Area, all machinery and vehicles entering the VMP Area will also be required to be disinfected following the procedures outlined above. A wash down area will be established at the entry to the VMP Area and all vehicles entering will be washed down.

Specifications of soil pathogen management for the project area will be detailed within the Construction Environmental Management Plan to be prepared for the Project.

6. Habitat Reinstatement Plan

A selection of habitat features will be salvaged from within the project area for re-use within MZ2. Habitat features to be re-used within MZ2 include:

- Hollow-bearing trees (if found during pre-clearance surveys); and
- · Fallen timber; and
- Bushrock.

Re-use of salvaged items will occur as follows:

- Hollow-bearing trees/fallen timber: Features will be placed on the ground, on leaning against mature trees (if present) to increase the structural complexity of habitat. Piles are to be avoided.
- Bush rock: Bush rocks will be placed on the ground to increase the structural complexity of habitat. Bush rocks may be place in small piles

7. Weed Management Plan

7.1.1. Objectives

The VMP Area contains a number of weeds and others are known from the subject land and surrounds. Works associated with the rehabilitation of the landform within the VMP Area and future development of the Project has the potential to contribute to the spread of exotic species into the VMP Area. The objectives of weed management in the VMP Area are to control the existing weeds that occur in order to facilitate the recovery of the native vegetation present and to prevent the establishment of any additional weed species, through ongoing maintenance. The weed management proposed within the VMP Area will complement the weed management that will be undertaken within the project area.

7.1.2. Relevant Legislation

Under the Biosecurity Act all weeds are required to be controlled by all persons under a "General Biosecurity Duty". The General Biosecurity Duty means that all public and private land owners or managers and all other people who deal with weed species (biosecurity matters) must use the most appropriate approach to prevent, eliminate, or minimise the negative impact (biosecurity risk) of those weeds (DPI 2017). The power for enforcement of penalties relating to compliance with the legislation is given to Local Control Authorities (i.e. Local Governments).

State-wide management of weeds under the Biosecurity Act is directed by the NSW Invasive Species Plan (DPI 2018). Weed responses are assigned to four categories:

- Prevention of new weeds establishing;
- Eradication of small and localised infestations where feasible;
- Containment of larger infestation to stop wider spread; and
- Protection of key assets, such as threatened plants and agricultural land, to prevent their damage or degradation by weed invasion.

Under the Biosecurity Act some weed species have been prioritised for management by specific regulations and controls under the Act. These are known as State Level Priority Weeds. Specific legal requirements exist for how these weeds are managed.

All land within the VMP Area is within the Central Tablelands Local Land Services region, and weed management within the region is be undertaken under the direction of the *Central Tablelands Regional Strategic Weed Management Plan 2017 – 2022* (LLS: Greater Sydney 2017). Appendix 1 of the plan outlines the State Listed Priority Weeds and Regional Priority Weeds, and Appendix 2 outlines other weeds of concern in the region.

Of the exotic species recorded within the VMP Area, one species *Cytisus scoparius* subsp. *scoparius* (English Broom) is listed as both State Priority Weeds within the *Central Tablelands Regional Strategic Weed Management Plan 2017 – 2022* (LLS: Greater Sydney 2017) and a Weeds of National Significance (WoNS) under the National Weeds Strategy. State-listed Priority weeds have specific legal requirements for management and have higher management priorities.

Weeds recorded within the VMP Area and subject land and surround are detailed in Table 2.

Table 2 Weed species recorded within the VMP Area and subject land and surrounds

Scientific Name	Common Name	Status	WoNS	Subject Land and Surrounds	VMP Area
Centaurium erythraea	Common Centaury	-	-	Yes	
Conyza bilbaoana		-	-	Yes	
Conyza bonariensis	Flaxleaf Fleabane	-	-	Yes	
Conyza sumatrensis	Tall fleabane	-	-	Yes	
Cortaderia selloana	Pampas Grass	-	-	Yes	Yes
Cyperus eragrostis	Umbrella Sedge	-	-	Yes	
Cytisus scoparius subsp. scoparius	English Broom	SP, RP	Yes	Yes	Yes
Eragrostis curvula	African Lovegrass	OWRC	Yes	Yes	Yes
Erodium cicutarium	Common Crowfoot	-	-	Yes	
Gamochaeta americana	Purple Cudweed	-	-	Yes	Yes
Hakea laurina		-	-	Yes	
Hypochoeris radicata	Catsear	-	-	Yes	Yes
Modiola caroliniana	Red-flowered Mallow	-	-	Yes	
Petrorhagia dubia		-	-	Yes	Yes
Plantago lanceolata	Lamb's Tongues	-	-	Yes	
Senecio madagascariensis	Fireweed	SP, RP	Yes	Yes	
Sida rhombifolia	Paddy's Lucerne	-	Yes	Yes	
Solanum sp.		-	-	Yes	
Sonchus oleraceus	Common Sowthistle	-	-	Yes	Yes
Trifolium subterraneum	Subterranean Clover	_	-	Yes	Yes

 $Key: SP = State \ Priority \ Weed, \ RP = Regional \ Priority \ Weed, \ OWRC = Other \ Weeds \ of \ Regional \ Concern, \ WoNS = Weed \ of \ National \ Significance.$

7.2. Best Management Practice

Weed management within the VMP Area will be undertaken in accordance with best management practices to minimise impacts upon existing vegetation and habitats. This includes applying the following:

 The main principles of the Bradley Method of bush regeneration, i.e. not over-clearing (remove only targeted species), employment of minimal disturbance techniques to avoid soil and surrounding vegetation disturbance, and replacement of disturbed mulch/leaf-litter,

- · Removal of fruiting/seeding parts of weeds carefully, to minimise spread of plant propagules;
- Use of chemicals and sprays only during suitable weather conditions (i.e. not during wet or windy conditions), and only during appropriate seasons; and
- All equipment should be thoroughly cleaned prior to entering the VMP Area to minimise contamination.

7.3. Weed Control Methods

All weed removal works in the VMP Area should be approached using the strategies outlined below. It is recommended that weed management be undertaken by a Bushland Regeneration Contractor (BRC).

7.3.1. Manual Weed Removal

Manual removal, or hand weeding, is an effective form of weed control when all viable parts of the plant are removed from the soil (roots, fruiting material and rhizomes) and site. All weeds removed by hand will be handled according to best practice bush regeneration techniques to prevent subsequent seed set from the removed weeds, and the unviable plant material will be retained on site to provide mulch and natural leaf litter to protect the soil surface.

7.3.2. Woody Weed Removal

Large woody weed species such as *Cytisus scoparius* subsp. *scoparius* (English Broom) are present within the VMP Area. Recommended removal techniques for this species include:

- The selective spraying of woody weed regrowth, with selective and non-selective herbicides:
- Cutting/scraping and painting deep rooted woody weeds and climbers with hand tools, chainsaws and brush cutters and painting cut stumps with herbicides containing Glyphosate or Picloram; and
- Target drilling and injecting certain large tree weeds with herbicides such as Glyphosate and a Garlon/diesel mix.

7.3.3. Use of Herbicides

All herbicides should be used according to recommendations on the herbicide label. Appropriate Personal Protective Equipment (PPE) should be worn and consideration given to time of day, likelihood of rainfall, wind direction and likely impact on native species as per guidelines on the label. Use of glyphosate will be appropriate for most species. Glyphosate is the preferred herbicide for use in environmentally sensitive areas as it is rapidly broken down by microbes in the soil so residue is short lived and will not affect remnant and planted native individuals in the long-term following application. In areas near water courses, an appropriate form of the herbicide should be used to minimise impact to aquatic life and amphibians. Herbicide use should be avoided within 2 m of the riparian edges. Examples of appropriate herbicide forms are Roundup Biactive and Clearup Bio 360 which have surfactants that are formulated to minimise harm to amphibians. As runoff is a likely way for herbicide residue to enter watercourses, chemical treatment should be avoided prior to or directly after rains.

It is important to note that there can be legal restrictions and permit requirements for use of specific herbicides for specific plants, and chemical labels and permit requirements always need to be researched prior to herbicide application. The relevant permit numbers are PER9907, and PER11916. These permits need to be obtained from the Federal Government body, the Australian Pesticides and Veterinary Management Authority.

Manual removal will be an appropriate form of control for some species, and all chemical treatment should be carried out according to best practice guidelines.

7.3.4. Use of Weed Suppression Materials

Use of weed suppression materials such as jute matting or mulch is not recommended within the VMP Area due to the small size of the area, and absence of dense concentrations of woody weeds, meaning erosion risks following weed removal are likely to be minimal, and presence of native species throughout. These materials suppress native regeneration as well as weed germination.

7.4. Weed Management in the VMP Area

7.4.1. Initial Weed Control

After installation of sediment fencing has been completed initial weed treatment in the VMP Area will commence. Initial weeding will involve treatment/removal of *Cytisus scoparius* subsp. *scoparius* (English Broom) and *Cortaderia selloana* (Pampass Grass), and spot treatment of small groundcover weeds.

Herbicide application will consist of spraying with Glyphosate 360g/L at a concentration of 10 mL herbicide to 1 L of water. This strength is commonly used in bushland regeneration works as it will effectively kill most herbaceous weed species. A marker dye should be used in the herbicide solution to ensure no areas are missed. Knapsack sprayers with a spray cone to direct the spray towards the ground are recommended to be used to prevent herbicide drift into adjacent vegetated areas. Spraying should be adjusted based on onground conditions and should target areas with weed infestations.

Following the initial spraying, the VMP Area should be left for three weeks to allow time for any treated weeds to die back. After this period, the treated areas should be resprayed with Glyphosate again, with a focus made on treating any exotic plant species that still have green colouring left in foliage, and any juvenile germinated exotic grasses.

7.4.2. Ongoing Weed Maintenance

The most cost and time effective method of controlling weed regrowth will be by spraying a non-selective Glyphosate herbicide. This is only to be used for large infestations. If targeting individual weeds, then wick wiping/direct press techniques are advisable.

Ongoing maintenance of the VMP Area should occur for the duration of the Project to diminish the soil seed bank of exotic weed species present. In order to eliminate the occurrence of these species they need to be controlled before they have a chance to set seed, otherwise progress will not be made.

It is important during site visits for ongoing weed maintenance that as many weed species as possible are controlled. This will minimise maturity and set seed of weeds between site visits. During site visits for weed

control, Priority Weeds and WoNS must be prioritised for control. Individual plants of these species on site should not be allowed to achieve a reproductive stage in their life cycles.

8. Revegetation Plan

8.1. Introduction

The objectives of this revegetation plan are to provide details of the measures that will be implemented to restore the vegetation within MZ1 and MZ2. The revegetation works will seek to restore the previously occurring PCT 1248 Sydney Peppermint - Silvertop Ash heathy open forest.

8.2. Revegetation Preparation

Preparation for revegetation of the VMP Area will require the treatment of soils, and the installation of protective plant fencing. Recommended revegetation strategies include:

- Initial and ongoing control of weeds and competing grasses using bushland regeneration techniques and conventional best practice chemical and physical strategies as outlined in Chapter 6;
- Treatment of soils within each planted tube stock plant hole with a plant establishment aid that contains a
 mix of materials such as slow and quick release fertilisers, water holding crystals, rooting hormones and
 wetting agents, (i.e. products such as Terra Cottem by TC Advantage Pty Ltd or Sure Start by Barmac).
 These agents assist in establishing newly installed plants and can reduce establishment watering resources
 by up to 50%;
- Stabilising soils and suppressing weeds around individual plantings using products, such as 40 cm square jute fibre mats or woodchip leaf mulch to a 50 cm diameter and 75 mm depth; and
- Protecting individual tree and shrub plantings with a tree guard from feral animal grazing, frost and maintenance herbicide spraying overspray. Bamboo stakes 3 x 10-12 mm x 750 mm and 1 x 350 mm x 450 mm plastic tree guards are suitable for this purpose.

8.3. Recommended Revegetation Techniques

8.3.1. Species Selection

Appropriate plant species for PCT 1248 are provided in **Appendix A** and are to be used for revegetation of MZ1. Plants will be sourced from local provenance stock and may be sourced from seed collections or cuttings from within the existing vegetation within the subject land or from commercially sourced tube stock.

It is recommended that a mix of local native trees, shrubs, and ground layer plants are replanted at the specified densities outlined below. All plants must be disease and pest-free, hardened off and well-watered at the time of planting. All plants are to be provided in a healthy condition. They must have good root development and a sturdy shoot system.

Final species selection will be based upon:

- Availability of seed material;
- · Exclusion of plants likely to naturally regenerate on the site; and
- Previous experience with species re-vegetation performance.

As many species as are able to be sourced should be planted to maximise the species richness within the VMP Area. The minimum numbers of species to be used in the initial establishment phase of the revegetation are:

- 3 canopy tree species;
- 12 subcanopy or shrub layer species; and
- 4 grasses/graminoids;
- 5 forbs;
- 1 fern; and
- 3 other species (i.e. vines and twiners).

8.3.2. Planting Densities

Differential cover of shrubs provides a greater diversity of fauna habitat, particularly for some small, woodland birds which forage in grassy areas and shelter in shrub thickets. Trees and shrubs should be planted unevenly in patches to mimic natural distribution.

MZ1 for the most part is devoid of canopy species, and vegetation is in poor quality, currently dominated by exotic species in some areas, and as such revegetation will be required of all strata.

The recommended planting specifications for PCT 1248 in MZ1 are:

- Canopy Trees @ 1 unit / 10 m²;
- Shrubs @ 2 units / 10 m² (can be differentially spaced across the zone in thickets); and
- Groundcovers @ 6 units / 1 m² planted in clumps/thickets or singly.

Due regard will be given to existing native species in each stratum and plantings are only required in areas with less than the above recommended planting densities.

8.3.3. Species Richness of Plantings

The goal of revegetation should be to reach 50% of the species richness benchmark for PCT 1248 five years post commencement of revegetation works. The benchmark for PCT 1248 is five tree species, 23 shrub species, seven grasses/graminoids, nine forb species, two ferns, and five other species (i.e. vines and twiners). It is recognised that the ability to match benchmark species richness will be dependent on stock able to be obtained from local nurseries.

8.3.4. Characteristic Planting Units

Species should be planted in characteristic planting units to correspond with the topology, aspect, soil type and proximity to water. Grasses may be planted in clumps of three or more (spaced 15–20 cm apart within clumps) to generate physical / structural support for each other and microclimates. Wind pollinated grasses may be particularly planted in clumps to aid fertilisation and to create a natural grassland understorey within the restoration areas. Trees and shrubs should be planted unevenly in patches to mimic natural distribution.

8.3.5. Plant Supply

Any tube stock will be purchased of local provenance native plants identified in **Appendix A**. In the event that the required quantities of tube stock are not available then it may be necessary to collect or source suitable quantities of local native seed for the propagation.

Local native plant propagules should be collected using principles prescribed in 'Bringing the Bush back to Western Sydney' (DIPNR 2003). Seeds and vegetative propagules should be of local provenance from within the Lithgow LGA, preferably from within 10 km of the VMP Area. Material should be propagated in a local commercial or community nursery, with well-established plants used for revegetation, for trees and shrub species particularly. It may be necessary to get the required amounts of seed and vegetative material contract-collected and grown-on by specialist nurseries. Local native plants should be grown in "Hiko" tube, maxi cell or viro-tube, or Forestry Tube-type containers.

8.4. Maintenance

After planting works have been completed, treated areas in both zones should be maintained by appropriately qualified personnel, selectively spot spraying and hand weeding around native plants, watering plants and replacing dead plants as needed.

Tree guards should remain around all native planted trees and shrubs, for at least 18 months to protect them from herbivory. Rabbits can devastate revegetation areas soon after planting if tree guards are not used. Tree guards will also allow herbicide to be used for control of the majority of regrowth weeds, without damage to native plants by herbicide drift.

The following sequential steps are recommended to manage each area of the VMP Area effectively for each site visit:

- Initially the BRC visiting the revegetation area should sweep from one end of each area to the other. During this sweep weeds occurring within each tree guard alongside native plants should be removed by hand and any weed occurring within a patch of dominant native plants (such as a patch of grasses).
- A member of the team should then sweep the entire VMP Area, spraying all regrowth weeds between native plantings in open areas with herbicide, and spot spraying where possible in all other areas.

Re-growing environmental weeds such as vines, woody trees and shrubs, broadleaf annuals and naturalised grasses should be closely monitored and controlled using ecologically sensitive bushland regeneration hand weeding and spot-spraying methods, to ensure adequate weed control and native plant establishment (refer to **Chapter 6**). Weeding inside each planting tube by hand or selective herbicides will be required, as well as in an approximate 50 cm radius around the outside of each plant and tree guard.

Provision should be made to irrigate areas, as required, in the first three months after establishment (on at least four to five occasions, depending on rainfall conditions, more watering if required, particularly over summer months).

Plants that have died due to drought or pest and disease damage should be replaced as required. Plants that are observed to have died should be replaced by the bushland maintenance team with a planting of the same form.

Monitoring and Reporting

9.1. Responsibilities

It is recommended that a project manager from a Bushland Regeneration Contractor (BRC) be assigned to coordinate, supervise, and manage all works and correspondence with respect to the management of the VMP Area. The BRC will be responsible for ensuring the measures outlined in this VMP are implemented. The project manager will become familiar with the VMP Area and surrounds, and progress of all aspects of works undertaken.

The project manager will be responsible for allocation of maintenance tasks to personnel in response to ongoing monitoring results as well as reporting. Regular monitoring and feedback from personnel will assist in the allocation of labour relative to available funds.

9.2. Monitoring

A qualified BRC or ecological consultant will carry out a program of regular monitoring of the implementation of the VMP. General observations of the nature and condition of the VMP Area will be collected, along with the collection of quantitative data within:

- One 5 m x 10m plot within MZ1;
- One 5 m x 10m plots within MZ2; and
- Two 20 m x 20m plots within MZ3.

Indicative locations of monitoring plots are shown in **Figure 5**. Photo reference points should be established in the VMP Area at one corner of each monitoring plot and a photograph shall be taken at each photo reference point facing north, east, south, and west, and one diagonally across the monitoring plot, for a visual assessment of site progress. The following information will be collected within each of the monitoring plots:

- Estimates of the success rate of plantings and natural regeneration, and assessment of plant replacement requirements (MZ1 and MZ2 only);
- · Weed coverage in each stratum; and
- Recommendations for corrective measures and/or vegetation management.

The monitoring program will include a monitoring survey will be completed as follows:

- MZ1 and MZ2: Every three months during the two years following revegetation works, and annually for the remainder of the Project; and
- MZ3: Annually for the duration of the Project (i.e. 15 years).

9.3. Reporting

A brief and concise report will be prepared annually based on the findings of the monitoring visits. The report will be prepared by a BRC or ecological consultant and forwarded to NPWS at the end of each yearly period for the duration of the Project.

Each annual report will:

- Describe the revegetation works undertaken;
- · State the findings of the monitoring surveys;
- Discuss any problems encountered in implementing the VMP; and
- · Recommend any adaptations or additions to the VMP.

The report will contain site photographs, as well as a short description of weeds in each management zone and a short comparison to the photographs to the previous years. Any other notable occurrences of weeds will also be reported. The report will also recommend and prioritise areas where weed control should be targeted for the following maintenance period.

10. Timing and Responsibilities

Timing and responsibilities at each component of the VMP Area are shown within **Table 3** along with performance criteria.

Table 3 Timing, responsibilities, and performance criteria

Manageme nt Area	Action	Responsibility	Performance Criteria	Timing
Vegetation F	Protection Works			
VMP Area	Establish new permanent boundary fence along the eastern boundary of the subject land from the northern end to the start of the MZ1 boundary	Construction Subcontractor	Permanent boundary fence erected	Before construction works commence
VMP Area	Establish temporary fencing between MZ1 and adjoining areas of MZ2 and MZ3	Construction Subcontractor	Temporary boundary fence erected	Before construction works commence
VMP Area	Establish a new permanent boundary fence along the eastern boundary of the subject land	Construction Subcontractor	Permanent boundary fence erected	Following completion of Stage 1 of the Project
VMP Area (and adjacent areas)	Removal of existing fence that intersects the VMP Area	Construction Subcontractor	Existing fence removed	Following establishment of all permanent fencing
VMP Area	Installation of sediment fences at the interface to the VMP Area	Construction Subcontractor	Erosion and sediment control measures installed	Prior to construction
VMP Area	Maintenance of sediment fences at the interface to the VMP Area	Construction Subcontractor	Erosion and sediment control measures maintained	Duration of the Project
VMP Area	Conduct baseline study for pathogens	Subcontractor	Baseline study of pathogens conducted	Before construction works commence
VMP Area	Conduct annual testing for pathogens	Subcontractor	Annual testing for pathogens completed	Duration of the Project
VIVIP Area	_	Subcontractor	-	Daration of the Proj

Manageme nt Area	Action	Responsibility	Performance Criteria	Timing
Habitat Rein	statement Works	the state of the s		
MZ2	Salvaged habitat features reused within MZ2	Construction Subcontractor	Habitat features reinstated in accordance with Chapter 6	Prior to commencement of revegetation works within MZ2
Weed Manag	gement			
MZ1	Carry out initial weed control	BRC	Main weed infestations removed, including Priority Weeds	Within 2 months of Project commencement
MZ2	Carry out initial weed control	BRC	Main weed infestations removed, including Priority Weeds	Within 2 months of Project commencement
MZ3	Carry out initial weed control	BRC	Main weed infestations removed, including Priority Weeds	Within 2 months of Project commencement
MZ1	Carry out maintenance weed control	BRC	Weed regrowth following initial weeding removed. Weed coverage should be < 20% at end of first year of maintenance, < 10% at end of second year, < 5% at end of third year onwards.	Six monthly, until the completion of Stage 1. Six monthly following commencement of revegetation works for five years. Annually after the first five years following commencement of revegetation works until completion of the Project (i.e. 15 years post commencement).
MZ2	Carry out maintenance weed control	BRC	Weed regrowth following initial weeding removed. Weed coverage should be < 20% at end of first year of maintenance, < 10% at end of second year, < 5% at end of third year onwards.	Six monthly following commencement of revegetation works for five years. Annually after the first five years following commencement of revegetation works until completion of the Project (i.e. 15 years post commencement)
	Carry out maintenance weed control	BRC	Weed regrowth following initial weeding removed.	Six monthly for the first five years of management.

Manageme nt Area	Action	Responsibility	Performance Criteria	Timing
			Weed coverage should be < 20% at end of first year of maintenance, < 10% at end of second year, < 5% at end of third year onwards.	Annually until the completion of the Project (i.e. 15 years post commencement).
Revegetation	n Works			
MZ1	Carry out initial weed control	BRC	As above (Weed Management).	As above (Weed Management).
MZ2	Carry out initial weed control	BRC	As above (Weed Management).	As above (Weed Management).
MZ1	Revegetate with trees, shrubs and ground cover species	BRC	Native plants have been planted (species from Appendix A) in all vegetation strata. Species richness targets in Section 8.3.3 met	Within 2 months of initial weed management following completion of Stage 1 of the Project
MZ2	Revegetate with trees, shrubs and ground cover species	BRC	Native plants have been planted (species from Appendix A) in all vegetation strata. Species richness targets in Section 8.3.3 met	Within 2 months of initial weed management following commencement of the Project
MZ1 and MZ2	Irrigate revegetation areas	BRC	Revegetation areas irrigated	At least four or five occasions within the first 3 months following revegetation (depending on rainfall)
MZ1 and MZ2	Carry out maintenance weed control	BRC	Weeds removed from tree guards. Weed growth minimised or controlled	Every six months for the duration of the Project
MZ1 and MZ2	Maintenance of plantings (if required)	BRC	Any dead plantings replaced	Every 3 months for the first two years following revegetation
Monitoring	and Reporting			
VMP Area	Establish fixed monitoring plots	BRC or Ecologist	Using star pickets (or something smaller like a small stake and pink	At commencement of revegetation works (MZ1 and MZ2), or at

Manageme nt Area	Action	Responsibility	Performance Criteria	Timing
			flagging) and GPS establish monitoring plots in accordance with Chapter 9	commencement of the Project (MZ3)
VMP Area	Monitoring of revegetation works	BRC or Ecologist	Site inspection completed as outlined in Chapter 9	Every 3 months for two years following commencement of revegetation works.
VMP Area	Annual monitoring	BRC or Ecologist	Site inspection completed as outlined in Chapter 9	Once a year for the duration of the Project.
VMP Area	Progress report preparation	BRC or Ecologist	Annual Report prepared on progress of VMP works, and outline of further works needed	Once a year for the 5- year maintenance period of VMP
VMP Area	Final Inspection of Site	BRC or Ecologist	Final inspection carried out at completion of Project	After completion of the Project
VMP Area	Final Report	BRC or Ecologist	Final report detailing success of VMP works	After completion of the Project

cumberland ? ecology

11. References

DIPNR. 2003. Bringing the Bush Back to Western Sydney. Department of Infrastructure, Planning and Natural Resources.

DPI. 2017. Fact Sheet: Weed Management Legislation is Changing.

DPI, editor. 2018. New South Wales Invasive Species Plan 2018-2021. NSW Department of Primary Industries.

DPIE. 2020. Hygiene guidelines: Protocols to protect priority biodiversity areas in NSW from Phytophthora cinnamomi, myrtle rust, amphibian chytrid fungus and invasive plants.

GHD. 2018a. Bell Quarry Rehabilitation Project. Biodiversity Impact Assessment. GHD Pty Ltd, Sydney.

GHD. 2018b. Bell Quarry Rehabilitation Project. Volume 1 – Environmental Impact Statement. GHD Pty Ltd, Sydney.

GHD. 2021. Bell Quarry Rehabilitation Project. Preferred Project Report. GHD Pty Ltd, Sydney.

LLS: Greater Sydney, editor. 2017. Greater Sydney Regional Strategic Weed Management Plan 2017 - 2022. Local Land Services NSW.

APPENDIX A: Planting List

Table 4 Planting list for revegetation works

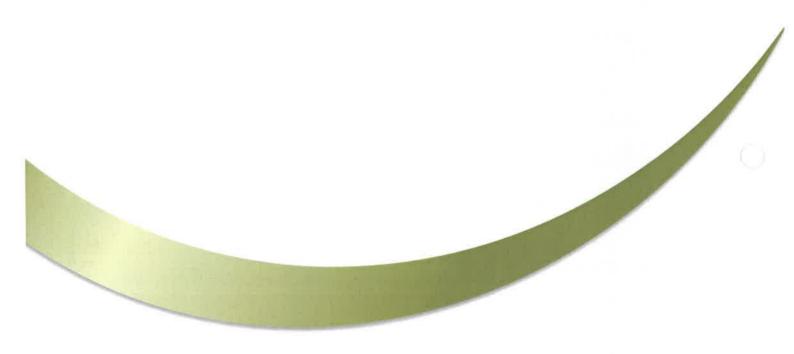
)					
Growth Form Group	Family	Scientific Name	Common Name	Recorded in Surrounding Vegetation	BioNet Vegetation Classification
Tree (TG)	Cunoniaceae	Ceratopetalum gummiferum	Christmas Bush	×	
Tree (TG)	Myrtaceae	Eucalyptus blaxlandii	Blaxland's Stringybark	×	
Tree (TG)	Myrtaceae	Eucalyptus globoidea	White Stringybark	×	
Tree (TG)	Myrtaceae	Eucalyptus oreades	Blue Mountains Ash	×	İ
Tree (TG)	Myrtaceae	Eucalyptus piperita	Sydney Peppermint	×	×
Tree (TG)	Myrtaceae	Eucalyptus radiata subsp. radiata			×
Tree (TG)	Myrtaceae	Eucalyptus sclerophylla	Hard-leaved Scribbly Gum	×	×
Tree (TG)	Myrtaceae	Eucalyptus sieberi	Silvertop Ash	×	×
Tree (TG)	Myrtaceae	Eucalyptus sparsifolia	Narrow-leaved Stringybark		×
Tree (TG)	Proteaceae	Banksia serrata	Old-man Banksia	×	×
Shrub (SG)	Apiaceae	Platysace lanceolata	Shrubby Platysace	×	
Shrub (SG)	Apiaceae	Platysace linearifolia		×	×
Shrub (SG)	Araliaceae	Polyscias sambucifolia	Elderberry Panax	×	
Shrub (SG)	Asteraceae	Cassinia aculeata	Dolly Bush	×	
Shrub (SG)	Asteraceae	Cassinia aculeata subsp. aculeata		×	
Shrub (SG)	Asteraceae	Ozothamnus diosmifolius	White Dogwood	×	
Shrub (SG)	Casuarinaceae	Allocasuarina nana	Dwarf She-oak	×	
Shrub (SG)	Dilleniaceae	Hibbertia obtusifolia	Hoary Guinea Flower	×	
Shrub (SG)	Ericaceae	Brachyloma daphnoides	Daphne Heath	×	

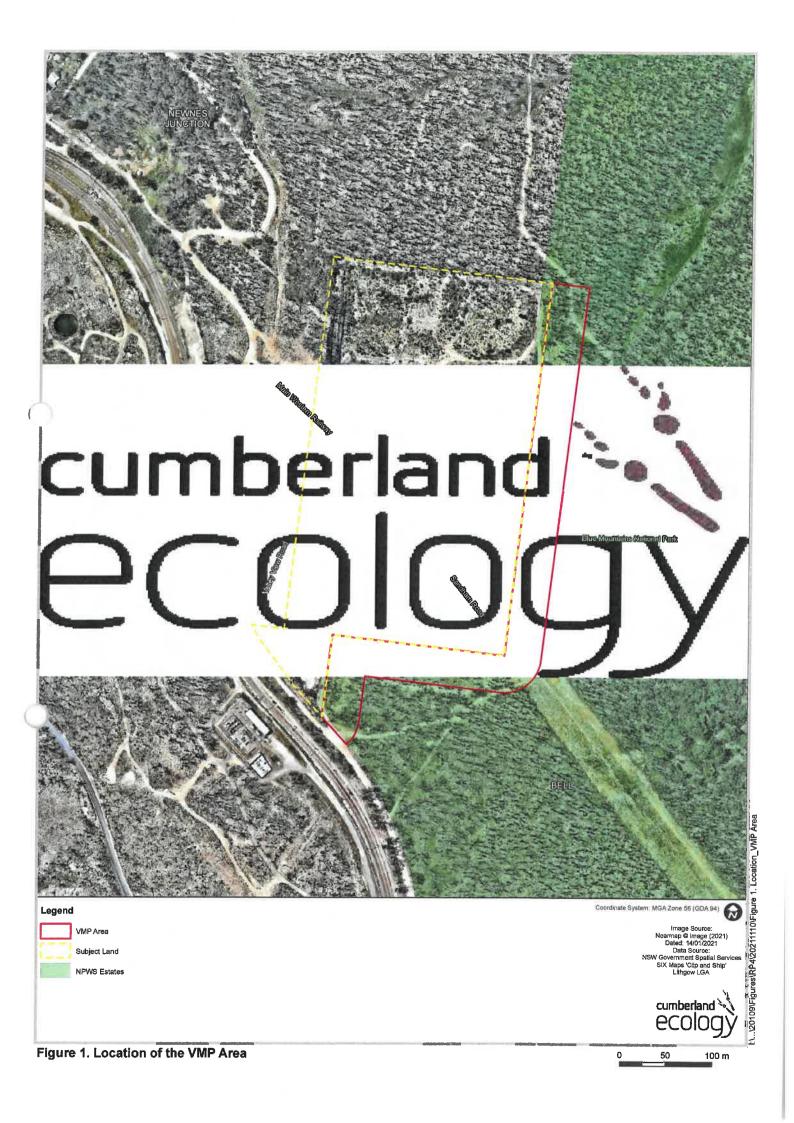
Growth Form Group	Family	Scientific Name	Common Name	Recorded in Surrounding Vegetation	BioNet Vegetation
Shrub (SG)	Ericaceae	Epacris microphylla	Coral Heath	×	
Shrub (SG)	Ericaceae	Epacris pulchella	Wallum Heath	×	
Shrub (SG)	Ericaceae	Leucopogon lanceolatus		×	
Shrub (SG)	Ericaceae	Leucopogon spp.		×	
Shrub (SG)	Ericaceae	Monotoca scoparia		×	×
Shrub (SG)	Euphorbiaceae	Amperea xiphoclada		×	
Shrub (SG)	Fabaceae (Faboideae)	Bossiaea heterophylla	Variable Bossiaea		×
Shrub (SG)	Fabaceae (Faboideae)	Daviesia latifolia	Bitter-pea	×	
Shrub (SG)	Fabaceae (Faboideae)	Daviesia ulicifolia	Gorse Bitter Pea		×
Shrub (SG)	Fabaceae (Faboideae)	Podolobium scandens	Netted Shaggy Pea	×	
Shrub (SG)	Fabaceae (Mimosoideae)	Acacia baileyana	Cootamundra Wattle	×	
Shrub (SG)	Fabaceae (Mimosoideae)	Acacia brownii	Heath Wattle	×	
Shrub (SG)	Fabaceae (Mimosoideae)	Acacia longifolia		×	
Shrub (SG)	Fabaceae (Mimosoideae)	Acacia longifolia var. longifolia	Sydney Golden Wattle	×	
Shrub (SG)	Fabaceae (Mimosoideae)	Acacia spp.	Wattle	×	
Shrub (SG)	Fabaceae (Mimosoideae)	Acacia terminalis	Sunshine Wattle	×	

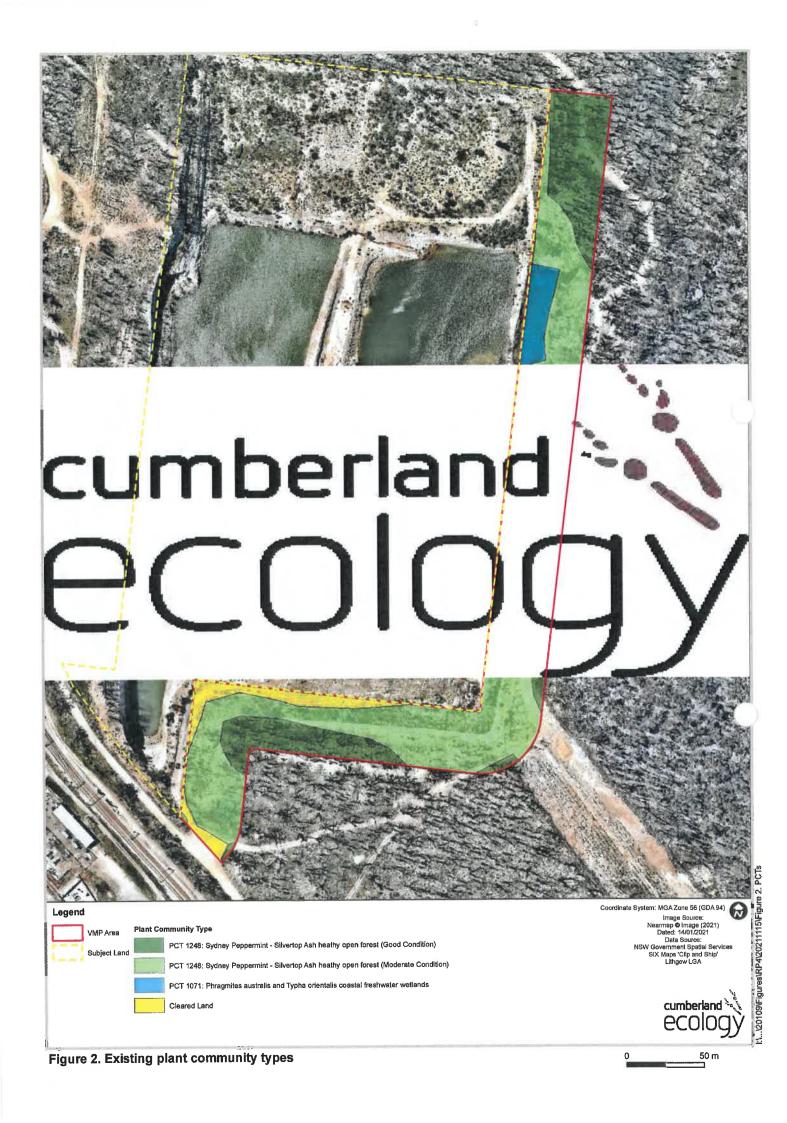
Growth Form Group	Family	Scientific Name	Common Name	Recorded in Surrounding Vegetation	BioNet Vegetation Classification
Shrub (SG)	Fabaceae (Mimosoideae)	Acacia ulicifolia	Prickly Moses	×	
Shrub (SG)	Myrtaceae	Baeckea linifolia	Weeping Baeckea	×	
Shrub (SG)	Myrtaceae	Leptospermum continentale	Prickly Teatree	×	
Shrub (SG)	Myrtaceae	Leptospermum grandifolium	Woolly Teatree	×	
Shrub (SG)	Myrtaceae	Leptospermum macrocarpum		×	
Shrub (SG)	Myrtaceae	Leptospermum polygalifolium	Tantoon	×	
Shrub (SG)	Myrtaceae	Leptospermum rotundifolium		×	
Shrub (SG)	Myrtaceae	Leptospermum trinervium	Slender Tea~tree	×	×
Shrub (SG)	Phyllanthaceae	Phyllanthus hirtellus	Thyme Spurge	×	
Shrub (SG)	Polygalaceae	Comesperma ericinum	Pyramid Flower	×	
Shrub (SG)	Proteaceae	Banksia ericifolia var. ericifolia		×	
Shrub (SG)	Proteaceae	Banksia marginata	Silver Banksia	×	
Shrub (SG)	Proteaceae	Banksia spinulosa	Hairpin Banksia	×	×
Shrub (SG)	Proteaceae	Grevillea laurifolia	Laurel-leaf Grevillea	×	
Shrub (SG)	Proteaceae	Grevillea rosmarinifolia subsp. rosmarinifolia	Rosmary Grevillea	×	
Shrub (SG)	Proteaceae	Hakea dactyloides	Finger Hakea	×	×
Shrub (SG)	Proteaceae	Hakea propingua		×	
Shrub (SG)	Proteaceae	Hakea sericea	Needlebush	×	
Shrub (SG)	Proteaceae	Isopogon anemonifolius	Broad-leaf Drumsticks	×	×

Growth Form Group	Family	Scientific Name	Common Name	Recorded in Surrounding	BioNet Vegetation
TANK THE REAL PROPERTY.	ALCO DE LA COLONIA DE LA COLON	THE PROPERTY OF THE PARTY OF TH		Vegetation	Classification
Shrub (SG)	Proteaceae	Lambertia formosa	Mountain Devil		×
Shrub (SG)	Proteaceae	Lomatia silaifolia	Crinkle Bush	×	×
Shrub (SG)	Proteaceae	Persoonia chamaepitys	Mountain Geebung	×	
Shrub (SG)	Proteaceae	Persoonia lanceolata	Lance Leaf Geebung	×	
Shrub (SG)	Proteaceae	Persoonia laurina	Laurel Geebung		×
Shrub (SG)	Proteaceae	Persoonia levis	Broad-leaved Geebung	×	×
Shrub (SG)	Proteaceae	Persoonia linearis	Narrow-leaved Geebung	×	
Shrub (SG)	Proteaceae	Persoonia mollis subsp. mollis		×	
Shrub (SG)	Proteaceae	Petrophile canescens	Conesticks	×	
Shrub (SG)	Proteaceae	Petrophile pulchella	Conesticks	×	
Shrub (SG)	Proteaceae	Telopea speciosissima	Waratah	×	×
Shrub (SG)	Rhamnaceae	Pomaderris andromedifoli af. 'andromedifolia'		×	
Shrub (SG)	Rutaceae	Boronia microphylla	Small-leaved Boronia	×	
Other (OG)	Pittosporaceae	Billardiera scandens	Hairy Apple Berry	×	
Grass & grasslike (GG)	Cyperaceae	Caustis flexuosa	Curly Wig		×
Grass & grasslike (GG)	Cyperaceae	Eleocharis sphacelata	Tall Spike Rush	×	
Grass & grasslike (GG)	Cyperaceae	Gahnia microstachya		×	
Grass & grasslike (GG)	Cyperaceae	Gahnia sieberiana	Red-fruit Saw-sedge	×	
Grass & grasslike (GG)	Cyperaceae	Lepidosperma laterale	Variable Sword-sedge	×	
Grass & grasslike (GG)	Cyperaceae	Lepidosperma limicola		×	

Growth Form Group	Family	Scientific Name	Common Name	Recorded in Surrounding	BioNet Vegetation
Grass & grasslike (GG)	Cyperaceae	Schoenus spp.		X	Classification
Grass & grasslike (GG)	Juncaceae	Juncus spp.		×	
Grass & grasslike (GG)	Juncaceae	Juncus usitatus		×	
Grass & grasslike (GG)	Lomandraceae	Lomandra cylindrica		×	
Grass & grasslike (GG)	Lomandraceae	Lomandra filiformis subsp. filiformis		×	
Grass & grasslike (GG)	Lomandraceae	Lomandra glauca	Pale Mat-rush	×	×
Grass & grasslike (GG)	Lomandraceae	Lomandra longifolia	Spiny-headed Mat-rush	×	
Grass & grasslike (GG)	Lomandraceae	Lomandra longifolia var. longifolia	Spiny-headed Mat-rush	×	
Grass & grasslike (GG)	Lomandraceae	Lomandra multiflora subsp. multiflora	Many-flowered Mat-rush	×	
Grass & grasslike (GG)	Lomandraceae	Lomandra obliqua			×
Grass & grasslike (GG)	Poaceae	Aristida ramosa	Purple Wiregrass	×	
Grass & grasslike (GG)	Poaceae	Austrostipa puberula		×	
Grass & grasslike (GG)	Poaceae	Austrostipa rudis		×	
Grass & grasslike (GG)	Poaceae	Austrostipa rudis subsp. nervosa		×	
Grass & grasslike (GG)	Poaceae	Cynodon dactylon	Common Couch	×	
Grass & grasslike (GG)	Poaceae	Echinopogon caespitosus	Bushy Hedgehog-grass	×	
Grass & grasslike (GG)	Poaceae	Elymus scaber	Wheatgrass	×	
Grass & grasslike (GG)	Poaceae	Entolasia stricta	Wiry Panic	×	×
Grass & grasslike (GG)	Poaceae	Microlaena stipoides	Weeping Grass	×	
Grass & grasslike (GG)	Poaceae	Poa sieberiana	Snowgrass	×	
Grass & grasslike (GG)	Poaceae	Rytidosperma pallidum	Redanther Wallaby Grass	×	


Growth Form Group	Family	Scientific Name	Common Name	Recorded in	BioNet
· · · · · · · · · · · · · · · · · · ·				Surrounding Vegetation	Vegetation Classification
Grass & grasslike (GG)	Poaceae	Rytidosperma spp.		×	
Grass & grasslike (GG)	Poaceae	Rytidosperma tenuius		×	
Grass & grasslike (GG)	Restionaceae	Baloskion australe		×	
Grass & grasslike (GG)	Restionaceae	Baloskion gracile		×	
Grass & grasslike (GG)	Restionaceae	Empodisma minus		×	
Grass & grasslike (GG)	Restionaceae	Eurychorda complanata	· vananta da	×	
Grass & grasslike (GG)	Restionaceae	Lepyrodia scariosa		×	
Grass & grasslike (GG)	Xyridaceae	Xyris ustulata	Yellow Flag	×	
Fern (EG)	Gleicheniaceae	Gleichenia dicarpa	Pouched Coral Fern	×	
Forb (FG)	Acanthaceae	Brunoniella australis	Blue Trumpet	×	
Forb (FG)	Apiaceae	Daucus glochidiatus	Native Carrot	×	
Forb (FG)	Apiaceae	Hydrocotyle tripartita	Pennywort	×	
Forb (FG)	Apiaceae	Xanthosia pilosa	Woolly Xanthosia	×	×
Forb (FG)	Asteraceae	Arrhenechthites mixta	Purple Fireweed	×	
Forb (FG)	Asteraceae	Coronidium scorpioides	Button Everlasting	×	
Forb (FG)	Asteraceae	Craspedia variabilis	Common Billy-buttons	×	
Forb (FG)	Asteraceae	Euchiton sphaericus	Star Cudweed	×	
Forb (FG)	Campanulaceae	Wahlenbergia communis	Tufted Bluebell	×	ļ
Forb (FG)	Campanulaceae	Wahlenbergia gracilis	Sprawling Bluebell	×	
Forb (FG)	Campanulaceae	Wahlenbergia spp.	Bluebell	×	
Forb (FG)	Colchicaceae	Burchardia umbellata	Milkmaids	×	


Growth Form Group	Family	Scientific Name	Common Name	Recorded in Surrounding Vegetation	BioNet Vegetation Classification
Forb (FG)	Droseraceae	Drosera peltata		×	
Forb (FG)	Goodeniaceae	Dampiera stricta		×	×
Forb (FG)	Goodeniaceae	Goodenia bellidifolia subsp. bellidifolia		×	
Forb (FG)	Goodeniaceae	Goodenia hederacea	lvy Goodenia	×	
Forb (FG)	Goodeniaceae	Goodenia paniculata		×	
Forb (FG)	Haemodoraceae	Haemodorum planifolium		×	
Forb (FG)	Haloragaceae	Gonocarpus micranthus		×	
Forb (FG)	Haloragaceae	Gonocarpus tetragynus	Poverty Raspwort	×	
Forb (FG)	Iridaceae	Patersonia glabrata	Leafy Purple-flag	×	
Forb (FG)	Iridaceae	Patersonia sericea	Silky Purple-Flag	×	×
Forb (FG)	Linaceae	Linum marginale	Native Flax	×	
Forb (FG)	Orchidaceae	Diuris pardina	Leopard Orchid	×	
Forb (FG)	Orchidaceae	Microtis spp.		×	
Forb (FG)	Orchidaceae	Prasophyllum spp.		×	
Forb (FG)	Orchidaceae	Thelymitra ixioides	Dotted Sun Orchid	×	
Forb (FG)	Orchidaceae	Thelymitra spp.		×	
Forb (FG)	Phormiaceae	Dianella revoluta	Blueberry Lily	×	
Forb (FG)	Phormiaceae	Dianella revoluta var. revoluta		×	
Forb (FG)	Phyllanthaceae	Poranthera microphylla	Small Poranthera	×	
Forb (FG)	Rubiaceae	Opercularia hispida	Hairy Stinkweed	×	
Forb (FG)	Rubiaceae	Opercularia varia	Variable Stinkweed	×	



Growth Form Group	Family	Scientific Name	Common Name	Recorded in	BioNet
			ではない かんじゅ	Vegetation	Vegetation Classification
Forb (FG)	Rubiaceae	Pomax umbellata	Pomax	×	
Forb (FG)	Stackhousiaceae	Stackhousia viminea	Slender Stackhousia	×	
Forb (FG)	Violaceae	Hybanthus monopetalus	Slender Violet-bush	×	
Forb (FG)	Violaceae	Hybanthus vernonii		×	
Forb (FG)	Violaceae	Viola silicestris		×	
Fern (EG)	Dennstaedtiaceae	Pteridium esculentum	Bracken	×	×

FIGURES

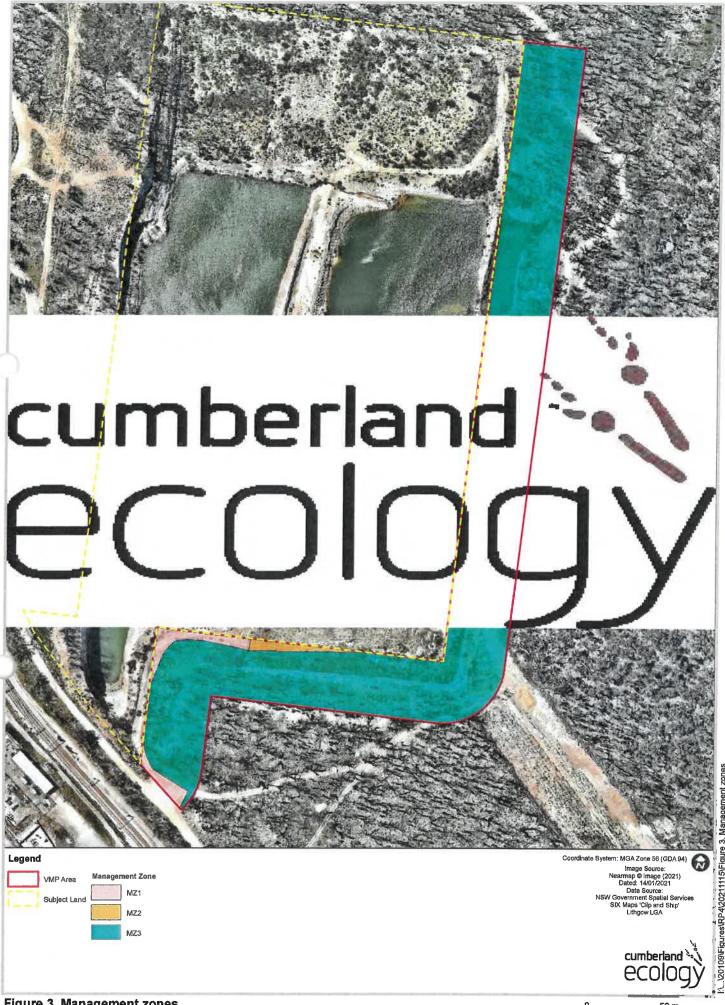
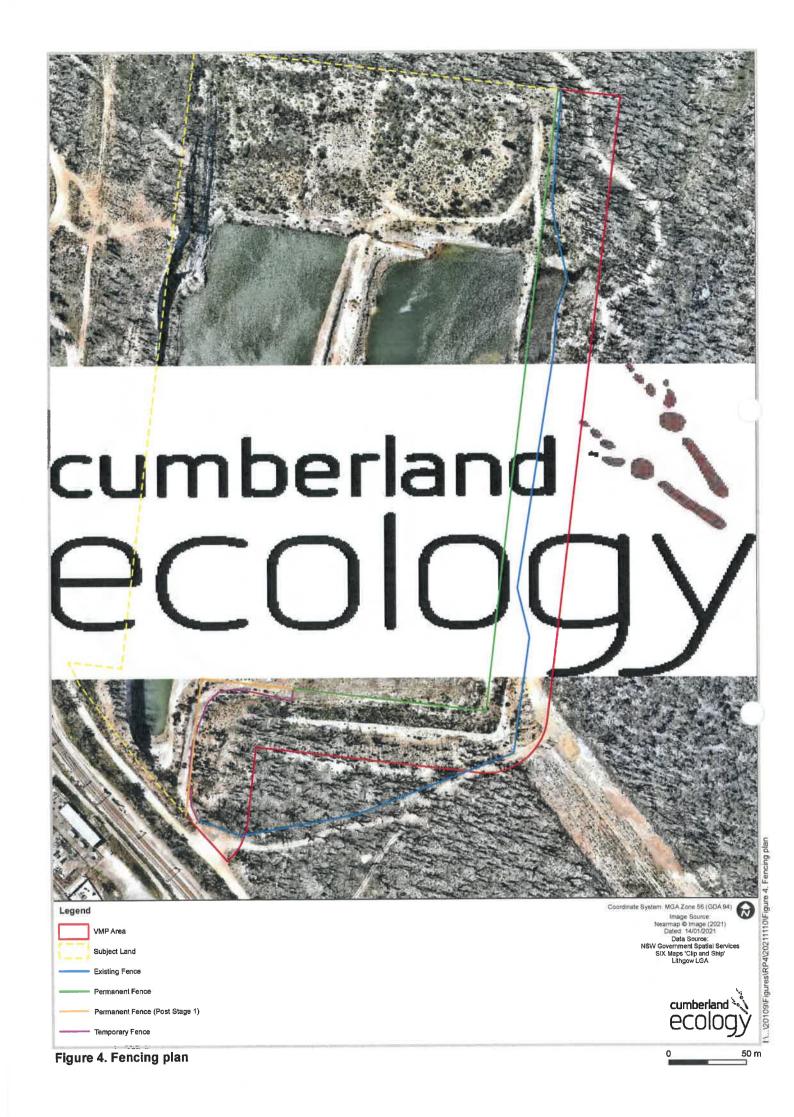
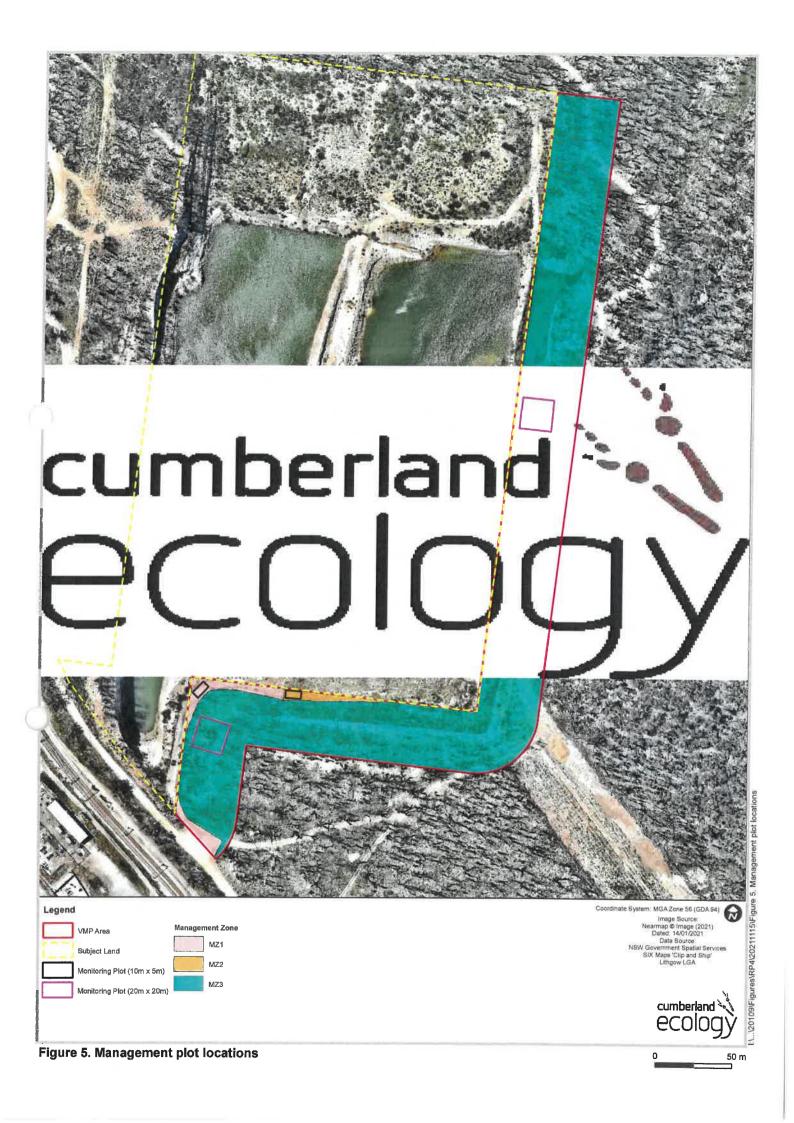




Figure 3. Management zones

50 m

Rehabilitation of the Former Bell Quarry - DA 294/19

Ecological Monitoring Plan

HWL Ebsworth Lawyers

16 November 2021

Final

Report No. 20109RP3

The preparation of this report has been in accordance with the brief provided by the Client and has relied upon the data and results collected at or under the times and conditions specified in the report. All findings, conclusions or commendations contained within the report are based only on the aforementioned circumstances. The report has been prepared for use by the Client and no responsibility for its use by other parties is accepted by Cumberland Ecology.

Version	Date Issued	Amended by	Details
1	16 November 2021		Final issued for submission
-			

Approved by:	Dr David Robertson
Position:	Director
Signed:	Dand Robertson
Date:	16 November, 2021

Table of Contents

Glo	ossary	\
1.	Introduction	1
	1.1. Purpose	1
	1.2. Project Background	1
2.	Existing Biodiversity Values	5
3.	Groundwater Dependent Ecosystem Monitoring	8
	3.1. Threats to be Monitored	8
	3.2. Data Collection	8
	3.3. Performance Indicators	8
4.	Weed Monitoring	10
	4.1. Threats to be Monitored	10
	4.2. Data Collection	11
_	4.3. Performance Indicators	12
5.	Pathogen Monitoring	13
	5.1. Threats to be Monitored	13
	5.2. Monitoring Methods 5.3. Trigger Action Response Plan	13
6.	Rehabilitation Monitoring	16 17
o .	6.1. Vegetation Communities to be Rehabilitated	
	6.2. Monitoring Methods	17 18
	6.3. Completion Criteria	19
7.	Reporting	21
	7.1. Annual Reporting	21
	7.2. Review	21
8.	References	22

Table of Tables

Table 1 Plant community types within the project area and study areaarea	5
Table 2 Target weed species for monitoring	10
Table 3 Performance indicators for weed monitoring	12
Table 4 Flora species known to be susceptible to Phytophthora or Myrtle Rust recorded within the study	y area
	14

Table 5 Vegetation communities present in the subject land and their suitability for re	habilitation17
Table 6 Progressive Criteria for rehabilitation of each PCT	
Table 7 Trigger Action Response Plan	A.2
Table of Dhotographs	
Table of Photographs	
Photograph 1 Evample of Myrtle Rust pustules	14

Table of Appendices

APPENDIX A: Trigger Action Response Plan

Table of Figures

Figure 1 Location of the subject land

Glossary

Term / Abbreviation	Definition
BAM	Biodiversity Assessment Method
BQRP	Bell Quarry Rehabilitation Project Pty Ltd
Council	Lithgow City Council
DA	Development Application
dbh	Diameter at Breast Height
DPE	NSW Department of Planning and Environment
EIS	Environmental Impact Statement
ENM	Excavated natural material
EP&A Act	NSW Environmental Planning and Assessment Act 1979
EPA	NSW Environment Protection Authority
EPL	Environment Protection Licence
GBMWHA	Greater Blue Mountains World Heritage Area
GDE	Groundwater dependent ecosystem
NSW	New South Wales
OEH	NSW Office of Environment and Heritage
the Project	The Bell Quarry Rehabilitation Project
SEARs	Secretary's Environmental Assessment Requirements
TARP	Trigger Action Response Plan
Subject land	Lot 23 DP 751631
VENM	Virgin excavated natural material
WRPP	Western Regional Planning Panel

1. Introduction

Cumberland Ecology has been requested by HWL Ebsworth Lawyers on behalf of Bell Quarry Rehabilitation Project Pty Ltd (BQRP) to prepare an ecological monitoring plan for the Bell Quarry Rehabilitation Project (the 'Project'). The Project sought designated and integrated development consent under Part 4 of the New South Wales (NSW) *Environmental Planning and Assessment Act 1979* (EP&A Act). The Development Application (DA) for the Project was refused by the Western Regional Planning Panel (WRPP) in April 2020. This ecological monitoring plan is required to address the following recommendation proposed by OEH (2019):

Recommendation 5. A detailed monitoring plan, incorporating a Trigger Action Response Plan, be developed for the project which addresses all potentially detrimental impacts (including surface and ground water levels and quality, pathogens, weeds and rehabilitation).

1.1. Purpose

The purpose of this document is to provide a detailed ecological monitoring plan to monitor the potential detrimental impacts of the Project. This ecological monitoring plan includes monitoring of the following:

- Weed invasion;
- · Pathogens; and
- · Rehabilitation.

The plan also includes performance criteria for each of the above items, and a Trigger Action Response Plan (TARP).

The plan applies to the entirety of the study area as shown in **Figure 1**. Any works undertaken within the Blue Mountains National Park are required to be subject to a licence issued under the *National Parks and Wildlife Act 1974*.

A separate Water Management Plan will be developed to address management and monitoring requirements in relation to water resources (surface water and groundwater levels and quality).

1.2. Project Background

1.2.1. Site Background

Bell Quarry is located on Sandham Road, Dargan, approximately 10 km east of Lithgow, New South Wales (NSW) (the 'subject land') (**Figure 1**). The quarry was in operation under existing use rights between 1967 and 1994, and subsequently operated under a DA approval from Lithgow City Council (Council) and an Environment Protection Licence (EPL) issued by the NSW Environment Protection Authority (EPA) (GHD 2018b). Active operations with the quarry ceased and the EPL was surrendered to the EPA on 24 October 2014 (GHD 2018b). BQRP acquired the quarry site and subsequently undertook future land use planning for the subject land.

The subject land covers a total area of approximately 13.7 hectares (ha) and is divided by the Main Western Railway. The subject land is zoned E3 Environmental Management under *Lithgow Environmental Plan 2014*. It is located adjacent to the Greater Blue Mountains World Heritage Area (GBMWHA), and within the upper reaches of the Wollangambe River Catchment, which forms part of the broader Hawksbury-Nepean catchment.

1.2.2. Project Overview

BQRP is seeking to rehabilitate the subject land, with the final rehabilitated landform to be achieved via importation of virgin excavated natural material (VENM), excavated natural material (ENM) or comparable material (that meets an exemption pursuant to clauses 91 and 92 of the *Protection of the Environmental Operations (Waste) Regulation 2014)*, sourced from earthworks projects across Sydney and the local regional area.

The key features of the Project are identified by GHD (2021) as follows:

- Importation of approximately 1.2 million cubic metres of VENM, ENM or comparable material (that meets
 an exemption pursuant to clauses 91 and 92 of the *Protection of the Environmental Operations (Waste)*Regulation 2014), sourced from earthworks projects across Sydney and the local regional area;
- Vehicle haulage at a rate of up to 140,000 tonnes per annum;
- Emplacement and compaction of soil material within the existing quarry voids;
- Shaping of fill to closely represent the pre-quarry landform and to allow surface water drainage across the final landform;
- Development of a water management system to control surface water discharges throughout the rehabilitation program and from the final landform including a lined contact water pond; and
- Revegetation of the site with locally endemic species to provide effective integration with the surrounding landscape.

1.2.3. Assessment History

1.2.3.1. Secretary's Environmental Assessment Requirements

Secretary's Environmental Assessment Requirements (SEARs) were issued for the Project on 18 November 2016 by the then NSW Department of Planning and Environment (DPE). The SEARs identified the following requirement in relation to biodiversity:

- accurate predictions of any vegetation clearing on site or for any road upgrades;
- a detailed assessment of the potential impacts on any threatened species, populations, endangered ecological communities or their habitats, groundwater dependent ecosystems and any potential for offset requirements; and
- a detailed description of the measures to avoid, minimise, mitigate and offset biodiversity impacts.

The SEARs were developed in consultation with other agencies, including WaterNSW, the Environment Protection Authority and the Department of Primary Industries. The detailed requirements recommended by WaterNSW included biodiversity requirements relating to groundwater dependent ecosystems (GDEs), watercourses, wetlands and riparian land, and stream rehabilitation. At the time the SEARs were issued, the Office of Environment and Heritage (OEH) were unable to provide input to the SEARs, and therefore DPE indicated a requirement for the proponent to consult directly with DPE. OEH subsequently issued requirements on 25 January 2017. These requirements included:

- assessment of cumulative impacts,
- biodiversity [either via the BioBanking Assessment Methodology (BBAM) or a detailed biodiversity assessment, and
- impacts to OEH estate.

1.2.3.2. Environmental Impact Statement

In 2018, BQRP submitted an Environmental Impact Statement (EIS) to support an application for designated and integrated development for the site under Part 4 of the EP&A Act. The EIS was prepared by GHD and included assessment of soil and water resources, biodiversity, traffic, air quality, noise and vibration, cultural heritage, and world heritage. The EIS included a number of supporting documents, including:

- Biodiversity Impact Assessment (GHD 2018a); and
- Water Resources Assessment (GHD 2018c).

1.2.3.3. Submissions and Responses

The DA and associated EIS were placed on public exhibition for 60 days between 19 January and 20 March 2020. Over 500 submissions were lodged, including submissions from NSW government agencies, local councils and the community. A Submissions Report was subsequently prepared by GHD (2019c) to respond to the issues raised in the submissions. The issues raised within the submissions related to the approval pathway, traffic, flora and fauna, water, contamination, social and economic, as well as general issues.

Following the lodgement of the Submissions Report further correspondences relating to environmental matters were issued by OEH (2019), EPA (2019a, c, b, 2020), Lithgow City Council, NSW Department of Planning, Industry and Environment (2019), National Parks and Wildlife Service (2019), and additional information provided by GHD (2019a, b).

1.2.3.4. Refusal

On 6 March 2020 Council issued an assessment report for the Project and recommended that Project be refused. A total of 12 reasons for refusal were provided in the assessment report. The Project was subsequently assessed by the WRPP. The WRPP made a determination to refuse the Project on 6 April 2020. A total of 11 reasons for the refusal were documented in the Determination and Statement of Reasons document issued by the WRPP.

The reasons for refusal primarily relate to environmental harm, including the following reason which is the subject of this review:

- 2. The Environment Protection Authority considers, based on its submissions to Council, that the proposal will have unacceptable environmental impacts on the Greater Blue Mountains World Heritage Area, arising from the following:
 - i. it is likely that some of the soil leachates will adversely alter the natural characteristics and ionic balance of water draining into the Greater Blue Mountains World Heritage Area and the Colo River, Greater Blue Mountains World Heritage Area (GBMWHA).

- ii. proposed discharges into a tributary of the Wollangambe River were identified that would impact on a swamp located on the tributary approximately 200m downstream of where the discharge is proposed. The tributary (and its connected swamp) is proposed to receive pumped out water from the quarry pits, any leachate from the material that is emplaced in the pits and overland flow once the area is rehabilitated. The tributary and swamp are in the GBMWHA.
- iii. The Biodiversity Impact Assessment identified the Prickly Tea-tree sedge wet heath swamp below the quarry discharge location as a Newnes Plateau Shrub Swamp (EEC under the TSC Act) and Temperate Highland Peat Swamps on Sandstone (EEC under the EPBC Act).
- iv. The existence of the swamp in the headwaters of the drainage line downstream of Bell Quarry strongly suggests that there is a groundwater source which helps support/maintain the swamp in this location.
- v. The Water Resources Assessment Section of the EIS has not clearly defined the downstream swamp as a Groundwater Dependent Ecosystem (GOE); it has not assessed the level of groundwater dependence for the swamp and the likely pathways (e.g. disruption of groundwater connections, reduction in groundwater quality) by which the project might impact on the swamp; and it does not consider issues surrounding water discharge rates or their effect on geomorphic stability for the swamp. It has therefore not appropriately assessed the risk the project will have on the THPS swamp.
- vi. The dewatering of the quarry voids is likely to present a significant potential to destabilise sediments in the downstream swamp. If an erosional nick-point is established in the swamp, it could lead to the loss of the swamp in its entirety through erosion and gullying.

2. Existing Biodiversity Values

This section summarises the existing environment identified within the Biodiversity Impact Assessment (GHD 2018a) prepared for the Project as well as incorporating findings from Cumberland Ecology (2021). The findings presented below include references to the project area and study area as shown in **Figure 1**.

2.1.1. Plant Community Types

The project area is described as comprising highly modified landforms with the majority of vegetation present being the result of previous rehabilitation activities. Some rehabilitation occurs outside of the project area, however much of remaining portions of the study area contain intact vegetation. The extent of plant community types (PCTs) identified within the project area and study area are outlined within **Table 1**.

Of the PCTs identified within the study area, only one is considered to conform to a threatened ecological community (TEC). Prickly Tea-tree – sedge wet heath on sandstone plateaux is considered to conform to Newnes Plateau Shrub Swamp in the Sydney Basin Bioregion which is listed as an endangered ecological community (EEC) under the NSW *Biodiversity Conservation Act 2016* (BC Act), as well as conforming to Temperate Highland Peat Swamps on Sandstone which is listed as an EEC under the Commonwealth *Environment Protection and Biodiversity Conservation Act 1999* (EPBC Act).

Table 1 Plant community types within the project area and study area

PCT	Condition	Project Area (ha)	Study Area (ha)
1248: Sydney Peppermint - Silvertop Ash heathy open forest on sandstone ridges of the upper Blue Mountains, Sydney Basin Bioregion	Moderate/good- high	0.13	11.96^
1248: Sydney Peppermint - Silvertop Ash heathy open forest on sandstone ridges of the upper Blue Mountains, Sydney Basin Bioregion	Moderate/good- poor	2.48	5.43
1078: Prickly Tea-tree – sedge wet heath on sandstone plateaux, central and southern Sydney Basin Bioregion	Moderate/good	-	0.87^
*1071: Phragmites australis and Typha orientalis coastal freshwater wetlands of the Sydney Basin Bioregion	Moderate/good - poor	3.19	3.30
Cleared Land	Cleared	2.41	3.57
Total		8.21	25.13

^{*} PCT identified is considered best-fit as the vegetation occurs within an artificial wetland

2.1.2. Flora Species

Over 170 flora species from 47 families were recorded within the study area, of 90% of species are native and 10% exotic. One priority weed, *Cytisus scoparius* subsp. *scoparius* (English Broom), listed under the *Biosecurity Act 2015* for the Lithgow Local Government Area was recorded within the project area. This species is also

[^] Areas updated following surveys by Cumberland Ecology (2021).

classified as a Weed of National Significance. Other weeds recorded within the project area included Pampas Grass (*Cortaderia selloana*) and African Lovegrass (*Eragrostis curvula*).

No threatened flora species were recorded within the project area or study area. The following threatened flora species were identified as having potential habitat within the project area:

- Boronia deanei (Deane's Boronia) (EPBC Act Status: Vulnerable; BC Act Status: Vulnerable);
- Personnia hindii (EPBC Act Status: Not listed; BC Act Status: Endangered); and
- Veronica blakelyi (EPBC Act Status: Not listed; BC Act Status: Vulnerable).

Boronia deanei is noted as having potential habitat downstream of the project area. Persoonia hindii and Veronica blakelyi are noted as having potential habitat within the project area, with additional habitat located downstream of the project area.

Additional threatened flora species were considered to have broadly suitable habitat within the wider study area.

2.1.3. Fauna Habitat

The following broad fauna habitat type have been identified within the project area:

- · Regenerating and planted vegetation;
- Intact native vegetation;
- Quarry voids (aquatic):
- · Drainage line (aquatic); and
- Swamp (aquatic).

Habitat connectivity is limited within the project area, however extensive connectivity occurs in adjoining area, including within Blue Mountains National Park.

2.1.4. Fauna Species

A total of 57 native fauna species were recorded within the study area during the field survey, six frog species, 30 bird species, six dragonfly and damselfly species, four terrestrial mammal species, three bat species and eight reptile species. A further two bat species had possible call recordings. No introduced fauna species were detected.

One threatened fauna species, the Large Bent-winged Bat (*Miniopterus orianae oceanensis*) had a possible call recording within the study area. The Large Bent-winged Bat is listed as Vulnerable under the BC Act.

The following threatened fauna species were identified by GHD (2018a) as being potentially impacted by the Project:

Giant Dragonfly (Petalura australis) (EPBC Act Status: Not Listed; BC Act Status: Endangered);

- Giant Burrowing Frog (Heleioporus australiacus) (EPBC Act Status: Vulnerable; BC Act Status: Vulnerable);
- Red-crowned Toadlet (Pseudophryne australis) (EPBC Act Status: Not Listed; BC Act Status: Vulnerable);
- Littlejohn's Tree Frog (Litoria littlejohni) (EPBC Act Status: Vulnerable; BC Act Status: Vulnerable); and
- Blue Mountains Water Skink (Eulamprus leuraensis) (EPBC Act Status: Endangered; BC Act Status: Endangered).

These species are noted as having potential habitat downstream of the project area along the drainage line and/or swamp.

A suite of other threatened fauna species were considered to have potential habitat within the project area or study area, however these were not assessed as impacted species.

2.1.5. Groundwater Dependent Ecosystems

Prickly Tea-tree – sedge wet heath on sandstone plateaux, located within the study area outside of the project area, has been identified as likely to be a GDE.

The following observations were made of the swamp vegetation (D. Martens pers. comm.) following a site inspection in December 2020:

- Surface water was observed flowing into the hanging swamp, which was then absorbed as groundwater into the shallow soil profile overlying sandstone (i.e. no surface flow through wetland);
- Shallow groundwater discharge was observed from the lowest portion of the hanging swamp at a similar rate to the observed surface water inflow rate;
- Limited evidence of channelised flow within the swamp; and
- Observations strongly suggest that hydrology of the hanging swamp is controlled by surface water inflows from upslope site discharge and side valley inflows.

2.1.6. Greater Blue Mountains World Heritage Area

Blue Mountains National Park, which forms part of the GBMWHA is located along the eastern and northern boundaries of the project area. Some areas immediately adjacent to the project area within the park have previously been disturbed through edge effects, clearing for boundary fence installation, historical quarrying and electricity easements.

3. Groundwater Dependent Ecosystem Monitoring

3.1. Threats to be Monitored

The threat to be monitored is the Prickly Tea-tree – sedge wet heath on sandstone plateaux, located within the study area outside of the project area, which has been identified as likely to be a GDE, that could be impacted by changes to surface or groundwater flows.

3.2. Data Collection

Monitoring of potential GDEs (i.e. swamp vegetation) will be undertaken at two permanent plots using the locations of the plots surveyed by Cumberland Ecology (detailed in report REF: 20109RP2). Monitoring of control sites is not proposed as there are no equivalent swamps immediately adjacent that are not potentially impacted by the quarry. Instead, data will be compared to baseline data from surveys by Cumberland Ecology in March 2021. Plot surveys will follow the BAM and include establishment of a 20 m x 50 m plot (or equivalent 10 m x 100 m plot) within which the following data will be collected:

- Composition for each growth form group by counting the number of native plant species recorded for each growth form group within a 20 m x 20 m plot;
- Structure of each growth form group as the sum of all the individual projected foliage cover estimates of all native plant species recorded within each growth form group within a 20 m x 20m plot;
- Cover of 'High Threat Exotic' weed species within a 20 m x 20m plot;
- Assessment of function attributes within a 20 m x 50 m plot, including:
 - Count of number of large trees;
 - Tree stem size classes, measured as 'diameter at breast height over bark' (DBH);
 - Regeneration based on the presence of living trees with stems <5 cm DBH;
 - The total length in metres of fallen logs over 10 cm in diameter;
- Assessment of litter cover within five 1 m x 1 m plots evenly spread within the 20 m x 50 m plot; and
- Number of trees with hollows that are visible from the ground within the 20 m x 50 m plot.

Each plot is to be monitored on an annual basis during the same season as previous monitoring (baseline monitoring was undertaken in autumn).

Following monitoring data is to be compiled in a spreadsheet summarising composition and structure for each growth form group and the function attributes.

3.3. Performance Indicators

Performance indicators for potential GDEs relate to noticing changes in indices (relative to previous monitoring years) that cannot be related to other natural causes such as drought or bushfire. As such rainfall records will need to be retained for the period of monitoring, and any other natural disturbance events (such as details of fire events) recorded.

The indices to be monitored include:

- Species richness of each growth form group; and
- Total cover for each growth form group;

As other function attributes such a litter cover, length of course woody debris and number of large trees (which are unlikely to be present) are less likely to be impacted by changes in surface or groundwater flow, these will be recorded, but do not have set performance indicators.

The performance indicator for potential GDEs is that species richness and/or species cover does not drop below 15% of the baseline value (i.e. that detected in surveys by Cumberland Ecology in March 2021) averaged across the two plots, which cannot be attributed to drought or other natural causes.

3.3.1. Trigger Action Response Plan

The Trigger Action Response Plan for GDEs is summarised in **Appendix A**.

4. Weed Monitoring

4.1. Threats to be Monitored

Weeds are a threat to the integrity of vegetation within the project area and adjacent bushland areas. They may change in distribution and abundance over time. There is potential for additional weeds to be introduced within the project area by human activities associated with the Project. Weeds also pose a significant threat to rehabilitation areas as they can out-compete native seedlings and reduce the success of revegetation measures.

A total of 20 weed species have been recorded within the study area. The target weed species for monitoring are the weed species that have been recorded within the study area as listed in **Table 2**.

Of the weed species recorded within the study area, the following have been identified under the NSW Biosecurity Act 2015:

- Senecio madagascariensis (Fireweed) State Priority Weed (Asset Protection) and Regional Priority Weed (Containment);
- Cytisus scoparius subsp. scoparius (English Broom) State Priority Weed (Asset Protection) and Regional Priority Weed (Asset Protection);

Eragrostis curvula (African Lovegrass) is also identified within the Central Tablelands Regional Strategic Weed Management Plan 2017-2022 (Central Tablelands LLS 2017) as a Regional Community Concern weed species.

Cytisus scoparius subsp. scoparius (English Broom) and Senecio madagascariensis (Fireweed) are also Weeds of National Significance.

There are a number of other environmental weeds throughout the study area, in particular within the project area. These include *Cortaderia selloana* (Pampas Grass), *Eragrostis curvula* (African Love Grass) *Centaurium erythraea* (Common Centaury) and *Plantago lanceolata* (Lamb's Tongues). These environmental weeds occur as relatively minor, localised infestations and are mainly concentrated in cleared land and poor condition vegetation in the former quarry. Other introduced species observed include common agricultural weeds such as *Trifolium subterraneum* (Subterranean Clover) and *Hypochoeris radicata* (Cat's Ear). The Western Australian species *Hakea laurina* (Pincushion Hakea) is present in some areas. Introduced plants were only very occasionally observed by GHD (2018a) in intact native vegetation outside the quarry.

Table 2 Target weed species for monitoring

Scientific Name	Common Name	
Centaurium erythraea	Common Centaury	
Conyza bilbaoana	W 6-100-1-1	
Conyza bonariensis	Flaxleaf Fleabane	
Conyza sumatrensis	Tall fleabane	
Cortaderia selloana	Pampas Grass	
Cyperus eragrostis	Umbrella Sedge	

Scientific Name	Common Name
Cytisus scoparius subsp. scoparius	English Broom
Eragrostis curvula	African Lovegrass
Erodium cicutarium	Common Crowfoot
Gamochaeta americana	Purple Cudweed
Hakea laurina	
Hypochoeris radicata	Catsear
Modiola caroliniana	Red-flowered Mallow
Petrorhagia dubia	
Plantago lanceolata	Lamb's Tongues
Senecio madagascariensis	Fireweed
Sida rhombifolia	Paddy's Lucerne
Solanum sp.	
Sonchus oleraceus	Common Sowthistle
Trifolium subterraneum	Subterranean Clover

4.2. Data Collection

4.2.1. Baseline Weed Survey

Random meander transects will be completed within the project area and wider study area to search for weed species, in particular Priority Weeds and Weeds of National Significance to identify baseline weed invasion. These transects will focus on areas of disturbance within the project area, as well as downstream areas in the study area, where additional weed species are likely to colonise. Where significant infestations of weeds (defined as any infestation of Priority Weeds and/or environmental weeds extending over an area of 20 x 20m or more) are found, a 20 x 20 m quadrat will be established and areas/numbers will be estimated within the quadrat and extrapolated to give overall population size estimates. On the completion of surveys, a baseline map of weed infestations will be prepared. This mapping and estimates of overall population size estimates will be used to inform the management actions and trigger control activities. The locations of these additional quadrats will be recorded and photographs taken. These quadrats will be incorporated into the weed monitoring program and visited in subsequent monitoring periods track the progress and efficacy of control activities.

4.2.2. Annual Weed Monitoring

Weed monitoring will be conducted annually within quadrats that are monitored as part of rehabilitation monitoring and the 20 x 20m quadrats surveyed as part of the baseline weed survey (**Section 4.2.1**.). From the quadrat data collected for vegetation rehabilitation monitoring (see **Chapter 6**) and the baseline weed survey the percentages of exotic weeds will be calculated, and the identity of the weeds present determined.

In addition to surveying within the quadrats, annual random meander transects will be completed in all areas within the project area.

The results of the annual monitoring will be reported in the Monitoring Report as outlined in Chapter 7.

4.3. Performance Indicators

Performance indicators for weed monitoring are shown in **Table 3** and include the following:

- A measurable decline in weed density and distribution;
- A measurable decline in weed diversity;
- A reduction in significant weed infestations; and
- Limited recruitment/invasion of new weed species.

Table 3 Performance indicators for weed monitoring

Indicator	5 Year Criteria	10-Year Criteria	15-Year Criteria
Weed density and distribution	25% reduction in baseline value	50% reduction in baseline value	75% reduction in baseline value
Weed diversity	Weed diversity not increased above baseline with limited new weed species recorded	Weed diversity not increased above baseline and downward trend in weed diversity, with limited new weed species recorded	Weed diversity reduced to minimal levels with some species eradicated and limited new species recorded.
Significant weed infestations	Observed reduction in abundance and distribution of significant weed infestations	Downward trend in abundance and distribution of significant weed infestations	No records of new significant weed infestations

4.3.1. Trigger Action Response Plan

In the event the weed control targets in **Table 3** are not being met, the action in response will be to increase weed treatment efforts. Further, in the event that new weed species are recorded, weed hygiene protocols will be reviewed and strengthened to ensure the weed seeds are not inadvertently brought onto site. This will include reviewing seed supply for rehabilitation to ensure that strictly only local provenance species are used, and that seed mixes do not include non-local native species. The disposal of weed material of species established in the site should also be reviewed to ensure this does not result in inadvertent weed spread through movement of soil or water. The Trigger Action Response Plan for weed control is summarised in **Appendix A**.

5. Pathogen Monitoring

5.1. Threats to be Monitored

Activities within the project area have the potential to introduce or spread pathogens such as Phytophthora (*Phytophthora cinnamomi*), Myrtle Rust (*Uredo rangelii*) and Chytrid Fungus (*Batrachochytrium dendrobatidis*) into adjacent native vegetation through vegetation and soil disturbance, through the movement of plant, machinery and vehicles, as well as through rehabilitation works. There is little available information about the distribution of these pathogens within the locality, and no evidence of these pathogens was observed during surveys by GHD (2018a). Phytophthora and Myrtle Rust may result in the dieback or modification of native vegetation and damage to fauna habitats. Chytrid Fungus affects both tadpoles and adult frogs and can cause 100% mortality in some populations once introduced into an area.

5.2. Monitoring Methods

5.2.1. Baseline Study

A baseline study of pathogens at the site will be conducted. This will involve a random meander transect will be completed in all areas within the project area to search for signs of dieback in species, or Myrtle Rust pustules on susceptible species.

In addition, soil sampling will be undertaken to detect *Phytophthora cinnamomi*. Soil sampling will focus on susceptible areas upstream of the swamp.

5.2.2. Fill Sample Testing

Fill must not be imported from areas known to contain Phytophthora, Myrtle Rust or Chytrid fungus. Samples of fill must be tested at the point of origin for these pathogens. No fill returning positive results for pathogens may be transported to project area.

5.2.3. Vegetation Health Monitoring

A random meander transect will be completed in all areas within the project area to search for signs of dieback in species, or Myrtle Rust pustules on susceptible species. These transects will focus on areas of disturbance plus downstream areas as these are where the project could introduce pathogens. In addition to random meander transects, vegetation health will be monitored during the monitoring of rehabilitation plots, detailed in **Section 6.2.2.** Photographs should be taken to support observations of plant health.

Visible symptoms of Phytophthora-based vegetation dieback are as follows (Royal Botanic Gardens Trust 2018):

- Wilting, yellowing and dieback of the plant;
- Rapid death of susceptible plants; and
- Greater loss of plants during dry weather.

Visible symptoms of myrtle rust are as follows (DPI 2015):

- Purple spots on leaves; sometimes growing large, merging and distorting leaves;
- Bright yellow pustules within purple spots, fading to grey as infection ages;

- Death of soft plant material; and
- · Death of host plants in highly susceptible species.

An example of Myrtle Rust pustules is provided in Photograph 1.

Photograph 1 Example of Myrtle Rust pustules

A wide range of species are susceptible to Phytophthora-based vegetation dieback (DPIE 2020). A list of susceptible species from the project area is provided in **Table 4**. Species potentially susceptible belong to the same genera as susceptible species.

Table 4 Flora species known to be susceptible to Phytophthora or Myrtle Rust recorded within the study area

Species	Phytophthora susceptible	Myrtle Rust susceptible
Banksia ericifolia var. ericifolia	Yes	
Banksia spinulosa	Yes	
Baeckea linifolia		Yes
Cassinea aculeata	Yes	
Epacris paludosa	Yes	
Epacris pulchella	Yes	
Eucalyptus blaxlandii	Potential	Potential
Eucalyptus piperita	Potential	Potential

Species	Phytophthora susceptible	Myrtle Rust susceptible
Eucalyptus racemosa	Potential	Potential
Eucalyptus radiata	Potential	Yes
Eucalyptus sieberi	Potential	Yes
Grevillea laurifolia	Potential	
Grevillea rosmarinifolia subsp. rosmarinifolia	Yes	
Hakea dactyloides	Potential	
Hakea propinqua	Potential	
Leptospermum continentale	Potential	Yes
Leptospermum grandifolium	Potential	Potential
Leptospermum macrocarpum	Potential	Potential
Leptospermum polygalifolium	Potential	Yes
Leptospermum trinervium	Potential	Potential
Lomatia silaifolia	Potential	
Ozothamnus diosmifolius	Potential	
Patersonia sericea	Yes	
Persoonia chamaepitys	Potential	
Persoonia levis	Potential	
Petrophile canescens	Potential	
Petrophile pulchella	Yes	
Phyllanthus virgatus	Potential	
Pimelea linifolia subsp. collina	Yes	
Telopea speciosissima	Yes	
Xanthosia atkinsoniana	Potential	
Xanthosia dissecta	Yes	

5.2.4. Frog Surveys

Skin swabs and specialist analysis are required to diagnose the presence of Chytrid fungus. Surveys for the presence of this pathogen will instead involve searching for deceased and obviously affected frogs, as well as by comparing amphibian diversity and abundance to previous monitoring years.

Frog surveys are to be undertaken annually to determine if there in any detectable decline in from species richness, while also searching for deceased frogs. Frog surveys should be undertaken annually following rainfall and will target the downstream swamp areas.

5.2.4.1. Spotlighting and Call Playback

Spotlight surveys will be conducted using a hand-held spotlight while walking. Spotlighting should be undertaken along the length of the swamp as well as approximately 100 m past either end, along the associated drainage line. Spotlighting should be undertaken for a period of one hour by two personnel each night, over a total of four nights.

In conjunction with spotlighting surveys, call playback for the Giant Burrowing Frog and Red-crowned Toadlet will be undertaken. Call playback should be followed with quiet listening and spotlighting in the immediate vicinity. Call playback should be undertaken at two locations within the drainage line associated with the swamp. Call playback should be undertaken at each location for four nights.

5.2.4.2. Tadpole Searches

Diurnal tadpole searches will be undertaken within the approximately 100 m of drainage line at either end of the swamp. Two diurnal tadpole searches were undertaken using a dip net. Any tadpole captured will be identified and released.

5.3. Trigger Action Response Plan

The trigger for an action response is that signs of infection by Phytophthora (*Phytophthora cinnamomi*), Myrtle Rust (*Uredo rangelii*) or Chytrid fungus (*Batrachochytrium dendrobatidis*) are observed in flora or amphibian species. The Trigger Action Response Plan for pathogens is summarised further in **Appendix A**.

6. Rehabilitation Monitoring

6.1. Vegetation Communities to be Rehabilitated

6.1.1. Existing Vegetation Communities

The Biodiversity Assessment Report (2018a) indicates that the subject land contains a range of different Plant Community Types in varying conditions. These are summarised in **Table 5** below with an indication of their suitability for rehabilitation.

Table 5 Vegetation communities present in the subject land and their suitability for rehabilitation

PCT No	PCT Name	Condition Class	Rehabilitation suitability
1248	Sydney Peppermint Silvertop Ash heathy open forest on sandstone ridges of the upper Blue Mountains, Sydney Basin Bioregion	Moderate	Undisturbed areas that should be the benchmark of rehabilitation
1248	Sydney Peppermint Silvertop Ash heathy open forest on sandstone ridges of the upper Blue Mountains, Sydney Basin Bioregion	Poor	Current rehabilitation areas
1078	Prickly Tea-tree - sedge wet heath on sandstone plateaux, central and southern Sydney Basin Bioregion.	Moderate/good	Not directly impacted and not proposed for rehabilitation.
1071	Phragmites australis and Typha orientalis coastal freshwater wetlands of the Sydney Basin Bioregion)	Moderate	Quarry voids filled with water and not proposed for rehabilitation
-	Cleared land	n/a	Areas that will comprise future rehabilitation

With the exception of quarry voids that have filled with water that have formed wetlands broadly consistent with PCT 1071 (*Phragmites australis* and *Typha orientalis* coastal freshwater wetlands of the Sydney Basin Bioregion) areas that are undergoing rehabilitation are broadly consistent with PCT 1248. A more detailed description of each PCT suitable for rehabilitation or in the process of being rehabilitated is provided further below.

6.1.2. PCT 1248 Sydney Peppermint Silvertop Ash heathy open forest on sandstone ridges of the upper Blue Mountains, Sydney Basin Bioregion

6.1.2.1. Moderate Condition

This community is present as remnant or regrowth native vegetation with near-intact overstorey and midstorey. The canopy is dominated by large stands of *Eucalyptus piperita* (Sydney Peppermint) and *Eucalyptus sieberi* (Silver-top Ash). The canopy has lower densities of *Eucalyptus oreades* (Blue Mountains Ash), *Eucalyptus globoidea* (White Stringybark) and *Eucalyptus sclerophylla* (Hard-leaved scribbly Gum). Characteristic midstorey shrubs include *Leptospermum grandifolium* (Woolly Teatree) and *Leptospermum trinervium* (Slender Tea-

tree). Smaller shrubs species include Daviesia latifolia (Bitter Pea) Pomaderris andromedifolia subsp. andromedifolia, Grevillea laurifolia (Laurel-leaf Grevillea) and Lomatia silaifolia (Crinkle Bush). The ground layer is sparse, but species rich and structurally variable with abundant leaf litter between understorey plants. Grasses in the ground layer include Entolasia stricta (Wiry Panic), Austrostipa rudis subsp. nervosa (a spear-grass), Poa sieberiana (Snow Grass), Microlaena stipoides (Weeping Grass) and a Rytidosperma sp. Other ground layer species include Dianella revoluta var. revoluta (Blue Flax Lily), Lepidosperma laterale (Variable Swordsedge) Patersonia sericea (Silky Purple-Flag) Pteridium esculentum (Bracken Fern) Lomandra filiformis subsp. filiformis, Xanthosia pilosa (Woolly Xanthosia) Amperea xiphoclada, Opercularia varia, (Variable Stinkweed), Poranthera microphylla (Small Poranthera), Baloskion gracile, Hybanthus vernonii and Brunoniella australis (Blue Trumpets).

This community in its intact form (moderate condition) represents the benchmark for the majority of rehabilitation areas except voids.

6.1.2.2. Poor Condition

This form of PCT 1248 is present as regrowth and as rehabilitated native vegetation comprising a derived shrub land and partially cleared woodland with sub-mature regrowth on rehabilitated portions of the quarry. Rehabilitated areas appear to include a mix of planted native species and natural regrowth from re-spread topsoil. A canopy layer is absent. The mid-storey forms a moderate to dense cover of sclerophyllous shrubs including *Acacia longifolia*, *Gahnia sieberiana* (Red-fruit Saw-sedge), *Leptospermum polygalifolium* (Tantoon) and *Leptospermum trinervium*. Occasional patches of saplings of *Eucalyptus* species are present. The shrub layer includes *Acacia terminalis* (Sunshine Wattle), *Cassinia aculeata* (Dolly Bush) *Daviesia latifolia*. *Hakea laurina*, *Leptospermum grandifolium*, *Petrophile pulchella* (Conesticks) and *Leptospermum macrocarpum*. The ground layer includes the grasses in the moderate condition form in addition to forbs including *Gonocarpus tetragynus* (Poverty Raspwort), *Lepyrodia scariosa*, *Lomandra longifolia* (Spiny-headed Mat-rush), *Goodenia paniculata*, *Amperea xiphoclada*, *Baloskion gracile* and *Coronidium scorpioides* (Button Everlasting). This form of PCT 1248 contains introduced weeds including *Cytisus scoparius* subsp. *scoparius* (English Broom), *Cortaderia selloana* (Pampas Grass), *Eragrostis curvula* (African Love Grass) *Hypochoeris radicata* (Cat's Ear) and *Hakea laurina* (Pincushion Hakea).

6.2. Monitoring Methods

6.2.1. Reference Condition Surveys

Plot-based floristic surveys will be undertaken in the intact (moderate) condition form of PCT 1248 to identify baseline condition. These plot should be surveyed following the Biodiversity Assessment Method (BAM) and including the establishment of $20 \text{ m} \times 50 \text{ m}$ plots within which the following data will be collected:

- Composition for each growth form group by counting the number of native plant species recorded for each growth form group within a 20 m x 20 m plot;
- Structure of each growth form group as the sum of all the individual projected foliage cover estimates of all native plant species recorded within each growth form group within a 20 m x 20m plot;
- Cover of 'High Threat Exotic' weed species within a 20 m x 20m plot;

- Assessment of function attributes within a 20 m x 50 m plot, including:
 - Count of number of large trees;
 - Tree stem size classes, measured as 'diameter at breast height over bark' (DBH);
 - Regeneration based on the presence of living trees with stems <5 cm DBH;
 - The total length in metres of fallen logs over 10 cm in diameter;
- Assessment of litter cover within five 1 m x 1 m plots evenly spread within the 20 m x 50 m plot; and
- Number of trees with hollows that are visible from the ground within the 20 m x 50 m plot.

A minimum of three plots should be surveyed and will form the base line condition against which rehabilitated areas will be assessed. Following the completion of surveys the data should be entered into a spreadsheet and the average of the three plots for each variable above calculated.

6.2.2. Rehabilitation Monitoring

Rehabilitation monitoring is to be undertaken annually in the same season each year.

A total of three permanent monitoring plots are to be established in rehabilitation areas, including one within the existing poor condition PCT 1248 and two within newly established areas of PCT 1248. Each plot will be a 20 x 50 m plot surveyed following the BAM as detailed in **Section 6.2.1.** The plots should be spread out evenly across the subject land, to cover rehabilitated areas of different ages. A permanent photo monitoring point will be established at the start and end of the centre line of each 20 x 50m plot. A steel star picket would be suitable for marking photo points. At each photo point photographs will be taken pointing north, east, south and west.

6.3. Completion Criteria

During the rehabilitation process, it is expected that not all species present in reference areas will be able to establish as there are some 'recalcitrant species' that have particular germination requirements that are difficult to provide in the rehabilitation process. Further, some species may have particular mycorrhizal associations which may be difficult to restore when soil is disturbed. As such, species diversity is not expected to return the same level as that of reference sites. Further many structural features such a leaf litter and coarse woody debris will not return for many years until canopy trees become mature, unless features can be returned through salvage of course woody debris. Some variables such as large trees and hollow bearing trees will not develop more many years and beyond the project life of 15 years, and as such are not included in completion criteria. As such, progressive criteria are provided at five yearly intervals as rehabilitated areas progress in **Table 6**.

Table 6 Progressive Criteria for rehabilitation of each PCT

Variable	Percentage of Benchmark			
	5 Years	10 Years	15 Years	
Species richness (each growth form group)	40%	50%	60%	
Cover (trees)	0	10	50	
Cover (shrubs)	5	25	50	
Cover (grasses)	10	40	60	
Cover (other)	10	40	60	
Cover (High Threat Exotics)	60	40	10	
Regeneration	present	present	present	
Tree dbh 5-9 cm	0	5	25	
Tree dbh 10-19 cm	0	5	10	
tree dbh 20-29 cm	0	0	5	
Length of fallen logs	0	0	10	
Litter cover	5	25	50	

The progressive targets presented above would be reset in the event of a bushfire (i.e. the year of a bushfire would become year zero), although it is expected that some variables such as species richness would reestablish rapidly after wildfire.

6.3.1. Trigger Action Response Plan

Where it is identified that rehabilitation is not progressing according to the progressive rehabilitation targets in **Table 5** it is best to intervene early, i.e. at the five and 10 year interval, as at later time intervals it will be more difficult to intervene if particular criteria are not met (for example if trees of certain size classes have not developed after 15 years they cannot be planted at that size). As such criteria that would trigger a response are for the 5 and 10 year intervals only. Trigger Action Response Criteria and the appropriate response is provided in **Appendix A**.

7. Reporting

7.1. Annual Reporting

An annual monitoring report is to be prepared for submission to EES to track and assess the performance of biodiversity management measures. The annual monitoring report is to detail the following:

- Methods used in monitoring, with reference to this plan, including figures showing the location of monitoring surveys;
- A summary of the findings with reference to performance criteria, progressive rehabilitation criteria, benchmark data and TARP criteria.
- Details of where TARP criteria are exceeded together with details of action responses implemented;
- Discussion of findings, together with comparison with previous monitoring events;
- · Photographs of rehabilitation monitoring plots; and
- A summary of monitoring data in Appendices.

7.2. Review

Adequate monitoring, review and adaptive management are essential to ensure mitigation measures remain effective. As such this monitoring plan including performance criteria, completion criteria and trigger action responses is to be reviewed every five years and updated as required.

8. References

Central Tablelands LLS. 2017. Central Tablelands Regional Strategic Weed Management Plan 2017-2022. Central Tablelands Local Land Services.

Cumberland Ecology. 2021. Rehabilitation of the Former Bell Quarry - DA 294/19. Supplementary Ecological Information. Cumberland Ecology Pty Ltd, Carlingford Court.

DPI. 2015. July 2015 Primefact 1417 First edition. Plant Biosecurity & Product Integrity, Orange. Department of Primary Industries, Orange. DPIE. 2019. Bell Quarry – use of dam in Blue Mountains National Park. Letter dated 2 October 2019. Department of Planning, Industry and Environment, Dubbo.

DPIE. 2020. Hygiene guidelines: Protocols to protect priority biodiversity areas in NSW from Phytophthora cinnamomi, myrtle rust, amphibian chytrid fungus and invasive plants.

EPA. 2019a. Bell Quarry Rehabilitation DA294/18. Integrated Development Application – Recommended Refusal. Letter dated 20 March 2019. NSW Environment Protection Authority, Bathurst.

EPA. 2019b. Bell Quarry Rehabilitation Project DA294/18. Response to Submissions Meeting 3 October 2016. Letter dated 15 October 2019. NSW Environmental Protection Authority, Bathurst.

EPA. 2019c. Bell Quarry Rehabilitation Project DA294/18. Submissions Report – EPA Comments. Letter dated 2 September 2019. NSW Environment Protection Authority, Bathurst.

EPA. 2020. Bell Quarry Rehabilitation Project DA294/18. Letter dated 13 January 2020. NSW Environmental Protection Authority, Bathurst.

GHD. 2018a. Bell Quarry Rehabilitation Project. Biodiversity Impact Assessment. GHD Pty Ltd, Sydney.

GHD. 2018b. Bell Quarry Rehabilitation Project. Volume 1 - Environmental Impact Statement. GHD Pty Ltd, Sydney.

GHD. 2018c. Bell Quarry Rehabilitation Project. Water Resources Assessment. GHD Pty Ltd, Sydney.

GHD. 2019a. Bell Quarry Rehabilitation Project. Additional response to submissions – DA294/18. Letter dated 11 October 2019. GHD Pty Ptd, Sydney.

GHD. 2019b. Bell Quarry Rehabilitation Project. Response to Additional EPA Comments – DA294/18. Letter dated 1 November 2019. GHD Pty Ltd, Sydney.

GHD. 2019c. Bell Quarry Rehabilitation Project. Submissions Report. GHD Pty Ltd, Sydney.

GHD. 2021. Bell Quarry Rehabilitation Project. Preferred Project Report, GHD Ptv Ltd, Sydney.

NPWS. 2019. Bell Quarry – NPWS owners consent for making a development application. Letter dated 14 October 2014. National Parks and Wildlife Service, North Katoomba.

OEH. 2019. Bell Quarry rehabilitation project – DA 294/18. Letter dated 5 February 2019. Office of Environment and Heritage, Dubbo. Royal Botanic Gardens Trust. 2018. Facts about Phytophthora Brochure. Plant Disease Diagnostic Unit, Royal Botanic Gardens Trust, Sydney.

APPENDIX A:

Trigger Action Response Plan

Plan
sponse
tion Re
ger Ac
e 7 Trig
ap

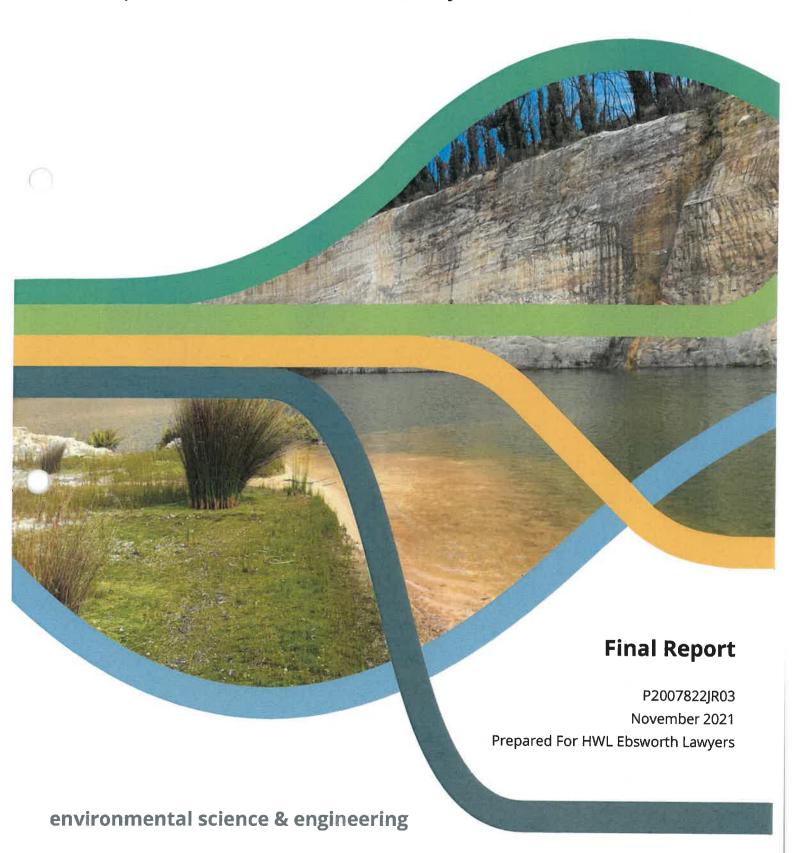
Monitoring Parameter	Trigger	Action / Response
Groundwater Dependent Ecosystems		
Annual GDE monitoring undertaken	Annual GDE monitoring not undertaken	Conduct monitoring in the same season as baseline monitoring
Species richness for each growth-form group	Average reduction in species richness across both plots of > 15% that is not attributable to drought or other natural causes	
Total cover for each growth-form group	Average reduction in total cover across both plots of > 15% that is not attributable to drought or other natural causes	
Weeds		
Baseline weed survey conducted	Baseline weed survey not conducted	Conduct baseline weed survey immediately.
Annual weed monitoring conducted	Annual weed monitoring not conducted	Conduct annual weed monitoring immediately.
5 yearly performance criteria met	5-yearly performance measure not met	Increase frequency of management actions
		Review hygiene protocol and make necessary amendments
		Review seed supply for rehabilitation activities to ensure only native local provenance seeds included
Pathogens		
Baseline pathogen survey	Baseline pathogen survey and testing not conducted	Conduct baseline survey and pathogen testing
Soil testing prior to import of fill	Pathogens detected	Fill not permitted to be transported to site
Vegetation health monitoring conducted	Evidence of <i>Phytophthora cinnamomi</i> caused dieback, or Myrtle Rust infection	Soil/pathogen testing will be undertaken in the immediate vicinity to confirm the infection.

Final | HWL Ebsworth Lawyers Page A.2

	* 0 5 5 7 L	Action / Response
Monitoring Parameter	laggin	
		The area where signs of infection was observed must be quarantined
		with no access without complete sterilisation of boots, clothing and
		equipment immediately on leaving the area.
		Sediment control measures are to be put in place to ensure no soil or
		water leaves the infected area.
		DPIE is to be informed of the infection;
		Hygiene measures are to be reviewed to determine if additional measures can be put in place to prevent the entry of pathogens.

Rehabilitation (refer to completion o	Rehabilitation (refer to completion criteria in Table 6 for progressive targets)	
Reference condition surveys	Reference condition surveys not undertaken	Undertake reference condition surveys immediately
Annual rehabilitation monitoring	Rehabilitation monitoring not undertaken annually	Undertake rehabilitation monitoring annually
Species richness (each growth form group)	n Richness is below progressive target	Interplant species of the relevant growth form group
Cover (relevant growth form group)	Cover below progressive targets	Interplant species of the relevant growth form group within gaps
Cover (High Threat Exotics)	Weed cover above progressive targets	Undertake weed treatment and review weed hygiene
Tree DBH classes	Number of stems below progressive targets	Interplant trees within gaps
Length of fallen logs	Length of logs below progressive targets	Place salvaged timber in rehabilitated areas

FIGURES


Appendix D

Hydrological Assessment

Hydrological Study

Proposed Rehabilitation of Bell Quarry

Project Details

Report Title Hydrological Study: Proposed Rehabilitation of Bell Quarry

Client HWL Ebsworth Lawyers

File P2007822JR03V02.docx

DirectorDaniel MartensManagerBen McGiffin

Principal Authors Jono Frecker, Michael Dumas

Document History

Issue	Issue Date	Status	Description / Comment	Author	Reviewer	Approved
1	19/11/2021	Final	DA	JCF/MD	DM	ВМ

© Copyright Martens & Associates Pty Ltd Suite 201, 20 George St, Hornsby, NSW 2077, Australia ACN 070 240 890 ABN 85 070 240 890 P +61-2-9476-9999 | mail@martens.com.au | www.martens.com.au

Copyright Statement

Martens & Associates Pty Ltd (Publisher) is the owner of the copyright subsisting in this publication. Other than as permitted by the Copyright Act and as outlined in the Terms of Engagement, no part of this report may be reprinted or reproduced or used in any form, copied or transmitted, by any electronic, mechanical, or by other means, now known or hereafter invented (including microcopying, photocopying, recording tape or through electronic information storage and retrieval systems or otherwise), without the prior written permission of Martens & Associates Pty Ltd. Legal action will be taken against any breach of its copyright. This report is available only as book form unless specifically distributed by Martens & Associates in electronic form. No part of it is authorised to be copied, sold, distributed or offered in any other form.

Executive Summary

Overview

This report has been prepared in respect of a development application DA294/18 lodged with Lithgow City Council which seeks to rehabilitate the former Bell Quarry and develop a final land surface that more closely represents the pre-quarry landform (the **Proposal**) through the importation of material sourced across Sydney and the local regional area which meets:

- 1. The definition of Virgin Excavated Natural Material (**VENM**) as defined by the *Protection of the Environment Operations Act 1997* (NSW) ('*POEO* Act') from time to time;
- 2. The criteria of Excavated Natural Material (**ENM**) as set out in the Excavated Natural Material Order and Exemption 2014 issued by the NSW Environmental Protection Authority (NSW EPA) under clause 93 of the *Protection of the Environment Operations (Waste) Regulation 2014* (NSW) (*'POEO Waste Regulation'*); or
- 3. An exemption granted by the NSW EPA pursuant to clauses 91 and 92 of the *POEO Waste Regulation* and which specifically relates to the Land.

Scope

This report provides further environmental and hydrological data to support the Proposal. Specific objectives included:

- 1. Providing a detailed description of the existing hydrological environment, including surface and groundwater regimes, particularly at the hanging swamp located approximately 200 m downgradient of the Site (the **hanging swamp**).
- 2. Determining hydrological conditions, including surface and groundwater regimes, prior to historical quarrying activities, particularly at the hanging swamp.
- 3. Determine the surface water hydrologic regime after the final proposed landform is established.
- 4. Determine groundwater conditions during the filling stages of the project and after the final proposed landform is established.

Findings

Our findings are summarised as follows:

Surface Flow Regime

- Flow gauging indicates that flows to the hanging swamp are directly related to the incidence of local rainfall (i.e. flows rely on surface flows from rainfall as opposed to base flows from groundwater). Local catchments have a rainfall rapid response with flows commencing not long after commencement of precipitation. This response is characteristic of the relatively shallow sandy soils and frequent bedrock outcropping within the catchment.
- 2. Flow gauging at the upstream and downstream extents of the hanging swamp indicated that inflows have been impacted by the quarry voids, with flow rates and volumes decreased through detention and evaporative losses within the existing quarry voids.
- 3. Flow gauging observations are supported by hydrological modelling that indicates the existing quarry voids have reduced inflows to the hanging swamp in the order of 65% for flows within the 50-90th percentile band, whereas less frequent higher intensity flows have increased due to the extent of cleared land within the quarry area.
- 4. Measured peak flows into the swamp of up to 40L/s and 638 L/s out of the swamp did not result in any observable erosion of the channel system or swamp, nor did they result in any geomorphic change. Based on the observed flow data, quarry dewatering rates up to say 100 L/s are not anticipated to result in any geomorphic change to the swamp or adjacent channel system. Higher rates may be acceptable.
- 5. Following completion of the final design surface, including retaining the lower void (pond 2), modelling indicates that there will be no adverse changes to the existing hydrological regime at the hanging swamp, and that return of flows towards those experienced under pre-quarrying conditions will occur.
- 6. Long-term runoff modelling indicates that the existing quarry has reduced average annual flow to the swamp in the order of 5 %, with inflows predominating during higher intensity runoff events. Existing swamp outflows are reduced by around 1.5 % compared to pre-quarry conditions. With the final rehabilitated surface in place, these historic impacts will be roughly halved to a 2.8% decrease in flow volume into the swamp and 0.8 % decrease in flow out of the swamp compared to pre-quarry conditions.

Surface Water Quality

7. The area downstream of the Site is a disturbed ecosystem due to historical catchment urban and quarrying activities, and construction of roads and clearing within the catchment.

- 8. Surface water quality was monitored within the existing quarry voids, the hanging swamp and inflows and outflows to the hanging swamp.
- 9. Surface water chemistry is generally within ANZG criteria for slightly to moderately disturbed freshwater ecosystems.
- 10. Water quality is broadly described as fresh with a low pH and low concentrations for most water quality parameters considered. Nutrient content is generally low, although higher nitrogen levels were found in the quarry ponds and the upstream gauge site. These do not appear to have impacted water quality within the swamp.

Existing Groundwater Regime

- 11. Groundwater within the site is located within a sandstone aquifer which maintains a generally downward flow gradient that does not flow directly to the hanging swamp.
- 12. Groundwater within the hanging swamp develops in response to direct rainfall and surface inflows arriving from the catchment which are developed partly within the Site but also within adjoining valley areas. As surface water inflows enter the swamp, these spread out and typically flow in an unchannelised manner over the swamp surface where due to the high sand content of swamp soils, there is a high degree of infiltration.
- 13. Infiltrated surface water within the hanging swamp causes a perched water table to develop which sits over the underlying sandstone bedrock. This water table is ephemeral and has the capacity to recharge the underlying permanent water table within the sandstone. Perched water within the swamp exits at the downstream portion of the swamp into a narrow formed channel.
- 14. The implications of these findings are that:
 - a. Groundwater flows from the filled quarry voids does not contribute to groundwater flows within the swamp because these are controlled by surface water inflows and direct rainfall.
 - b. Perched groundwater that occurs within the swamp will at times recharge deeper groundwater.
 - c. Surface flows discharged from the Site during filling operations and following completion of the final landform will likely enter the swamp area and contribute to the hydrology and water chemistry of the perched water table.

Changes to Groundwater Regime

15. Modelling of pre-quarry groundwater levels indicates that the current quarry voids have significantly altered the pre-quarry groundwater levels by lowering the groundwater table by up to around 5 m in the quarry voids and increasing the

- groundwater levels elsewhere in the model domain by around 0.5 2 m. Groundwater levels in the sandstone beneath the swamp have been increased by approximately 0.5 m due to the current quarry voids.
- 16. Modelling of the dewatered upper quarry void during the initial void filling stages indicates that local groundwater levels will be locally lowered compared to existing and pre-quarry conditions. In the sandstone beneath the hanging swamp, groundwater levels will be reduced by around 0.5 m, this being equivalent to pre-quarry conditions.
- 17. Modelling of the final design surface indicates that compared to pre-quarry conditions, groundwater levels will be increased upslope and decreased downslope of the lined and filled quarry void, although to a significantly lesser extent compared to the existing conditions. No material groundwater level changes occur in the sandstone beneath the swamp. Modelling shows that the final surface groundwater levels are the closest to the pre-quarry conditions compared to all other scenarios modelled as the drawdown extents are the smallest. This demonstrates that following completion of filling activities on the site, the groundwater regime will more closely align with the natural groundwater conditions that existed prior to quarrying occurring at the Site and is therefore an improvement over the situation that currently exists.

Groundwater Quality

- 18. Nitrogen levels were generally higher in deep wells within sandstone compared to the shallow wells within the swamp sediments.
- 19. Total phosphorous and heavy metal concentrations were generally lower in deep wells within sandstone compared to the shallow wells within the swamp sediments.
- 20. Total recoverable hydrocarbons were all below the detection limit except for at MW201 where they were observed on four occasions.

Contents

1	Introd	luction
	1.1	Overview12
	1.2	The Proposal12
	1.3	Summary of Hydrological Issues
	1.4	Scope and Objectives
2		ng Environment
-		
	2.1	Overview14
	2.2	Topography and Slopes14
	2.3	Geology14
	2.4	Geomorphology14
	2.5	Soils16
	2.6	Creeks and Rivers17
	2.7	Climate18
	2.7.1	Rainfall
	2.7.2	Evaporation19
	2.7.3	Evapotranspiration
3	Surfac	e Water Hydrology20
	3.1	Catchment Characteristics20
	3.2	Flow Gauging21
	3.2.1	Purpose
	3.2.2	Method21
	3.2.3	Findings
	3.2.4	Discussion
	3.3	Flow Modelling24
	3.3.1	Purpose24
	3.3.2 3.3.3	Method 24 Calibration 25
	3.3.4	Existing Hydrology
	3.3.5	Pre-quarry Hydrology
	3.3.6	Final Surface Hydrology31
	3.3.7	Existing, Pre-quarry and Final Surface Comparison
	3.4	Surface Water Quality34
	3.4.1	Method34
	3.4.2	Findings
	3.4.3	Discussion
4	Hydrog	geology38
	4.1	Hydrogeological Context38
	4.2	Other Groundwater Investigations38

	4.3	Relevant Literature	.39
	4.4	Groundwater Monitoring	.39
	4.4.1	Overview	39
	4.4.2	Statistical Summary	40
	4.4.3	Commentary	40
	4.5	Conceptual Groundwater Model of Swamp	.41
	4.6	Groundwater Modelling	.42
	4.6.1	Purpose	42
	4.6.2	Method	42
	4.6.3	Calibration	43
	4.6.4	Model Confidence Level Classification	44
	4.6.5	Existing Groundwater Conditions	
	4.6.6	Pre-quarry Groundwater Conditions	
	4.6.7	Filling Stage Groundwater Conditions	45
	4.6.8	Final Surface Groundwater Conditions	46
	4.7	Groundwater Quality	.46
	4.7.1	Method	46
	4.7.2	Findings	47
	4.7.3	Summary Comments	48
5	Resourc	es	. 49
App	endix A	- Figures	. 50
Арр	endix B	– Maps	. 64
App	endix C	-Borehole Logs	. 88
App	endix D	- Monitoring Well Logs	109
App	endix E	- Survey Data '	116
A	ondiv E	Laboratory Bonorts	120

Tables

Table 1: Overview of issues raised in SOFACs.	. 13
Table 2: Summary of Site borehole investigations.	. 17
Table 3: Summary of Bureau of Meteorology (BoM) stations and rainfall data	. 19
Table 4: Summary of catchments used in hydrological and water quality modelling (existing conditions).	. 20
Table 5: Adopted impervious / pervious areas by catchment type	. 21
Table 6: Flow rate statistics – measured flows	. 22
Table 7: Comparison of measured and modelled event runoff volumes at upstream gauging station (ML).	. 26
Table 8: Comparison of measured and modelled event runoff volumes at downstream gauging station (ML).	
Table 9: Comparison of measured and modelled peak flows upstream gauging station (L/s).	
Table 10: Comparison of measured and modelled peak flows at downstream gauging station (L/s).	
Table 11: Modelled existing conditions hydrology (daily flow volume)	28
Table 12: Modelled existing conditions hydrology (peak flow rate).	29
Table 13: Modelled pre-quarry conditions hydrology (daily flow volume).	30
Table 14: Modelled pre-quarry conditions hydrology (peak flow rate).	31
Table 15: Modelled final surface conditions hydrology (daily flow volume)	32
Table 16: Modelled final surface conditions hydrology (peak flow rate).	33
Table 17: Comparison of annual average swamp flows for existing, pre-quarry and fina surface conditions.	al 33
Table 18: Surface water quality data averages against trigger values for highland rivers	
Table 19: Detailed surface water quality statistical summaries.	36
Table 20: Groundwater monitoring well construction summary.	40
Table 21: Summary of groundwater monitoring data	40
Table 22: Calibrated existing groundwater conditions MODFLOW model parameters.	44
Table 23: Groundwater water quality data averages	47

Figures

Figure 1: Site overview and location of relevant features51
Figure 2: Former quarry site with Pond 2 on left and Pond 1 at centre of photo52
Figure 3: Existing Pond 2 (at right) and wetland (at left)
Figure 4: Hanging swamp downstream of quarry indicating recent bushfire activity53
Figure 5: Overlooking Site from western edge of quarry void showing existing site topography53
Figure 6: Local sandstone bedrock profile in Pond 1 (side wall of existing void)54
Figure 7: Inflow to hanging swamp showing infiltration of surface flows and absence of defined channel54
Figure 8: Typical sandy local topsoils (charcoal from recent local bushfire)55
Figure 9: Flow monitoring station at upstream end of hanging swamp55
Figure 10: Flow monitoring station at downstream end of hanging swamp56
Figure 11: Left bank tributary entering at downstream end of hanging swamp57
Figure 12: Measured flow vs rainfall (scaled) for Upstream Gauge58
Figure 13: Measured flow vs rainfall (scaled) for Downstream Gauge58
Figure 14: Extract from measured flow hydrograph at upstream59
Figure 15: Cumulative frequency curve for comparative rainfall data sets59
Figure 16: Cumulative frequency of measured flows at flow monitoring stations60
Figure 17: Continuous groundwater monitoring data for nested wells MW301A and MW301B60
Figure 18: Continuous groundwater monitoring data for deep wells MB02 and MB03. 61
Figure 19: Conceptual hydrogeological section through Site and swamp62
Figure 20: Existing conditions groundwater model calibration result62
Figure 21: Groundwater model section through swamp

Maps

Map 1: Site location overview6	5
Map 2: Site aerial photography prior to quarrying (1966)6	6
Map 3: Site aerial during quarrying (1998)6	7
Map 4: Current site aerial (2021)6	8
Map 5: Topography6	9
Map 6: Slopes	0
Map 7: Soil landscapes	1
Map 8: Borehole soil testing plan	2
Map 9: Creeks and rivers	3
Map 10: Nearby weather observation stations	4
Map 11: Flow gauging sites and catchments7	5
Map 12: MUSIC model catchments	5
Map 13: Surface water testing plan	7
Map 14: Existing groundwater wells7	В
Map 15: Existing groundwater levels (calibrated)79	9
Map 16: Pre-quarry groundwater levels (modelled)80)
Map 17: Existing groundwater drawdown from pre-quarry conditions8	1
Map 18: Filling stage groundwater levels (modelled)82	2
Map 19: Filling stage groundwater drawdown from existing conditions83	3
Map 20: Filling stage groundwater drawdown from pre-quarry conditions84	1
Map 21: Final surface groundwater levels (modelled)88	5
Map 22: Final surface groundwater drawdown from existing conditions	Š
Map 23: Final surface groundwater drawdown from pre-quarry conditions87	7

Introduction

1.1 Overview

This report has been prepared in respect of a development application DA294/18 lodged with Lithgow City Council which seeks to rehabilitate the former Bell Quarry and develop a final land surface that more closely represents the pre-quarry landform (the Proposal) through the importation of material sourced across Sydney and the local regional area which meets:

- 1. The definition of Virgin Excavated Natural Material (VENM) as defined by the Protection of the Environment Operations Act 1997 (NSW) ('POEO Act') from time to time:
- 2. The criteria of Excavated Natural Material (ENM) as set out in the Excavated Natural Material Order and Exemption 2014 issued by the NSW Environmental Protection Authority (NSW EPA) under clause 93 of the Protection of the Environment Operations (Waste) Regulation 2014 (NSW) ('POEO Waste Regulation's; or
- 3. An exemption granted by the NSW EPA pursuant to clauses 91 and 92 of the POEO Waste Regulation and which specifically relates to the Land

The report provides findings in respect of hydrological investigations that have been undertaken in response to issues raised in the Statement of Facts and Contentions, filed 21 July 2021 (the SOFACs), in NSW Land & Environment Proceedings No 2021/00091361 (the Proceedings).

1.2 The Proposal

We understand that the Proposal, located at the former Bell Quarry at Sandham Road, Dargan (Lot 23 DP 751631) (the Site), consists broadly of the following:

- 1. Importation of around 1.0 million cubic metres of fill over a 15 year period to fill the two primary quarry voids comprising Pond 1 and Pond 2 (refer to Figure 1, Appendix A). Fill will be emplaced within and capped with a low permeability liner before the rehabilitated surface is prepared and revegetated.
- 2. The proposed imported fill is to be as per the description given above in Section 1.1.
- 3. Haulage of up to 140,000 tonnes of fill material per annum to the Site.
- 4. Dewatering of the existing upper quarry void (Pond 1) during the project filling phase.

1.3 Summary of Hydrological Issues

The SOFACs raise several contentions that are concerned with hydrological conditions at the Site and potential impacts of the Proposal. Concerns are raised in respect of both surface and groundwater resources. These contentions are broadly summarised as falling into several more general issues as described in Table 1.

Table 1: Overview of issues raised in SOFACs.

Issue	Contention(s)	Description of Issue	Response
Quarry void dewatering	1(ii), 2(v)-(vi), 7, 9(a) & (d), 11	This issue is concerned with the potential impact of dewatering Pond 1 (and previously Pond 2) during the filling operations on downstream watercourses and the hanging swamp several hundred metres downgradient of the site, including water quality and geomorphic stability.	Potential impacts of quarry void dewatering on the downslope hanging swamp are addressed by completed groundwater monitoring and modelling provided in Section 4.
Fill leachate generation	2(i)-(ii), 7, 11	This issue is concerned with the potential impact of leachate generated by fill placed in the quarry voids once it is released into the receiving environment. The issue covers impacts during the filling stages but also after the final landform has been establish.	Potential impacts of fill leachate generation are addressed in Section 6 of the Revised Water Resources Assessment (GHD, November 2021).
Final landform overland flow	2(ii), 7	This issue is concerned with the potential impact of changes to the overland flow regime arising from the final landform on downstream watercourses and swamp.	Potential impacts of changes to overland flow regimes on downslope watercourses and hanging swamp are addressed in Section 3.

1.4 Scope and Objectives

The scope of this report is to provide further environmental and hydrological data to support the Proposal. Specific objectives included:

- 1. Providing a detailed description of the existing hydrological environment, including surface and groundwater regimes, particularly at the hanging swamp located approximately 200 m downgradient of the Site (the **hanging swamp**).
- 2. Determining hydrological conditions, including surface and groundwater regimes, prior to historical quarrying activities, particularly at the swamp.
- 3. Determine the surface water hydrologic regime after the final proposed landform is established.
- 4. Determine groundwater conditions during the filling stages and after the final proposed landform is established.

2 Existing Environment

2.1 Overview

The Site is a former sandstone quarry located on the eastern side of Sandham Road, Bell, NSW. The Site lies within the Lithgow City Council Local Government Area (Figure 1). The Site contains two existing quarry voids, unsealed accesses and fences (Figure 2). A constructed wetland is located immediately downgradient of the Site, this built for water quality purposes during the quarrying activities (Figure 3). The Site also contains cleared areas (associated with former quarrying activities) and remnant bushland. Downslope some 200 m and east / north-east of the Site is an existing upland wetland or 'hanging swamp' (the **swamp**) (Figure 4). Map 1 (Appendix B) shows the Site in its local context.

Review of historical aerial photography of the Site shows that prior to quarrying commencing, the Site was largely covered by bushland and a number of unsealed accesses (circa. 1966) (Map 2). During quarrying, the active quarry and surrounding areas were stripped of most of its vegetation to allow for Site operations (circa 1998) (Map 3). Post quarrying (2021) (Map 4), the quarry voids have filled with water and previous processing and stockpiling areas have revegetated to some extent. Evidence of relatively recent bushfire at the site is noted in the vegetation downslope of the Site (Figure 4).

2.2 Topography and Slopes

The Site is located at the upper end and western side of a north-east / south-west running valley off the main ridgeline on which Bells Line of Road (Chifley Road) sits. Local elevation is variable, rising from approximately 1,000 mAHD at the downstream end of the hanging swamp to approximately 1,068 mAHD in the vicinity of Sandham Road and the western railway line from Lithgow to Sydney (Map 5).

Site slopes are variable, generally of the order of 0 - 10% at the top of ridgelines and in previously active quarry stockpiling and access areas, to near vertical along the edges of the quarry voids. Valley side slopes are generally between 10 - 20% downslope of the Site (Figure 5). Map 6 shows Site and local slopes.

2.3 Geology

Review of the Sydney 1:250,000 Geological Series Sheet S1 56-5 (NSW Department of Mines, 1966) shows that local geology consists of sandstones, shales and tuffs of the Narrabeen Sandstone Group (Figure 6).

2.4 Geomorphology

Regional geomorphology is characterised by the local geology, consisting of sandstone plateau crests with deeply incised canyon / gorge river valleys in between. Local surface and groundwater systems are generally either:

- 1. Diffuse or poorly defined and discontinuous surface flow paths on the sandstone plateaus with sand and organic deposits (Figure 7).
- 2. Gorge / canyon river valleys.
- 3. Transitional rivers between plateau and canyon systems exhibiting well defined channels with depositional zones controlled by bedrock outcropping.¹

The plateau crests contain upland 'hanging swamps', which form from sand and organic material deposition in areas with localised changes in underlying geology and longitudinal slope.² These systems are described as having a high geomorphic fragility on account of the unchannelised unconsolidated soils of the system and impacts from upslope urbanisation which have changed flow regimes, caused erosion and introduced non-endemic species.³

The hanging swamp downslope of the Site maintains the following geomorphic characteristics:

- The swamp has formed within a relatively narrow and evenly graded valley floor which accumulates a range of coarse sediments including bushfire charcoals (Figure 8). Based on our review of historical aerial photographs, it is likely that the swamp has accumulated sediments generated upslope during historical quarrying activities.
- 2. No defined channel is present within the swamp, although there is evidence of historic intermittent erosion and subsequent deposition events during periods of channelisation. These likely occurred drying heavy rainfall when vegetation cover was diminished or distressed (for example after a bushfire or during extended dry periods), or may have occurred during when the quarry was active and the effective catchment areas were higher (before the remediation works evident on the Site at the time of preparing this report).
- 3. Water inflow at the upstream end of the swamp arrives via a narrow channel approximately 0.5-1.0 m wide and up to 0.5-1.0 m deep (see for example Figure 9). However, the channel form diminishes to nothing at the entry point to the swamp where surface flows are infiltrated into the sandy sediment (Figure 4 and Figure 8).
- 4. Water outflows, including shallow groundwater seepage and overland flows, are reconcentrated at the downstream end of the swamp, where a small approximately 1.0 m wide and 0.5 m deep channel re-emerges (see for example Figure 10).

¹ Commonwealth Department of the Environment (2014) *Temperate Highland Peat Swamps on Sandstone:* ecological characteristics, sensitivities to change, and monitoring and reporting techniques.

² Ibid.

³ Ibid.

2.5 Soils

Site soils are generally sandy (Figure 8). Review of Site soil mapping (Map 7) shows the following soils to be present at or near to the Site:

- 1. **Mount Sinai:** Located on the top of the ridgeline to the west of and upslope of the quarry on which Bells Line of Road and the main western railway are located. Consisting of shallow (typically < 0.05 m) stony quartz sand topsoils overlying up to 0.20 m of loamy sand then sandstone bedrock. Exposed 'pagoda' bedrock formations and outcrops are common.⁴
- 2. **Mediow Bath:** Located along local ridgelines and in the vicinity of the quarry voids. Consisting of up to 0.4 m of sand topsoil overlying up to 0.8 m of loamy to clayey sands grading to extremely weathered sandstone at depth then sandstone bedrock. Bedrock outcropping is common.⁵
- 3. **Wollangambe:** Located downslope of the quarry voids and in the vicinity of the hanging swamp. Consisting of up to 0.3 m of loamy sand topsoil overlying up to 0.7 m of clayey sand then sandstone bedrock. In localised areas of shale bedrock, up to 0.5 m of loamy sand overlies up to 0.7 m of sandy clay then shale bedrock.⁶
- 4. **Disturbed Terrain:** Located in the immediate vicinity of the former quarry area. Soils are largely sands with frequent outcropping of bedrock.⁷

To supplement the soil landscape data, fourteen (14) boreholes were completed at the Site and in the vicinity of the hanging swamp to confirm local profiles. Location of completed boreholes is given on Map 8, with boreholes logs provided in Appendix C. Table 2 provides a summary of the boreholes completed at the Site.

⁴ King (1993) Wallerawang Soil Landscape Series Sheet 8931.

⁵ Ibid.

⁶ Ibid.

⁷ Ihid.

Table 2: Summary of Site borehole investigations.

Location	Topsoil	Sub-soil	Depth to Rock (m)
BH501	0 – 0.25 m silty sand	0.25 m sandy clay grading to extremely weathered sandstone	0.50
BH502	0 – 0.30 m silty sand	0.30 m sandy clay grading to extremely weathered sandstone.	0.60
BH503	0 – 0.20 m silty sand	0.40 m sandy clay grading to extremely weathered sandstone.	0.60
BH504	0 – 0.15 m silty sand	Extremely weathered sandstone grading to moderately weathered sandstone.	0.15
BH505	0 – 0.25 m silty sand	Extremely weathered sandstone grading to moderately weathered sandstone.	0.25
BH506	0 – 0.20 m silty sand	Extremely weathered sandstone grading to moderately weathered sandstone.	0.20
BH507	0 – 0.30 m gravelly sand	Extremely weathered sandstone.	0.30
BH508	0 – 0.30 m gravelly sand	0.20 m sandy clay grading to extremely weathered sandstone.	0.50
BH509	0 – 0.20 m silty sand	0.40 m sandy clay grading to extremely weathered sandstone.	0.60
BH510	0 – 0.20 m silty sand	0.30 m sandy clay grading to extremely weathered sandstone.	0.50
BH511	0 – 0.20 m silty sand	0.40 m sandy clay grading to extremely weathered sandstone.	0.60
BH512	0 – 0.60 m sand	Extremely weathered sandstone.	0.60
BH513	0 – 0.50 m gravelly sand fill	Extremely weathered sandstone.	0.50
BH514	0 – 0.30 m silty sand	0.50 m sandy clay grading to extremely weathered sandstone.	0.60

2.6 **Creeks and Rivers**

Directly downslope of the Site is an unnamed watercourse which forms part of the upper Wollangambe River catchment (Figure 1). Two flow monitoring stations have been installed on this watercourse at the upstream and downstream ends of the hanging swamp (Figure 9 and Figure 10). This watercourse runs north-eastwards prior to joining another unnamed watercourse to the north of the Site (Figure 11).

The resultant watercourse then joins another larger unnamed watercourse before flowing into the Wollangambe River, approximately 2.3 km downstream of the quarry void. Map 9 shows mapped 'hydrolines' in the vicinity of the Site.

2.7 Climate

2.7.1 Rainfall

Whilst the Site has no climate station, the Bureau of Meteorology (**BoM**) has three nearby open daily rainfall stations including:

- 1. Lithgow (Cooerwull) (063226)
- 2. Mt Boyce AWS (Blackheath) (063292)
- 3. Mt Wilson (Clarine) (063246)

The BoM also maintained a daily rainfall gauge at Newnes Junction Village (station 63139) between August 1959 and April 1968. This gauge was relatively close to the Site (approximately 1 - 2 km).

Map 10 shows the position of the BoM rainfall stations relative to the Site. Table 3 provides a summary of the BoM rainfall stations. Lithgow was considered the most representative and robust data set based on gauged flows at the Site when compared to the daily rainfall data at all three stations over the monitoring period.

Rainfall is generally summer / early autumn dominant, with median rainfall values suggesting that rain falls throughout the year.

Given the strong gradient in rainfall between Lithgow and Mount Wilson, Lithgow daily rainfall data were scaled up by 30% for the purposes of the MUSIC model (Section 3.3).

A comparison of daily rainfall totals at Lithgow (Cooerwull) and Newnes Junction for the period between July 1960 and April 1968 showed that the rainfall recorded at Newnes Junction was greater than that recorded for Lithgow for approximately 418 out of 657 rain days during this period and that total rainfall depth was approximately 33% higher at Newnes Junction than at Lithgow (Cooerwull). This correlates well with the adopted rainfall in the MUSIC modelling.

We understand that GHD have relied on a slightly different rainfall data, being point data for the site obtained from the SILO website, which comprises some 132 years extending between 1889 and 2021.8 This data set is based on interpolated / modelled rainfall based on collected rainfall from a range of sources and was used by GHD for long-term water balance modelling. By comparison, the rainfall relied upon in this report for MUSIC hydrologic modelling uses a shorter [scaled] rainfall record including 1962 – 1971 and 2007 to the present day, these being available non-interpolated data. As shown in Figure 15, the differences between these data sets is negligible and both data sets are considered appropriate for their intended use.

⁸ https://www.longpaddock.qld.gov.au/silo/point-data.

Table 3: Summary of Bureau of Meteorology (BoM) stations and rainfall data.

Statistic	Lithgow	Mount Boyce	Mount Wilson	Newnes Junction	Adopted for Site
Station Number	063226	063292	063246	063139	
Elevation (mAHD)	900	1080	1010	1080	-
Median annual rain (mm/year)	775.0	1020.0	1263.4	1128.6	970.0
Mean Annual rain (mm/year)	783.3	984.7	1272.7	1095.9	1045.0

2.7.2 Evaporation

The nearest climate station with appropriate monthly evaporation data is Bathurst Agricultural Station (BoM station number 063005, approximately 68 km to the west of the Site. Whilst the Richmond Airport is closer to the Site by approximately 20 km, the Bathurst climate station is considered more representative given its more similar elevation of approximately 710 mAHD (as opposed to Richmond at 19 mAHD). Mean annual evaporation used in the MUSIC model was 1,346 mm.

2.7.3 Evapotranspiration

Pan evaporation data (refer to Section 2.7.2) is used in the MUSIC modelling program to determine losses through evapotranspiration at the Site.

3 Surface Water Hydrology

3.1 Catchment Characteristics

Sub-catchments flowing to significant features (e.g. the voids, upstream and downstream ends of hanging swamp, *etc.*) were determined using available contour data (NSW Department of Financial Services and Information, 2017). Catchments were then split by surface characteristics for the purpose of MUSIC modelling to determine hydrological and water quality characteristics. Table 4 details catchments used in the MUSIC modelling, with the catchment plan provided in Map 12.

Adopted impervious and pervious areas by sub-catchment classification are provided in Table 5, noting that these were derived by iteration to obtain best fit to observed flows. Impervious area percentages adopted for forested areas upslope and downslope of the Site were 10% and 20% respectively reflecting occurrence of very shallow soils and frequent rock outcropping. Former quarry areas draining to voids were modelled as having a 40% impervious area to represent shallow soils and limited existing vegetation coverage. An impervious area of 100% is adopted for direct rainfall into the quarry voids.

Table 4: Summary of catchments used in hydrological and water quality modelling (existing conditions).

Catchment	Area by Surface Classification (ha)					Total	
	Unsealed Road	Forest	Rural Residential	Rail Corridor	Former Quarry	Pond	Area (ha)
1	0.432	5.077	0.000	0.000	0.000	0.000	5.509
2	0.000	0.000	0.000	2.482	0.000	0.000	2.482
3	0.484	3.776	0.000	0.000	0.000	0.000	4.260
4	0.000	0.000	0.000	0.000	0.400	0.000	0.400
5	0.000	0.000	0.000	0.000	1.146	0.000	1.146
6	0.000	0.000	0.000	0.000	0.000	2.733	2.733
7	0.110	1.237	0.000	0.000	0.000	0.000	1.347
8	0.000	0.000	0.000	0.000	4.825	0.000	4.825
9	0.000	0.000	0.000	0.000	0.000	0.764	0.764
10	0.000	0.075	0.000	0.000	0.000	0.000	0.075
11	0.000	0.000	0.000	0.000	0.000	0.150	0.150
12	0.000	0.770	0.000	0.000	0.000	0.000	0.770
13	0.357	5.572	0.000	0.000	0.000	0.000	5.929
14	0.080	9.601	0.000	0.000	0.000	0.000	9.681
15	1.370	17.157	1.711	0.000	0.000	0.000	20.237
Total	2.833	43.265	1.711	2.482	6.370	3.647	60.307

Table 5: Adopted impervious / pervious areas by catchment type.

Catchment Classification	Impervious Area (%)	Pervious Area (%)
Unsealed Road	100	0
Forest (to Quarry Void)	10	90
Forest (downslope Quarry Void)	20	80
Rural Residential	25	75
Rail Corridor	1	99
Former Quarry	40	60
Pond (Direct Rainfall)	100	0

3.2 Flow Gauging

3.2.1 Purpose

Two stream gauges (Figure 9 and Figure 10) were set up at the upslope and downslope ends of the hanging swamp to determine flows and assess likely changes to hydrological conditions, should the Site be rehabilitated to remove the quarry voids. Map 11 shows the position of flow gauging sites and catchments draining to each gauge.

3.2.2 Method

Gauging methodology consisted of the following:

- Site selection: Two locations on the watercourse downslope of the quarry were selected for flow gauging. Sites were chosen on the basis of a stable cross-section, presence of a downstream bed level control, and presence of a permanent pool located upstream of the bed level control within which instrumentation could be installed.
- 2. Pressure transducer installation: Two water pressure transducers were installed to continuously measure water level at the gauge site, with observations made at 15 minute intervals during the monitoring period between 20/4/2021 and 25/10/2021 (6 months), this being sufficient to characterise the existing hydrologic regime at the swamp A non-submerged transducer was installed to measure atmospheric pressure.
- 3. **Channel survey:** At each gauging station site, cross-section surveys were undertaken by a registered surveyor to determine channel form and estimate bed slope. Survey data are provided in Appendix E. Survey data enabled a stage-discharge relationship to be established at each gauge site.
- 4. **Correction for atmospheric pressure:** Gauged pressures were converted to water depths by correcting for atmospheric pressure variations.

5. Conversion of depths to flow rates: The stage-discharge relationship was used to produce a flow time series at each gauging location based on water level observations.

3.2.3 **Findings**

Results of flow monitoring and recorded rainfall (scaled) at Lithgow (Cooerwull) for the period from 20/4/2021 to 25/10/2021 are provided graphically for the upstream and downstream flow gauging stations in Figure 12 and Figure 13.

Results are summarised in Table 6, in terms of percentiles of flow rates, minimum, maximum and average flows across the monitoring period. Figure 16 shows the flow rates depicted as a cumulative frequency curve.

Table 6: Flow rate statistics - measured flows.

Statistic	Upstream Gauge (L/s)	Downstream Gauge (L/s)	
Minimum	0.00	0.00	
10 th Percentile	0.13	0.85	
20 th Percentile	0.21	1.32	
30 th Percentile	0.31	1.81	
40 th Percentile	0.44	2.38	
50 th Percentile (Median)	0.62	2.91	
60 th Percentile	0.84	3.66	
70 th Percentile	1.14	4.87	
80 th Percentile	1.50	7.41	
90 th Percentile	2.18	11.79	
91st Percentile	2.30	13.06	
92 nd Percentile	2.47	13.73	
93 rd Percentile	2.59	15.13	
94 th Percentile	2.78	17.36	
95 th Percentile	2.97	20.20	
96 th Percentile	3.39	23.28	
97 th Percentile	4.08	27.04	
98 th Percentile	5.22	39.78	
99 th Percentile	10.05	103.54	
Maximum	42.83	638.23	
Average	1.14	7.00	

3.2.4 Discussion

Site flow regime is characterised as follows:

- 1. Surface Flows Directly Relate to Incident Rainfall: Flows to the hanging swamp appear to be directly related to incidence of local rainfall (i.e. flows rely on surface flows from rainfall as opposed to base flows from groundwater).
- 2. Runoff Response to Rainfall is Rapid: Local catchments have a relative rapid response with flows commencing not long after commencement of precipitation. Hydrographs are correspondingly short with relatively short rising limb to the peak and then a somewhat longer falling limb of the hydrograph denoting that flows continue for some time afterwards (Figure 14). This response is characteristic of the relatively shallow sandy catchment soils and frequent bedrock outcropping within the catchment.
- 3. Quarry has Significantly Reduced Swamp Inflows: Catchment areas to the upslope and downslope gauges are approximately 24.5ha and 60.4 ha respectively, with the upper catchment approximately 40% of the total catchment area downslope. By contrast, the observed median flow at the upstream gauge is approximately 21% of the flow at the downstream gauge. This indicates that the quarry voids and historical quarrying activities have considerably impacted hydrology at the swamp by decreasing inflow rates by approximately 50%.
- 4. Average Flow Rates are Low: Average flow rates into and out of the swamp were low for the given catchment areas, being 1.1 and 7.0 L/s for the upstream and downstream gauge respectively.
- 5. Periods of Zero/Near Zero Flow Occur: Low flows of < 1 L/s and < 5 L/s for the upstream and downstream gauges respectively occurred for approximately 60% of the time. For the upstream gauge, these flows represented slow release of surface water detained in the quarry voids. For the downstream gauge, these flows represented the release of shallow stored groundwater within the swamp sediments.
- 6. Peak Flows Did Not Cause Erosion: Peak flows into the swamp of up to 40L/s and 638 L/s out of the swamp were measured during the observation period. These did not result in any observable erosion of the channel system or swamp, nor did they result in any geomorphic change.
- 7. Quarry Dewatering Rate: Based on the observed flow data, quarry dewatering rates up to say 100 L/s are not anticipated to result in any geomorphic change to the swamp or adjacent channel system. Higher rates may be acceptable.

Flow Modelling 3.3

3.3.1 **Purpose**

Flow modelling was completed to:

- 1. Characterise long-term hydrological conditions under the current site conditions upstream and downstream of the hanging swamp.
- 2. Estimate hydrological conditions prior to quarrying activities upstream and downstream of the hanging swamp so that the impact of historical quarrying can be assessed.
- 3. Estimate hydrological conditions for the final design surface upstream and downstream of the hanging swamp.

3.3.2 Method

Methodology used included the following:

- 1. Development of a calibrated MUSIC (Model for Urban Stormwater Improvement Conceptualisation) model based on observed flow data (Section 3.2), recorded rainfall and Site observations of local conditions.
- 2. Catchment boundaries and catchment surface characteristics were determined based on Site aerial photos for existing conditions (Map 12). Boundaries were determined to key existing local features such as the hanging swamp (upstream and downstream ends), existing quarry voids and wetland, and the tributary watercourse to the north of the quarry which flows to the hanging swamp.
- 3. Soil properties based on soil data from subsurface investigations (Section 2.5) and BMT WBM (2015) guidelines for MUSIC modelling, adjusted to be more representative of local conditions.
- 4. Local daily rainfall for Lithgow (Cooerwull) was used, adjusted by a factor of 1.30 to allow for the rainfall gradient observed between Lithgow, Mount Boyce and Mount Wilson.
- 5. Model was rerun iteratively by adjusting soil parameters, impervious areas and properties of the quarry voids and calibrated against the recorded flow monitoring data.
- 6. Once the model was calibrated to the short-term flow monitoring data, a longer rainfall record was used to determine the long-term existing hydrological conditions. The rainfall record used included approximately 25 years of daily rainfall recorded at Lithgow (Cooerwull) for the years 1962 - 1971 and 2007 -October 2021, adjusted by a factor of 1.3 to represent the wetter conditions at the Site.

- 7. Following establishment of the longer-term existing conditions model, determine the pre-quarry hydrological conditions by removing the existing quarry voids from the model and amend catchment surface characteristics to match pre-quarry conditions.
- 8. The final design surface was modelled based on the final surface development plans, with these indicating a retention of the lower quarry void (pond 2).

3.3.3 Calibration

Model calibration consisted of:

- 1. Modifying catchment soils properties, with reference to soil testing undertaken.
- 2. Modifying catchment percentage impervious fractions based on existing development and rock exposures within the catchment.
- 3. Modifying quarry void parameters to represent capture of upslope catchment flows and overflows to downstream receiving environments.

A comparison of flow volumes and rates for selected storm events during the monitoring period is provided in Table 7, Table 8, Table 9 and Table 10 and demonstrates that the model is sufficient calibrated for predictive purposes. The following is noted:

- 1. In terms of modelled flow volumes:
 - a. Modelled flow volumes closely match observed data indicating that the model is sufficiently calibrated for predictive purposes, with normalised root mean square of residuals around 18%. Some over or under prediction is expected for individual storm events, and variation between storm events, due to the spatial variation in rainfall between the Lithgow rain gauge and actual rain falling on the site.
 - b. Average measured flows at the upstream gauge are lower than modelled flows, suggesting that not all of the detention properties of the existing quarry voids have been fully captured by the model.
 - c. Average measured flows at the downstream gauging station are very similar to modelled flow volumes indicating a good model fit.

2. In terms of peak flow rates:

a. Modelled flow rates are broadly consistent with observed data indicating that the model is sufficiently calibrated for predictive purposes, with normalised root mean square of residuals around 23%. Some over or under prediction is expected for individual storm events, and variation between storm events, due to the spatial variation in rainfall between the Lithgow rain gauge and actual rain falling on the site.

- b. Peak measured flow rates at the upstream gauge are lower than modelled flows, suggesting that not all of the detention properties of the existing quarry voids have been fully captured by the model.
- c. Peak measured flows at the downstream gauging station are lower than modelled flow volumes indicating flow absorption and attenuation within the hanging swamp.
- d. Differences between measured and modelled peak flow rates are also expected because of temporal data differences between the Lithgow rain dataset [used for modelling], which consisted of daily data with values recorded at 9am, and the flow gauging data which was collected at 15 minute intervals.
- e. Hydrological algorithms internal to the MUSIC model may not precisely mimic the rainfall-runoff response behaviour of the Site and surrounding areas.

Table 7: Comparison of measured and modelled event runoff volumes at upstream gauging station (ML).

Rainfall Event	Measured (ML)	Modelled (ML)	
6/5/2021-7/5/2021	1.26	1.78	
3/6/2021-4/6/2021	0.26	0.01	
16/7/2021-18/7/2021	0.94	2.46	
24/8/2021-25/8/2021	2.82	11.23	
15/10/2021-17/10/2021	0.38	0.77	
Average	1.132	3.25	

Table 8: Comparison of measured and modelled event runoff volumes at downstream gauging station (ML).

Rainfall Event	Measured (ML)	Modelled (ML)	
6/5/2021-7/5/2021	13.6	4.99	
3/6/2021-4/6/2021	1.41	1.18	
16/7/2021-18/7/2021	4.37	6.8	
24/8/2021-25/8/2021	24.33	30.18	
15/10/2021-17/10/2021	3.24	2.19	
Average	9.39	9.068	

Table 9: Comparison of measured and modelled peak flows upstream gauging station (L/s).

Rainfall Event	Measured (L/s)	Modelled (L/s)	
6/5/2021-7/5/2021	18.4	15.5	
3/6/2021-4/6/2021	3.1	0.01	
16/7/2021-18/7/2021	6.8	15.5	
24/8/2021-25/8/2021	42.8	94.3	
15/10/2021-17/10/2021	3.2	5	
Average	14.86	26.062	

Table 10: Comparison of measured and modelled peak flows at downstream gauging station (L/s).

Rainfall Event	Measured (L/s)	Modelled (L/s)
6/5/2021-7/5/2021	246.8	43
3/6/2021-4/6/2021	14.4	7
16/7/2021-18/7/2021	37.6	36.4
24/8/2021-25/8/2021	340.5	214.1
15/10/2021-17/10/2021	32.4	12.2
Average	134.34	62.54

3.3.4 Existing Hydrology

Rainfall data used for MUSIC model predictive purposes included approximately 25 years of daily rainfall recorded at Lithgow (Cooerwull) for the years 1962 – 1971 and 2007 – October 2021 [scaled by a factor of 1.30]. Evaporation data used in the MUSIC model was monthly average data for Bathurst. Results for daily flow volumes and peak flow rates are provided in Table 11 and Table 12. The following is observed from these data:

- Surface runoff into and out of the hanging swamp is low for approximately 80 %
 of the modelled period, this characteristic of a runoff regime which is dominated
 by quick responses to incident rainfall and is reflective of the small contributing
 upslope catchment.
- 2. For some 50% of the modelled period there is essentially no or low surface runoff through the swamp. This is broadly consistent with the observed gauging data.

Table 11: Modelled existing conditions hydrology (daily flow volume).

Statistic	Upstream Gauge (kL/d)	Downstream Gauge (kL/d) 0.00	
Minimum	0.00		
10 th Percentile	0.00	0.00	
20 th Percentile	0.00	0.00	
30 th Percentile	0.00	0.00	
40 th Percentile	0.14	0.02	
50 th Percentile	0.38	3.82	
60 th Percentile	1.40	32.44	
70 th Percentile	6.45	155.65	
80 th Percentile	59.40	448.27	
90 th Percentile	341.16	1,262.52	
91st Percentile	411.13	1,481.09	
92 nd Percentile	504.27	1,676.36	
93 rd Percentile	630.84	1,914.57	
94 th Percentile	812.23	2,259.97	
95 th Percentile	1,036.98	2,661.04	
96 th Percentile	1,411.46	3,335.43	
97 th Percentile	1,973.32	4,646.49	
98 th Percentile	3,038.09	7,024.40	
99 th Percentile	5,330.82	12,966.48	
Maximum	31,675.55	76,212.63	

Table 12: Modelled existing conditions hydrology (peak flow rate).

Statistic	Statistic Upstream Gauge (L/s) Downstream Gauge (L/s				
Minimum	0.00	0.00			
10 th Percentile	0.00	0.00			
20 th Percentile	0.00	0.00			
30 th Percentile	0.00	0.00			
40 th Percentile	0.00	0.00			
50 th Percentile	0.00	0.06			
60 th Percentile	0.02	0.44			
70 th Percentile	0.07	1.73			
80 th Percentile	0.69	5.17			
90 th Percentile	3.95	15.07			
91st Percentile	4.76	17.14			
92 nd Percentile	5.84	19.40			
93 rd Percentile	7.30	22.16			
94 th Percentile	9.40	26.16			
95 th Percentile	12.00	30.80			
96 th Percentile	16.34	38.60			
97 th Percentile	22.84	53.78			
9.8 th Percentile	35.16	81.30			
99 th Percentile	61.70	150.08			
Maximum	366.62	882.09			

3.3.5 **Pre-quarry Hydrology**

The existing conditions MUSIC model was modified as follows to simulate pre-quarry hydrologic conditions:

- 1. Quarry voids were removed from the model.
- 2. Quarry and direct rainfall to void catchments were changed to forest catchments with 10% impervious area as per other forested catchments draining to the quarry voids.

Results of the modelling are produced in Table 13 and Table 14. The following observations are made in respect of these data.

1. Under pre-quarry conditions no flow conditions existed for around 50 % of the modelled period, this being similar to existing hydrological conditions.

- 2. For the 50-90th flow percentile bands, these representing the majority of the active flow period, existing flow volumes into the hanging swamp from the Site are on average 65 % lower than under pre-quarry conditions (reductions range from 8-89%). Existing flow rates into the hanging swamp from the Site are on average 69% lower than under pre-quarry conditions (reductions range from 15-100%).
- 3. For the less frequent 95-99th percentile bands, flow volumes and rates have increased by approximately 26% over pre-quarry conditions.
- 4. Modelling demonstrates that historical quarrying activities have considerably altered the natural hydrologic regime of the hanging swamp. Significant flow reductions have occurred for more frequent runoff events (< 90th percentile flows), but increased flow rate and volume have occurred for less frequent (> 90th percentile flows) and more intense runoff events.

Table 13: Modelled pre-quarry conditions hydrology (daily flow volume).

Statistic	Upstream Gauge (kL/d)	Downstream Gauge (kL/d)	
Minimum	0.00	0.00	
10 th Percentile	0.00	0.00	
20 th Percentile	0.00	0.00	
30 th Percentile	0.00	0.00	
40 th Percentile	0.01	0.02	
50 th Percentile	1.56	3.82	
60 th Percentile	12.32	32.44	
70 th Percentile	51.31	155.65	
80 th Percentile	145.33	448.27	
90 th Percentile	398.90	1,262.52	
91st Percentile	447.98	1,403.15	
92 nd Percentile	496.94	1,603.15	
93 rd Percentile	564.15	1,801.16	
94 th Percentile	654.48	2,142.15	
95 th Percentile	773.34	2,516.27	
96 th Percentile	984.15	3,255.98	
97 th Percentile	1,416.40	4,452.51	
98th Percentile	2,726.74	7,156.04	
99 th Percentile	5,311.15	13,766.66	
Maximum	30,347.97	74,885.05	

Table 14: Modelled pre-quarry conditions hydrology (peak flow rate).

Statistic	Upstream Gauge (L/s) Downstream Gauge (l			
No flow				
	0.00	0.00		
10 th Percentile	0.00	0.00		
20 th Percentile	0.00	0.00		
30 th Percentile	0.00	0.00		
40 th Percentile	0.00	0.00		
50 th Percentile	0.02	0.04		
60 th Percentile	0.14	0.38		
70 th Percentile	0.59	1.80		
80 th Percentile	1.68	5.19		
90 th Percentile	4.62	14.61		
91st Percentile	5.18	16.24		
92 nd Percentile	5.75	18.55		
93 rd Percentile	6.53	20.85		
94 th Percentile	7.58	24.79		
95 th Percentile	8.95	29.12		
96 th Percentile	11.39	37.68		
97 th Percentile	16.39	51.53		
98 th Percentile	31.56	82.82		
99 th Percentile	61.47	159.34		
Maximum	351.25	866.73		
92 nd Percentile 93 rd Percentile 94 th Percentile 95 th Percentile 96 th Percentile 97 th Percentile 98 th Percentile	5.75 6.53 7.58 8.95 11.39 16.39 31.56 61.47	18.55 20.85 24.79 29.12 37.68 51.53 82.82 159.34		

3.3.6 Final Surface Hydrology

The existing conditions MUSIC model was modified as follows to simulate the final design surface hydrologic conditions:

- 1. The upper quarry void (pond 1) was removed from the model.
- 2. Quarry and direct rainfall to the upper void catchment was changed to forest with 10% impervious area as per other forested catchments draining to the quarry voids.
- 1. Results of the modelling are produced in Table 15, Surface flows into the hanging swamp are similar to existing hydrological conditions, although mid range flows are move towards pre-quarry conditions due to the closure of the upper void (pond 1).
- 2. Surface flows leaving the hanging swamp are essentially unchanged compared to existing or pre-quarry conditions.

3. Modelling demonstrates that the proposed final surface will not detrimentally impact on the surface flow hydrological regime within the hanging swamp downslope of the Site. The closure of the upper void will go some way towards remediating historical changes in flow regime at the swamp.

Table 15 Table 16 and Table 17. The following observations are made in respect of these data:

- 4. Surface flows into the hanging swamp are similar to existing hydrological conditions, although mid range flows are move towards pre-quarry conditions due to the closure of the upper void (pond 1).
- 5. Surface flows leaving the hanging swamp are essentially unchanged compared to existing or pre-quarry conditions.
- 6. Modelling demonstrates that the proposed final surface will not detrimentally impact on the surface flow hydrological regime within the hanging swamp downslope of the Site. The closure of the upper void will go some way towards remediating historical changes in flow regime at the swamp.

 Table 15: Modelled final surface conditions hydrology (daily flow volume).

Statistic	Upstream Gauge (kL/d)	Downstream Gauge (kL/d)		
Minimum	0.00	0.00		
10 th Percentile	0.00	0.00		
20 th Percentile	0.00	0.00		
30 th Percentile	0.00	0.01		
40 th Percentile	0.10	0.29		
50 th Percentile	0.35	5.63		
60 th Percentile	1.45	48.71		
70 th Percentile	8.58	161.52		
80 th Percentile	89.91	444.80		
90 th Percentile	415.58	1277.43		
91st Percentile	477.45	1433.87		
92nd Percentile	555.12	1585.37		
93 rd Percentile	637.02	1804.65		
94 th Percentile	777.46	2123.35		
95 th Percentile	938.83	2529.98		
96 th Percentile	1221.93	3239.58		
97 th Percentile	1649.09	4243.34		
98 th Percentile	2722.84	7128.25		
99 th Percentile	5133.79	13691.75		
Maximum	30844.92	75381.99		

Table 16: Modelled final surface conditions hydrology (peak flow rate).

Statistic	Upstream Gauge (L/s)	Downstream Gauge (L/s)
No flow	0.00	0.00
10 th Percentile	0.00	0.00
20 th Percentile	0.00	0.00
30 th Percentile	0.00	0.00
40 th Percentile	0.00	0.00
50 th Percentile	0.00	0.07
60 th Percentile	0.02	0.56
70 th Percentile	0.10	1.87
80 th Percentile	1.04 5.15	
90 th Percentile	4.81 14.79	
91 st Percentile	5.53 16.60	
92 nd Percentile	6.43	
93 rd Percentile	7.37 20.89	
94th Percentile	9.00	24.58
95 th Percentile	10.87	29.28
96 th Percentile	14.14 37.50	
97 th Percentile	19.09	49.11
98 th Percentile	31.51 82.50	
99 th Percentile	59.42 158.47	
Maximum	357.00	872.48

3.3.7 Existing, Pre-quarry and Final Surface Comparison

A comparison of average annual flows into and out of the hanging swamp is provided in Table 17. These data indicate that the existing quarry has reduced average annual flow to the swamp in the order of 5 %, with inflows predominating during higher intensity runoff events. Existing swamp outflows are reduced by around 1.5 % compared to prequarry conditions. With the final rehabilitated surface in place, these historic impacts will be roughly halved to 2.8% decrease in flow volume into the swamp and 0.8 % decrease in flow out of the swamp compared to pre-quarry conditions.

Table 17: Comparison of annual average swamp flows for existing, pre-quarry and final surface conditions.

Catchment State	Upstream Gauge (ML/yr)	Downstream Gauge (ML/yr)
Existing Conditions	86.4	249.0
Pre-Quarry Conditions	90.9	253.0
Final Rehabilitated Conditions	88.4	251.0

3.4 Surface Water Quality

3.4.1 **Method**

Sampling of surface water quality occurred at the following locations:

- 1. Each of the quarry voids (pond 1 and pond 2) on 5/10/2021, 13/10/2021, 19/10/2021 and 25/10/2021 (Quarry).
- 2. Each flow gauging site including upstream and downstream gauges on 5/10/2021, 13/10/2021, 19/10/2021 and 25/10/2021 (Swamp).
- 3. Left bank tributary joining upslope of the downstream gauging site (SW01) on 5/10/2021, 13/10/2021, 19/10/2021 and 25/10/2021 (Tributary). This is a less disturbed catchment than that containing the quarry voids.
- 4. Within the hanging swamp upstream of the tributary joining the downstream gauge (SW02) on 5/10/2021, 13/10/2021, 19/10/2021 and 25/10/2021 (Swamp).

Surface water quality testing locations are provided in Map 13. Parameters measured are listed in Table 18.

3.4.2 Findings

Water quality sampling laboratory reports are provided in Appendix F A summary of all surface water quality sampling compared to trigger values for upland rivers given in Australian and New Zealand Environment and Conservation Council (2018) *Australian and New Zealand Guidelines for Fresh and Marine Water Quality* (95th percentile protection for slightly to moderately disturbed ecosystems) s provided in Table 18 below.⁹

Table 18: Surface water quality data averages against trigger values for highland rivers.

Parameter	Quarry (Ponds 1 & 2)	Swamp (U/S, D/S gauges + SW02)	Tributary (SW01)	ANZG (2018) Guidelines Trigger Value ¹⁰
pH	6.7	5.0	4.6	6.5 - 7.5
Temperature (°C)	16.8	16.9	13.7	H # "
Electrical Conductivity (µS/cm)	26.9	28.1	32.3	350
Dissolved Oxygen (%)	80.2	59.0	11.7	< 90
Total nitrogen (mg/L)	0.29	0.13	0.05	< 0.25
Total Kjeldahl nitrogen (TKN) (mg/L)	0.35	0.13	0.05	DE INCTES

⁹ https://www.waterquality.gov.au/anz-guidelines/guideline-values/default/water-quality-toxicants,

¹⁰ Values for pH, Electrical Conductivity, Dissolved Oxygen, Total Nitrogen, Total Nitrate and Total Phosphorous from Australian and New Zealand Environment and Conservation Council (2000) *National Water Quality Management Strategy – Australian and New Zealand Guidelines for Fresh and Marine Water Quality,* Ch 3.

Parameter	Quarry (Ponds 1 & 2)	Swamp (U/S, D/S gauges + SW02)	Tributary (SW01)	ANZG (2018) Guidelines Trigger Value ¹⁰
Total nitrogen as NO _x (mg/L)	0.003	0.004	0.009	< 0.015
Ammonia (mg/L)	0.009	0.011	0.010	< 0.013
Total Phosphorus (mg/L)	0.003	< 0.003	< 0.003	< 0.020
Total Sodium (mg/L)	4.00	4.34	5.20	
Total Potassium (mg/L)	0.99	0.57	< 0.25	
Total Calcium (mg/L)	0.84	0.45	< 0.25	-
Total Magnesium (mg/L)	0.54	0.34	0.73	*
Hardness (mg/L)	4.30	2.51	3.61	
Total Alkalinity (mg/L)	8.00	5.29	3.13	
Sulphate (mg/L)	1.13	2.58	2.75	1.18
Chloride (mg/L)	4.75	5.41	6.75	
Total Silicon (mg/L)	< 1.50	1.83	2.70	
Total Arsenic (μg/L)	0.56	< 0.50	< 0.50	< 13
Total Cadmium (µg/L)	< 0.05	< 0.05	< 0.05	< 0.2
Total Chromium (µg/L)	< 0.50	< 0.50	< 0.50	< 1.0
Total Copper (µg/L)	0.56	0.63	< 0.50	<1.4
Total Lead (µg/L)	< 0.50	0.75	< 0.50	< 3.4
Total Mercury (µg/L)	< 0.025	< 0.025	< 0.025	< 0.6
Total Nickel (µg/L)	< 0.50	< 0.50	< 0.50	< 11
Total Zinc (μg/L)	1.63	2.25	1.00	≤ 8.0
Total Recoverable Hydrocarbons (TRH C6 – C10) (µg/L)	< 5	< 5	< 5	
Total Recoverable Hydrocarbons (TRH C10 - C14) (µg/L)	< 25	28.9	<25	
Total Recoverable Hydrocarbons (TRH C15 – C28) (µg/L)	< 50	56.7	< 50	
Total Recoverable Hydrocarbons (TRH C29 - C36) (µg/L)	< 50	< 50	< 50	

A detailed summary of testing data is provided for TN, TP, alkalinity, copper and zinc in Table 19 below.

Table 19: Detailed surface water quality statistical summaries.

Site	No. of Samples	Minimum	Maximum	Standard Deviation	Average				
Total Nitrogen (mg/L)									
Pond 1	4	0.20	0.30	0.10	0.30				
Pond 2	4	0.30	0.40	0.10	0.30				
U/S Gauge	4	0.10	0.40	0.20	0.30				
D/S Gauge	4	0.10	0.10	0.00	0.10				
Tributary (SW01)	4	0.10	0.10	0.00	0.10				
Hanging Swamp (SW02)	4	0.10	0.10	0.00	0.10				
		Total Phospho	rus (mg/L)						
Pond 1 4 <0.025 <0.025 0.00 <0.025									
Pond 2	4	<0.025	<0.025	<0.025	<0.025				
U/S Gauge	4	<0.025	<0.025	<0.025	<0.025				
D/S Gauge	4	<0.025	<0.025	<0.025	<0.025				
Tributary (SW01)	4	<0.025	<0.025	<0.025	<0.025				
Hanging Swamp (SW02)	4	<0.025	<0.025	<0.025	<0.025				
		Alkalinity	(mg/L)						
Pond 1	4	5.0	14.0	4.2	9.0				
Pond 2	4	5.0	10.0	2.4	7.0				
U/S Gauge	4	6.0	10.0	2,1	7.8				
D/S Gauge	4	2.5	9.0	3.3	4.1				
Tributary (SW01)	4	2.5	5.0	1.3	3.1				
Hanging Swamp (SW02)	4	2.5	6.0	1.8	4.0				
Copper (µg/L)									
Pond 1	4	< 0.5	1.0	0.3	0.6				
Pond 2	4	< 0.5	< 0.5	0.0	< 0.5				
U/S Gauge	4	< 0.5	< 0.5	0.0	< 0.5				
D/S Gauge	4	< 0.5	1.0	0.3	0.6				
Tributary (SW01)	4	< 0.5	< 0.5	0.0	< 0.5				
Hanging Swamp (SW02)	4	< 0.5	1.0	0.3	0.8				
Zinc (µg/L)									
Pond 1	4	< 0.5	3.0	1,3	1.9				
Pond 2	4	< 0.5	3.0	1.1	1.4				
U/S Gauge	4	1.0	6.0	2.1	3.5				
D/S Gauge	4	< 0.5	2.0	0.9	1.3				
Tributary (SW01)	4	< 0.5	2.0	0.7	1.0				
Hanging Swamp (SW02)	4	2.0	2.0	0.0	2.0				

3.4.3 Discussion

The following observations are made:

- 1. Several parameters tested are below the reportable concentration limit.
- 2. Surface waters are fresh and slightly acidic.
- 3. Nutrient content is generally low, although higher nitrogen levels were found in the quarry ponds and the upstream gauge site. These do not appear to have impacted water quality within the swamp.
- 4. Heavy metals and hydrocarbon concentrations were low or below the detection limit.
- 5. The area downstream of the Site is classified as a disturbed ecosystem due to historical catchment urban and quarrying activities, and construction of roads and clearing within the catchment. Surface water chemistry is generally within ANZG criteria for slightly to moderately disturbed freshwater ecosystems.

4 Hydrogeology

4.1 Hydrogeological Context

The site is located in the Blue Mountains within the upper reaches of an unnamed tributary of the Wollangambe River which, ultimately discharges into the Colo and then the Hawkesbury Rivers. A topographic divide less than 200m to the southwest of the Site is the boundary between the Wollangambe River and Coxs River catchments. The Coxs River flows south of the Blue Mountains into Warragamba Dam and the Nepean River.

Site geology is dominated by sandstone with shallow residual soils and therefore groundwater predominately occurs within this sandstone aquifer. Occasional shallow, perched aquifers where groundwater conditions are controlled dominated by rainfall and run-off would occur in areas where catchment flows are concentrated in areas with shallow gradients.

The Site is at high elevation with no downstream water bodies to control groundwater levels. Groundwater levels are therefore dominated by recharge and aquifer properties, maintaining a pressure gradient downward into deeper sandstone. Locally, the presence of the quarry voids on the site has likely impacted the surrounding groundwater regime by lowering groundwater levels on the upslope sides and raising it on the downslope sides.

Following filling of the quarry, groundwater levels are expected to more accurately align with groundwater levels that occurred prior to quarrying activities. This will bring the hydrogeological system back closer to the pre-quarrying conditions.

The hanging swamp immediately downstream of the Site, variously identified as a 'prickly tea-tree -sedge wet heath swamp', 'temperate highland peat swamp on sandstone', and a 'hanging swamp', does not receive flows from deeper groundwater in the sandstone aquifer and is reliant on rainfall and catchment run-off. This section assesses the level of connection of the swamp to groundwater and determine what, if any, changes to the hydrological regime of the swamp may occur as a result of the proposed development.

4.2 Other Groundwater Investigations

Green¹¹ performed a regional assessment of the multi-layered sandstone aquifers beneath the Blue Mountains. They found that shallow and intermediate aquifers were likely critical to spring flow and to stream base flow, but that the deep regional aquifer

¹¹ Green R. T., Russell G., Williams M., Cendón D. I. (2010), 'Assessment of Multi-Layered Sandstone Aquifers in the Sydney Basin, Blue Mountains', *Groundwater 2010 the challenge of sustainable management*, National Convention Centre, Canberra, 31 October – 4 November.

appeared to be flowing towards the deep incised valley rivers with some discharge likely into the Hawkesbury-Nepean River or further east towards the coast.

4.3 Relevant Literature

The Australian Government¹² commissioned a report titled *Temperate Highland Peat Swamps on Sandstone: ecological characteristics, sensitivities to change and monitoring and reporting techniques'* which defines three types of peat swamp on sandstone. The swamp downstream from the Site is most accurately characterised as a 'headwater swamp' as defined by this report because it is located close to a catchment divide where the topographic gradient is low. Characteristics of a 'headwater swamp' according to this report and relevant to this study include:

- 1. The dominant water source of the swamp is recharge through rainfall and runoff.
- 2. Water quality in the swamps is controlled by catchment run-off.
- 3. Swamps are often perched above the water table.
- 4. If a connection between groundwater and a swamp exists, which is unlikely, it is likely to be ephemeral as it would rely on the presence of a perched aquifer, most likely present after rainfall.

4.4 Groundwater Monitoring

4.4.1 Overview

Continuous groundwater level monitoring at 15-minute intervals via data-logging pressure transducer was commenced on 20^{th} April 2021. Eight wells in total were monitored and these are shown in Map 14. To determine the groundwater regime more accurately within the swamp, both shallow (MW301B, MW302A, & MW302B) and deep (MW 301A, & MW401) wells were installed to understand the interaction between the shallow, perched aquifer, and the deeper sandstone aquifer. The shallow wells were screened in the top 1-2 m of the surface, in the swamp alluvium above the sandstone. The deep wells were screened in the sandstone at least 4m below the surface. Well construction is summarised in Table 20. Monitoring well construction logs are provided in Appendix D.

¹² Australian Government (2014), *Temperate Highland Peat Swamps on Sandstone: ecological characteristics, sensitivities to change, and monitoring and reporting techniques*, Knowledge report, prepared by Jacobs SKM for the Department of the Environment, Commonwealth of Australia'.

Table 20: Groundwater monitoring well construction summary.

Well	Surface Elevation (mAHD)	Depth (mBGL)	Installed by	Туре
MB02	1043.8	28.95	GHD	Deep
MB03	1038.193	24.5	GHD	Deep
MW201	1067.166	44.49	MA	Deep
MW301A	1014.583	5.84	MA	Deep
MW301B	1014.186	1.94	MA	Shallow
MW302A	1008.158	2.47	MA	Shallow
MW302B	1007.572	1.67	MA	Shallow
MW401	1022.024	12.02	MA	Deep

4.4.2 Statistical Summary

Groundwater monitoring data statistics are provided in Table 21.

Table 21: Summary of groundwater monitoring data.

	Monitori	ng Period		Gro	undwater Le	vels	
Well ID	Start	End ¹	Min (mAHD)	Median (mAHD)	Mean (mAHD)	Max (mAHD)	Range (m)
MB02	20/04/2021	25/10/2021	1029.01	1029.86	1029.85	1030.05	1.04
MB03	20/04/2021	25/10/2021	1027.04	1027.23	1027.24	1027.47	0.43
MW201	20/04/2021	25/10/2021	1042.48	1043.21	1043.15	1043.58	1.10
MW301A	29/04/2021	25/10/2021	1012.45	1013.15	1013.17	1013.50	1.05
MW301B	29/04/2021	25/10/2021	1014.08	1014.17	1014.17	1014.21	0.13
MW302A	29/04/2021	25/10/2021	1007.85	1007.92	1007.93	1008.15	0.30
MW302B	29/04/2021	25/10/2021	1007.43	1007.58	1007.58	1007.62	0.19
MW401	8/07/2021	25/10/2021	1019.59	1019.88	1019.87	1020.12	0.53

Notes:

4.4.3 Commentary

Graphs of continuous monitoring data for wells MW301A and MW301B, and MB02 and MB03 with daily rainfall data (Lithgow Cooerwull - 63226) are provided in Figure 17 and Figure 18 respectively. Figure 17 shows a clear and consistent downward head gradient of 1 m from MW301B (shallow) to MW301A (deep). This demonstrates that surface water and shallow groundwater within the swamp recharges the deeper sandstone aquifer.

Figure 17 also shows the different reaction that the shallow and deep groundwater systems have in response to rainfall. In the shallow system (MW301B) rainfall has an almost instantaneous impact on groundwater levels but only until the groundwater

^{1.} At the time of writing, monitoring is ongoing – the end date reflects the last data collection date.

reaches a maximum level, only ever varying by about 0.1 m. This is reasonable as the shallow alluvium would 'fill up' to the surface level during rainfall and once the infiltration capacity of the swamp is reached, and any excess rainfall and run-off would flow downhill across the surface of the swamp as sheet flow. In contrast, the deeper system (MW301A) shows a similarly rapid response to rainfall however the magnitude of the response is greater with monitored levels varying by about 0.3 m. This indicates that the deeper sandstone beneath the swamp receives increased amounts of groundwater recharge from the swamp above almost immediately following a rainfall event.

Figure 18 on the other hand shows a much slower reaction to rainfall in the deeper sandstone aquifer. While both wells exhibit increases in groundwater levels following rainfall events, the time from the trough to the peak is in the order of 3 or 4 days, much slower than the near immediate responses demonstrated in MW301A and MW301B (Figure 17). The correlation between rainfall and groundwater levels is also much less distinct than exhibited by MW301A and MW301B.

4.5 **Conceptual Groundwater Model of Swamp**

Based on the detailed groundwater investigations, a conceptual hydrogeological model for the downstream swamp has been prepared and is provided in Figure 19. The following comments are provided to assist in interpretation:

- 1. Groundwater within the swamp develops in response to direct rainfall and surface inflows arriving from the catchment which are developed both within the Site but also within adjoining valley areas.
- 2. As surface water inflows enter the swamp, these spread out and typically flow in an unchannelised manner over the swamp surface where due to the high sand content of swamp soils, there is a high degree of infiltration.
- 3. Infiltrated surface water causes a perched water table to develop which sits over the underlying sandstone bedrock. This water table is ephemeral and has the capacity to recharge the underlying permanent water table.
- 4. Perched water within the swamp exits at the downstream portion of the swamp into a narrow formed channel.
- 5. The swamp surface does not appear to have been the subject of any current significant erosion, although there is evidence that historical erosive events have occurred.

The following implications arise out of the preliminary investigation findings:

- 1. Groundwater flows from the filled quarry voids does not contribute to groundwater flows within the swamp because these are controlled by surface water inflows and direct rainfall.
- 2. Perched groundwater that occurs within the swamp will at times recharge deeper groundwater. This is evidenced by the hydraulic gradient between nested wells

MW301A (deep) and MW301B (shallow) where the groundwater head in MW301A is consistently around 1 m lower than that in MW301B demonstrating groundwater flow downwards into the sandstone from the overlying swamp (Section 4.4.3). At times there may be a continuous water connection between the ephemeral aquifer within the swamp and groundwater within deeper sandstone, and at other times the two water bodies may be disconnected.

3. Surface flows discharged from the Site during filling operations and following completion of the final landform will likely enter the swamp area and contribute to the hydrology and water chemistry of the perched water table.

4.6 Groundwater Modelling

4.6.1 Purpose

A groundwater model was prepared to:

- 1. Simulate existing groundwater conditions based on monitoring data.
- 1. Hind-cast groundwater conditions prior to quarry operations at the site.
- 2. Forecast groundwater conditions during the proposed filling operations when the upper quarry void is dewatered to enable filling.
- 3. Forecast groundwater conditions once the proposed filling is complete and the final surface is formed.

4.6.2 Method

A MODFLOW-NWT groundwater model of the existing conditions was prepared in the GMS 10.4.1 (2018) graphical user interface. The model grid was set up with 6 layers with the top of layer 1 representing the ground surface. Layer 1 had varying thicknesses to represent the full depth of the current excavation pits on the site, and the shallow alluvium found in the swamp. The remaining layers were vertically distributed below layer 1 to an elevation of 800 mAHD. Model extents were set to the surrounding ridgelines which were assumed to be groundwater divides. Material properties were applied to the model layers to represent the underlying sandstone, residual soils, and the quarry voids (hydraulic conductivity = 9999m/day).

The following boundary conditions were applied to the model:

- Upstream and downstream constant head boundaries at estimated groundwater levels.
- 2. Recharge rates based on the different land uses and levels of vegetation.
- 3. A uniform annual evapotranspiration rate of 630 mm (BoM, 2016) and varying extinction depths based on the vegetation cover.

4. Drains below the swamp to represent an incised channel where the water is drained from the alluvium.

Once the existing conditions model was calibrated, it was modified to represent the following predictive models:

1. Pre-quarry conditions:

- a. Surface elevations modified to assumed elevations prior to quarrying based on existing lidar contours and historic aerial imagery.
- b. Material property extents, recharge zones, and evapotranspiration extinction depth zones modified as necessary.

2. Filling stage conditions:

a. Main quarry void completely de-watered using a drain boundary condition set at the base of the void.

3. Final surface conditions:

- a. Main quarry pit horizontal hydraulic conductivity set to 10-9 m/s and vertical hydraulic conductivity set to 10⁻¹⁴ m/s to represent the proposed lining.
- b. Recharge rate over the fill area lowered to 0.8 mm/year to simulate the effect of the capping material.
- c. Recharge zones, and evapotranspiration extinction depth zones modified as necessary.

All other model parameters including material properties, recharge rates, evapotranspiration rates, and boundary conditions were kept constant. MODFLOW-NWT run settings were also kept constant between model runs.

4.6.3 Calibration

The existing conditions model was calibrated to the means of the groundwater level data collected by MA (see Section 4.4.2). To achieve calibration, hydraulic conductivities, recharge rates, and evapotranspiration depths were adjusted within realistic ranges until a normalised residual mean squared (NRMS) under 5% was achieved. The calibrated model parameters are summarised in Table 22.

Table 22: Calibrated existing groundwater conditions MODFLOW model parameters.

Category	Units	Calibrated Value
Hydraulic Conductivities		
Sandstone (Kh, Kv)	m/day	0.0098, 0.00098
Residual Soils (Kh, Kv)	m/day	0.500, 0.167
Quarry Void (Kh, Kv)	m/day	9999, 9999
Recharge Rates		
Cleared Areas	mm/year	39.2
Forested Areas	mm/year	27.4
Quarry Void	mm/year	7.8
Railway Corridor	mm/year	7.8
Swamp	mm/year	94.0
Evapotranspiration Extinction Depths		
Cleared Areas	m	1.0
Forested Areas	m	2.0
Quarry Void	m	0.1
Railway Corridor	m	0.2
Swamp	m	1.0

With the parameters above and the model set up as described in Section 4.6.2, a calibration of 3.8% NRMS with a mass balance error of -0.07%, and a mean residual of -1.12 m was achieved, indicating a slight under-prediction in groundwater levels across the model. A graph of the calibration outcome is provided in Figure 20.

4.6.4 Model Confidence Level Classification

In accordance with the Australian Groundwater Modelling Guidelines (2012), the model is considered to generally represent a 'Class 2' model confidence level classification, suitable for impact assessment.

A 'Class 2' classification is justified based on the following:

- 1. Calibration statistics are generally acceptable.
- 2. Mass balance error is less than 1% of total.
- 3. Geotechnical data coverage is reasonable in the vicinity of the proposed development.

4. Model parameters are generally consistent with conceptualisation.

4.6.5 Existing Groundwater Conditions

A map of existing groundwater levels in the model surface layer is provided at Map 15. It shows that groundwater levels in the site are significantly impacted by the quarry voids which lower groundwater in the southwest corner of the site. Groundwater levels outside the site and downslope towards the swamp are also impacted to some extent by the existing quarry voids.

A section through the model showing the groundwater level and groundwater equipotential contours is provided in Figure 21. The equipotential contours shown in Figure 21 demonstrate that groundwater flow within the model is generally downward with groundwater flows from the quarry voids not interacting with the swamp, this correlating with the conceptual model. The equipotential contours also show that groundwater gradients beneath the swamp are downward, in correlation with the data collected (wells MW301A and MW301B, Table 21).

4.6.6 Pre-quarry Groundwater Conditions

A map of modelled pre-quarry groundwater levels is provided at Map 16 and a drawdown plot to existing conditions is provided at Map 17. We note that drawdown is calculated as earlier groundwater level minus later groundwater level and therefore a negative drawdown represents an increase in groundwater levels.

The pre-quarry groundwater levels and drawdown to existing conditions shows that the current quarry voids significantly altered the pre-quarry groundwater levels by lowering the groundwater table by up to 5 m in the quarry voids and increasing the groundwater levels elsewhere in the model domain by around 0.5 – 2 m. Groundwater levels in the sandstone beneath the swamp show an increase by approximately 0.5 m due to the current quarry voids, therefore decreasing the pressure gradient from the swamp to the sandstone aquifer and decreasing the amount of recharge from the swamp to the sandstone aquifer by a small amount.

4.6.7 Filling Stage Groundwater Conditions

A map of filling stage groundwater levels is provided at Map 18 and drawdown plots from existing and pre-quarry conditions are provided in Map 19 and Map 20 respectively.

Map 19 shows that dewatering the main quarry void will lower local groundwater levels adjacent to the Site compared to existing conditions and groundwater in the sandstone below the swamp is likely to experience minor lowering of up to about 0.5 m, compared to the existing conditions, this being approximately the level experienced in the swamp in pre-quarry conditions.

Map 20 shows that dewatering the upper quarry void lowers local groundwater levels compared to pre-quarry conditions. The presence of water in the lower quarry void mitigates the potential impact of dewatering of the upper void with groundwater levels below the swamp being at similar levels to pre-quarry conditions.

We note that the modelled filling stage scenario is a worst-case situation where the whole upper quarry void has been modelled as dewatered. It is more likely that dewatering will be staged to allow the staged fill of the pit, and no dewatering will be necessary once filling has surpassed the elevation of the local groundwater table.

4.6.8 Final Surface Groundwater Conditions

A map of the final surface groundwater levels is provided at Map 21 and drawdown plots from existing and pre-quarry conditions are provided in Map 22 and Map 23 respectively.

Map 22 shows that once the main quarry void is lined and filled, groundwater levels increase upslope and decrease downslope compared to existing conditions. This is expected as the low permeability void liner would cause groundwater to mound up behind it as it flows downslope, reducing the flow of water to downslope areas. Groundwater levels in the sandstone beneath the swamp will be lowered by up to about 0.5 m compared to existing conditions, this being approximately the level experienced in the swamp in pre-quarry conditions.

Map 23 shows that compared to pre-quarry conditions, groundwater levels have increased upslope and decreased downslope of the lined and filled quarry void, although to a significantly lesser extent compared to the existing conditions (Map 22). Map 23 shows that no material groundwater level changes occurs in the sandstone beneath the swamp. Map 23 also shows that the final surface groundwater levels are the closest to the pre-quarry conditions compared to all other scenarios modelled as the drawdown extents are the smallest. This demonstrates that following completion of filling activities on the site, the groundwater regime will more closely align with the natural groundwater conditions that existed prior to quarrying occurring at the Site and is therefore an improvement over the situation that currently exists.

4.7 Groundwater Quality

4.7.1 Method

Groundwater samples were taken on five occasions in the preparation of this study. Samples were taken using fresh bio-balers for each well and the first three bio-baler's water collected were discarded before bottling. Water samples were immediately sealed in laboratory provided sampling bottles and stored in an esky with ice for transportation to a NATA certified laboratory to be analysed.

On the 25/10/2021, a low-flow pump was used to sample MW201, the deep monitoring well upslope of the main quarry void. For this sampling event, three well volumes were discarded before bottling.

Standard field observations (pH, temperature, electrical conductivity, dissolved oxygen) were measured on 25/10/2021.

Refer to Appendix F for complete laboratory results for all dates and samples collected.

4.7.2 **Findings**

Statistical summary of the groundwater quality monitoring results for deep and shallow wells are provided in Table 23 below.

Table 23: Groundwater water quality data averages.

	Deep Wells			Shal	Shallow Well (swamp)		
Parameter	Average (mg/L)	Maximum (mg/L)	Std. Dev (mg/L)	Average (mg/L)	Maximum (mg/L)	Std. Dev (mg/L)	
pH ¹	4.64	5.00	0.24	4.47	4.48	0.01	
Temperature (°C) 1	13.3	14.2	0.9	13.0	13.1	0.1	
Electrical Conductivity (μS/cm)¹	33.6	44.0	7.0	27.6	31.4	3.8	
Dissolved Oxygen (%) 1	32.9	45.9	8.6	24.0	28.1	4.1	
Total nitrogen (mg/L)	1.2	15	3	0.2	0.7	0.2	
Total Kjeldahl nitrogen (TKN) (mg/L)	0.2	0.4	0.1	0.4	0.7	0.3	
Total nitrogen as NO _x (mg/L)	0.5	1.8	0.6	<0.005	<0.005	0	
Ammonia (mg/L)	<0.005	<0.005	0	<0.005	0.1	0	
Total Phosphorus (mg/L)	<0.05	<0.05	0	0.2	1.1	0.3	
Total Alkalinity (mg/L)	5.5	11	2.6	6.8	32	7.6	
Sulphate (mg/L)	2.4	5	0.9	2.1	3	0.3	
Chloride (mg/L)	4.9	7	0.9	4.6	6	0.7	
Total Arsenic (µg/L)	<1	<1	0	5.7	24	7,3	
Total Cadmium (µg/L)	<0.1	<0.1	0	0.2	0.7	0.2	
Total Chromium (µg/L)	3.5	18	5.1	14.8	48	12.8	
Total Copper (µg/L)	17	86	23.8	93.7	650	186.7	
Total Lead (µg/L)	<1	4	0.9	46.1	210	61.5	
Total Mercury (µg/L)	<0.05	0.1	0	<0.05	0.1	0	
Total Nickel (µg/L)	4.4	24	5.7	4.3	11	3.9	
Total Zinc (µg/L)	35.7	240	53.3	41.7	200	60.1	
Water Hardness (mg/L)	3.1	7.3	1.9	2.1	7.5	1.6	
TRH C6 - C9 (µg/L)	<10	<10	0	<10	<10	0	
TRH C10 - C14 (µg/L)	<50	120	23.5	<50	<50	0	
TRH C15 - C28 (µg/L)	<100	490	105	<100	<100	0	
TRH C29 - C36 (µg/L)	<100	120	14.3	<100	<100	0	

Notes:

- 1. Based on field measurements taken 25/10/2021.
- ^{2.} TRH = Total Recoverable Hydrocarbons.

4.7.3 **Summary Comments**

The groundwater quality monitoring found that:

- 1. Nitrogen observations are generally higher in the deep wells compared to the shallow wells mostly due to elevated total nitrogen and NOx readings in MB03.
- 2. Total phosphorous observations are higher in the shallow wells compared to the deep wells.
- 3. Heavy metals are generally higher in the shallow groundwater wells than in the deeper groundwater wells.
- 4. Total recoverable hydrocarbons (TRHs) were all below the detection limit except for at MW201 where they were observed on four occasions.

5 Resources

Australian Government (2014), *Temperate Highland Peat Swamps on Sandstone:* ecological characteristics, sensitivities to change, and monitoring and reporting techniques, Knowledge report, prepared by Jacobs SKM for the Department of the Environment, Commonwealth of Australia'.

Australian Government Bureau of Meteorology (last updated 2016), *Average area actual evapotranspiration Annual*,

http://www.bom.gov.au/jsp/ncc/climate_averages/evapotranspiration/index.jsp

Australian Government Bureau of Meteorology (2021), Climate Data Online, http://www.bom.gov.au/climate/data/?ref=ftr

Australian Government National Water Commission (2012), *Australian Groundwater Modelling Guidelines*.

Australian Government Style Manual https://www.stylemanual.gov.au/

Australian and New Zealand Environment and Conservation Council (2000) *National Water Quality Management Strategy – Australian and New Zealand Guidelines for Fresh and Marine Water Quality.*

Australian and New Zealand Environment and Conservation Council (2018) *Australian and New Zealand Guidelines for Fresh and Marine Water Quality* https://www.waterquality.gov.au/anz-guidelines

BMT WBM (2015) NSW MUSIC Modelling Guidelines.

Commonwealth Department of the Environment (August 2014) *Temperate Highland Peat Swamps on Sandstone: ecological characteristics, sensitivities to change, and monitoring and reporting techniques.*

Green R. T., Russell G., Williams M., Cendón D. I. (2010), 'Assessment of Multi-Layered Sandstone Aquifers in the Sydney Basin, Blue Mountains', *Groundwater 2010 the challenge of sustainable management*, National Convention Centre, Canberra, 31 October – 4 November.

U.S. Geological Survey (2018), Online Guide to MODLFOW-NWT, https://water.usgs.gov/ogw/modflow-nwt/MODFLOW-NWT-Guide/index.html?nwt_newton_solver.htm

Appendix A - Figures

Figure 1: Site overview and location of relevant features.

Figure 2: Former quarry site with Pond 2 on left and Pond 1 at centre of photo.

Figure 3: Existing Pond 2 (at right) and wetland (at left).

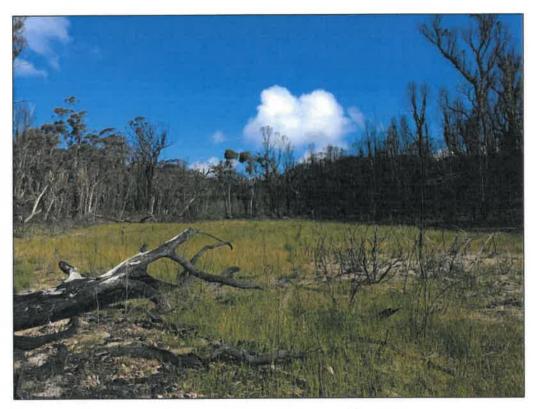


Figure 4: Hanging swamp downstream of quarry indicating recent bushfire activity.

Figure 5: Overlooking Site from western edge of quarry void showing existing site topography.

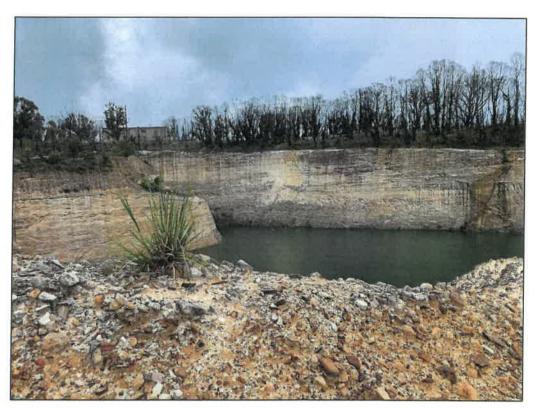


Figure 6: Local sandstone bedrock profile in Pond 1 (side wall of existing void).

Figure 7: Inflow to hanging swamp showing infiltration of surface flows and absence of defined channel.

Figure 8: Typical sandy local topsoils (charcoal from recent local bushfire).

Figure 9: Flow monitoring station at upstream end of hanging swamp.

Figure 10: Flow monitoring station at downstream end of hanging swamp.

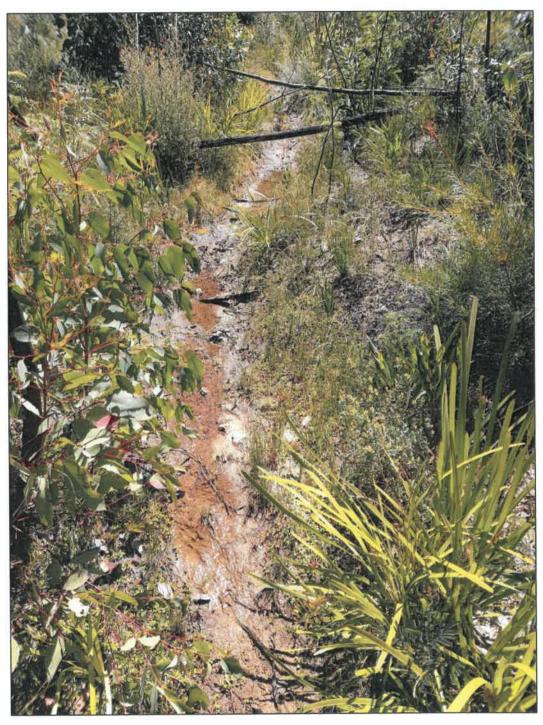


Figure 11: Left bank tributary entering at downstream end of hanging swamp.

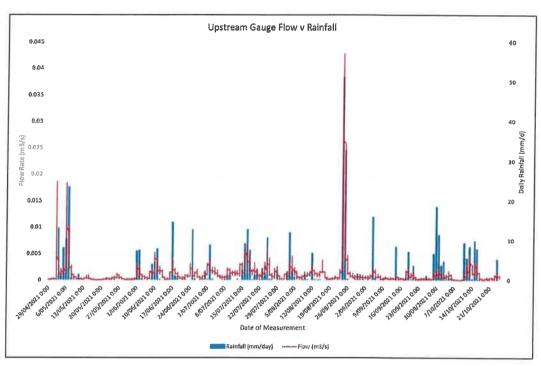


Figure 12: Measured flow vs rainfall (scaled) for Upstream Gauge.

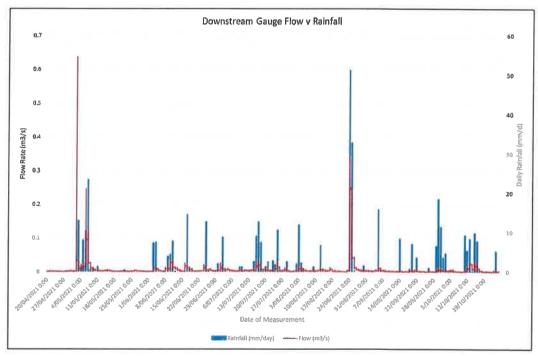


Figure 13: Measured flow vs rainfall (scaled) for Downstream Gauge.

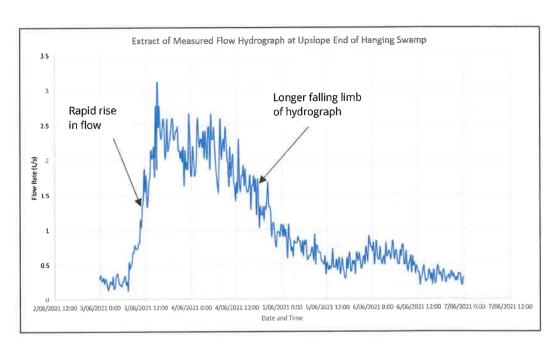


Figure 14: Extract from measured flow hydrograph at upstream.

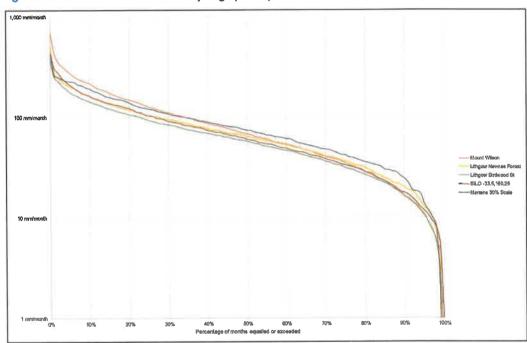


Figure 15: Cumulative frequency curve for comparative rainfall data sets

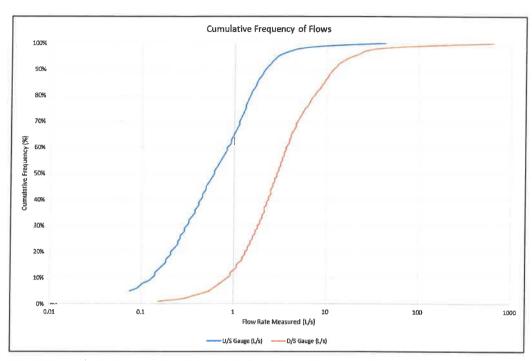


Figure 16: Cumulative frequency of measured flows at flow monitoring stations.

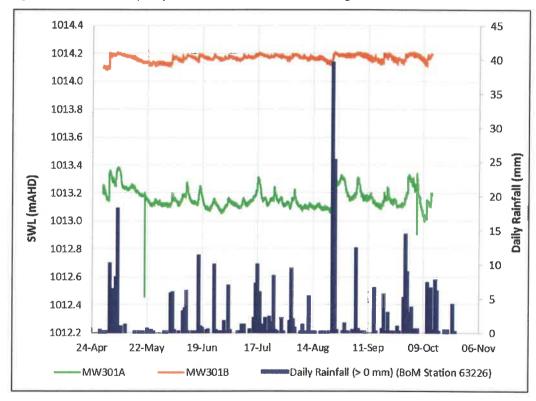


Figure 17: Continuous groundwater monitoring data for nested wells MW301A and MW301B.

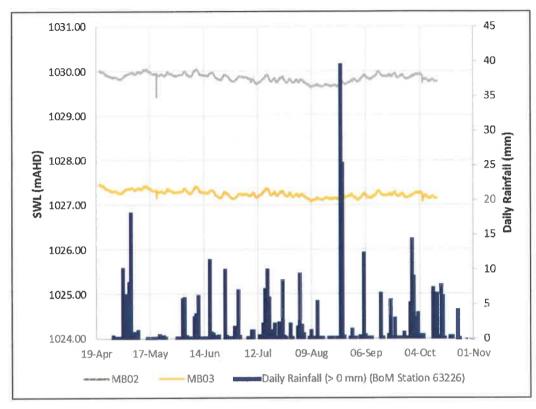


Figure 18: Continuous groundwater monitoring data for deep wells MB02 and MB03.

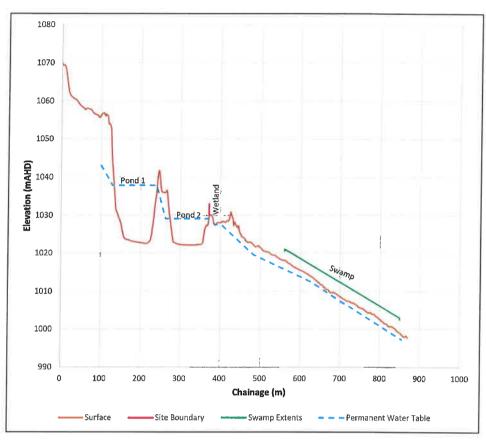


Figure 19: Conceptual hydrogeological section through Site and swamp.

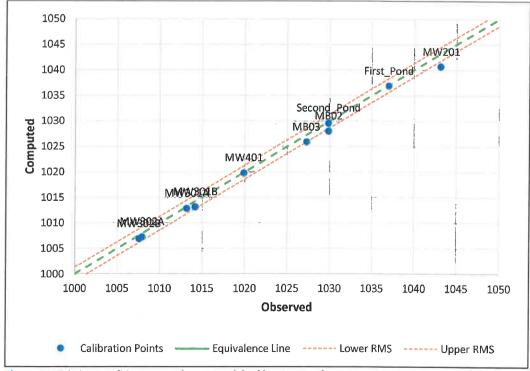


Figure 20: Existing conditions groundwater model calibration result.

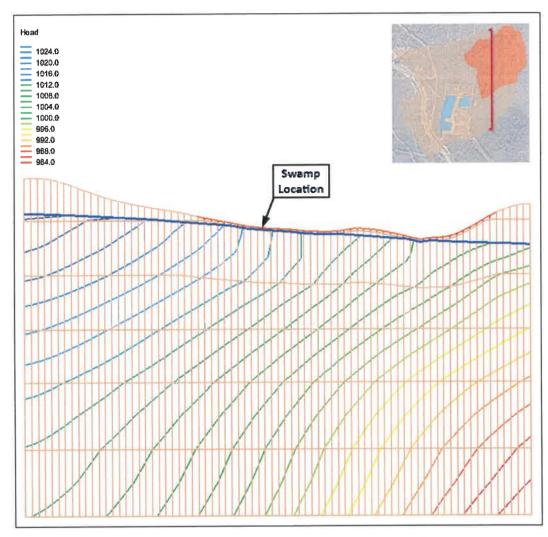
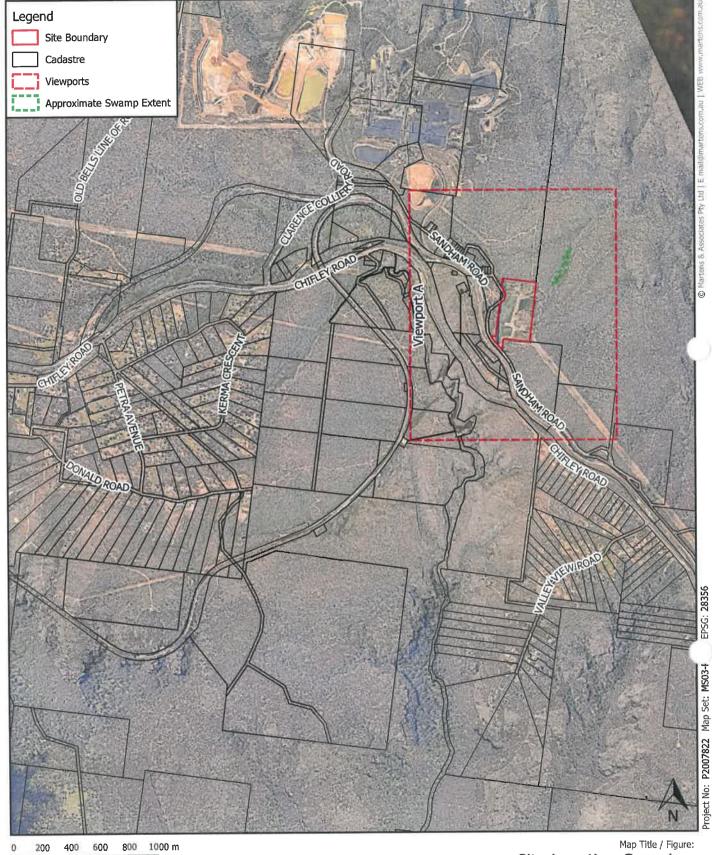



Figure 21: Groundwater model section through swamp.

Appendix B - Maps

1:25000 @ A4

Notes: - Aerial from Nearmap (2021). - Cadastre from NSW DFSI (2020).

Environment | Water | Geotechnics | Civil | Projects

Site Location Overview

Map 01 Sandham Road, Dargan, NSW Bell Quarry Rehabilitation Hydrological Study Bell Quarry Rehabilitation Project Pty Ltd

Project Sub-Project Client

19/11/2021

Date

Мар

Site

Viewport A

- Aerial taken in 1966 and acquired from NSW DFSI (2021).

Map 02 Sandham Road, Dargan, NSW

Bell Quarry Rehabilitation Hydrological Study

Bell Quarry Rehabilitation Project Pty Ltd

19/11/2021

Sub-Project Client Date

Мар

Site

Project

Environment | Water | Geotechnics | Civil | Projects

Viewport A

Notes:
- Aerial taken in 1998 and acquired from NSW DFSI (2021).

Environment | Water | Geotechnics | Civil | Projects

Site Aerial During Quarrying (1998)

Map 03

Sandham Road, Dargan, NSW Bell Quarry Rehabilitation

Hydrological Study Bell Quarry Rehabilitation Project Pty Ltd

19/11/2021

Map

Site Project

Sub-Project Client

Date

Viewport A

Notes: - Aerial from Nearmap (2021).

Environment | Water | Geotechnics | Civil | Projects

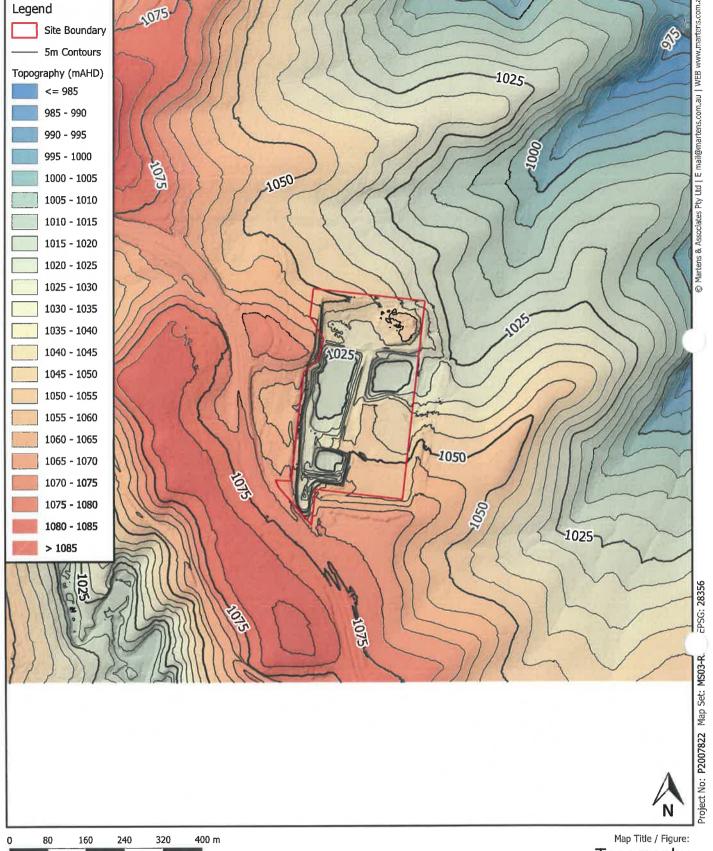
Map Title / Figure: Current Site Aerial (2021)

Map 04

Sandham Road, Dargan, NSW Bell Quarry Rehabilitation

Hydrological Study

Bell Quarry Rehabilitation Project Pty Ltd


Project Sub-Project Client

Мар

Site

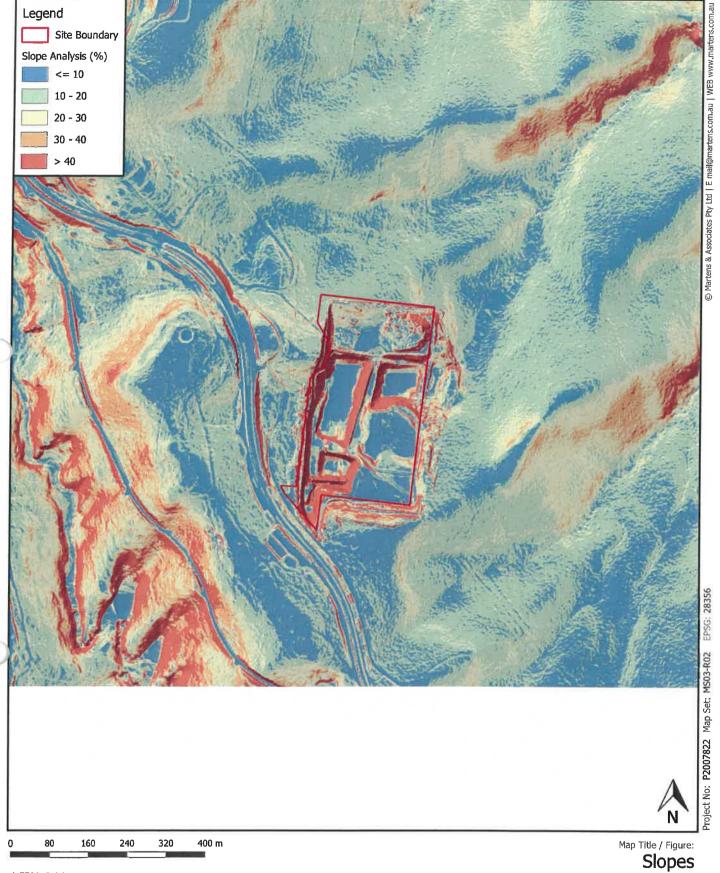
Date

19/11/2021

Viewport A

Notes:
- Topography based on 2m LIDAR from NSW DFSI (2020) and site survey.

Environment | Water | Geotechnics | Civil | Projects


Topography

Map 05 Sandham Road, Dargan, NSW Bell Quarry Rehabilitation Hydrological Study Bell Quarry Rehabilitation Project Pty Ltd

Мар Site Project

Sub-Project Client

19/11/2021 Date

Viewport A

Notes: - Slope analysis based on 2m LIDAR from NSW DFSI (2020) and site survey.

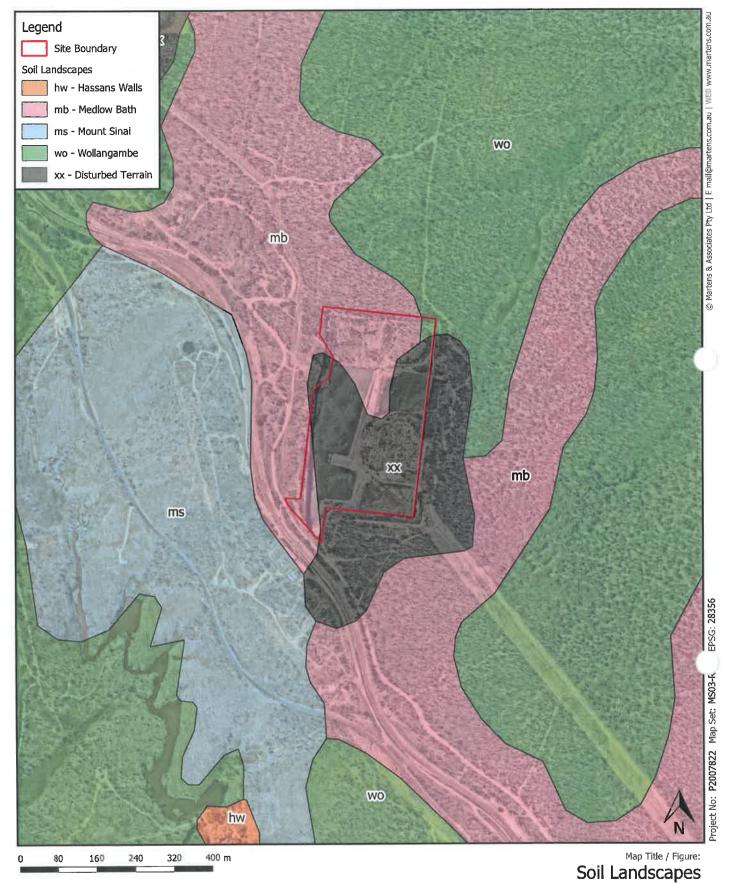
Environment | Water | Geotechnics | Civil | Projects

Map 06

Sandham Road, Dargan, NSW Bell Quarry Rehabilitation

Project Sub-Project

Hydrological Study Bell Quarry Rehabilitation Project Pty Ltd


Client

19/11/2021

Date

Мар

Site

Viewport A

Notes:
- Soil landscapes data from NSW DPIE (2021).

Map 07

Sandham Road, Dargan, NSW Bell Quarry Rehabilitation

Hydrological Study

Bell Quarry Rehabilitation Project Pty Ltd 19/11/2021

Project Sub-Project Client

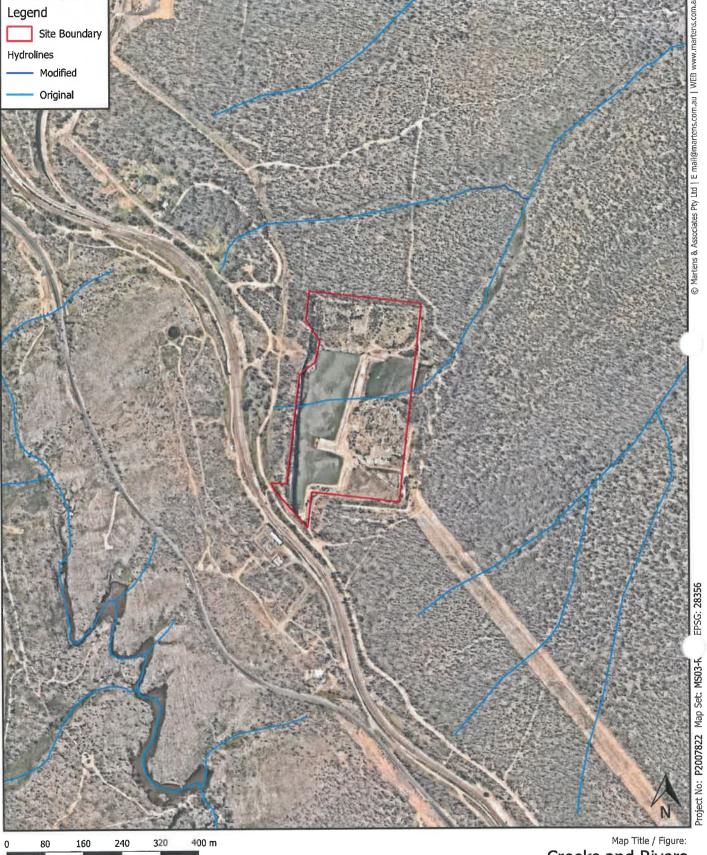
Date

Мар

Site

Viewport A

- Aerial from Nearmap (2021).


Environment | Water | Geotechnics | Civil | Projects

Borehole Soil Testing Plan

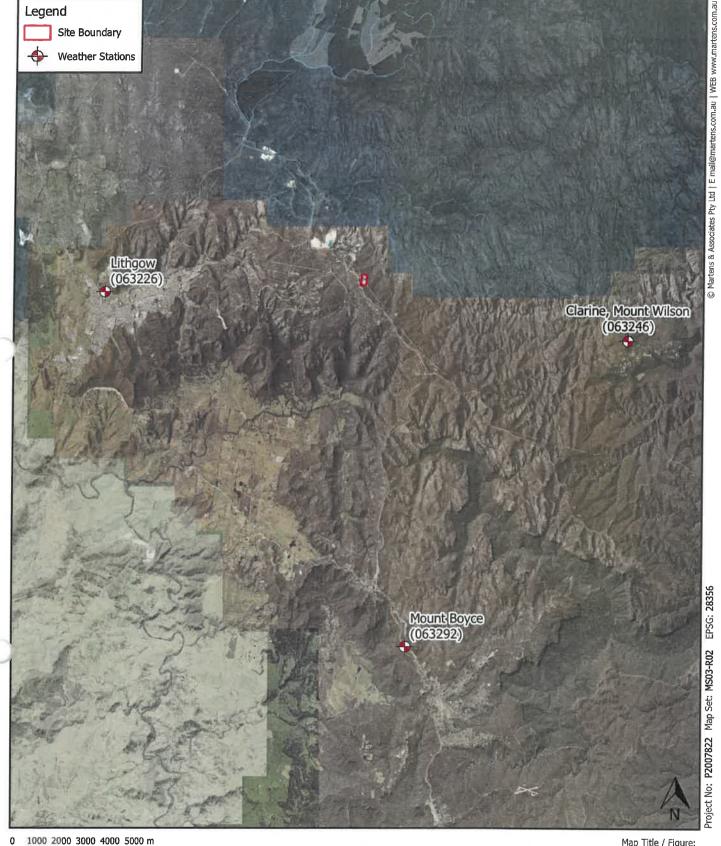
19/11/2021

Map 08 Sandham Road, Dargan, NSW Bell Quarry Rehabilitation Hydrological Study Bell Quarry Rehabilitation Project Pty Ltd

Мар Site Project Sub-Project Client Date

Viewport A

Notes:
- Aerial from Nearmap (2021).
- Hydrolines from NSW DFSI (2020) and adjusted where necessary as indicated.


Environment | Water | Geotechnics | Civil | Projects

Creeks and Rivers

Map 09 Sandham Road, Dargan, NSW Bell Quarry Rehabilitation Hydrological Study Bell Quarry Rehabilitation Project Pty Ltd

Мар Site Project Sub-Project Client

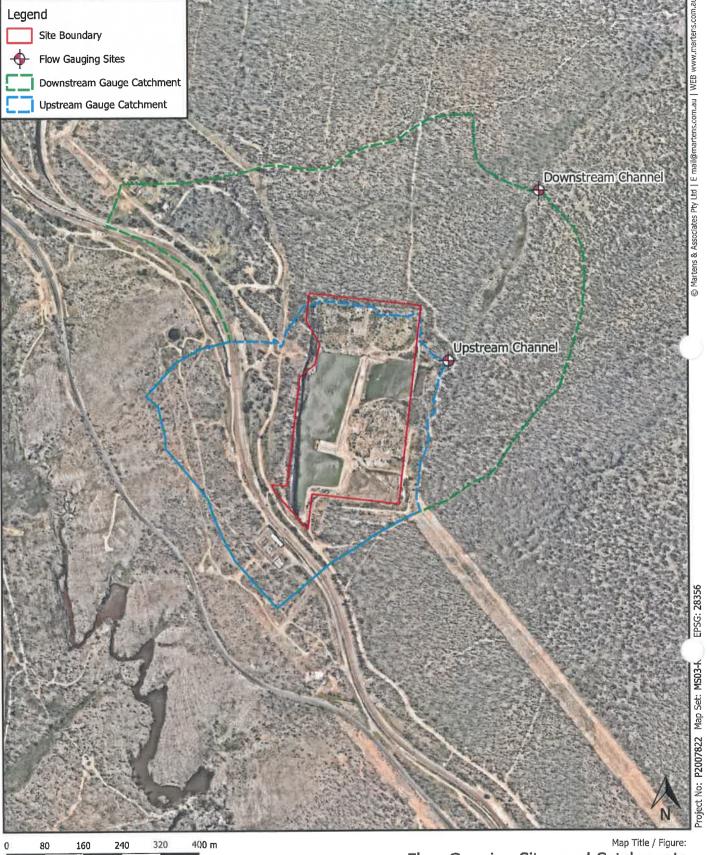
19/11/2021 Date

Map Title / Figure:

Nearby Weather Observation Stations

1:150000 @ A4

Viewport B


Aerial from NSW SIXMaps (2021).
 Weather obervation station locations from BoM (2021).

Environment | Water | Geotechnics | Civil | Projects

Map 10 Sandham Road, Dargan, NSW Bell Quarry Rehabilitation Hydrological Study Bell Quarry Rehabilitation Project Pty Ltd 19/11/2021

Site Project Sub-Project Client Date

Мар

Viewport A

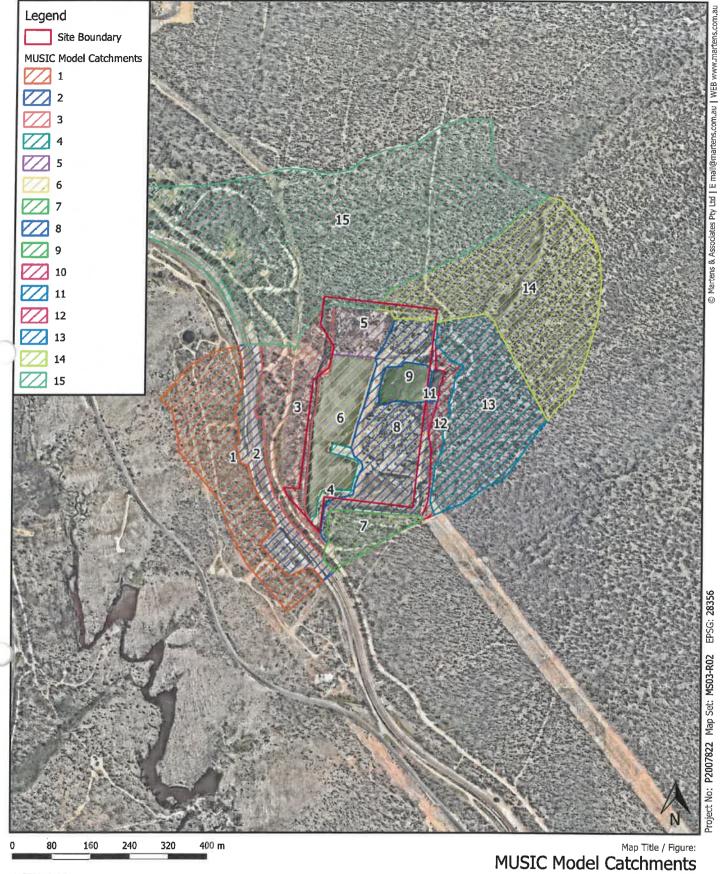
Notes:
- Aerial from Nearmap (2021).
- Catchment analysis based on 2m LIDAR from NSW DFSI (2020).

Environment | Water | Geotechnics | Civil | Projects

Flow Gauging Sites and Catchments

Map 11

Sandham Road, Dargan, NSW Bell Quarry Rehabilitation


Hydrological Study

Bell Quarry Rehabilitation Project Pty Ltd 19/11/2021

Site Project Sub-Project

Мар

Client Date

Viewport A

Notes: - Aerial from Nearmap (2021).

Environment | Water | Geotechnics | Civil | Projects

Map 12 Sandham Road, Dargan, NSW Bell Quarry Rehabilitation Hydrological Study Bell Quarry Rehabilitation Project Pty Ltd

19/11/2021

Мар Site Project Sub-Project Client Date

Viewport A

Notes: - Aerial from Nearmap (2021).

Environment | Water | Geotechnics | Civil | Projects

Surface Water Testing Plan

Map 13

Sandham Road, Dargan, NSW Bell Quarry Rehabilitation

Hydrological Study

Bell Quarry Rehabilitation Project Pty Ltd

19/11/2021

Мар Site

Project

Sub-Project Client

Date

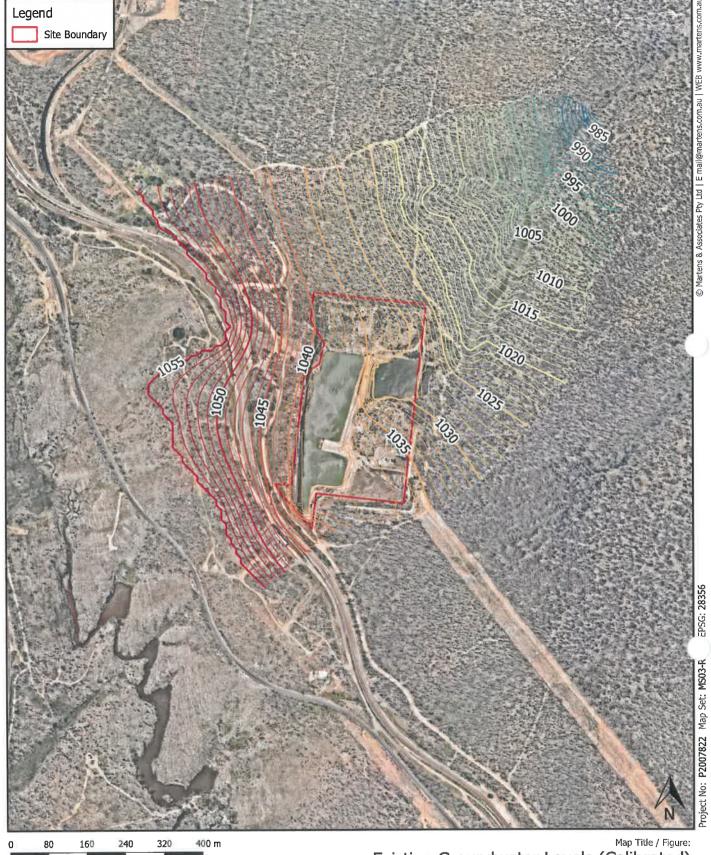
Viewport A

Notes:
- Aerial from Nearmap (2021).
- Groundwater well locations surveyed by Geosurv 22/07/2021.

Map 14

Sandham Road, Dargan, NSW Bell Quarry Rehabilitation

Hydrological Study


Bell Quarry Rehabilitation Project Pty Ltd

19/11/2021

Project Sub-Project Client Date

Мар Site

Environment | Water | Geotechnics | Civil | Projects

Viewport A

Notes:
- Aerial from Nearmap (2021).
- Contours are in mAHD.

Environment | Water | Geotechnics | Civil | Projects

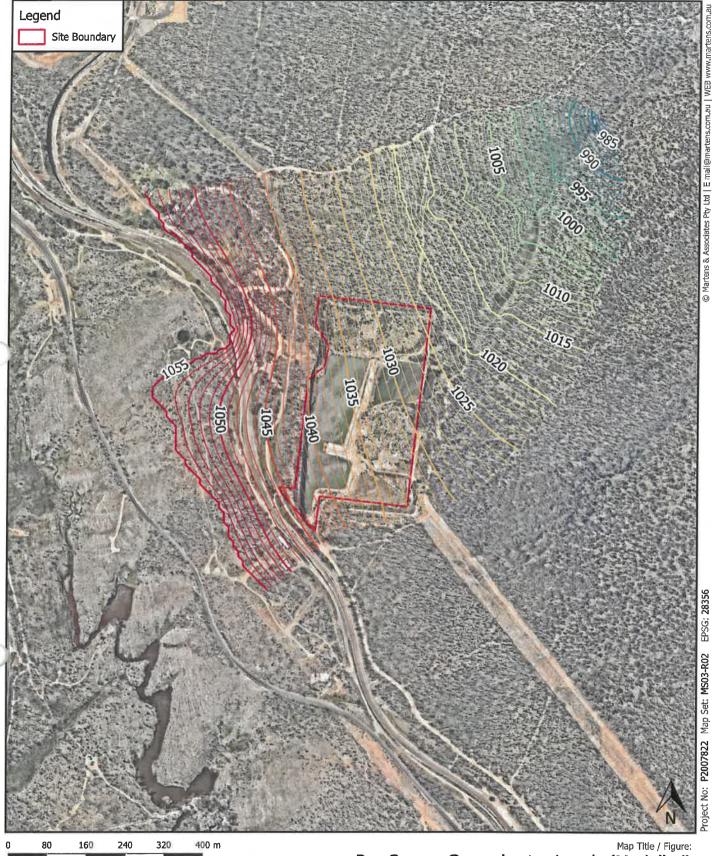
Existing Groundwater Levels (Calibrated)

Map 15

Sandham Road, Dargan, NSW Bell Quarry Rehabilitation

Hydrological Study

Bell Quarry Rehabilitation Project Pty Ltd


19/11/2021

Мар

Site

Project Sub-Project

> Client Date

Viewport A

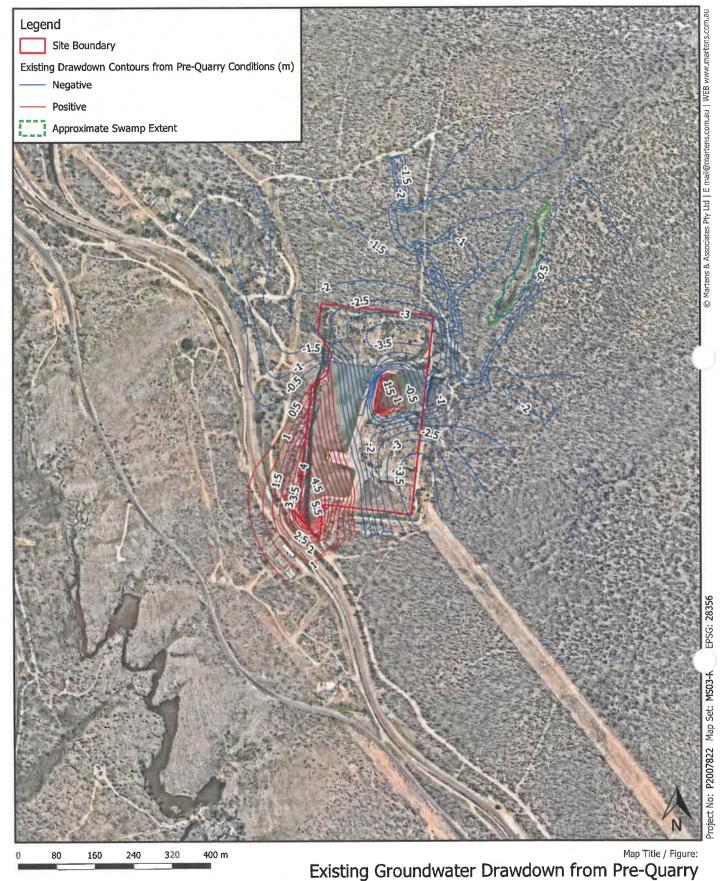
Notes:
- Aerial from Nearmap (2021).
- Contours are in mAHD.

Environment | Water | Geotechnics | Civil | Projects

Pre-Quarry Groundwater Levels (Modelled)

Map 16 Sandham Road, Dargan, NSW

Bell Quarry Rehabilitation


Hydrological Study Bell Quarry Rehabilitation Project Pty Ltd

Client 19/11/2021 Date

Мар

Site Project

Sub-Project

Viewport A

Notes:

- Aerial from Nearmap (2021),

- Drawdown is calculated as the later groundwater level minus the earlier, hence a negative drawdown value represents an increase in groundwater levels.

Map 17

Sandham Road, Dargan, NSW Bell Quarry Rehabilitation

Project Hydrological Study Sub-Project

Conditions

Мар

Site


Client

Date

Bell Quarry Rehabilitation Project Pty Ltd

19/11/2021

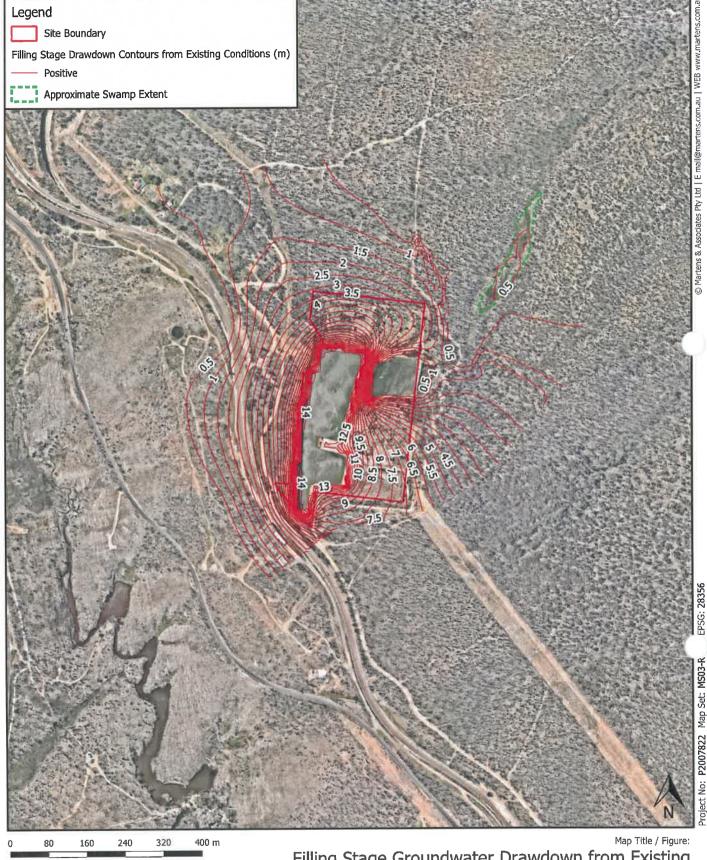
Viewport A

Notes:
- Aerial from Nearmap (2021).
- Contours are in mAHD.

Map 18

Sandham Road, Dargan, NSW

Мар Site Project


Bell Quarry Rehabilitation Hydrological Study Bell Quarry Rehabilitation Project Pty Ltd

Sub-Project Client

Date

19/11/2021

Environment | Water | Geotechnics | Civil | Projects

Filling Stage Groundwater Drawdown from Existing **Conditions**

1:7500 @ A4

Viewport A

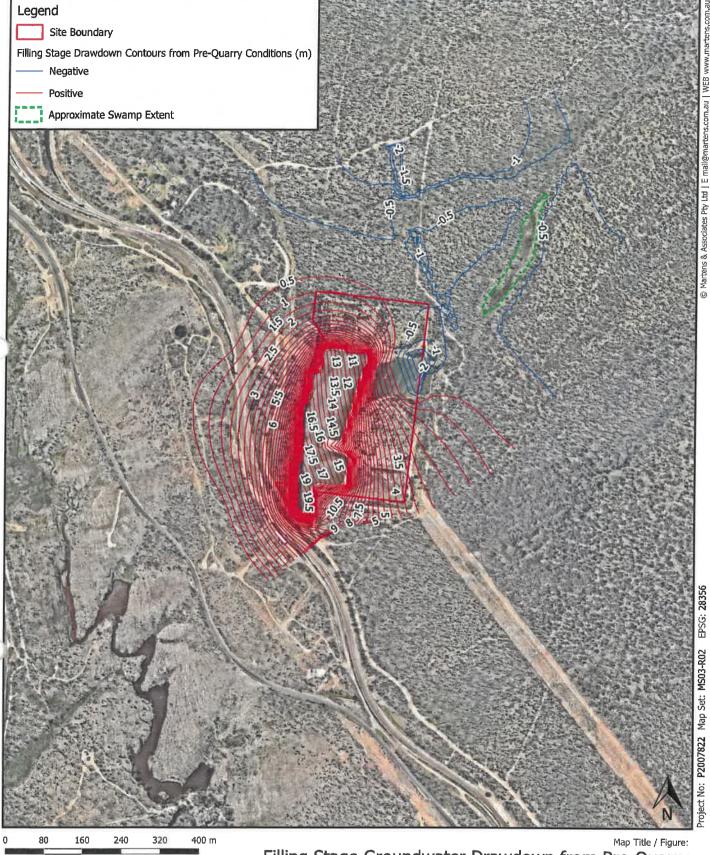
Notes:
- Aerial from Nearmap (2021).
- Drawdown is calculated as the later groundwater level minus the earlier, hence a negative drawdown value represents an increase in groundwater levels.

Environment | Water | Geotechnics | Civil | Projects

Map 19 Sandham Road, Dargan, NSW Bell Quarry Rehabilitation

Hydrological Study

Bell Quarry Rehabilitation Project Pty Ltd


Sub-Project Client

Map

Site

Project

19/11/2021 Date

Filling Stage Groundwater Drawdown from Pre-Quarry **Conditions**

Viewport A

Notes: - Aerial from Nearmap (2021).
- Drawdown is calculated as the later groundwater level minus the earlier, hence a negative drawdown value represents an increase in groundwater levels.

Environment | Water | Geotechnics | Civil | Projects

Sandham Road, Dargan, NSW Bell Quarry Rehabilitation Hydrological Study Bell Quarry Rehabilitation Project Pty Ltd

Site Project Sub-Project Client Date

Map

Map 20

19/11/2021

Viewport A

Notes: - Aerial from Nearmap (2021). - Contours are in mAHD.

Environment | Water | Geotechnics | Civil | Projects

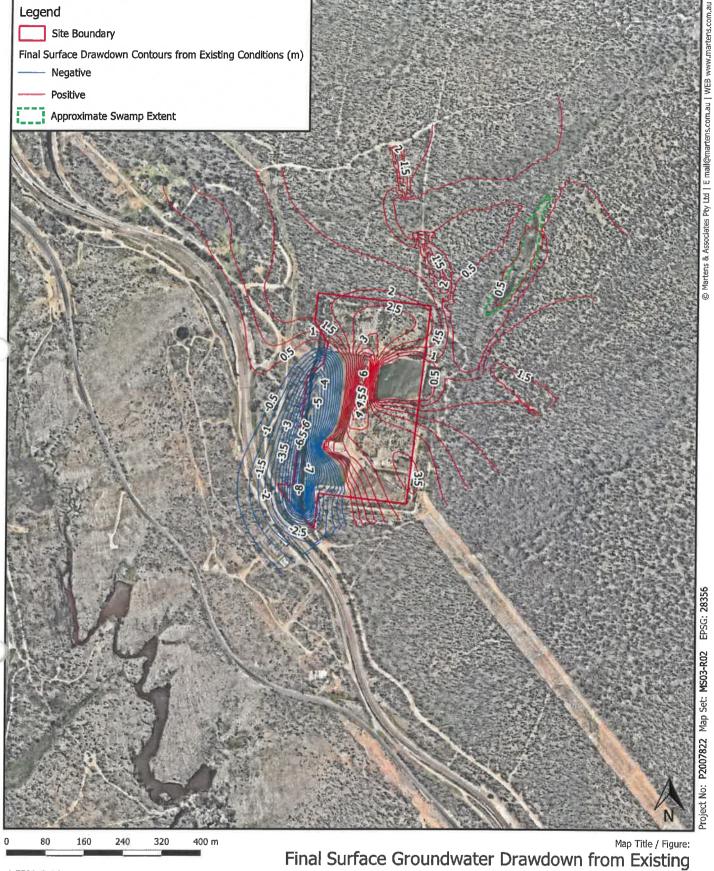
Final Surface Groundwater Levels (Modelled)

Map 21

Sandham Road, Dargan, NSW Bell Quarry Rehabilitation

Hydrological Study

Bell Quarry Rehabilitation Project Pty Ltd


19/11/2021

Мар

Site

Project Sub-Project

> Client Date

Viewport A

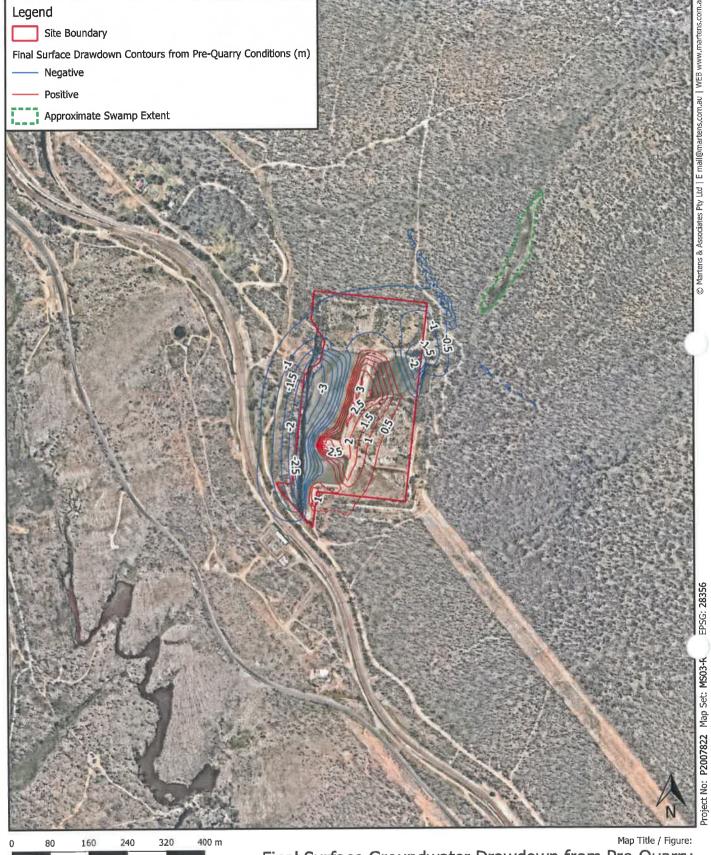
- Notes:
 Aerial from Nearmap (2021).
 Drawdown is calculated as the later groundwater level minus the earlier, hence a negative drawdown value represents an increase in groundwater levels.

Map 22

Мар Site

Project

Sandham Road, Dargan, NSW Bell Quarry Rehabilitation


Hydrological Study Sub-Project

Bell Quarry Rehabilitation Project Pty Ltd

19/11/2021

Client Date

Conditions

Final Surface Groundwater Drawdown from Pre-Quarry **Conditions**

Viewport A

Notes:
- Aerial from Nearmap (2021).
- Drawdown is calculated as the later groundwater level minus the earlier, hence a negative drawdown value represents an increase in groundwater levels.

Environment | Water | Geotechnics | Civil | Projects

Map 23

Sandham Road, Dargan, NSW Bell Quarry Rehabilitation

Hydrological Study

Bell Quarry Rehabilitation Project Pty Ltd

19/11/2021

Project Sub-Project

Мар

Site

Client

Date

Appendix C -Borehole Logs

CLIE	ENT	H	IWL Eb	sworth					COMMENCED	22/02/2021	COMPLETED	22/02/2021	REF BH201
PRO	JEC.	ТВ	Bell Qua	rry - Re	habilitation				LOGGED	вм	CHECKED		
SITE		Е	Bell Qua	rry, Dan	gan, NSW				GEOLOGY	Sandstone	VEGETATION	NA	Sheet 1 OF 1 PROJECT NO. P2007822
EQU	IPMEI	NT			4WD truck-mounted hydro	aulic	drill rig		LONGITUDE		RL SURFACE	1067.17 m	DATUM AHD
_	_		DIMENSI	ONS !	Ø100 mm x 44.00 m dept	h			LATITUDE		ASPECT		SLOPE
		Dri	lling		Sampling					F	ield Material D		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		OCK MATERIAL DESC		MOISTURE CONDITION CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
ADN		Not Encountered	10— 15— 20— 25— 35— 40—	1066.87 1.30 1065.87				K RI S S S S S S S S S S S S S S S S S S	AND; coarse grain	brown and brown; variab		24.00:	Note: hole drilled to 50m final urement of 44m following collapse.
	-				EXCAVATION LOG T	O E	E RE	AD IN C	ONJUCTION W	ITH ACCOMPANYING	REPORT NO	TES AND ABBREVIA	ATIONS
			Q							ADDOCIATED BOVIE	D.		

martens
(C) Copyright Martens & Association Pty. Ltd

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Homsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

C	LIENT		HWL E	sworth					COMMENCED	19/04/2021	COMPLETED	19/04/20	021	REF	BH301A
Р	ROJE	тΙ	Bell Qua	arry - Re	ehabilitation				LOGGED	вм	CHECKED				
s	ITE		Bell Qua	arry, Da	rgan, NSW				GEOLOGY	Sandstone	VEGETATION	Grass		 Sheet	1 OF 1
E	QUIPME	ENT			4WD truck-mounted hyd	Iraulio	drill rig	9	LONGITUDE		RL SURFACE	1014.58	m	DATUM	NO, P2007822 AHD
\vdash	_	_	DIMENS	IONS	Ø100 mm x 5.50 m dep	h			LATITUDE		ASPECT			SLOPE	
		Dri	illing	,	Sampling					F	ield Material D	escription	on		
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL		RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		CK MATERIAL DESC			CONSISTENCY DENSITY	ADI	CTURE AND DITIONAL RVATIONS
ADN			3	1.60 1012.98 3.00 1011.56		BE		SA SA bro	NDSTONE; fine to write variable strend at 5. get depth reached		white - grey and lig	w		DNS	
										SOUCHATES BIVITO			_		

martens

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	F	IWL Eb	sworth					COMMENCED	19/04/2021	COMPLETED	19/04/20	21	REF	BH301B
PR	DJEC	тВ	ell Qua	rry - Re	habilitation				LOGGED	вм	CHECKED				
SIT	•	В	ell Qua	rry, Dai	gan, NSW				GEOLOGY	Sandstone	VEGETATION	Grass		Sheet	1 OF 1 NO. P2007822
EQI	IIPME	NT			4WD truck-mounted hydra	aulic	drill rig		LONGITUDE		RL SURFACE	1014.19	m	DATUM	AHD
EXC	AVAT	10N E	IMENSI	ONS	Ø100 mm x 1.30 m depth				LATITUDE		ASPECT			SLOPE	
		Dril	ling		Sampling					F	ield Material D				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL		RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY	AD	CTURE AND DITIONAL ERVATIONS
ADIV ME	PEI REI	WM \(\Delta \text{Moliful} \)	1—2—3—4—5—	1.00 1014.15 1.30		- 1 日本	89 V.	SP	SAND; coarse grain Trace grey day. Hole Terminated at (Target depth reach	ned; light brown - brown. 1.30 m ned)		W W	98		
					EXCAVATION LOG T	OR	E RF4	AD IN 0	CONJUCTION W	ITH ACCOMPANYING	G REPORT NO	TES AND	O ABBREVIA	ATIONS	
-	_	_			E-WATION LOG I		_ , \	, w)(W)	J. 1000 11011 W			46			

martens
(C) Copyright Martens & Associates Ply. Li

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CL	IENT	T	HWL Eb	sworth	1				COMMENCED	19/04/2021	COMPLETED	19/04/2021		REF	BH302A
PF	ROJE	ст І	Bell Qua	rry - R	ehabilitation				LOGGED	вм	CHECKED				
SI	ΤE	1	Bell Qua	ırry, Da	argan, NSW				GEOLOGY	Sandstone	VEGETATION	Grass		Sheet	1 OF 1 NO. P2007822
EQ	UIPME	NT			4WD truck-mounted hyd	raulio	drill rig	9	LONGITUDE		RL SURFACE	m		DATUM	AHD
EX	CAVAT	ПОП	DIMENSI	ONS	Ø100 mm x 5.00 m dept	h			LATITUDE		ASPECT			SLOPE	
			lling		Sampling			1 -1			Field Material D				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		CK MATERIAL DES		MOISTURE CONDITION CONSISTENCY	DENSITY	ADI	CTURE AND DITIONAL ERVATIONS
ADN			1—	2.50	XCAVATION LOG TO			SP SA WE Ex gre SAl var	tremely Weathere by. NDSTONE, fine to able strength.	1)	y CLAY; light brown,		3.00: Bo during w		ise noted at 3.00m

martens

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CL	JEN	JT.	Н	WL Eb	sworth							COMMENCED	19/04/2021	COMPLETED	19/04/2	2021		REF	BH302B
PF	ROJ	ECT	В	ell Qua	rry - Re	habilit	ation					LOGGED	вм	CHECKED					
SI	TE		В	ell Qua	rry, Da	gan, I	VSW					GEOLOGY	Sandstone	VEGETATION	Grass			Sheet PROJECT	1 OF 1 NO. P2007822
EC	UIP	MEN	IT			4WD t	ruck-mounte	ıd hydra	ulic	drill rig		LONGITUDE		RL SURFACE	1008.1	6 m		MUTAC	AHD
EX	CAV	/ATIC	ON E	IMENSI	SNC	ø100 i	mm x 0.70 n	n depth				LATITUDE		ASPECT			S	SLOPE	
	_	_	Dril	ling			Samplii	ng	\Box				F	ield Material D			1		
METHOD	PENETRATION	RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	F	SAMPLE C	R ST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	OCK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY		AD	ICTURE AND DITIONAL ERVATIONS
					1008.16						SP	SAND; coarse grain wet.	ned; light brown - brown; t	trace grey day; ve					
ADV			/wollul	-											V	v			
	t	+			0.70			_	1			Hole Terminated at							-
												(Target depth reach	led)						
				1-															3 2
18-11-13				12															
2.00 20																			
Martene				2—															
11-13 Prj				2															
00 2018-																			
2.00 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z																			
M (P)				0															
- BG																			
In Sku T				2															
Lab and				3-															
04 Datge	1			3.4															
0.02.00.0																			8
11:42 1																			
¥11/2021															- 1				
-Me>> 0%																			
Drawing				4-												1			
.GPJ <																			
W302VD																			
1310B, MI				ļ ,															9
301A,MM																			5
302 MW																			
301B-BH				5-															-
301, BH;				1															54
07822BH																			.9
OLE P20				,															n
BOREH																			
ARTENS																			
Leg M						EXC	I MOITAVA	OG T) BI	E REA	D IN	CONJUCTION W	TH ACCOMPANYING	G REPORT NO	TES AN	ID AB	BREVIATI	ONS	
MARTENS 2.00 LIBGIB. Log MARTENS BOREHOLE P2007822BH301, BH3016-BH302 MASOIA,MMS10B, MMS02010,GPL <- Chaming Flex > 0911,2021 11:42 10.02.00.04 Date Lab and in Situ Tool - DGD Lib: Martens 2.00 2016-11:13 Pyl Martens 2.00 2016-11:13	(art			kd.					ite 201, 20 George Phone: (02) 947	ASSOCIATES PTY LT St. Hornsby, NSW 207' 6 9999 Fax: (02) 9476 WEB: http://www.mart	7 Australia 8767		Eı	ngine BOI	erir REH	ng Log - IOLE

CLIENT		HWL EI	osworth	1		COMMENCED 08/07/2021 COMPLETED						021	REF	BH401
PROJE	СТ	Monitori	ng Wel	Installations				LOGGED	RJK	CHECKED				
SITE		Bell Qua	arry, Be	II, NSW				GEOLOGY	Sandstone	VEGETATION	Nil		Sheet	1 OF 1 NO. P2007822
EQUIPM	ENT			4WD ute-mounted hydr	aulic d	dril rig		LONGITUDE		RL SURFACE	1022.02	² m	DATUM	AHD
EXCAVA			IONS	12.00 m depth				LATITUDE		ASPECT	West		SLOPE	0-5%
	1	illing		Sampling			اح ا			Field Material D				
METHOD PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL		RECOVERED	GRAPHIC LOG	USCS / ASCS		OCK MATERIAL DE			CONSISTENCY DENSITY	ADI	CTURE AND DITIONAL RVATIONS
			1022.02 0.30 1021.72			-1-	SP	silt	r, medium to coarse gra		œ D			
			0.70 1021.32				CL		k brown; medium graind — — — — — — y; dark yellow; with san		M			
			1021.32			d.								
		-									М			
		-	1.80 1020.22			=								
		2-	1020.22					SANDSTONE.						
		-												
		-												
		4-												
		1												
		1												
		6												
		-			Н									
		-												
		-			П	33								
		-												
		8-												
		-												
		:=												
		40												
		10												
		.=			3									
		-												
+	+	-12	12.00			12.1		Hole Terminated at			+			
	(Target depth reached)													
		=												
			Ė	XCAVATION LOG TO	BE	REAL	IN C	ONJUCTION WI	TH ACCOMPANYIN	G REPORT NOTE	SAND	ABBREVI	IATIONS	

martens
(C) Consisted Martens & Assessing Phy 1 to

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLII	ENT	۱	HWL Eb	sworth					COMMENCED	30/08/2021	COMPLETED	30/0	08/202	21		REF	BH501
PRO	OJEC.	T S	Soil Surv	rey					LOGGED	ВМ	CHECKED	MD				Sheet	1 OF 1
SIT	Ē	E	Bell Qua	rry, Bel	I, NSW				GEOLOGY		VEGETATION	Gra	ss				NO. P2007822
EQL	JIPMEI	ΝT							LONGITUDE		RL SURFACE	m				DATUM	AHD
EXC	AVATI	ON [DIMENS	ONS	Ø75 mm x 1.10 m depth				LATITUDE		ASPECT					SLOPE	
		Dri	lling		Sampling					F	ield Material D		_				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	OCK MATERIAL DESC	CRIPTION		MOISTURE	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS
MET PROPERTY AND	PEN PEN REE	Not Encountered WA1	0.4— 0.6— 0.8—	0.25 0.50			X	SM Si	andy CLAY; low to		; white-light brown				1.10: F	rush tube re	fusat.
-					E.O.W. HOW LOO	-	_/				3						

CLI	ENT		HWL E	bsworth					COMMENCED	30/08/2021	COMPLETED	30/08/2021		REF	BH502
PR	OJE	ст	Soil Su	vey					LOGGED	вм	CHECKED	MD		1	
SIT	E	7	Bell Qua	arry, Be	II, NSW				GEOLOGY		VEGETATION	Grass		Sheet	1 OF 1 NO. P2007822
EQL	JIPME	ENT							LONGITUDE		RL SURFACE	m		DATUM	AHD
EXC	AVA	rion	DIMENS	IONS	Ø75 mm x 1.20 m depth				LATITUDE		ASPECT			SLOPE	
		Dr	illing		Sampling			/A==2000 a		F	ield Material D	escription		-	
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		CK MATERIAL DESC	CRIPTION	MOISTURE CONDITION CONSISTENCY	DENSITY	ADI	CTURE AND DITIONAL RVATIONS
PT		Not Encountered	0.6	0.30 0.60	XCAVATION LOG TO		*	CL- Sa	andy CLAY; low to		white-light brown.		1.20: Ref		

martens
(C) Copyright Martens & Associates Ptv. Ltd.

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLIEN	Т	HWL E	bsworth					COMMENCED	30/08/2021	COMPLETED	30/0	8/202	21	REF BH503
PROJE	ECT	Soil Su	rvey					LOGGED	вм	CHECKED	MD			0
SITE		Bell Qu	апу, Ве	II, NSW				GEOLOGY		VEGETATION	Gras	ss		Sheet 1 OF 1 PROJECT NO. P2007822
EQUIPM	MENT							LONGITUDE		RL SURFACE	m			DATUM AHD
EXCAV	ATIO	N DIMEN	SIONS	Ø75 mm x 1.10 m depth	Ī			LATITUDE		ASPECT				SLOPE
	D	rilling		Sampling	,				F	ield Material C	-			
METHOD PENETRATION	RESISTANCE	DEPTH (metres)	DEPTI RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	CLASSIFICATION	SOIL/RO	OCK MATERIAL DESC	CRIPTION		MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	Nied Canan mekanan	0.2	0.20		OB		SM Si	LAY / Extremely V		, white-light brow	n.			1.10: Refusal.

CLI	ENT		HWL E	sworth	1				COMMENCED	30/08/2021	COMPLETED	30/08/20	021		REF	BH504
PRO	JEC	т	Soil Sur	vey					LOGGED	вм	CHECKED	MD			1	
SITE	=	T	Bell Qua	arry, Be	II, NSW				GEOLOGY		VEGETATION	Grass			Sheet	1 OF 1 NO. P2007822
EQU	IPME	NT							LONGITUDE		RL SURFACE	m			DATUM	AHD
EXC	AVAT	ION	DIMENS	IONS	Ø75 mm x 0.80 m depth				LATITUDE		ASPECT				SLOPE	
		Dri	lling		Sampling					Fi	ield Material D	escription	on			
METHOD	RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS		CK MATERIAL DESC	CRIPTION	MOISTURE	CONSISTENCY		ADI	CTURE AND DITIONAL ERVATIONS
Id		Not Encountered	0.4	0.15	XCAVATION LOG TO			CI	CLAY / Extremely W					0.80: Ref		

martens
(C) Copyright Martens & Associates Pty, Lid

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

PROJECT Sol Survey Six S	CLI	ENT	H	WL Eb	sworth					COMMENCED	30/08/2021	COMPLETED	30/0	8/20	21		REF	BH505
Sel Custry, Red, NSW	PR	OJEC	T S	Soil Surv	rey					LOGGED	вм	CHECKED	MD				Sheet	1 OF 1
Commonwealth Comm	SIT	E	E	Bell Qua	πy, Bel	I, NSW				GEOLOGY		VEGETATION	Gra	SS				
1.4 1.4	EQI	JIPME	NT							LONGITUDE		RL SURFACE	m				DATUM	AHD
SAMPLE OR SAMP	EXC	AVAT	ION I	DIMENSI	ONS	Ø75 mm x 0.45 m depth				LATITUDE		ASPECT					SLOPE	
1.0 - 1.0 - 1.2 - 1.4			Dri	lling		Sampling		L ,			F	ield Material D			1			
Date	METHOD	PENETRATION	NATER	DEPTH (metres)	DEPTH RI	FIELD TEST	RECOVERED	GRAPHIC LOG	LASSIFICATION	SOIL/RO	OCK MATERIAL DESC	CRIPTION		MOISTURE	CONSISTENCY DENSITY		AD	DITIONAL
EXCAVATION LOG TO BE READ IN CONJUCTION WITH ACCOMPANYING REPORT NOTES AND ABBREVIATIONS		P. 19.		0.4	0.25			X 1 1	CI CI	AY / Extremely W	/eathered SANDSTONE;).			0.45: R		

martens
(C) Copyright Martens & Associates Pty. Ltx

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLIENT	T	HWL E	sworth					COMMENCED	30/08/2021	COMPLETED	30/08/2021		REF	BH506
PROJE	ст	Soil Sur	vey					LOGGED	вм	CHECKED	MD			
SITE		Bell Qua	пту, Ве	II, NSW				GEOLOGY		VEGETATION	Grass		Sheet	1 OF 1 NO. P2007822
EQUIPMI	ENT							LONGITUDE		RL SURFACE	m		DATUM	AHD
EXCAVA:			ONS	Ø75 mm x 0.50 m depth				LATITUDE		ASPECT			SLOPE	
	_	illing		Sampling			T =		F	ield Material D				
METHOD PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		CK MATERIAL DESC	CRIPTION	MOISTURE CONDITION CONSISTENCY DENSITY		ADI	CTURE AND DITIONAL ERVATIONS
PT	Not Encountered	0.6	0.20			X	CI C		grained; light brown. eathered SANDSTONE;	white-light brown.		0.50: Ref	fusal.	

martens

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLIENT	H	WL Ebs	sworth					COMMENCED	30/08/2021	COMPLETED	30/0	8/202	21		REF	BH507
PROJECT	r s	oil Surv	еу					LOGGED	ВМ	CHECKED	MD				Sheet	1 OF 1
SITE	Be	ell Quai	ry, Bel	I, NSW				GEOLOGY		VEGETATION	Gra	ss				NO. P2007822
EQUIPMEN	IT							LONGITUDE		RL SURFACE	m				DATUM	AHD
EXCAVATIO	DN DI	MENSI	ONS	Ø75 mm x 0.50 m depth				LATITUDE		ASPECT					SLOPE	
	Drill	ing		Sampling	T					Field Material D						
METHOD PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	OCK MATERIAL DES	CRIPTION		MOISTURE	CONSISTENCY DENSITY		AD	CTURE AND DITIONAL ERVATIONS
	Not Encountered WA	0.2 0.4 0.6 1.0 1.2	0.30	EXCAVATION LOG T			SP G	ANDSTONE; brow	0.50 m					0.50: R		

MARTENS & ASSOCIATES PTY LTD
Suite 201, 20 George St. Hornsby, NSW 2077 Australia
Phone: (02) 9476 9999 Fax: (02) 9476 8767
mail@martens.com.au WEB: http://www.martens.com.au

CLI	ENT	1	HWL E	sworth					COMMENCED	30/08/2021	COMPLETED	30/08/20	021	REF	BH508
PR	OJEC	ст :	Soil Sur	vey	2				LOGGED	вм	CHECKED	MD			
SIT	E	E	Bell Qua	ату, Ве	II, NSW				GEOLOGY		VEGETATION	Grass		Sheet	1 OF 1 NO. P2007822
EQI	JIPME	NT							LONGITUDE		RL SURFACE	m		DATUM	AHD
EXC	TAVA	ION I	DIMENS	ONS	Ø75 mm x 0.70 m depth				LATITUDE		ASPECT			SLOPE	
_			lling		Sampling			 -		F	ield Material D				
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION		CK MATERIAL DESC		MOISTURE	CONSISTENCY	ADD	CTURE AND DITIONAL RVATIONS
PT		Not Encountered	0.2	0.30			6 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	CL- CI		nedium grained; light brown					
Ħ	7	7		0.70		H			Hole Terminated at 0	.70 m			_		
			0.8												
			1.0												
			1.2												
			1.4	E	XCAVATION LOG TO	BE	REAL	D IN C	ONJUCTION WITH	H ACCOMPANYING F	REPORT NOTE	S AND	ABBREVI	IATIONS	

martens
(C) Copyright Marters & Associates Pty. Lid

MAPTER 2.00 UBG UB, LOG MARTENS BOREHOLE PROTRICEMENTERS CONTROL PROTRICEMENT PROFILED PROTRICEMENT PROFILED PR

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CL	JENT	ا	HWL Eb	sworth					COMMENCED	30/08/2021	COMPLETED	30/08/2021	REF	BH509
PF	ROJEC	т	Soil Surv	/ey					LOGGED	вм	CHECKED	MD	Sheet	1 OF 1
SI	TΕ		Bell Qua	пу, Ве	I, NSW				GEOLOGY		VEGETATION	Grass		NO. P2007822
EC	UIPME	NT							LONGITUDE		RL SURFACE	m	DATUM	AHD
EX	CAVA	пои	DIMENSI	ONS	Ø75 mm x 1.30 m depth				LATITUDE		ASPECT		SLOPE	
			illing		Sampling	_	L,			F	ield Material D			
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTI- RL	SAMPLE OR FIELD TEST	RECOVERED		USCS / ASCS CLASSIFICATION		OCK MATERIAL DESC	CRIPTION	MOISTURE CONDITION CONSISTENCY DENSITY	AD	CTURE AND DITIONAL ERVATIONS
NRTENS 2.00 LIB GLIB LOG MARTENS BOREHOLE P2007822BH4014H414V01.GPJ <chramingfile> 0.041/2021 10:24 1-000.000 Dated Lab and in Situ Tool - DGD J Lib: Martens 2.00 2016-11-13</chramingfile>		Not Encountered	0.2	0.20				CL- CCI CCI	andy CLAY; low to		white-light brown		REVIATIONS	
B 150					EXCAVATION LOG	ГОЕ	E REA	DINC	ONJUCTION W	ITH ACCOMPANYING	REPORT NO	TES AND ABBR	REVIATIONS	
MARTENS 2.00 LIB.GL	4		art oyright Marten						201, 20 George Phone: (02) 947	ASSOCIATES PTY LTI St. Homsby, NSW 2077 3 9999 Fax: (02) 9476 & WEB: http://www.marte	7 Australia 3767	Eng	gineerin BOREH	g Log - OLE

CLIEN	г	HWL E	osworth					COMMENCED	30/08/2021	COMPLETED	30/08/2021	REF	BH510
PROJE	ст	Soil Sur	vey					LOGGED	вм	CHECKED	MD		
SITE		Bell Qua	arry, Bel	I, NSW				GEOLOGY		VEGETATION	Grass	Sheet	1 OF 1 NO. P2007822
EQUIPN	ENT							LONGITUDE		RL SURFACE	m	DATUM	AHD
EXCAVA	TION	DIMENS	IONS	Ø75 mm x·0.80 m depth				LATITUDE		ASPECT		SLOPE	
		illing	_	Sampling	_		II		F	ield Material D			
METHOD PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS		CK MATERIAL DESC	CRIPTION	MOISTURE CONDITION CONSISTENCY DENSITY	ADI	CTURE AND DITIONAL ERVATIONS
PT P	Not Encountered	0.6	0.50 0.80	(CAVATION LOG TO		* * * * * * * * * * * * * * * * * * *	CL- S	Sandy CLAY; low to		white-light brown.	S AND ABBREVIAT	TIONS	

martens
(C) Copyright Marteris & Associates Pty. Lil

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

С	LIE	ENT	ŀ	WL Eb	sworth					COMMENCED	30/08/2021	COMPLETED	30/08/2021	REF BH511
PI	RC	JEC	т	Soil Surv	rey					LOGGED	ВМ	CHECKED	MD	Sheet 1 OF 1
s	ITE		E	Bell Qua	rry, Bel	I, NSW				GEOLOGY		VEGETATION	Grass	PROJECT NO. P2007822
E	QUI	IPME	NT							LONGITUDE		RL SURFACE	m	DATUM AHD
E	KC/	AVAT	ION I	DIMENSE	ONS	Ø75 mm x 0.60 m depth				LATITUDE		ASPECT		SLOPE
	1		Dri	lling		Sampling	1		Z		F	ield Material D		
METHOD		PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS	SOIL/RO	OCK MATERIAL DESC	CRIPTION	MOISTURE CONDITION CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	1						T	×		Silty SAND: mediun	grained; light brown.			
NATENS 2.00 LIB.GLIB LOG MARTENS BOREHOLE PXXX78228HAT-BH414AVD; GPJ <-CP:NAMIngPRo> 03/17/2021 13:24 10.02,00.04 Datgol Lab and in Stur Tool - DGD Lib: Martens 2.00 2016-11-13 Pit: Marten			Not Encountered	0.2	0.20				CL- s		medium plasticity; light b	rown-orange.	0.60:	Refusal at 0.6m on sandstone.
NS BOREHOLE P20078226				1.4										
MARTE					1						PRI LA AAAA MAAAAA	DEBOR	TEO AND ADDRESS:	ATIONO
NS 2,00 LIB,GLB Log		1	n	art	en	EXCAVATION LOG T	OE	BE REA	Suit	MARTENS & te 201, 20 George Phone: (02) 947	ASSOCIATES PTY LTI St. Hornsby, NSW 2077 6 9999 Fax: (02) 9476 (WEB: http://www.marte	D 7 Australia 3767	Engir	neering Log - DREHOLE
MARTE	9	- 1	С) Сор	ynght Marten	s & Associa	ites Pty, Ltd.			i i ente	griancio.com.au	TED. Hupstwww.indiu			-, to:: Y lab

CLI	ENT		HWL E	sworth					COMMENCED	30/08/2021	COMPLETED	30/08/2021	REF	BH512
PR	DJEC	т	Soil Sur	vey					LOGGED	вм	CHECKED	MD		
SIT	=	1	Bell Qua	arry, Be	II, NSW				GEOLOGY		VEGETATION	Grass	Sheet	1 OF 1
EQL	IPME	NT							LONGITUDE		RL SURFACE	m	DATUM	NO. P2007822 AHD
_	_		DIMENS	ONS	Ø75 mm x 1.00 m depth				LATITUDE		ASPECT		SLOPE	
	_	Dr	illing		Sampling					Fi	ield Material D	escription		
МЕТНОБ	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTI-	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	CK MATERIAL DESC		MOISTURE CONDITION CONSISTENCY DENSITY	STRU ADI OBSE	CTURE AND DITIONAL ERVATIONS
M PT		Not Encountered N	0.6	0.60				CI CLA		ed; light brown-brown; tra			Refusal.	
				E	XCAVATION LOG TO	BE	READ	IN CON	JUCTION WITH	ACCOMPANYING F	REPORT NOTE	S AND ABBREVIA	TIONS	
		_	,							SSOCIATES PTYLED				

martens (C) Conviole Mantens & Associates Piv. Lie

MARTENS & ASSOCIATES PTY LTD
Suite 201, 20 George St. Hornsby, NSW 2077 Australia
Phone: (02) 9476 9999 Fax: (02) 9476 8767
mail@martens.com.au WEB: http://www.martens.com.au

CLIENT HWL Ebsworth COMMENCED 30/08/2021 COMPL	LETED 30/08/2021 REF BH513
PROJECT Soil Survey LOGGED BM CHECK	
SITE Bell Quarry, Bell, NSW GEOLOGY VEGET.	Sheet 1 OF 1 TATION Grass PROJECT NO. P2007822
EQUIPMENT LONGITUDE RL SUF	RFACE m DATUM AHD
EXCAVATION DIMENSIONS Ø75 mm x 0.50 m depth LATITUDE ASPEC	
	terial Description
METHOD RESISTANCE WATER (metres) CLASSIFICATION RECOVERED CLASSIFICATION RECOVERED CLASSIFICATION RECOVERED CLASSIFICATION RECOVERED CLASSIFICATION RECOVERED CLASSIFICATION RECOVERED REC	OBSERVATIONS OBSERVATIONS
	0.50: Refusal.

martens
(C) Copyright Martens & Associates Pty. Lic

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CLIENT	Н	WL Eb	sworth					COMMENCED	30/08/2021	COMPLETED	30/08/20	021		REF	BH514
PROJEC	T S	oil Sur	<i>r</i> ey					LOGGED	вм	CHECKED	MD				
SITE	В	ell Qua	rry, Bel	I, NSW				GEOLOGY		VEGETATION	Grass			Sheet PROJECT	1 OF 1 NO. P2007822
EQUIPMEN	NT							LONGITUDE		RL SURFACE	m			DATUM	AHD
EXCAVATI			ONS	Ø75 mm x 1.20 m depth				LATITUDE		ASPECT			8	SLOPE	
	Drilli	ing		Sampling	_				Fi	ield Material D		-			
METHOD PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS		CK MATERIAL DESC	RIPTION	MOISTURE	CONSISTENCY		ADI	CTURE AND DITIONAL ERVATIONS
74	\big 3008/21	0.2	0.30	XCAVATION LOG TO		*	SC S	Sandy CLAY; medium			SANDA		1.20: Refus		

martens
(C) Copyright Martens & Associates Pty. Lic

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

Appendix D - Monitoring Well Logs

SITE Bell Quarry, Dargan, NSW GEOLOGY Sandstone VEGETATION NA PRO EQUIPMENT 4WD truck-mounted hydraulic drill rig LONGITUDE RL SURFACE 1067.17 m DATI EXCAVATION DIMENSIONS \$100 mm x 44.00 m depth LATITUDE ASPECT SLO Drilling Sampling Field Material Description	GEOLOGY Sandstone VEGETATION NA Sheet 1 OF 1 PROJECT NO. P2007822 AUDITION RESERVED TO SLOPE STATE OF THE PASSAGE STATE OF THE PASSAG
Bell Quarry, Dargan, NSW GEOLOGY Sandstone VEETATION AN PRO EQUIPMENT 4WD fluck-incurring hydraulic drill rig LONGTIUDE RL SURFACE 1097.17 m DAT EXCAVATION DIMENSIONS ### Sampling SAMPLE OR FIELD TEST OUT FIELD TEST TOTOG 87 TOTOS 87 FIELD TEST TOT	GEOLOGY Sandatone VEGETATION NA PROJECT NO. P2007822
EQUIPMENT 4WD truck-mounted hydraulic drill rig LONGITUDE RLSURFACE 1087.17 m DAT EXCAVATION DIMENSIONS 8/100 mm x 44.00 m depth ASPECT SLO Drilling Sampling Field Material Description SAMPLE OR FIELD TEST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nounted hydraulic dell ring LONGTUDE ALTITUDE ASPECT SLOPE S
Description Sample or Field Material Description Sample or Field Test Or Field Material Description Sample or Field Test Or Field Material Description Solid Reserved Section Solid Reserved Section Solid Reserved Section Total Reserved Section Total Reserved Section Total Reserved Section Total Reserved Section Solid Reserved Se	Teld Material Description
SAMPLE OR FIELD TEST DEPTH FIELD TEST DE	SOLIFICAL MATERIAL DESCRIPTION SOLIFICATION SP AND coarne grained: light brown and brown; SAND coarne grain
10—15—15—15—15—15—15—15—15—15—15—15—15—15—	FILL Gravelly SAND; coarse grained; Egint brown and brown; SAND; coarse grained; trace city; SAND; Casteria; SAND; Caste
TIGS. 87 TOGS.	engular gravel (6-Sorma). SANDSTONE: light brown and brown; variable alrength and weathering. Beartonite Casing Casing Hole Terminated at 444,00 m
	(Target depth reached)

martens
(C) Copyright Martens & Associates Pty. Ltd

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

LIENT	HWL Eb	sworth					COMMENCED	19/04/2021	COMPLETED	19/04/20	21	REF	MW301A
ROJECT	Bell Qua	my - Re	habilitation				LOGGED	вм	CHECKED				4.05.4
SITE	Bell Qua	irry, Da	gan, NSW				GEOLOGY	Sandstone	VEGETATION	Grass		Sheet	1 OF 1 NO. P2007822
QUIPMENT			4WD truck-mounted hyd	draulic	drill rig		LONGITUDE		RL SURFACE	1014.58	m	DATUM	AHD
XCAVATIO	N DIMENSI	ONS	Ø100 mm x 5.50 m dep	th			LATITUDE		ASPECT			SLOPE	
	rilling		Sampling			T1			Field Material D				
PENETRATION RESISTANCE	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	OCK MATERIAL D	DESCRIPTION	MOISTURE	CONSISTENCY DENSITY		TER DETAILS
ADJV ADJV	1	1.60 1012.9	3	ac a		SP SA WE	ot.	to medium grained;	pale white - grey and li	W		MW301A	Casing Sand
			EXCAVATION LOG	TOB	E RE	AD IN CO	ONJUCTION W	ITH ACCOMPAN	YING REPORT NO	TES ANI) ABBREVI	ATIONS	
411	rart		S			Suite	MARTENS & 201, 20 George Phone: (02) 947	ASSOCIATES PT St. Hornsby, NSW 6 9999 Fax: (02) 9 WEB: http://www.	Y LTD 2077 Australia 476 8767				ng Log -

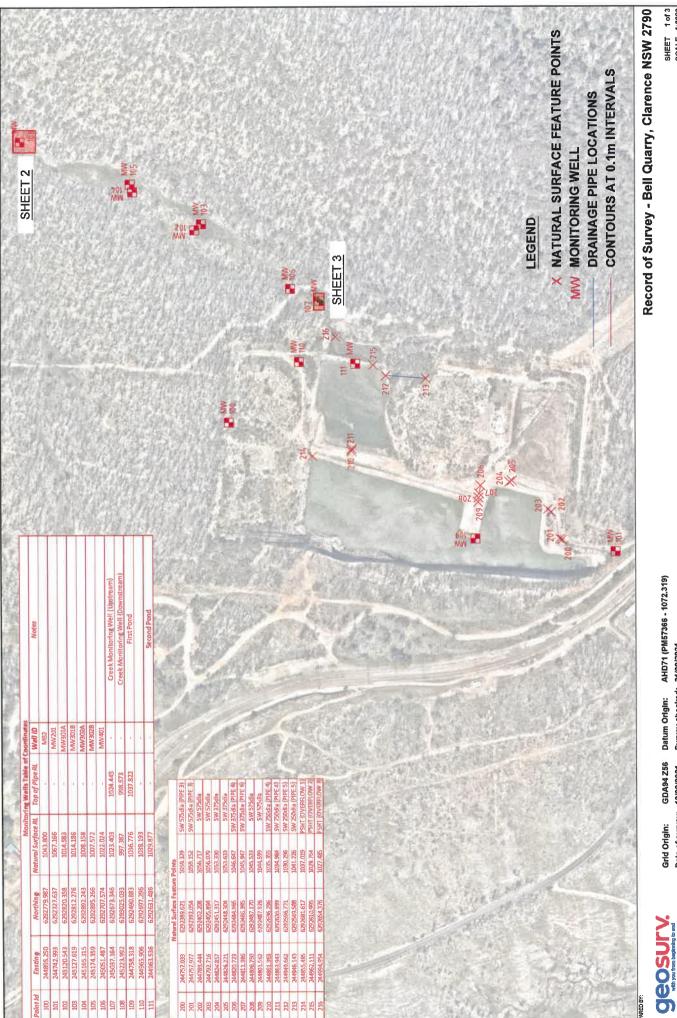
CLI	IENT	- [HWL E	bsworth	ı				COMMENCED	19/04/2021	COMPLETED	19/04/2	2021		REF	MW301B
PR	OJE	СТ	Bell Qu	arry - R	ehabilitation				LOGGED	вм	CHECKED					
SIT	Έ		Bell Qu	arry, Da	irgan, NSW				GEOLOGY	Sandstone	VEGETATION	Grass			Sheet	1 OF 1 NO. P2007822
EQI	JIPMI	ENT			4WD truck-mounted hyd	draul	ic drill ri	ig	LONGITUDE		RL SURFACE	1014.1	9 m		DATUM	AHD
EXC	CAVA	TION	DIMENS	IONS	Ø100 mm x 1.30 m dep	th			LATITUDE		ASPECT				SLOPE	
		_	illing		Sampling	_				ı	ield Material D					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTI-	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	CK MATERIAL DES	CRIPTION	MOISTURE	CONSISTENCY	ID St MW301E	PIEZOME atic Water Lew	TER DETAILS
ADV		∆wojjul	1-	1.00 1013.1s	9			SP	SAND; coarse grain	ed; light brown - brown.		w			Mivisoria	Bentonite Casing Sand
				1.30											3	Screen
									Hole Terminated at 1 (Target depth reache	.30 m						
			3-													
				E	XCAVATION LOG TO) BE	REAL	D IN C	NJUCTION WITH	ACCOMPANYING	REPORT NOTE	S AND	ABBF	REVIATION	ONS	
_	n	Ya	rte					Suite	MARTENS & AS 201, 20 George St. Phone: (02) 9476 9	SSOCIATES PTY LTD Hornsby, NSW 2077 / 999 Fax: (02) 9476 87 EB: http://www.marter	Australia 167					Log -

CLI	ENT		HWL Eb	sworth					COMMENCED	19/04/2021	COMPLETED	19/04	/202	1		REF	MW302A	
PR	OJEC	т	Bell Qua	rry - Re	ehabilitation				LOGGED	ВМ	CHECKED					Chast	1 OF 1	
SIT	E	Ţ	Bell Qua	rry, Da	rgan, NSW				GEOLOGY	Sandstone	VEGETATION	Grass	5			Sheet PROJECT	NO. P2007822	
EQI	JIPME	NT			4WD truck-mounted hydra	aulic	drill rig		LONGITUDE		RL SURFACE	m				DATUM	AHD	
EXC	AVAT	ON	DIMENSI	ONS	Ø100 mm x 5.00 m depth				LATITUDE		ASPECT					SLOPE		
		Dr	illing	T	Sampling					F	ield Material D		_					
METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	MOISTURE CONSTITUE CONSTIT								
Do by profit the Donating Companies and the Comp			3—	2.50	EXCAVATION LOG T	OE		SP SW	ANDSTONE; fine ariable strength.	hed)	CLAY; light brown	n;	AND	ABE	**************************************	TIONS	Casing Bentonite Screen Sand	
Closes) .					0.4	MARTENS 8	ASSOCIATES PTY LT	D 7 Australia		1	Fn	ain	eerir	na Loa -	

martens
(C) Copyright Mertens & Associates Pty. Ltd.

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Homsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

CL	JENT	ī	HWL E	osworth	1				COMMENCED	19/04/2021	COMPLETED	19/04/2021	REF MW302B
PF	ROJE	СТ	Bell Qua	arry - R	ehabilitation				LOGGED	вм	CHECKED		
SIT	TE		Bell Qua	arry, Da	argan, NSW				GEOLOGY	Sandstone	VEGETATION	Grass	Sheet 1 OF 1 PROJECT NO, P2007822
EQ	UIPM	ENT			4WD truck-mounted hyd	Irauli	c drill ri	g	LONGITUDE		RL SURFACE	1008.16 m	DATUM AHD
EX	CAVA	MOITA	DIMENS	IONS	Ø100 mm x 0.70 m dept	h			LATITUDE		ASPECT		SLOPE
		D	rilling		Sampling			40		F	ield Material C	Description	
METHOD	PENETRATION	WATER	DEPTH (metres)	DEPTI RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RC	CK MATERIAL DESC	CRIPTION	MOISTURE CONDITION CONSISTENCY DENSITY WE IST	PIEZOMETER DETAILS Static Water Level 2A
ADV		Inflow		1008.1				SP -	SAND; coarse graîn vet.	ed; light brown - brown; 1	trace grey clay; ve		Bentonite Casing Sand
				0.70					lole Terminated at				Screen
			1						Target depth reach	ed)			
			3-										
			4-										
			5										
(arte	ens		BE	REAL	Suite	MARTENS & A 201, 20 George St Phone: (02) 9476 S	H ACCOMPANYING I SSOCIATES PTY LTD Homsby, NSW 2077 A 999 Fax: (02) 9476 87 ÆB: http://www.marten	Australia		eering Log - TEST


LIENT	TH\	ML Eb	sworth					COMMENCED	08/07/2021	COMPLETED	08/	07/20	21		REF	BH401/MW0	
ROJECT	М	onitorin	ıg Well	Installations				LOGGED	RJK	CHECKED					Sheet	1 OF 1	
TE	Ве	ll Qua	rry, Bel	I, NSW				GEOLOGY	Sandstone	VEGETATION	Nii					NO. P2007822	
QUIPMEN	IT			4WD ute-mounted hydra	aulic c	iril rig		LONGITUDE		RL SURFACE	102	22.02	m		DATUM	AHD	
CAVATIO	ON DI	MENSI	SNC	12.00 m depth				LATITUDE		ASPECT	We	st			SLOPE	0-5%	
1	Drilli	ing		Sampling	-				F	ield Material D		1	1	T			
PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTI- RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	USCS / ASCS CLASSIFICATION	SOIL/RO	SOIL/ROCK MATERIAL DESCRIPTION SOIL/ROCK MATERIAL DESCRIPTION OCUMENTAL MATERIAL DESCRIPTION OCUMENTAL MATERIAL DESCRIPTION OCUMENTAL MATERIAL DESCRIPTION					ID St MW401	PIEZOMETER DETAILS tatic Water Level		
\Box	1		1022.03 0.30	2	T		SP :	SAND; pale yellow; silt.	medium to coarse grains	ed; subangular, tra		D			N401	8	
			1021.73 0.70	2			0001		brown; medium grained.		- 55	М		800	▼	3	
			1021.3	2			CL	CLAY; low plasticity	r, dark yellow, with sand.			М				Cuttings	
		2-4-	1.80 1020.2	2				SANDSTONE.								■ Bentonite	
		6														Casing	
		10														Screen	
		-12-	12.00	0				Hole Terminated a (Target depth read						***			
				EXCAVATION LOG	TO E	BE RE	AD IN C	CONJUCTION W	/ITH ACCOMPANYING	G REPORT NO	TES	ANI	D ABI	BREVIA	TIONS		

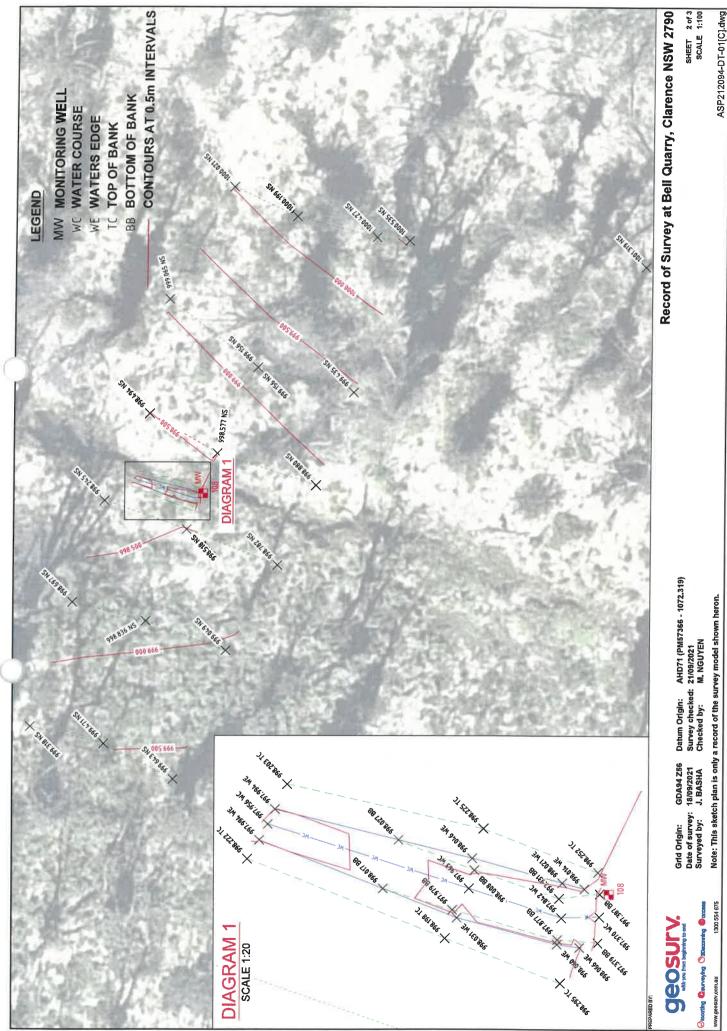
martens
(C) Coovert Menters 4 Associates Pty. Life

MARTENS & ASSOCIATES PTY LTD Suite 201, 20 George St. Hornsby, NSW 2077 Australia Phone: (02) 9476 9999 Fax: (02) 9476 8767 mail@martens.com.au WEB: http://www.martens.com.au

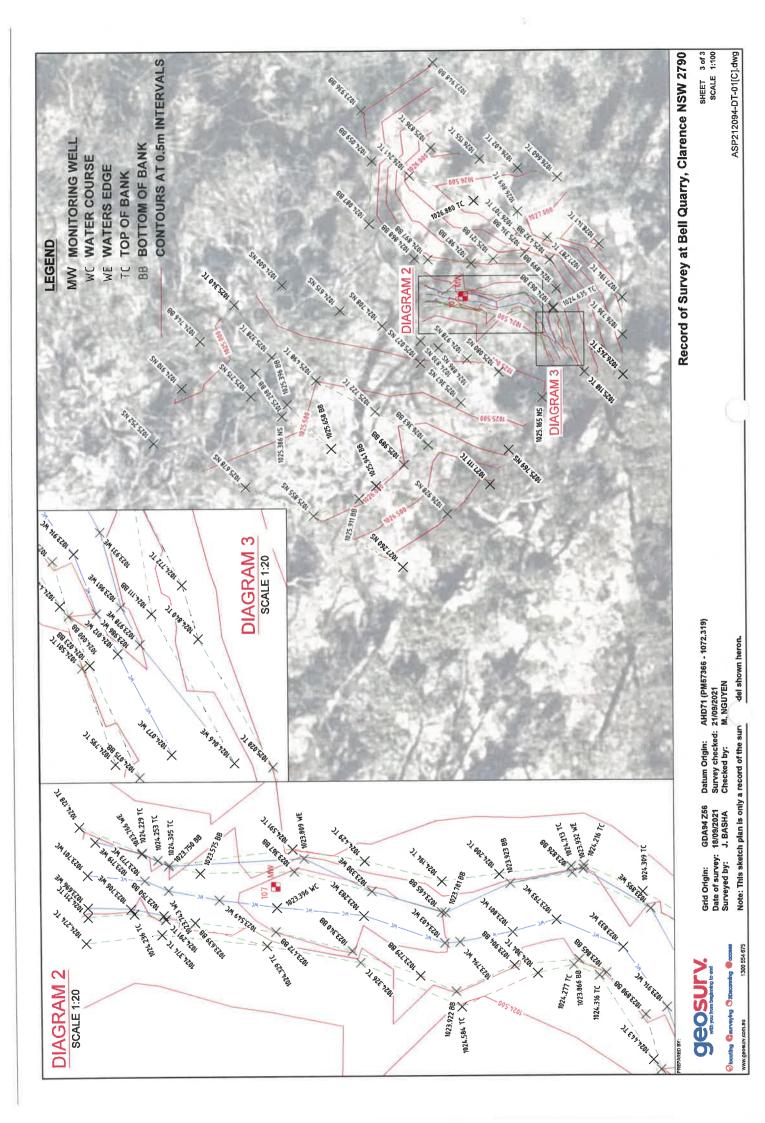
Appendix E - Survey Data

SHEET 1 of 3 SCALE 1:3000

ASP212094-DT-01[C].dwg


Obcothig Cauveying Cabeonning Goosea

Grid Origin: GDA94.256 Datum Origin: AHD71 (PM57366 - 1072.319)
Date of survey: 18/09/2021 Survey checked: 21/09/2021
Surveyed by: J. BASHA Checked by: M. NGUYEN


del shown heron.

Note: This sketch plan is only a record of the surn

1300 554 675

1300 554 675

Appendix F - Laboratory Reports

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

CERTIFICATE OF ANALYSIS 269664

Client Details	
Client	Martens & Associates Pty Ltd
Attention	R Kightley
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P2007822 Bell Quarry
Number of Samples	7 WATER
Date samples received	21/05/2021
Date completed instructions received	21/05/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	28/05/2021	
Date of Issue	28/05/2021	
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.	
Approdited for compliance with ISC	IEC 17025 - Testing Tests not covered by NATA are	e denoted with *

Results Approved By

Dragana Tomas, Senior Chemist Hannah Nguyen, Senior Chemist Priya Samarawickrama, Senior Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Water			2 2			
Our Reference		269664-1	269664-2	269664-3	269664-4	269664-5
Your Reference	UNITS	7822/MW302A	7822/MW302B	7822/MW301A	7822/MW301B	7822/MB02
Date Sampled		20/05/2021	20/05/2021	20/05/2021	20/05/2021	20/05/2021
Type of sample		WATER	WATER	WATER	WATER	WATER
Date extracted	-	24/05/2021	24/05/2021	24/05/2021	24/05/2021	24/05/2021
Date analysed	-	24/05/2021	24/05/2021	24/05/2021	24/05/2021	24/05/2021
TRH C ₆ - C ₉	μg/L	<10	<10	<10	<10	<10
TRH C6 - C10	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	<10
Benzene	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
n+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	µg/L	<1	<1	<1	<1	<1
Naphthalene	µg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	120	103	104	131	107
Surrogate toluene-d8	%	94	71	82	95	95
Surrogate 4-BFB	%	90	105	119	96	108

vTRH(C6-C10)/BTEXN in Water			
Our Reference		269664-6	269664-7
Your Reference	UNITS	7822/MB03	7822/MW201
Date Sampled		20/05/2021	20/05/2021
Type of sample		WATER	WATER
Date extracted	-	24/05/2021	24/05/2021
Date analysed	-	24/05/2021	24/05/2021
TRH C ₆ - C ₉	μg/L	<10	<10
TRH C ₆ - C ₁₀	µg/L	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10
Benzene	μg/L	<1	<1
Toluene	μg/L	<1	<1
Ethylbenzene	μg/L	<1	<1
m+p-xylene	µg/L	<2	<2
o-xylene	μg/L	<1	<1
Naphthalene	μg/L	<1	<1
Surrogate Dibromofluoromethane	%	118	117
Surrogate toluene-d8	%	95	129
Surrogate 4-BFB	%	104	99

svTRH (C10-C40) in Water		and the second		S		The Real Property lies
Our Reference		269664-1	269664-2	269664-3	269664-4	269664-5
Your Reference	UNITS	7822/MW302A	7822/MW302B	7822/MW301A	7822/MW301B	7822/MB02
Date Sampled		20/05/2021	20/05/2021	20/05/2021	20/05/2021	20/05/2021
Type of sample		WATER	WATER	WATER	WATER	WATER
Date extracted	-	24/05/2021	24/05/2021	24/05/2021	24/05/2021	24/05/2021
Date analysed	-	25/05/2021	25/05/2021	25/05/2021	25/05/2021	25/05/2021
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100	<100	<100	<100
TRH >C10 - C16	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₅ less Naphthalene (F2)	μg/L	<50	<50	<50	<50	<50
TRH >C16 - C34	μg/L	<100	<100	<100	<100	<100
TRH >C34 - C40	μg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	84	79	80	65	78

svTRH (C10-C40) in Water Our Reference		269664-6	269664-7
Your Reference	UNITS	7822/MB03	7822/MW201
Date Sampled		20/05/2021	20/05/2021
Type of sample	THE RES	WATER	WATER
Date extracted		24/05/2021	24/05/2021
Date analysed	ėv.	25/05/2021	25/05/2021
TRH C ₁₀ - C ₁₄	μg/L	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	200
TRH C ₂₉ - C ₃₆	μg/L	<100	<100
TRH >C ₁₀ - C ₁₆	μg/L	<50	72
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	µg/L	<50	72
TRH >C ₁₆ - C ₃₄	μg/L	<100	140
TRH >C34 - C40	μg/L	<100	<100
Surrogate o-Terphenyl	%	82	90

PAHs in Water		THE RESERVE			17.17	1774
Our Reference		269664-1	269664-2	269664-3	269664-4	269664-5
Your Reference	UNITS	7822/MVV302A	7822/MW302B	7822/MW301A	7822/MW301B	7822/MB02
Date Sampled		20/05/2021	20/05/2021	20/05/2021	20/05/2021	20/05/2021
Type of sample		WATER	WATER	WATER	WATER	WATER
Date extracted	-	24/05/2021	24/05/2021	24/05/2021	24/05/2021	24/05/2021
Date analysed	-	24/05/2021	24/05/2021	24/05/2021	24/05/2021	24/05/2021
Naphthalene	μg/L	<1	<1	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1	<1
Fluorene	μg/L	<1	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1	<1
Anthracene	μg/L	<1	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	μg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1	<1
ndeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5	<5	<5	<5
otal +ve PAH's	μg/L	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	87	97	132	106	100

Our Reference		269664-6	269664-7
Your Reference	UNITS	7822/MB03	7822/MW201
Date Sampled		20/05/2021	20/05/2021
Type of sample		WATER	WATER
Date extracted	-	24/05/2021	24/05/2021
Date analysed	-	24/05/2021	24/05/2021
Naphthalene	μg/L	<1	<1
Acenaphthylene	μg/L	<1	<1
Acenaphthene	μg/L	<1	<1
Fluorene	μg/L	<1	<1
Phenanthrene	μg/L	<1	<1
Anthracene	μg/L	<1	<1
Fluoranthene	μg/L	<1	<1
Pyrene	μg/L	<1	<1
Benzo(a)anthracene	μg/L	<1	<1
Chrysene	μg/L	<1	<1
Benzo(b,j+k)fluoranthene	μg/L	<2	<2
Benzo(a)pyrene	μg/L	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1
Benzo(a)pyrene TEQ	µg/L	<5	<5
Total +ve PAH's	μg/L	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	106	98

HM in water - dissolved		THE REAL PROPERTY.	SALES IN			City of the
Our Reference		269664-1	269664-2	269664-3	269664-4	269664-5
Your Reference	UNITS	7822/MW302A	7822/MW302B	7822/MW301A	7822/MW301B	7822/MB02
Date Sampled		20/05/2021	20/05/2021	20/05/2021	20/05/2021	20/05/2021
Type of sample	Tivi Sassita	WATER	WATER	WATER	WATER	WATER
Date prepared	-	28/05/2021	28/05/2021	28/05/2021	28/05/2021	28/05/2021
Date analysed	-	28/05/2021	28/05/2021	28/05/2021	28/05/2021	28/05/2021
Arsenic-Dissolved	µg/L	<1	<1	<1	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	2	17	<1	1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	<1	9	<1	<1
Zinc-Dissolved	μg/L	<1	<1	35	<1	7

HM in water - dissolved	Training Co. Say Line		
Our Reference		269664-6	269664-7
Your Reference	UNITS	7822/MB03	7822/MW201
Date Sampled		20/05/2021	20/05/2021
Type of sample		WATER	WATER
Date prepared	-	28/05/2021	28/05/2021
Date analysed	-	28/05/2021	28/05/2021
Arsenic-Dissolved	μg/L	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1
Copper-Dissolved	µg/L	2	190
_ead-Dissolved	μg/L	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05
Nickel-Dissolved	μg/L	3	85
Zinc-Dissolved	μg/L	36	800

ion Balance	A STATE OF THE PARTY.	والمرازية فيأورونا	والطائاوسان	And the Party of	A TABLE OF STREET	
Our Reference		269664-1	269664-2	269664-3	269664-4	269664-5
Your Reference	UNITS	7822/MW302A	7822/MW302B	7822/MW301A	7822/MW301B	7822/MB02
Date Sampled		20/05/2021	20/05/2021	20/05/2021	20/05/2021	20/05/2021
Type of sample	1.575	WATER	WATER	WATER	WATER	WATER
Date prepared	-	24/05/2021	24/05/2021	24/05/2021	24/05/2021	24/05/2021
Date analysed	-	24/05/2021	24/05/2021	24/05/2021	24/05/2021	24/05/2021
Calcium - Dissolved	mg/L	<0.5	2.6	<0.5	<0.5	<0.5
Potassium - Dissolved	mg/L	0.8	<0.5	1.2	1.2	1.2
Sodium - Dissolved	mg/L	16	5.7	3.2	2.9	4.4
Magnesium - Dissolved	mg/L	<0.5	<0.5	<0.5	<0.5	0.5
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO₃	mg/L	32	6	<5	<5	<5
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	32	6	<5	<5	<5
Sulphate, SO4	mg/L	3	2	2	2	3
Chloride, Cl	mg/L	6	5	5	4	6
Ionic Balance	%	-12	11	-2.0	1.0	9.0

on Balance			
Our Reference		269664-6	269664-7
Your Reference	UNITS	7822/MB03	7822/MW201
Date Sampled		20/05/2021	20/05/2021
Type of sample		WATER	WATER
Date prepared	-	24/05/2021	24/05/2021
Date analysed	-	24/05/2021	24/05/2021
Calcium - Dissolved	mg/L	1.1	2.5
Potassium - Dissolved	mg/L	2.1	<0.5
Sodium - Dissolved	mg/L	2.8	5.6
Magnesium - Dissolved	mg/L	0.9	<0.5
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	7	11
Carbonate Alkalinity as CaCO₃	mg/L	<5	<5
Total Alkalinity as CaCO₃	mg/L	7	11
Sulphate, SO4	mg/L	3	2
Chloride, Cl	mg/L	4	4
Ionic Balance	%	0	-1.0

Miscellaneous Inorganics				100	45 77 4	
Our Reference		269664-1	269664-2	269664-3	269664-4	269664-5
Your Reference	UNITS	7822/MW302A	7822/MW302B	7822/MW301A	7822/MW301B	7822/MB02
Date Sampled		20/05/2021	20/05/2021	20/05/2021	20/05/2021	20/05/2021
Type of sample	10,46	WATER	WATER	WATER	WATER	WATER
Date prepared	-	24/05/2021	24/05/2021	24/05/2021	24/05/2021	24/05/2021
Date analysed		24/05/2021	24/05/2021	24/05/2021	24/05/2021	24/05/2021
Total Nitrogen in water	mg/L	0.7	0.1	<0.1	0.1	<0.1
NOx as N in water	mg/L	0.009	0.009	0.02	<0.005	0.01
Ammonia as N in water	mg/L	0.096	0.051	0.008	0.015	0.033
Phosphate as P in water	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005

Miscellaneous Inorganics			
Our Reference		269664-6	269664-7
Your Reference	UNITS	7822/MB03	7822/MW201
Date Sampled		20/05/2021	20/05/2021
Type of sample		WATER	WATER
Date prepared	-	24/05/2021	24/05/2021
Date analysed	-	24/05/2021	24/05/2021
Total Nitrogen in water	mg/L	1.8	0.7
NOx as N in water	mg/L	1.8	0.4
Ammonia as N in water	mg/L	0.029	0.009
Phosphate as P in water	mg/L	<0.005	<0.005

Metals in Waters - Acid extractable	ALC PURE TO SERVE		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		والمراجعة والمراجعة	والمتحدثات
Our Reference		269664-1	269664-2	269664-3	269664-4	269664-5
Your Reference	UNITS	7822/MW302A	7822/MW302B	7822/MVV301A	7822/MW301B	7822/MB02
Date Sampled		20/05/2021	20/05/2021	20/05/2021	20/05/2021	20/05/2021
Type of sample		WATER	WATER	WATER	WATER	WATER
Date prepared	-	24/05/2021	24/05/2021	24/05/2021	24/05/2021	24/05/2021
Date analysed	-	24/05/2021	24/05/2021	24/05/2021	24/05/2021	24/05/2021
Phosphorus - Total	mg/L	0.2	0.07	<0.05	<0.05	<0.05

Metals in Waters - Acid extractal	ble		112 12 12
Our Reference		269664-6	269664-7
Your Reference	UNITS	7822/MB03	7822/MW201
Date Sampled		20/05/2021	20/05/2021
Type of sample		WATER	WATER
Date prepared	-	24/05/2021	24/05/2021
Date analysed	-	24/05/2021	24/05/2021
Phosphorus - Total	mg/L	<0.05	<0.05

Method ID	Methodology Summary
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 10% ie total anions = total cations +/-10%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered or receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTR	ROL: vTRH(_: vTRH(C6-C10)/BTEXN in Water				Duplicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			24/05/2021	1	24/05/2021	25/05/2021		24/05/2021	
Date analysed	_			24/05/2021	1	24/05/2021	25/05/2021		24/05/2021	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	1	<10	<10	0	105	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	1	<10	<10	0	105	
Benzene	µg/L	1	Org-023	<1	1	<1	<1	0	101	
Toluene	µg/L	1	Org-023	<1	1	<1	<1	0	95	
Ethylbenzene	µg/L	1	Org-023	<1	1	<1	<1	0	106	
m+p-xylene	μg/L	2	Org-023	<2	1	<2	<2	0	112	
o-xylene	μg/L	1	Org-023	<1	1	<1	<1	0	96	
Naphthalene	μg/L	1	Org-023	<1	1	<1	<1	0		
Surrogate Dibromofluoromethane	%		Org-023	89	1	120	102	16	101	
Surrogate toluene-d8	%		Org-023	72	1	94	97	3	89	
Surrogate 4-BFB	%		Org-023	112	1	90	108	18	89	

QUALITY CONTROL: svTRH (C10-C40) in Water						Duplicate			Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]	
Date extracted	-			24/05/2021	1	24/05/2021	24/05/2021		24/05/2021		
Date analysed	-			25/05/2021	1	25/05/2021	25/05/2021		25/05/2021		
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	1	<50	<50	0	119		
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	1	<100	<100	0	92		
TRH C ₂₈ - C ₃₆	µg/L	100	Org-020	<100	1	<100	<100	0	128		
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	1	<50	<50	0	119		
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	1	<100	<100	0	92		
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	1	<100	<100	0	128		
Surrogate o-Terphenyl	%		Org-020	100	1	84	74	13	92		

QUAL	ITY CONTRO	Water	THE SE	TU.	Du	plicate	Spike Recovery %			
Fest Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted	-			24/05/2021	1	24/05/2021	24/05/2021		24/05/2021	
Date analysed	-			24/05/2021	1	24/05/2021	24/05/2021		24/05/2021	
Naphthalene	µg/L	1	Org-022/025	<1	1	<1	<1	0	80	
Acenaphthylene	μg/L	1	Org-022/025	<1	1	<1	<1	0		
Acenaphthene	µg/L	1:	Org-022/025	<1	1	<1	<1	0	68	
Fluorene	μg/L	1	Org-022/025	<1	1	<1	<1	0	75	
Phenanthrene	μg/L	1	Org-022/025	<1	1	<1	<1	0	92	
Anthracene	μg/L	1	Org-022/025	<1	1	<1	<1	0		
Fluoranthene	μg/L	1	Org-022/025	<1	1	<1	<1	0	78	
Pyrene	μg/L	1	Org-022/025	<1	1	<1	<1	0	80	
Benzo(a)anthracene	μg/L	1	Org-022/025	<1	1	<1	<1	0		
Chrysene	μg/L	1	Org-022/025	<1	1	<1	<1	0	82	
Benzo(b,j+k)fluoranthene	μg/L	2	Org-022/025	<2	1	<2	<2	0		
Benzo(a)pyrene	μg/L	1	Org-022/025	<1	1	<1	<1	0	77	
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-022/025	<1	1	<1	<1	0		
Dibenzo(a,h)anthracene	μg/L	1	Org-022/025	<1	1	<1	<1	0		
Benzo(g,h,i)perylene	μg/L	1	Org-022/025	<1	1	<1	<1	0		
Surrogate p-Terphenyl-d14	%		Org-022/025	86	1	87	80	8	109	

QUALITY C	ONTROL: H	M in wate	r - dissolved			Dı	ıplicate	No.	Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W10	269664-2
Date prepared	-			28/05/2021	1	28/05/2021	28/05/2021		28/05/2021	28/05/2021
Date analysed	-			28/05/2021	1	28/05/2021	28/05/2021		28/05/2021	28/05/2021
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	97	102
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	98	102
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	93	95
Copper-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	91	94
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	93	94
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05			119	114
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	97	99
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	97	103

QUALIT	Y CONTROL: HI	M in water	- dissolved	اللا جيلاد	ŢĞ.	Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				5	28/05/2021	28/05/2021			iH
Date analysed	-				5	28/05/2021	28/05/2021			
Arsenic-Dissolved	µg/L	1	Metals-022		5	<1	-			11071
Cadmium-Dissolved	µg/L	0.1	Metals-022		5	<0.1				
Chromium-Dissolved	µg/L	1	Metals-022		5	<1	111.1			
Copper-Dissolved	μg/L	1	Metals-022		5	1				
Lead-Dissolved	μg/L	1	Metals-022		5	<1				
Mercury-Dissolved	μg/L	0.05	Metals-021		5	<0.05	<0.05	0		
Nickel-Dissolved	μg/L	1	Metals-022		5	<1				
Zinc-Dissolved	μg/Ľ	1	Metals-022		5	7				

QUALI	TY CONTRO	DL: Ion Ba	Duplicate			Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	269664-2
Date prepared	-			24/05/2021	1	24/05/2021	24/05/2021		24/05/2021	24/05/2021
Date analysed	-			24/05/2021	1	24/05/2021	24/05/2021		24/05/2021	24/05/2021
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	<0.5	<0.5	0	93	90
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	0.8	0.8	0	87	83
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	16	15	6	87	80
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	<0.5	<0.5	0	92	87
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	5	Inorg-006	<5	1	<5				
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	32	100			
Carbonate Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	1	· < 5	-			
Total Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	1	32	100		111	1111
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	3			100	
Chloride, Cl	mg/L	1	Inorg-081	<1	1	6			90	1-1
Ionic Balance	%		Inorg-040		1	-12				1507

QUALI	TY CONTRO	DL: Ion Ba	lance		Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	269664-6
Date prepared	-			1011	3	24/05/2021	24/05/2021			24/05/2021
Date analysed	-				3	24/05/2021	24/05/2021			24/05/2021
Calcium - Dissolved	mg/L	0.5	Metals-020		3	<0.5				
Potassium - Dissolved	mg/L	0.5	Metals-020		3	1.2				
Sodium - Dissolved	mg/L	0.5	Metals-020		3	3.2	III.			
Magnesium - Dissolved	mg/L	0.5	Metals-020		3	<0.5				
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	5	Inorg-006		3	<5	<5	0		
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006		3	<5	<5	0		
Carbonate Alkalinity as CaCO₃	mg/L	5	Inorg-006		3	<5	<5	0		
Total Alkalinity as CaCO₃	mg/L	5	Inorg-006		3	<5	<5	0		
Sulphate, SO4	mg/L	1	Inorg-081		3	2	2	0		79
Chloride, Cl	mg/L	1	Inorg-081		3	5	5	0		83
Ionic Balance	%		Inorg-040		3	-2.0				

QUALITY CO	NTROL: Mis	cellaneou	ıs Inorganics	- 1		Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	269664-2
Date prepared	-			24/05/2021	1	24/05/2021	24/05/2021		24/05/2021	24/05/2021
Date analysed	-			24/05/2021	1	24/05/2021	24/05/2021		24/05/2021	24/05/2021
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	0.7			104	
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	0.009	0.006	40	111	116
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.096	0.096	0	106	104
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	<0.005	<0.005	0	97	102

QUALITY	QUALITY CONTROL: Miscellaneous Inorganics								Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	269664-6
Date prepared	-				5	24/05/2021	24/05/2021			24/05/2021
Date analysed	-				5	24/05/2021	24/05/2021			24/05/2021
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127		5	<0.1	<0.1	0		90
NOx as N in water	mg/L	0.005	Inorg-055		5	0.01				
Ammonia as N in water	mg/L	0.005	Inorg-057		5	0.033				
Phosphate as P in water	mg/L	0.005	Inorg-060		5	<0.005				

Envirolab Reference: 269664

Revision No: R00

QUALITY CONTR	OL: Metals i	n Waters -	- Acid extractable			Dι	ıplicate		Spike Red	сочегу %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-			24/05/2021					24/05/2021	
Date analysed	-			24/05/2021					24/05/2021	
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05					102	

Result Definit	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
Australian Drinking	Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E. Coli levels are less than

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab.

Note: there is a possibility some elements may be underestimated.

Total metals: no unfiltered, preserved sample was received, therefore analysis was conducted from the unpreserved sample bottle. Note: there is a possibility some elements may be underestimated.

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

CERTIFICATE OF ANALYSIS 279832

Client Details	
Client	Martens & Associates Pty Ltd
Attention	R Kightley
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P2007822 Bell Quarry
Number of Samples	14 Water
Date samples received	06/10/2021
Date completed instructions received	07/10/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

R	eport	Details		1.3
		_		

Date results requested by 14/10/2021 Date of Issue 14/10/2021

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Jaimie Loa-Kum-Cheung, Senior Chemist Priya Samarawickrama, Senior Chemist Steven Luong, Organics Supervisor **Authorised By**

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Water	Andrew Talk	3,10		11-12-1	Alle Care	
Our Reference		279832-1	279832-2	279832-3	279832-4	279832-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample	THE RES	Water	Water	Water	Water	Water
Date extracted	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
TRH C6 - C9	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀	µg/L	<10	<10	<10	<10	<10
ΓRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	<10	<10	<10	<10
Benzene	hã/r	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
n+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	μg/Ľ	<1	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	113	113	112	113	112
Surrogate toluene-d8	%	114	113	111	113	113
Surrogate 4-BFB	%	94	94	94	95	94

Our Reference		279832-6	279832-7	279832-8	279832-9	279832-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW302B	7822/MW301A
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	11/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	12/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
TRH C6 - C9	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	<10
Benzene	µg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
n+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	µg/L	<1	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	108	114	112	113	114
Surrogate toluene-d8	%	95	113	114	113	114
Surrogate 4-BFB	%	87	95	92	93	94

Our Reference		279832-11	279832-12	279832-13	279832-14
Your Reference	UNITS	7822/MW301B	7822/MB02	7822/MB03	7822/MW201
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample		Water	Water	Water	Water
Date extracted	-	08/10/2021	08/10/2021	11/10/2021	08/10/2021
Date analysed	-	11/10/2021	11/10/2021	12/10/2021	11/10/2021
TRH C ₆ - C ₉	μg/L	<10	<10	<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10
Benzene	μg/L	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2
o-xylene	µg/L	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	114	112	107	112
Surrogate toluene-d8	%	114	113	95	114
Surrogate 4-BFB	%	93	92	85	93

svTRH (C10-C40) in Water						
Our Reference		279832-1	279832-2	279832-3	279832-4	279832-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	•	11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	<100	<100
「RH C₂9 - C₃6	µg/L	<100	<100	<100	<100	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50	<50	<50	<50	<50
「RH >C₁₀ - C₁₅ less Naphthalene (F2)	μg/L	<50	<50	<50	<50	<50
TRH >C16 - C34	μg/L	<100	<100	<100	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	76	82	92	90	77

svTRH (C10-C40) in Water			NIEW LAND			
Our Reference		279832-6	279832-7	279832-8	279832-9	279832-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW302B	7822/MW301A
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	**	11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100	<100	<100	<100
TRH >C ₁₀ - C ₁₆	µg/L	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100	<100	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	90	83	87	70	80

svTRH (C10-C40) in Water					
Our Reference		279832-11	279832-12	279832-13	279832-14
Your Reference	UNITS	7822/MW301B	7822/MB02	7822/MB03	7822/MW201
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample		Water	Water	Water	Water
Date extracted	-	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Date analysed	-	13/10/2021	13/10/2021	13/10/2021	13/10/2021
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	120
TRH C ₁₅ - C ₂₈	µg/L	<100	<100	<100	490
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	120
TRH >C ₁₀ - C ₁₆	µg/L	<50	<50	<50	230
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50	230
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100	<100	460
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100	<100
Surrogate o-Terphenyl	%	94	87	99	82

PAHs in Water					A PERMIT	
Our Reference		279832-1	279832-2	279832-3	279832-4	279832-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW0
Date Sampled	11,171,711.7	05/10/2021	05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Naphthalene	μg/L	<1	<1	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1	<1
Fluorene	μg/L	<1	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1	<1
Anthracene	µg/L	<1	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	μg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1	<1
ndeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	μg/L	<5	<5	<5	<5	<5
otal +ve PAH's	μg/L	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	84	86	85	86	83

PAHs in Water				أواستحاب		
Our Reference		279832-6	279832-7	279832-8	279832-9	279832-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW302B	7822/MW301
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	11/10/2021	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Date analysed		12/10/2021	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Naphthalene	μg/L	<1	<1	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1	<1
Fluorene	µg/L	<1	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1	<1
Anthracene	μg/L	<1	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	μg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	μg/L	<5	<5	<5	<5	<5
Total +ve PAH's	μg/L	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	85	82	81	71	86

PAHs in Water					100
Our Reference		279832-11	279832-12	279832-13	279832-14
Your Reference	UNITS	7822/MW301B	7822/MB02	7822/MB03	7822/MW201
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample		Water	Water	Water	Water
Date extracted	-	11/10/2021	11/10/2021	11/10/2021	11/10/2021
Date analysed	-	12/10/2021	12/10/2021	12/10/2021	12/10/2021
Naphthalene	μg/L	<1	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1
Fluorene	μg/L	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1
Anthracene	μg/L	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	µg/L	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1
ndeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1
Benzo(a)pyrene TEQ	μg/L	<5	<5	<5	<5
otal +ve PAH's	μg/L	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	84	80	87	79

HM in water - dissolved			Name of Street, or other Designation of the Owner, where the Park Prince of the Owner, where the Park Prince of the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, where the Owner, which is the Owner, which			
Our Reference		279832-1	279832-2	279832-3	279832-4	279832-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Arsenic-Dissolved	μg/L	<1	<1	<1	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	<1	<1	<1	<1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	μg/L	2	5	2	3	1

HM in water - dissolved						
Our Reference		279832-6	279832-7	279832-8	279832-9	279832-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW302B	7822/MW301A
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample	7- 11-11	Water	Water	Water	Water	Water
Date prepared	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date analysed		08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Arsenic-Dissolved	μg/L	<1	<1	<1	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	4	1	15	1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	μg/L	1	1	<1	1	2

HM in water - dissolved			41 JUL 41		
Our Reference		279832-11	279832-12	279832-13	279832-14
Your Reference	UNITS	7822/MW301B	7822/MB02	7822/MB03	7822/MW201
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample		Water	Water	Water	Water
Date prepared	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Arsenic-Dissolved	μg/L	<1	<1	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	1	5	40
_ead-Dissolved	μg/L	<1	<1	<1	<1
Mercury-Dissolved	µg/∟	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L.	<1	<1	5	5
Zinc-Dissolved	μg/L	2	7	46	65

HM in water - total				را بالعالية		
Our Reference		279832-1	279832-2	279832-3	279832-4	279832-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW0
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Arsenic-Total	μg/L	<1	<1	<1	<1	<1
Cadmium-Total	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Total	μg/L	<1	<1	<1	<1	<1
Copper-Total	μg/L	<1	<1	<1	<1	<1
Lead-Total	μg/L	<1	<1	<1	<1	<1
Mercury-Total	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Total	μg/L	<1	<1	<1	<1	<1
Zinc-Total	μg/L	3	3	4	2	2

HM in water - total						
Our Reference		279832-6	279832-7	279832-8	279832-9	279832-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW302B	7822/MW301A
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Arsenic-Total	μg/L	<1	<1	24	5	<1
Cadmium-Total	μg/L	<0.1	<0.1	0.7	<0.1	<0.1
Chromium-Total	μg/L	<1	<1	23	48	1
Copper-Total	μg/L	<1	6	83	650	3
Lead-Total	μg/L	<1	<1	210	50	<1
Mercury-Total	μg/L	<0.05	<0.05	0.08	0.07	<0.05
Nickel-Total	μg/L	<1	<1	11	10	<1
Zinc-Total	μg/L	2	4	200	35	4

HM in water - total	A COLUMN TO SERVICE STATE OF THE PARTY OF TH			F	-
Our Reference		279832-11	279832-12	279832-13	279832-14
Your Reference	UNITS	7822/MW301B	7822/MB02	7822/MB03	7822/MW201
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample		Water	Water	Water	Water
Date prepared	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Arsenic-Total	μg/L	<1	<1	<1	<1
Cadmium-Total	μg/L	<0.1	<0.1	<0.1	<0.1
Chromium-Total	μg/L	5	1	<1	<1
Copper-Total	μg/L	9	4	6	43
Lead-Total	μg/L	3	<1	1	<1
Mercury-Total	μg/L	<0.05	0.1	<0.05	<0.05
Nickel-Total	μg/L	<1	2	4	7
Zinc-Total	μg/L	1	23	52	59

lon Balance		CONTRACTOR AND ADDRESS.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Our Reference		279832-1	279832-2	279832-3	279832-4	279832-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	07/10/2021	07/10/2021	07/10/2021	07/10/2021	07/10/2021
Date analysed	-	07/10/2021	07/10/2021	07/10/2021	07/10/2021	07/10/2021
Calcium - Dissolved	mg/L	0.9	0.8	0.9	<0.5	<0.5
Potassium - Dissolved	mg/L	0.9	1	0.9	<0.5	<0.5
Sodium - Dissolved	mg/L	4	4	4	4	5.0
Magnesium - Dissolved	mg/L	0.6	0.5	0.5	<0.5	0.7
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO₃	mg/L	5	5	6	<5	<5
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	5	5	6	<5	<5
Sulphate, SO4	mg/L	2	1	1	1	3
Chloride, Cl	mg/L	5	5	5	5	7
Ionic Balance	%	-1.0	1.0	1.0	-1.0	4.0

on Balance	y fair y	ATTENDED				- T T-
Our Reference		279832-6	279832-7	279832-8	279832-9	279832-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW302B	7822/MW301A
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	07/10/2021	07/10/2021	07/10/2021	07/10/2021	07/10/2021
Date analysed	-	07/10/2021	07/10/2021	07/10/2021	07/10/2021	07/10/2021
Calcium - Dissolved	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Potassium - Dissolved	mg/L	<0.5	0.8	0.8	<0.5	0.8
Sodium - Dissolved	mg/L	5	6.1	5	6.2	3
Magnesium - Dissolved	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	8	<5
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	<5	<5	<5	8	<5
Sulphate, SO4	mg/L	<1	5	2	2	3
Chloride, Cl	mg/L	7	6	6	5	4
Ionic Balance	%	3.0	3.0	7.0	-14	-2.0

Ion Balance				- Carlotte	7.00
Our Reference		279832-11	279832-12	279832-13	279832-14
Your Reference	UNITS	7822/MW301B	7822/MB02	7822/MB03	7822/MW201
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample		Water	Water	Water	Water
Date prepared	-	07/10/2021	07/10/2021	07/10/2021	07/10/2021
Date analysed	-	07/10/2021	07/10/2021	07/10/2021	07/10/2021
Calcium - Dissolved	mg/L	<0.5	0.7	1	0.6
Potassium - Dissolved	mg/L	0.9	1	2	<0.5
Sodium - Dissolved	mg/L	3	5.0	4	6.1
Magnesium - Dissolved	mg/L	<0.5	<0.5	8.0	<0.5
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	<5	<5	8	9
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5
Fotal Alkalinity as CaCO₃	mg/L	<5	<5	8	9
Sulphate, SO4	mg/L	2	2	2	2
Chloride, Cl	mg/L	4	6	5	5
onic Balance	%	3.0	14	-3.0	-11

Miscellaneous Inorganics		100	And the second		Name and Address of the Owner, where	
Our Reference		279832-1	279832-2	279832-3	279832-4	279832-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	07/10/2021	07/10/2021	07/10/2021	07/10/2021	07/10/2021
Date analysed	-	07/10/2021	07/10/2021	07/10/2021	07/10/2021	07/10/2021
Total Nitrogen in water	mg/L	0.3	0.3	0.4	<0.1	<0.1
NOx as N in water	mg/L	<0.005	<0.005	<0.005	<0.005	0.03
Ammonia as N in water	mg/L	0.007	0.007	0.008	0.007	<0.005
Phosphate as P in water	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005

Miscellaneous Inorganics		3 2 3				
Our Reference		279832-6	279832-7	279832-8	279832-9	279832-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW302B	7822/MW301A
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021	05/10/202
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	07/10/2021	07/10/2021	07/10/2021	07/10/2021	07/10/2021
Date analysed	-	07/10/2021	07/10/2021	07/10/2021	07/10/2021	07/10/2021
Total Nitrogen in water	mg/L	<0.1	<0.1	<0.1	0.2	<0.1
NOx as N in water	mg/L	<0.005	0.02	<0.005	0.01	0.02
Ammonia as N in water	mg/L	<0.005	<0.005	0.011	0.022	0.005
Phosphate as P in water	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005

Miscellaneous Inorganics	A Care Constitution				
Our Reference		279832-11	279832-12	279832-13	279832-14
Your Reference	UNITS	7822/MW301B	7822/MB02	7822/MB03	7822/MW201
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample	THE PARTY	Water	Water	Water	Water
Date prepared	-	07/10/2021	07/10/2021	07/10/2021	07/10/2021
Date analysed	_	07/10/2021	07/10/2021	07/10/2021	07/10/2021
Total Nitrogen in water	mg/L	<0.1	<0.1	1.2	1
NOx as N in water	mg/L	<0.005	0.009	1.2	0.53
Ammonia as N in water	mg/L	0.008	0.025	0.029	0.013
Phosphate as P in water	mg/L	<0.005	<0.005	<0.005	<0.005

Metals in Waters - Acid extractab	le	CONTRACTOR				
Our Reference		279832-1	279832-2	279832-3	279832-4	279832-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled	The state of the s	05/10/2021	05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Phosphorus - Total	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05

Metals in Waters - Acid extractab	ole			Probability		
Our Reference		279832-6	279832-7	279832-8	279832-9	279832-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW302B	7822/MW301A
Date Sampled		05/10/2021	05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Phosphorus - Total	mg/L	<0.05	<0.05	1.1	0.2	<0.05

Metals in Waters - Acid extractal	ole	Albura Wales			1 - 1 - 1 - 1
Our Reference		279832-11	279832-12	279832-13	279832-14
Your Reference	UNITS	7822/MW301B	7822/MB02	7822/MB03	7822/MW201
Date Sampled	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	05/10/2021	05/10/2021	05/10/2021	05/10/2021
Type of sample		Water	Water	Water	Water
Date prepared	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Date analysed	-	08/10/2021	08/10/2021	08/10/2021	08/10/2021
Phosphorus - Total	mg/L	<0.05	<0.05	<0.05	<0.05

Method ID	Methodology Summary
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 10% ie total anions = total cations +/-10%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered or receipt prior to analysis. Soils are analysed following a water extraction.
lnorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1. (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTI	ROL: vTRH(C6-C10)/B	TEXN in Water	1.4		Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W4	[NT]
Date extracted	-			08/10/2021	3	08/10/2021	11/10/2021		08/10/2021	
Date analysed	-			11/10/2021	3	11/10/2021	12/10/2021		11/10/2021	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	3	<10	<10	0	110	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	3	<10	<10	0	110	
Benzene	μg/L	1	Org-023	<1	3	<1	<1	0	118	
Toluene	μg/L	1	Org-023	<1	3	<1	<1	0	114	
Ethylbenzene	μg/L	1	Org-023	<1	3	<1	<1	0	105	
m+p-xylene	μg/L	2	Org-023	<2	3	<2	<2	0	106	
o-xylene	μg/L	1	Org-023	<1	3	<1	<1	0	106	
Naphthalene	μg/L	1	Org-023	<1	3	<1	<1	o	11111	
Surrogate Dibromofluoromethane	%		Org-023	110	3	112	109	3	99	
Surrogate toluene-d8	%		Org-023	108	3	111	96	14	102	
Surrogate 4-BFB	%		Org-023	94	3	94	88	7	108	

QUALITY CONT	ROL: vTRH	(C6-C10)/B	TEXN in Water		- 1	Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				11	08/10/2021	11/10/2021			7
Date analysed	-				11	11/10/2021	12/10/2021			
TRH C ₆ - C ₉	μg/L	10	Org-023		11	<10	<10	0		
TRH C ₆ - C ₁₀	µg/L	10	Org-023		11	<10	<10	0		
Benzene	µg/L	1	Org-023		11	<1	<1	0	m"	
Toluene	l μg/L	1	Org-023		11	<1	<1	0		
Ethylbenzene	μg/L	1	Org-023		11	<1	<1	0		
n+p-xylene	μg/L	2	Org-023		11	<2	<2	0		
o-xylene	μg/L	1	Org-023		11	<1	<1	0		
Naphthalene	μg/L	1	Org-023		11	<1	<1	0		
Surrogate Dibromofluoromethane	%		Org-023		11	114	108	5		
Surrogate toluene-d8	%		Org-023		11	114	96	17		
Surrogate 4-BFB	%		Org-023		11	93	87	7		

QUALITY CO	NTROL: svTl	RH (C10-0	C40) in Water		1	Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	279832-3
Date extracted	-			11/10/2021	2	11/10/2021	11/10/2021		11/10/2021	11/10/2021
Date analysed				13/10/2021	2	13/10/2021	13/10/2021		13/10/2021	13/10/2021
TRH C ₁₀ - C ₁₄	µg/L	50	Org-020	<50	2	<50	<50	0	101	87
TRH C ₁₅ - C ₂₈	µg/L	100	Org-020	<100	2	<100	<100	0	106	85
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	2	<100	<100	0	115	70
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	<50	2	<50	<50	0	101	87
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020	<100	2	<100	<100	0	106	85
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	2	<100	<100	0	115	70
Surrogate o-Terphenyl	%		Org-020	89	2	82	87	6	80	90

QUALITY CON	TROL: svT	RH (C10-C	40) in Water	(S. S.	100	Du	Duplicate		Spike Recovery ^c	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-				12	11/10/2021	11/10/2021		11/10/2021	
Date analysed	-				12	13/10/2021	13/10/2021		13/10/2021	
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	-	12	<50	<50	0	99	
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020		12	<100	<100	0	94	
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020		12	<100	<100	0	86	
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020		12	<50	<50	0	99	
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020		12	<100	<100	0	94	
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020		12	<100	<100	0	86	
Surrogate o-Terphenyl	%		Org-020		12	87	91	4	84	

QUA	LITY CONTRO	_: PAHs ir	Water			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	279832-13
Date extracted	-			11/10/2021	2	11/10/2021	11/10/2021		11/10/2021	11/10/2021
Date analysed	-			12/10/2021	2	12/10/2021	12/10/2021		12/10/2021	12/10/2021
Naphthalene	μg/L	1	Org-022/025	<1	2	<1	<1	0	81	91
Acenaphthylene	μg/L	1	Org-022/025	<1	2	<1	<1	0		
Acenaphthene	μg/L	1	Org-022/025	<1	2	<1	<1	0	72	78
Fluorene	µg/L	1	Org-022/025	<1	2	<1	<1	0	86	93
Phenanthrene	μg/L	1	Org-022/025	<1	2	<1	<1	0	116	130
Anthracene	µg/L	1	Org-022/025	<1	2	<1	<1	0-		
Fluoranthene	μg/L	1	Org-022/025	<1	2	<1	<1	0	72	83
Pyrene	µg/L	1	Org-022/025	<1	2	<1	<1	0	77	86
Benzo(a)anthracene	μg/L	1	Org-022/025	<1	2	<1	<1	0	1111	
Chrysene	μg/L	1	Org-022/025	<1	2	<1	<1	0	72	74
Benzo(b,j+k)fluoranthene	μg/L	2	Org-022/025	<2	2	<2	<2	0	111	
Benzo(a)pyrene	μg/L	1	Org-022/025	<1	2	<1	<1	0	108	103
ndeno(1,2,3-c,d)pyrene	μg/L	1	Org-022/025	<1	2	<1	<1	0		
Dibenzo(a,h)anthracene	μg/L	1	Org-022/025	<1	2	<1	<1	0		
Benzo(g,h,i)perylene	μg/L	1	Org-022/025	<1	2	<1	<1	0		
Surrogate p-Terphenyl-d14	%		Org-022/025	83	2	86	77	11	86	81

QUAL	ITY CONTRO	L: PAHs in	Water		100	Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				12	11/10/2021	11/10/2021			
Date analysed	-				12	12/10/2021	12/10/2021			
Vaphthalene	μg/L	1	Org-022/025		12	<1	<1	0		
Acenaphthylene	μg/L	1	Org-022/025		12	<1	<1	0		100
Acenaphthene	μg/L	1	Org-022/025	nn.	12	<1	<1	0		
Fluorene	μg/L	1	Org-022/025		12	<1	<1	0		
Phenanthrene	μg/L	1	Org-022/025		12	<1	<1	0		
Anthracene	µg/L	1	Org-022/025		12	<1	<1	0		
luoranthene	μg/L	1	Org-022/025	7.11	12	<1	<1	0		
Pyrene	µg/L	1	Org-022/025		12	<1	<1	0		
Benzo(a)anthracene	μg/L	1	Org-022/025		12	<1	<1	0		
Chrysene	µg/L	1	Org-022/025		12	<1	<1	0	100	
Benzo(b,j+k)fluoranthene	μġ/L	2	Org-022/025		12	<2	<2	0		
Benzo(a)pyrene	µg/L	1	Org-022/025		12	<1	<1	0		
ndeno(1,2,3-c,d)pyrene	μg/L	1	Org-022/025	1111	12	<1	<1	0		
Pibenzo(a,h)anthracene	µg/L	1	Org-022/025		12	<1	<1	0		
enzo(g,h,i)perylene	μg/L	1	Org-022/025		12	<1	<1	0		
Surrogate p-Terphenyl-d14	%		Org-022/025		12	80	83	4		

Envirolab Reference: 279832

Revision No: R00

QUALITY C	ONTROL: HI	√ in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	279832-2
Date prepared	-			08/10/2021	1	08/10/2021	08/10/2021		08/10/2021	08/10/2021
Date analysed	-			08/10/2021	1	08/10/2021	08/10/2021		08/10/2021	08/10/2021
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	<1			91	
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1			90	
Chromium-Dissolved	µg/L	1	Metals-022	<1	1	<1			88	
Copper-Dissolved	µg/L	1	Metals-022	<1	1	<1			89	
Lead-Dissolved	µg/L	1	Metals-022	<1	1	<1			92	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	100	107
Nickel-Dissolved	µg/L	1	Metals-022	<1	1	<1			90	
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	2			90	

QUALIT	Y CONTROL: HI	√ in water	- dissolved			Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	279832-5		
Date prepared	-				3	08/10/2021	08/10/2021			08/10/2021		
Date analysed	-				3	08/10/2021	08/10/2021			08/10/2		
Arsenic-Dissolved	μg/L	1	Metals-022		3	<1	<1	0		90		
Cadmium-Dissolved	μg/L	0,1	Metals-022		3	<0.1	<0.1	0		91		
Chromium-Dissolved	µg/L	1	Metals-022		3	<1	<1	0		85		
Copper-Dissolved	μg/L	1	Metals-022		3	<1	<1	0		88		
Lead-Dissolved	μg/L	1	Metals-022	100	3	<1	<1	0		88		
Mercury-Dissolved	μ g /L	0.05	Metals-021		3	<0.05				150.1		
Nickel-Dissolved	μg/L	1	Metals-022		3	<1	<1	0		90		
Zinc-Dissolved	μg/L	1	Metals-022		3	2	2	0		93		

QUALITY	CONTROL: HI	M in water	- dissolved		31	Du	plicate	J	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-				11	08/10/2021	08/10/2021				
Date analysed					11	08/10/2021	08/10/2021				
Arsenic-Dissolved	μg/L	1	Metals-022		11	<1					
Cadmium-Dissolved	μg/L	0.1	Metals-022		11	<0.1				17	
Chromium-Dissolved	μg/L	1	Metals-022		11	<1					
Copper-Dissolved	μg/L	1	Metals-022		11	<1					
_ead-Dissolved	μg/L	1	Metals-022		11	<1				- 111	
Mercury-Dissolved	μg/L	0.05	Metals-021		11	<0.05	<0.05	0			
Nickel-Dissolved	μg/L	1	Metals-022		11	<1				-	
Zinc-Dissolved	μg/L	1	Metals-022		11	2					

QUALITY	CONTROL:	HM in wa	iter - total	UT VE		Dι	ıplicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	279832-2
Date prepared	-			08/10/2021	1	08/10/2021	08/10/2021		08/10/2021	08/10/2021
Date analysed	-			08/10/2021	1	08/10/2021	08/10/2021		08/10/2021	08/10/2021
Arsenic-Total	µg/L	1	Metals-022	<1	1	<1	<1	0	97	102
Cadmium-Total	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	97	101
Chromium-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	97	97
Copper-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	97	98
Lead-Total	µg/L	1	Metals-022	<1	1	<1	<1	0	98	99
Mercury-Total	µg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	106	116
Nickel-Total	µg/L	1	Metals-022	<1	1	<1	<1	0	95	101
Zinc-Total	μg/L	1	Metals-022	<1	1	3	3	0	98	104

QUA	QUALITY CONTROL: HM in water - total						plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-				11	08/10/2021	08/10/2021				
Date analysed				-	11	08/10/2021	08/10/2021				
Arsenic-Total	μg/L	1	Metals-022	no.	11	<1	IFI			100	
Cadmium-Total	µg/L	0.1	Metals-022		11	<0.1					
Chromium-Total	µg/L	1	Metals-022		11	5					
Copper-Total	μg/L	1	Metals-022		11	9					
Lead-Total	μg/L	1	Metals-022		11	3					
Mercury-Total	μg/L	0.05	Metals-021		11	<0.05	<0.05	0			
Nickel-Total	μg/L	1	Metals-022		11	<1					
Zinc-Total	μg/L	1	Metals-022		11	1			21.1		

QUALI	TY CONTRO	OL: Ion Ba	lance			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	279832-4
Date prepared	-			07/10/2021	3	07/10/2021	07/10/2021		07/10/2021	07/10/2021
Date analysed	-			07/10/2021	3	07/10/2021	07/10/2021		07/10/2021	07/10/2021
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	3	0.9	0.9	0	106	88
Potassium - Dissolved	mg/L	0,5	Metals-020	<0.5	3	0.9	0.9	0	103	89
Sodium - Dissolved	mg/L	0.5	Metals-020	<0,5	3	4	4	0	113	92
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	3	0.5	0.5	0	111	91
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006	<5	3	<5				
Bicarbonate Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	3	6				
Carbonate Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	3	<5				
Total Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	3	6	0.0		107	
Sulphate, SO4	mg/L	1	Inorg-081	<1	3	1	1011		102	99
Chloride, Cl	mg/L	1	Inorg-081	<1	3	5			102	100
Ionic Balance	%		Inorg-040		3	1.0	11111			761

QUALI	TY CONTRO	L: Ion Ba	التعالي	Du	plicate	Spike Recovery %				
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				12	07/10/2021	07/10/2021			11.1
Date analysed	-				12	07/10/2021	07/10/2021			
Calcium - Dissolved	mg/L	0.5	Metals-020		12	0.7	0,6	15		
Potassium - Dissolved	mg/L	0.5	Metals-020		12	1	1	0		
Sodium - Dissolved	mg/L	0.5	Metals-020		12	5.0	5.0	0		
Magnesium - Dissolved	mg/L	0.5	Metals-020		12	<0.5	<0.5	0		
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	5	Inorg-006		12	<5				
Bicarbonate Alkalinity as CaCO₃	mg/L	5	Inorg-006		12	<5				
Carbonate Alkalinity as CaCO₃	mg/L	5	Inorg-006		12	<5				
Total Alkalinity as CaCO₃	mg/L	5	Inorg-006		12	<5				
Sulphate, SO4	mg/L	1	Inorg-081		12	2				
Chloride, Cl	mg/L	1	Inorg-081		12	6				
Ionic Balance	%		Inorg-040		12	14				

QUALITY CC	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	279832-2
Date prepared	-			07/10/2021	1	07/10/2021	07/10/2021		07/10/2021	07/10/2021
Date analysed	-			07/10/2021	1	07/10/2021	07/10/2021		07/10/2021	07/10/2021
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	0.3	0.3	0	103	101
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	<0.005	<0.005	0	105	110
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.007	0,005	33	111	103
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	<0.005	<0.005	0	110	111

QUALITY	Du	plicate	Spike Recovery %							
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				11	07/10/2021	07/10/2021			
Date analysed	-				11	07/10/2021	07/10/2021			
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127		11	<0.1	<0.1	0		7
NOx as N in water	mg/L	0.005	Inorg-055		11	<0.005	<0.005	0		
Ammonia as N in water	mg/L	0.005	Inorg-057		11	800.0	0.008	0		
Phosphate as P in water	mg/L	0.005	Inorg-060		11	<0.005	<0.005	0		

QUALITY CONTR	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	279832-3
Date prepared	-			08/10/2021	1	08/10/2021	08/10/2021		08/10/2021	08/10/2021
Date analysed	-			08/10/2021	1	08/10/2021	08/10/2021		08/10/2021	08/10/2021
Phosphorus - Total	mg/L	0,05	Metals-020	<0.05	1	<0.05	<0.05	0	116	124

Result Definit	ions
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Contro	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.
	W. L. C. L.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab.

Note: there is a possibility some elements may be underestimated.

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

CERTIFICATE OF ANALYSIS 280362

Client Details	
Client	Martens & Associates Pty Ltd
Attention	Ben McGiffin
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details	
Your Reference	P2007822 Bell Quarry
Number of Samples	14 Water
Date samples received	14/10/2021
Date completed instructions received	14/10/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details	
Date results requested by	21/10/2021
Date of Issue	21/10/2021
NATA Accreditation Number 2901.	This document shall not be reproduced except in full.
Accredited for compliance with ISO	/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Dragana Tomas, Senior Chemist Giovanni Agosti, Group Technical Manager Greta Petzold, Senior Report Coordinator Hannah Nguyen, Metals Supervisor Priya Samarawickrama, Senior Chemist **Authorised By**

Nancy Zhang, Laboratory Manager

Our Reference		280362-1	280362-2	280362-3	280362-4	280362-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled	110000	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Date analysed	-	18/10/2021	18/10/2021	18/10/2021	18/10/2021	18/10/2021
ΓRH C ₆ - C ₉	μg/L	<10	<10	<10	<10	<10
TRH C6 - C10	µg/L	<10	<10	<10	<10	<10
FRH C ₆ - C ₁₀ less BTEX (F1)	µg/L	<10	<10	<10	<10	<10
Benzene	µg/L	<1	<1	<1	<1	<1
oluene	μg/L	<1	<1	<1	<1	<1
thylbenzene	μg/L	<1	<1	<1	<1	<1
n+p-xylene	μg/L	<2	<2	<2	<2	<2
-xylene	μg/L	<1	<1	<1	<1	<1
laphthalene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	98	99	97	99	98
urrogate toluene-d8	%	99	99	98	99	99
Surrogate 4-BFB	%	103	104	103	98	101

vTRH(C6-C10)/BTEXN in Water Our Reference		280362-6	280362-7	280362-8	280362-9	280362-10
Your Reference	UNITS	7822/SW02	7822/MW401	1 5 to 10		
	UNITS		1	7822/MW302A	7822/MW302B	7822/MW301A
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Date analysed	-	18/10/2021	18/10/2021	18/10/2021	18/10/2021	18/10/2021
TRH C ₆ - C ₉	µg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	<10
Benzene	μg/L	<1	<1	<1	<1	<1
Toluene	µg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	100	98	99	99	100
Surrogate toluene-d8	%	98	97	99	99	99
Surrogate 4-BFB	%	103	104	102	103	104

Envirolab Reference: 280362

Revision No:

R00

Our Reference		280362-11	280362-12	280362-13	280362-14
Your Reference	UNITS	7822/MW301B	7822/MB02	7822/MB03	7822/MW201
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water
Date extracted	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Date analysed	-	18/10/2021	18/10/2021	18/10/2021	18/10/2021
TRH C6 - C9	μg/L	<10	<10	<10	<10
TRH C6 - C10	μg/L	<10	<10	<10	<10
TRH C6 - C10 less BTEX (F1)	μg/L	<10	<10	<10	<10
Benzene	μg/L	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	99	99	98	100
Surrogate toluene-d8	%	98	99	98	98
Surrogate 4-BFB	%	103	102	105	104

svTRH (C10-C40) in Water				No. of Lot		
Our Reference		280362-1	280362-2	280362-3	280362-4	280362-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	18/10/2021	18/10/2021	18/10/2021	18/10/2021	18/10/2021
Date analysed	-	19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100	130	<100	<100
TRH C29 - C36	μg/L	<100	<100	<100	<100	<100
FRH >C10 - C16	μg/L	<50	<50	79	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	79	<50	<50
「RH >C₁6 - C₃₄	µg/L	<100	<100	<100	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	83	81	87	89	94

svTRH (C10-C40) in Water	Carrier of			1 To 1 Co.		
Our Reference		280362-6	280362-7	280362-8	280362-9	280362-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW302B	7822/MW301A
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	18/10/2021	18/10/2021	18/10/2021	18/10/2021	18/10/2021
Date analysed	-	19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
TRH C ₁₀ - C ₁₄	μg/L	70	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	µg/L	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	µg/L	<100	<100	<100	<100	<100
TRH >C ₁₀ - C ₁₆	μg/L	70	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	70	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100	<100	<100	<100
TRH >C34 - C40	μg/L	<100	<100	<100	<100	<100
Surrogate o-Terphenyl	%	87	79	86	78	85

svTRH (C10-C40) in Water					
Our Reference		280362-11	280362-12	280362-13	280362-14
Your Reference	UNITS	7822/MW301B	7822/MB02	7822/MB03	7822/MW201
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water
Date extracted	-	18/10/2021	18/10/2021	18/10/2021	18/10/2021
Date analysed	-	19/10/2021	19/10/2021	19/10/2021	19/10/2021
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	260
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	<100
TRH >C10 - C16	µg/L	<50	<50	<50	88
TRH >C10 - C16 less Naphthalene (F2)	μg/L	<50	<50	<50	88
TRH >C16 - C34	μg/L	<100	<100	<100	240
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100	<100
Surrogate o-Terphenyl	%	77	90	82	67

PAHs in Water		The state of				Alexander of
Our Reference		280362-1	280362-2	280362-3	280362-4	280362-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW0
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/202
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	18/10/2021	18/10/2021	18/10/2021	18/10/2021	18/10/2021
Date analysed	-	19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/202
Naphthalene	μg/L	<1	<1	<1	<1	<1
Acenaphthylene	µg/L	<1	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1	<1
Fluorene	μg/L	<1	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1	<1
Anthracene	µg/L	<1	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	µg/∟	<1	<1	<1	<1	<1
Chrysene	µg/L	<1	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	μg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1	<1
ndeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	μg/L	<5	<5	<5	<5	<5
otal +ve PAH's	µg/ L	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	92	94	93	88	103

Envirolab Reference: 280362

Revision No: R00

PAHs in Water						
Our Reference		280362-6	280362-7	280362-8	280362-9	280362-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW302B	7822/MW301A
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	18/10/2021	18/10/2021	18/10/2021	18/10/2021	18/10/2021
Date analysed	-	19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Naphthalene	µg/L	<1	<1	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1	<1
Fluorene	μg/L	<1	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1	<1
Anthracene	μg/L	<1	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1	<1
Chrysene	µg/L	<1	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	μg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	µg/L	<1	.<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	μg/L	<5	<5	<5	<5	<5
Total +ve PAH's	μg/L	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	100	91	101	92	100

PAHs in Water					
Our Reference		280362-11	280362-12	280362-13	280362-14
Your Reference	UNITS	7822/MW301B	7822/MB02	7822/MB03	7822/MW201
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water
Date extracted	-	18/10/2021	18/10/2021	18/10/2021	18/10/2021
Date analysed	-	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Naphthalene	μg/L	<1	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1
Fluorene	μg/L	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1
Anthracene	μg/L	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1
Pyrene	µg/L	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	μg/L	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1
ndeno(1,2,3-c,d)pyrene	µg/L	<1	<1	<1	<1
Dibenzo(a,h)anthracene	µg/L	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1
Benzo(a)pyrene TEQ	μg/L	<5	<5	<5	<5
otal +ve PAH's	μg/L	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	91	98	92	87

HM in water - dissolved						
Our Reference		280362-1	280362-2	280362-3	280362-4	280362-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Date analysed	-	18/10/2021	18/10/2021	18/10/2021	18/10/2021	18/10/2021
Arsenic-Dissolved	μg/L	<1	<1	<1	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	<1	<1	<1	<1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	μg/L	<1	1	2	<1	<1

HM in water - dissolved		and the law.				
Our Reference		280362-6	280362-7	280362-8	280362-9	280362-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW302B	7822/MW301A
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Date analysed	-	18/10/2021	18/10/2021	18/10/2021	18/10/2021	18/10/2021
Arsenic-Dissolved	μg/L	<1	<1	<1	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	1
Copper-Dissolved	μg/L	<1	6	<1	27	1
Lead-Dissolved	µg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	μg/L	2	9	1	4	3

HM in water - dissolved			THE REST		i Para
Our Reference		280362-11	280362-12	280362-13	280362-14
Your Reference	UNITS	7822/MW301B	7822/MB02	7822/MB03	7822/MW201
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water
Date prepared	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Date analysed	-	18/10/2021	18/10/2021	18/10/2021	18/10/2021
Arsenic-Dissolved	μg/L	<1	<1	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	2	5	27
_ead-Dissolved	μg/L	<1	<1	<1	<1
Mercury-Dissolved	μg/L	0.05	0.09	<0.05	<0.05
Nickel-Dissolved	µg/L	<1	<1	2	3
Zinc-Dissolved	μg/L	3	15	29	62

HM in water - total						
Our Reference		280362-1	280362-2	280362-3	280362-4	280362-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW0
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Date analysed	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/202
Arsenic-Total	μg/L	1	<1	<1	<1	<1
Cadmium-Total	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Total	μg/L	<1	<1	<1	<1	<1
Copper-Total	μg/L	<1	<1	<1	<1	<1
Lead-Total	μg/L	<1	<1	<1	<1	<1
Mercury-Total	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Total	μg/L	<1	<1	<1	<1	<1
Zinc-Total	μg/L	<1	<1	3	<1	<1

HM in water - total						
Our Reference		280362-6	280362-7	280362-8	280362-9	280362-10
Your Reference	UNITS	7822/SW02	7822/MVV401	7822/MW302A	7822/MW302B	7822/MW301A
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Date analysed	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Arsenic-Total	μg/L	<1	<1	14	<1	<1
Cadmium-Total	μg/L	<0.1	<0.1	0.3	<0.1	<0.1
Chromium-Total	μg/L	<1	1	16	5	3
Copper-Total	μg/L	1	9	48	51	3
Lead-Total	μg/L	<1	<1	97	4	<1
Mercury-Total	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Total	μg/L	<1	1	8	1	<1
Zinc-Total	μg/L	2	7	100	4	2

HM in water - total				or and the	
Our Reference		280362-11	280362-12	280362-13	280362-14
Your Reference	UNITS	7822/MW301B	7822/MB02	7822/MB03	7822/MW201
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water
Date prepared	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Date analysed	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Arsenic-Total	μg/L	1	<1	<1	<1
Cadmium-Total	μg/L	<0.1	<0.1	<0.1	<0.1
Chromium-Total	μg/L	19	1	5	7
Copper-Total	μg/L	23	10	6	67
_ead-Total	μg/L	13	<1	<1	1
Mercury-Total	μg/L	<0.05	<0:05	<0.05	<0.05
Nickel-Total	μg/L	2	1	5	14
Zinc-Total	μg/L	5	19	22	87

Ion Balance						
Our Reference		280362-1	280362-2	280362-3	280362-4	280362-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled	10.45	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	14/10/2021	14/10/2021	14/10/2021	14/10/2021	14/10/2021
Date analysed	-	14/10/2021	14/10/2021	14/10/2021	14/10/2021	14/10/2021
Calcium - Dissolved	mg/L	1	1	1	<0.5	<0.5
Potassium - Dissolved	mg/L	1	1	1	0.7	<0.5
Sodium - Dissolved	mg/L	5	4	4	4	5
Magnesium - Dissolved	mg/L	0.9	0.6	0.7	<0.5	0.9
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO₃	mg/L	14	8	9	<5	<5
Carbonate Alkalinity as CaCO₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	14	8	9	<5	<5
Sulphate, SO4	mg/L	1	1	1	1	2
Chloride, Cl	mg/L	4	4	4	4	6
Ionic Balance	%	-8.0	1.0	-2.0	12	12

Ion Balance						
Our Reference		280362-6	280362-7	280362-8	280362-9	280362-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW302B	7822/MW301A
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	14/10/2021	14/10/2021	14/10/2021	14/10/2021	14/10/2021
Date analysed	-	14/10/2021	14/10/2021	14/10/2021	14/10/2021	14/10/2021
Calcium - Dissolved	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Potassium - Dissolved	mg/L	<0.5	1	1	<0.5	1
Sodium - Dissolved	mg/L	4	6.1	5	5.0	4
Magnesium - Dissolved	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	<5	7	<5	<5
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO ₃	mg/L	5	<5	7	<5	<5
Sulphate, SO4	mg/L	<1	4	2	2	2
Chloride, Cl	mg/L	4	5	4	4	4
Ionic Balance	%	-11	13	-13	18	9.0

Envirolab Reference: 280362 Revision No: R00 Page | 13 of 29

Ion Balance Our Reference		280362-11	280362-12	280362-13	280362-14
Your Reference	UNITS	7822/MW301B	7822/MB02	7822/MB03	7822/MW201
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water
Date prepared	-	14/10/2021	14/10/2021	14/10/2021	14/10/2021
Date analysed	-	14/10/2021	14/10/2021	14/10/2021	14/10/2021
Calcium - Dissolved	mg/L	<0.5	0.8	0.9	<0.5
Potassium - Dissolved	mg/L	1	2	2	<0.5
Sodium - Dissolved	mg/L	4	5.1	3	5.9
Magnesium - Dissolved	mg/L	<0.5	<0.5	1	<0.5
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO₃	mg/L	<5	7	5	5
Carbonate Alkalinity as CaCO₃	mg/L	<5	<5	<5	<5
「otal Alkalinity as CaCO₃	mg/L	<5	7	5	5
Sulphate, SO4	mg/L	2	2	1	2
Chloride, Cl	mg/L	4	5	4	4
onic Balance	%	13	-4.0	14	-1.0

Envirolab Reference: 280362

Revision No: R00

Miscellaneous Inorganics				والمحجب		
Our Reference		280362-1	280362-2	280362-3	280362-4	280362-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Date analysed	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Total Nitrogen in water	mg/L	0.2	0.3	0.4	<0.1	<0.1
NOx as N in water	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Ammonia as N in water	mg/L	<0.005	0.005	<0.005	<0.005	<0.005
Phosphate as P in water	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005

Miscellaneous Inorganics						
Our Reference		280362-6	280362-7	280362-8	280362-9	280362-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW302B	7822/MW301A
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/202
Type of sample	No. of the second	Water	Water	Water	Water	Water
Date prepared	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Date analysed	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Total Nitrogen in water	mg/L	<0.1	<0.1	0.1	0.3	<0.1
NOx as N in water	mg/L	<0.005	0.03	<0.005	<0.005	0.02
Ammonia as N in water	mg/L	<0.005	<0.005	0.006	0.006	0.008
Phosphate as P in water	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005

Miscellaneous Inorganics			Link F		
Our Reference		280362-11	280362-12	280362-13	280362-14
Your Reference	UNITS	7822/MW301B	7822/MB02	7822/MB03	7822/MW201
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water
Date prepared	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Date analysed	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Total Nitrogen in water	mg/L	0.3	<0.1	1.6	0.6
NOx as N in water	mg/L	<0.005	0.007	1.5	0.54
Ammonia as N in water	mg/L	0.007	0.026	0.026	<0.005
Phosphate as P in water	mg/L	<0.005	<0.005	<0.005	<0.005

Phosphorus - Total	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Date analysed	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Date prepared	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Type of sample		Water	Water	Water	Water	Water
Date Sampled	The Carlo Carlo	13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW0
Our Reference		280362-1	280362-2	280362-3	280362-4	280362-5

Metals in Waters - Acid extractat	ole		de la companya de la			
Our Reference		280362-6	280362-7	280362-8	280362-9	280362-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW302B	7822/MW301A
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared		15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Date analysed	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Phosphorus - Total	mg/L	<0.05	<0.05	0.6	<0.05	<0.05

Metals in Waters - Acid extractab	ole				- 10 K-77
Our Reference		280362-11	280362-12	280362-13	280362-14
Your Reference	UNITS	7822/MW301B	7822/MB02	7822/MB03	7822/MW201
Date Sampled		13/10/2021	13/10/2021	13/10/2021	13/10/2021
Type of sample		Water	Water	Water	Water
Date prepared	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Date analysed	-	15/10/2021	15/10/2021	15/10/2021	15/10/2021
Phosphorus - Total	mg/L	<0.05	<0.05	<0.05	<0.05

Method ID	Methodology Summary
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 10% ie total anions = total cations +/-10%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
lnorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered or receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1/4 (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

QUALITY CONTI	ROL: vTRH(C6-C10)/B	TEXN in Water	2 74 1 7		Du	plicate	- 17 34	Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			15/10/2021	1	15/10/2021	18/10/2021		15/10/2021	
Date analysed	-			18/10/2021	1	18/10/2021	18/10/2021		18/10/2021	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	1	<10	<10	0	102	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	1	<10	<10	0	102	
Benzene	µg/L	1	Org-023	<1	1	<1	<1	0	95	
Toluene	µg/L	1	Org-023	<1	1	<1	<1	0	96	
Ethylbenzene	µg/L	1	Org-023	<1	1	<1	<1	0	105	
m+p-xylene	µg/L	2	Org-023	<2	1	<2	<2	0	108	
p-xylene	µg/L	1	Org-023	<1	1	<1	<1	0	105	
Naphthalene	μg/L	1	Org-023	<1	1	<1	<1	0		
Surrogate Dibromofluoromethane	%		Org-023	98	1	98	101	3	101	
Surrogate toluene-d8	%		Org-023	100	1	99	98	1	101	
Surrogate 4-BFB	%		Org-023	105	1	103	103	0	103	

QUALITY CONTI	ROL: vTRH(C6-C10)/B	TEXN in Water	والبرجية	LIW.	Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				11	15/10/2021	18/10/2021			
Date analysed	-				11	18/10/2021	18/10/2021			
TRH C ₆ - C ₉	μg/L	10	Org-023		11	<10	<10	0		
TRH C ₆ - C ₁₀	μg/L	10	Org-023		11	<10	<10	0		
Benzene	μg/L	1	Org-023	110	11	<1	<1	0		
Toluene	μg/L	1	Org-023		11	<1	<1	0		
Ethylbenzene	μg/L	1	Org-023		11	<1	<1	0		
m+p-xylene	μg/L	2	Org-023		11	<2	<2	0		
o-xylene	μg/L	1	Org-023		11	<1	<1	0		
Naphthalene	μg/L	1	Org-023		11	<1	<1	0		
Surrogate Dibromofluoromethane	%		Org-023		11	99	103	4		
Surrogate toluene-d8	%		Org-023		11	98	99	1		
Surrogate 4-BFB	%		Org-023		11	103	101	2		

Envirolab Reference: 280362

Revision No: R00

QUALITY	CONTROL: svTf	RH (C10-0	C40) in Water		10	Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	280362-2
Date extracted	-			18/10/2021	1	18/10/2021	18/10/2021		18/10/2021	18/10/2021
Date analysed				19/10/2021	1	19/10/2021	19/10/2021		19/10/2021	19/10/2021
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	1	<50	<50	0	114	113
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	1	<100	<100	0	112	119
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020	<100	1	<100	<100	0	94	115
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	1	<50	<50	0	114	113
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	1	<100	<100	0	112	119
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	1	<100	<100	0	94	115
Surrogate o-Terphenyl	%		Org-020	84	1	83	94	12	93	81

QUALITY (CONTROL: svT	RH (C10-C	40) in Water		Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-				11	18/10/2021	18/10/2021				
Date analysed					11	19/10/2021	19/10/2021				
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	1111	11	<50	<50	0			
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020		11	<100	<100	0			
TRH C ₂₉ - C ₃₆	μg/L	100	Org-020		11	<100	<100	0			
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020		11	<50	<50	0			
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020		11	<100	<100	0			
TRH >C ₃₄ + C ₄₀	μg/L	100	Org-020		11	<100	<100	0			
Surrogate o-Terphenyl	%		Org-020		11	77	98	24			

QUAL	ITY CONTRO	L: PAHs in	Water			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	280362-12
Date extracted	-			18/10/2021	1	18/10/2021	18/10/2021		18/10/2021	18/10/2021
Date analysed	-			19/10/2021	1	19/10/2021	19/10/2021		19/10/2021	19/10/2021
Naphthalene	μg/L	1	Org-022/025	<1	1	<1	<1	0	96	93
Acenaphthylene	μg/L	1	Org-022/025	<1	1	<1	<1	0		
Acenaphthene	μg/L	1	Org-022/025	<1	1	<1	<1	0	75	75
Fluorene	µg/L	1	Org-022/025	<1	1	<1	<1	0	86	88
Phenanthrene	μg/L	1	Org-022/025	<1	1	<1	<1	0	112	116
Anthracene	μg/L	1	Org-022/025	<1	1	<1	<1	0		
Fluoranthene	µg/L	1	Org-022/025	<1	1	<1	<1	0	88	88
^o yrene	µg/L	1	Org-022/025	<1	1	<1	<1	0	86	91
Benzo(a)anthracene	μg/L	1	Org-022/025	<1	1	<1	<1	0	100	
Chrysene	µg/L	1	Org-022/025	<1	1	<1	<1	0	72	78
Benzo(b,j+k)fluoranthene	μg/L	2	Org-022/025	<2	1	<2	<2	0	E1	
Benzo(a)pyrene	µg/L	1	Org-022/025	<1	1	<1	<1	0	72	94
ndeno(1,2,3-c,d)pyrene	μg/L	1	Org-022/025	<1	1	<1	<1	0	111.1	
Dibenzo(a,h)anthracene	μg/L	1	Org-022/025	<1	1	<1	<1	0		
enzo(g,h,i)perylene	μg/L	1	Org-022/025	<1	1	<1	<1	0	ш	
Surrogate p-Terphenyl-d14	%		Org-022/025	87	1	92	90	2	93	94

QUAL	ITY CONTRO	L. PAHs in	Water	4.00	4.1	Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W3	[NT]
Date extracted					11	18/10/2021	18/10/2021		18/10/2021	
Date analysed	-				11	19/10/2021	19/10/2021		19/10/2021	
Naphthalene	μg/L	1	Org-022/025		11	<1	<1	0	93	
Acenaphthylene	µg/L	1	Org-022/025		11	<1	<1	0		
Acenaphthene	μg/L	1	Org-022/025		11	<1	<1	0	77	
Fluorene	μg/L	1	Org-022/025		11	<1	<1	0	88	
Phenanthrene	μg/L	1	Org-022/025		11	<1	<1	0	118	
Anthracene	μg/L	1	Org-022/025		11	<1	<1	0		
Fluoranthene	μg/L	1	Org-022/025	1-1	11	<1	<1	0	90	
Pyrene	µg/L	1	Org-022/025		11	<1	<1	0	93	
Benzo(a)anthracene	µg/L	1	Org-022/025	1 - 1	11	<1	<1	0		
Chrysene	µg/L	1	Org-022/025		11	<1	<1	0	78	
Benzo(b,j+k)fluoranthene	μg/L	2	Org-022/025		11	<2	<2	0		
Benzo(a)pyrene	μg/L	1	Org-022/025		11	<1	<1	0	94	
ndeno(1,2,3-c,d)pyrene	μg/L	1	Org-022/025		11	<1	<1	0		
Dibenzo(a,h)anthracene	µg/L	1	Org-022/025		11	<1	<1	0		
Benzo(g,h,i)perylene	µg/L	1	Org-022/025		11	<1	<1	0		
Surrogate p-Terphenyl-d14	%		Org-022/025		11	91	83	9	103	

Envirolab Reference: 280362

Revision No:

R00

QUALITY	CONTROL: H	√l in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	280362-2
Date prepared	-			15/10/2021	1	15/10/2021	15/10/2021		15/10/2021	15/10/2021
Date analysed	-			18/10/2021	1	18/10/2021	18/10/2021		18/10/2021	18/10/2021
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0		97
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0		95
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0		98
Copper-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0		97
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0		96
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	98	101
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0		97
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	<1	1	0		98

QUALITY C	ONTROL: HI	/I in water	- dissolved	ALVES.		Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date prepared	-				11	15/10/2021	15/10/2021		15/10/2021	
Date analysed	-				11	18/10/2021	18/10/2021		18/10/2021	
Arsenic-Dissolved	µg/L	1	Metals-022		11	<1	<1	0	97	
Cadmium-Dissolved	µg/L	0.1	Metals-022		11	<0.1	<0.1	0	96	
Chromium-Dissolved	μg/L	1	Metals-022		11	<1	<1	0	98	
Copper-Dissolved	µg/L	1	Metals-022		11	<1	<1	0	97	
Lead-Dissolved	µg/L	1	Metals-022		11	<1	<1	0	97	
Mercury-Dissolved	μg/L	0.05	Metals-021		11	0.05				
Nickel-Dissolved	μg/L	1	Metals-022		11	<1	<1	0	98	
Zinc-Dissolved	μg/L	1	Metals-022		11	3	2	40	98	

QUALIT	QUALITY CONTROL: HM in water - dissolved						plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-				12	15/10/2021	15/10/2021				
Date analysed	-				12	18/10/2021	18/10/2021				
Arsenic-Dissolved	μg/L	1	Metals-022		12	<1					
Cadmium-Dissolved	μg/L	0.1	Metals-022	-	12	<0.1				1	
Chromium-Dissolved	µg/L	1	Metals-022		12	<1					
Copper-Dissolved	µg/L	1	Metals-022		12	2					
Lead-Dissolved	µg/L	1	Metals-022		12	<1					
Mercury-Dissolved	μg/L	0,05	Metals-021		12	0.09	0.09	0			
Nickel-Dissolved	µg/L	1	Metals-022		12	<1					
Zinc-Dissolved	μg/L	1	Metals-022		12	15					

QUALITY	CONTROL:	HM in wa	ater - total	1 - 0 10	Duplicate			Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	280362-2	
Date prepared	-			15/10/2021	1	15/10/2021	15/10/2021		15/10/2021	15/10/2021	
Date analysed	-			15/10/2021	1	15/10/2021	15/10/2021		15/10/2021	15/10/2021	
Arsenic-Total	µg/L	1	Metals-022	<1	1	1	<1	0	109	109	
Cadmium-Total	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	106	108	
Chromium-Total	µg/L	1	Metals-022	<1	1	<1	<1	0	110	109	
Copper-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	112	111	
Lead-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	103	106	
Mercury-Total	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	99	99	
Nickel-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	110	109	
Zinc-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	111	113	

QUALITY	CONTROL:	HM in wa	ter - total		14	Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-				11	15/10/2021	15/10/2021			The state of	
Date analysed	-			= 7	11	15/10/2021	15/10/2021			1111	
Arsenic-Total	μg/L	1	Metals-022	mn	11	1	1	0		10/11	
Cadmium-Total	μg/L	0.1	Metals-022		11	<0.1	<0.1	0			
Chromium-Total	μg/L	1	Metais-022		11	19	18	5			
Copper-Total	µg/L	1	Metals-022		11	23	23	0			
ead-Total	μg/L	1	Metals-022		11	13	13	0			
Mercury-Total	μg/L	0.05	Metals-021		11	<0.05					
lickel-Total	µg/L	1	Metals-022	1111	11	2	2	0			
inc-Total	μg/L	1	Metals-022		11	5	6	18			

QUA	QUALITY CONTROL. HM in water - total						plicate	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-				12	15/10/2021	15/10/2021				
Date analysed	-				12	15/10/2021	15/10/2021				
Arsenic-Total	μg/L	1	Metals-022		12	<1				1100	
Cadmium-Total	µg/L	.0.1	Metals-022		12	<0.1				1111	
Chromium-Total	μg/L	1	Metals-022		12	1					
Copper-Total	µg/L	1	Metals-022		12	10				- 1	
Lead-Total	μg/L	1	Metals-022		12	<1					
Mercury-Total	μg/L	0.05	Metals-021		12	<0.05	<0.05	0			
Nickel-Total	μg/L	1	Metals-022		12	1					
Zinc-Total	μg/L	1	Metals-022		12	19					

Envirolab Reference: 280362

Revision No: R00

QUALI	QUALITY CONTROL: Ion Balance					Duplicate			Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	280362-2		
Date prepared	-			14/10/2021	1	14/10/2021	14/10/2021		14/10/2021	14/10/2021		
Date analysed	-			14/10/2021	1	14/10/2021	14/10/2021		14/10/2021	14/10/2021		
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	1	1	0	98			
Potassium - Dissolved	mg/L	0.5	Metais-020	<0.5	1	1	1	0	93			
Sodium - Dissolved	mg/L	0,5	Metals-020	<0.5	1	5	4	22	91			
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	0.9	0.8	12	100			
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	5	Inorg-006	<5	1	<5	<5	0				
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	14	14	0				
Carbonate Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	1	<5	<5	0				
Total Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	1	14	14	0	103	34.7		
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	1	1	0	89	85		
Chloride, Cl	mg/L	1	Inorg-081	<1	1	4	4	0	90	86		
Ionic Balance	%		Inorg-040		1	-8.0	-13	-48		111/		

QUALI	QUALITY CONTROL: Ion Balance					Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	280362-4
Date prepared	-				10	14/10/2021	14/10/2021			14/10/2021
Date analysed	-				10	14/10/2021	14/10/2021			14/10/2021
Calcium - Dissolved	mg/L	0.5	Metals-020		10	<0.5				125
Potassium - Dissolved	mg/L	0.5	Metals-020		10	1				116
Sodium - Dissolved	mg/L	0.5	Metals-020		10	4				105
Magnesium - Dissolved	mg/L	0.5	Metals-020		10	<0.5				129
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006		10	<5	<5	0		
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006		10	<5	9	57		
Carbonate Alkalinity as CaCO₃	mg/L	5	Inorg-006		10	<5	<5	0		
Total Alkalinity as CaCO₃	mg/L	5	Inorg-006		10	<5	9	57		
Sulphate, SO4	mg/L	1	Inorg-081		10	2	2	0		
Chloride, CI	mg/L	1	Inorg-081		10	4	4	0		
Ionic Balance	%		Inorg-040		10	9.0				

QUAL		Du		Spike Recovery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				14	14/10/2021	14/10/2021			
Date analysed					14	14/10/2021	14/10/2021			
Calcium - Dissolved	mg/L	0,5	Metals-020	100	14	<0.5	<0.5	0		
otassium - Dissolved	mg/L	0.5	Metals-020		14	<0.5	<0.5	0		
Sodium - Dissolved	mg/L	0.5	Metals-020		14	5.9	6.0	2		
Magnesium - Dissolved	mg/L	0.5	Metals-020		14	<0.5	<0.5	0		
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006		14	<5				
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006		14	5				
Carbonate Alkalinity as CaCO₃	mg/L	5	Inorg-006		14	<5				
Total Alkalinity as CaCO₃	mg/L	5	Inorg-006		14	5				
Sulphate, SO4	mg/L	1	Inorg-081		14	2				
hloride, CI	mg/L	1	Inorg-081		14	4				
onic Balance	%		Inorg-040		14	-1.0				

QUALITY CO	ONTROL: Mis	cellaneou	s Inorganics			Du	plicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	280362-2
Date prepared	-			15/10/2021	1	15/10/2021	15/10/2021		15/10/2021	15/10/2021
Date analysed	-			15/10/2021	1	15/10/2021	15/10/2021		15/10/2021	15/10/2021
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	0.2	0.2	0	116	103
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	<0.005	<0.005	0	105	108
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	<0.005	<0.005	0	98	101
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	<0.005	<0.005	D	117	112

QUALITY CO	QUALITY CONTROL: Miscellaneous Inorganics							, .	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-				11	15/10/2021	15/10/2021				
Date analysed	-				11	15/10/2021	15/10/2021				
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127		11	0.3	0.4	29			
NOx as N in water	mg/L	0.005	Inorg-055		11	<0.005					
Ammonia as N in water	mg/L	0.005	Inorg-057		11	0.007					
Phosphate as P in water	mg/L	0.005	Inorg-060		11	<0.005					

QUALITY CONTR	OL: Metals in	n Waters	- Acid extractable			Du		Spike Recovery %		
Test Description	Units	PQL.	Method	Blank	#	Base	Dup.	RPD	LCS-W1	280362-4
Date prepared	-			15/10/2021	1	15/10/2021	15/10/2021		15/10/2021	15/10/2021
Date analysed	-			15/10/2021	1	15/10/2021	15/10/2021		15/10/2021	15/10/2021
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	1	<0.05	<0.05	0	108	126

QUALITY CONTR	OL: Metals i	n Waters	- Acid extractable	II to Day	i a	Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				11	15/10/2021	15/10/2021			1.11
Date analysed	-				11	15/10/2021	15/10/2021			
Phosphorus - Total	mg/L	0,05	Metals-020		11	<0.05	<0.05	0		

Envirolab Reference: 280362 R00

Revision No:

NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control Definitions

Blank

This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate

This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike

A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample)

This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike

Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 280362

Revision No:

R00

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab.

Note: there is a possibility some elements may be underestimated.

The mass inbalance in sample #9 may be caused by other ions that have not been measured.

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

CERTIFICATE OF ANALYSIS 280787

Client Details	
Client	Martens & Associates Pty Ltd
Attention	R Kightley, Ben McGiffin
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details		1
Your Reference	P2007822 Bell Quarry	
Number of Samples	13 Water	
Date samples received	20/10/2021	
Date completed instructions received	20/10/2021	

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Report Details	
Date results requested by	27/10/2021

Date of Issue 27/10/2021

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Nick Sarlamis, Assistant Operation Manager Steven Luong, Organics Supervisor **Authorised By**

Nancy Zhang, Laboratory Manager

Our Reference		280787-1	280787-2	280787-3	280787-4	280787-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample	TO PERSON	Water	Water	Water	Water	Water
Date extracted	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
Date analysed	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
TRH C6 - C9	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀	μg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	<10
Benzene	μg/L	<1	<1	<1	<1	<1
Toluene	µg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
m+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	<1	<1
Naphthalene	µg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	105	105	105	106	105
Surrogate toluene-d8	%	100	99	100	101	100
Surrogate 4-BFB	%	103	104	105	104	102

Our Reference		280787-6	280787-7	280787-8	280787-9	280787-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW301A	7822/MW301B
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
Date analysed	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
TRH C ₆ - C ₉	μg/L	<10	<10	<10	<10	<10
TRH C ₈ - C ₁₀	µg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	<10
Benzene	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2	<2
o-xylene	µg/L	<1	<1	<1	<1	<1
Naphthalene	µg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	105	106	104	103	105
Surrogate toluene-d8	%	101	100	100	100	100
Surrogate 4-BFB	%	102	103	104	106	101

vTRH(C6-C10)/BTEXN in Water		200707.44	200707.40	000707 40
Our Reference		280787-11	280787-12	280787-13
Your Reference	UNITS	7822/MB02	7822/MB03	7822/MW201
Date Sampled	1000	19/10/2021	19/10/2021	19/10/2021
Type of sample		Water	Water	Water
Date extracted	-	21/10/2021	21/10/2021	21/10/2021
Date analysed	-	21/10/2021	21/10/2021	21/10/2021
TRH C6 - C9	µg/L	<10	<10	<10
TRH C6 - C10	μg/L	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10
Benzene	μg/L	<1	<1	<1
Toluene	μg/L	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1
n+p-xylene	μg/L	<2	<2	<2
o-xylene	µg/L	<1	<1	<1
Naphthalene	µg/L	<1	<1	<1
Surrogate Dibromofluoromethane	%	104	107	103
Surrogate toluene-d8	%	100	100	99
Surrogate 4-BFB	%	106	103	102

svTRH (C10-C40) in Water						
Our Reference		280787-1	280787-2	280787-3	280787-4	280787-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	22/10/2021	22/10/2021	22/10/2021	22/10/2021	22/10/2021
Date analysed	-	22/10/2021	22/10/2021	22/10/2021	22/10/2021	22/10/2021
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100	<100	<100	<100
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	μg/L	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	75	78	75	92	78

svTRH (C10-C40) in Water						
Our Reference		280787-6	280787-7	280787-8	280787-9	280787-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW301A	7822/MW301E
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	22/10/2021	22/10/2021	22/10/2021	22/10/2021	22/10/2021
Date analysed	-	22/10/2021	22/10/2021	25/10/2021	25/10/2021	25/10/2021
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100	<100	<100	<100
TRH >C34 - C40	μg/L	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	μg/L	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	72	71	81	82	93

Our Reference		280787-11	280787-12	280787-13
Your Reference	UNITS	7822/MB02	7822/MB03	7822/MW201
Date Sampled		19/10/2021	19/10/2021	19/10/2021
Type of sample		Water	Water	Water
Date extracted	-	22/10/2021	22/10/2021	22/10/2021
Date analysed	-	25/10/2021	25/10/2021	25/10/2021
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100
Total +ve TRH (C10-C36)	μg/L	<50	<50	<50
TRH >C ₁₀ - C ₁₆	μg/L	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100	<100
TRH >C34 - C40	μg/L	<100	<100	<100
Total +ve TRH (>C10-C40)	μg/L	<50	<50	<50
Surrogate o-Terphenyl	%	87	85	91

PAHs in Water		harden of the Ed				
Our Reference		280787-1	280787-2	280787-3	280787-4	280787-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	22/10/2021	22/10/2021	22/10/2021	22/10/2021	22/10/2021
Date analysed	-	22/10/2021	22/10/2021	22/10/2021	22/10/2021	22/10/2021
Naphthalene	μg/L	<1	<1	<1	<1	<1
Acenaphthylene	µg/L	<1	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1	<1
Fluorene	µg/L	<1	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1	<1
Anthracene	μg/L	<1	<1	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1	<1
Chrysene	μg/L	<1	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	μg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	μg/L	<5	<5	<5	<5	<5
Total +ve PAH's	μg/L	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	88	87	85	72	85

PAHs in Water	المقاربة والأراب					
Our Reference		280787-6	280787-7	280787-8	280787-9	280787-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW301A	7822/MW3018
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	22/10/2021	22/10/2021	22/10/2021	22/10/2021	22/10/2021
Date analysed	-	22/10/2021	22/10/2021	25/10/2021	25/10/2021	25/10/2021
Naphthalene	μg/L	<1	<1	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1	<1	<1
Fluorene	μg/L	<1	<1	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1	<1	<1
Anthracene	µg/L	<1	<1	<1	<1	<1
Fluoranthene	µg/L	<1	<1	<1	<1	<1
Pyrene	μg/L	<1	<1	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1	<1	<1
Chrysene	µg/L	<1	<1	<1	<1	<1
Benzo(b,j+k)fluoranthene	μg/L	<2	<2	<2	<2	<2
Benzo(a)pyrene	μg/L	<1	<1	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1	<1	<1
Benzo(a)pyrene TEQ	μg/L	<5	<5	<5	<5	<5
Total +ve PAH's	μg/L	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	86	79	93	94	89

PAHs in Water Our Reference	I EAST-MALE	280787-11	280787-12	280787-13
Your Reference	UNITS	7822/MB02	7822/MB03	7822/MW201
Date Sampled		19/10/2021	19/10/2021	19/10/2021
Type of sample		Water	Water	Water
Date extracted	-	22/10/2021	22/10/2021	22/10/2021
Date analysed	-	25/10/2021	25/10/2021	25/10/2021
Naphthalene	μg/L	<1	<1	<1
Acenaphthylene	μg/L	<1	<1	<1
Acenaphthene	μg/L	<1	<1	<1
Fluorene	μg/L	<1	<1	<1
Phenanthrene	μg/L	<1	<1	<1
Anthracene	μg/L	<1	<1	<1
Fluoranthene	μg/L	<1	<1	<1
Pyrene	μg/L	<1	<1	<1
Benzo(a)anthracene	μg/L	<1	<1	<1
Chrysene	μg/L	<1	<1	<1
Benzo(b,j+k)fluoranthene	μg/L	<2	<2	<2
Benzo(a)pyrene	µg/L	<1	<1	<1
Indeno(1,2,3-c,d)pyrene	μg/L	<1	<1	<1
Dibenzo(a,h)anthracene	μg/L	<1	<1	<1
Benzo(g,h,i)perylene	μg/L	<1	<1	<1
Benzo(a)pyrene TEQ	μg/L	<5	<5	<5
Total +ve PAH's	μg/L	NIL (+)VE	NIL (+)VE	NIL (+)VE
Surrogate p-Terphenyl-d14	%	93	96	88

HM in water - dissolved						
Our Reference		280787-1	280787-2	280787-3	280787-4	280787-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	22/10/2021	22/10/2021	22/10/2021	22/10/2021	22/10/2021
Date analysed	-	22/10/2021	22/10/2021	22/10/2021	22/10/2021	22/10/2021
Arsenic-Dissolved	μg/L	<1	<1	<1	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	<1	<1	<1	<1
_ead-Dissolved	μg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	μg/L	3	<1	2	5	2

HM in water - dissolved						
Our Reference		280787-6	280787-7	280787-8	280787-9	280787-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW301A	7822/MW301B
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	22/10/2021	22/10/2021	22/10/2021	22/10/2021	22/10/2021
Date analysed	-	22/10/2021	22/10/2021	22/10/2021	22/10/2021	22/10/2021
Arsenic-Dissolved	μg/L	<1	<1	<1	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	µg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	3	<1	1	<1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	µg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	μg/L	1	7	<1	5	2

Envirolab Reference: 280787

Revision No: R00

HM in water - dissolved		فالتطابا ضقار		
Our Reference		280787-11	280787-12	280787-13
Your Reference	UNITS	7822/MB02	7822/MB03	7822/MW201
Date Sampled		19/10/2021	19/10/2021	19/10/2021
Type of sample		Water	Water	Water
Date prepared	-	22/10/2021	22/10/2021	22/10/2021
Date analysed	-	22/10/2021	22/10/2021	22/10/2021
Arsenic-Dissolved	μg/L	<1	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1
Copper-Dissolved	μg/L	4	4	11
Lead-Dissolved	μg/L	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	3	1
Zinc-Dissolved	μg/L	10	35	31

HM in water - total			7.5			1 15 7
Our Reference		280787-1	280787-2	280787-3	280787-4	280787-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	22/10/2021	22/10/2021	22/10/2021	22/10/2021	22/10/2021
Date analysed	-	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Arsenic-Total	μg/L	<1	<1	<1	<1	<1
Cadmium-Total	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Total	μg/L	<1	<1	<1	<1	<1
Copper-Total	μg/L	1	<1	<1	1	<1
_ead-Total	μg/L	<1	<1	<1	2	<1
Viercury-Total	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Total	μg/L	<1	<1	<1	<1	<1
Zinc-Total	μg/L	3.	1	6	2	1

HM in water - total		Sign of the				
Our Reference		280787-6	280787-7	280787-8	280787-9	280787-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW301A	7822/MW301B
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	22/10/2021	22/10/2021	22/10/2021	22/10/2021	22/10/2021
Date analysed	-	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Arsenic-Total	µg/L	<1	<1	5	<1	<1
Cadmium-Total	μg/L	<0.1	<0.1	0.1	<0.1	<0.1
Chromium-Total	μg/L	<1	<1	14	4	8
Copper-Total	μg/L	<1	5	26	4	8
Lead-Total	μg/L	<1	<1	39	<1	5
Mercury-Total	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Total	µg/L	<1	<1	5	<1	<1
Zinc-Total	μg/L	2	3	33	4	3

HM in water - total				
Our Reference		280787-11	280787-12	280787-13
Your Reference	UNITS	7822/MB02	7822/MB03	7822/MW20
Date Sampled		19/10/2021	19/10/2021	19/10/2021
Type of sample		Water	Water	Water
Date prepared	-	22/10/2021	22/10/2021	22/10/2021
Date analysed	-	25/10/2021	25/10/2021	25/10/2021
Arsenic-Total	μg/L	<1	<1	<1
Cadmium-Total	μg/L	<0.1	<0.1	<0.1
Chromium-Total	µg/L	2	1	18
Copper-Total	μg/L	8	5	86
Lead-Total	μg/L	<1	<1	4
Mercury-Total	μg/L	0.08	<0.05	<0.05
Nickel-Total	μg/L	2	3	24
Zinc-Total	µg/∟	11	28	240

Metals in Waters - Acid extractab	ole	Terra 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Our Reference		280787-1	280787-2	280787-3	280787-4	280787-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample	S. S. Pale San	Water	Water	Water	Water	Water
Date prepared	-	22/10/2021	22/10/2021	22/10/2021	22/10/2021	22/10/2021
Date analysed	-	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Phosphorus - Total	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05

Metals in Waters - Acid extractable			M Comment			
Our Reference		280787-6	280787-7	280787-8	280787-9	280787-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW301A	7822/MW301B
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	22/10/2021	22/10/2021	22/10/2021	22/10/2021	22/10/2021
Date analysed	-	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Phosphorus - Total	mg/L	<0.05	<0.05	0.2	<0.05	<0.05

Metals in Waters - Acid extractat	ole		Same and the	
Our Reference		280787-11	280787-12	280787-13
Your Reference	UNITS	7822/MB02	7822/MB03	7822/MW201
Date Sampled		19/10/2021	19/10/2021	19/10/2021
Type of sample		Water	Water	Water
Date prepared	-	22/10/2021	22/10/2021	22/10/2021
Date analysed	-	25/10/2021	25/10/2021	25/10/2021
Phosphorus - Total	mg/L	<0.05	<0.05	<0.05

Ion Balance						
Our Reference		280787-1	280787-2	280787-3	280787-4	280787-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW0
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample	4 194	Water	Water	Water	Water	Water
Date prepared	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
Date analysed	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
Calcium - Dissolved	mg/L	0.6	0.5	0.5	<0.5	<0.5
Potassium - Dissolved	mg/L	1	1	0.9	0.5	<0.5
Sodium - Dissolved	mg/L	4	4	4	4	5.2
Magnesium - Dissolved	mg/L	<0.5	<0.5	<0.5	<0.5	0.6
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO₃	mg/L	11	10	10	9	5
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	11	10	10	9	5
Sulphate, SO4	mg/L	1	1	1	22	3
Chloride, Cl	mg/L	6	4	4	4	6
onic Balance	%	-29	-25	-23	-60	-12

Ion Balance		- 10 G 10 G				
Our Reference		280787-6	280787-7	280787-8	280787-9	280787-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW301A	7822/MW301B
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample	1 10 10	Water	Water	Water	Water	Water
Date prepared	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
Date analysed	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
Calcium - Dissolved	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Potassium - Dissolved	mg/L	<0.5	0.9	0.8	0.9	1
Sodium - Dissolved	mg/L	5	5.7	5	3	3
Magnesium - Dissolved	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	6	6	8	5	7
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	6	6	8	5	7
Sulphate, SO4	mg/L	<1	4	2	2	2
Chloride, Cl	mg/L	7	5	4	4	4
Ionic Balance	%	-19	-13	-18	-21	-23

Ion Balance				30 C
Our Reference		280787-11	280787-12	280787-13
Your Reference	UNITS	7822/MB02	7822/MB03	7822/MW201
Date Sampled		19/10/2021	19/10/2021	19/10/2021
Type of sample	- The -	Water	Water	Water
Date prepared	-	21/10/2021	21/10/2021	21/10/2021
Date analysed	-	21/10/2021	21/10/2021	21/10/2021
Calcium - Dissolved	mg/L	0.6	0.7	<0.5
Potassium - Dissolved	mg/L	1	2	<0.5
Sodium - Dissolved	mg/L	5.3	3	5.9
Magnesium - Dissolved	mg/L	<0.5	0.8	<0.5
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	9	7	7
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5
Fotal Alkalinity as CaCO₃	mg/L	9	7	7
Sulphate, SO4	mg/L	2	1	2
Chloride, CI	mg/L	5	4	4
lonic Balance	%	-13	3.0	-8.0

Miscellaneous Inorganics					THE RESERVE OF THE PERSON NAMED IN	
Our Reference		280787-1	280787-2	280787-3	280787-4	280787-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
Date analysed	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
Total Nitrogen in water	mg/L	0.2	0.3	<0.1	<0.1	<0.1
NOx as N in water	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Ammonia as N in water	mg/L	<0.005	<0.005	<0.005	<0.005	0.006
Phosphate as P in water	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005

Miscellaneous Inorganics	1711			100000		
Our Reference	-	280787-6	280787-7	280787-8	280787-9	280787-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW301A	7822/MW301B
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/207
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
Date analysed	-	21/10/2021	21/10/2021	21/10/2021	21/10/2021	21/10/2021
Total Nitrogen in water	mg/L	<0.1	<0.1	0.2	0.1	0.1
NOx as N in water	mg/L	0.02	0.02	<0.005	0.007	0.01
Ammonia as N in water	mg/L	<0.005	0.011	<0.005	0.013	0.006
Phosphate as P in water	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005

Miscellaneous Inorganics				A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Our Reference		280787-11	280787-12	280787-13
Your Reference	UNITS	7822/MB02	7822/MB03	7822/MW201
Date Sampled	51 1111	19/10/2021	19/10/2021	19/10/2021
Type of sample	or training	Water	Water	Water
Date prepared	-	21/10/2021	21/10/2021	21/10/2021
Date analysed	-	21/10/2021	21/10/2021	21/10/2021
Total Nitrogen in water	mg/L	<0.1	15	0.6
NOx as N in water	mg/L	0.01	1.6	0.53
Ammonia as N in water	mg/L	0.020	0.021	<0.005
Phosphate as P in water	mg/L	<0.005	<0.005	<0.005

Method ID	Methodology Summary
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 10% ie total anions = total cations +/-10%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered or receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 14 (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

Envirolab Reference: 280787

Revision No: R00

QUALITY CONTR	ROL: vTRH(C6-C10)/B	ΓΕΧΝ in Water			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date extracted	-			21/10/2021	1	21/10/2021	22/10/2021		21/10/2021	
Date analysed	-			21/10/2021	1	21/10/2021	22/10/2021		21/10/2021	
TRH C ₆ - C ₉	µg/L	10	Org-023	<10	1	<10	<10	0	100	
TRH C ₈ - C ₁₀	µg/L	10	Org-023	<10	1	<10	<10	0	100	
Benzene	µg/L	1	Org-023	<1	1	<1	<1	0	96	
Toluene	µg/L	1	Org-023	<1	1	<1	<1	0	95	
Ethylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	101	
m+p-xylene	µg/L	2	Org-023	<2	1	<2	<2	0	103	
o-xylene	µg/L	1	Org-023	<1	1	<1	<1	0	100	
Naphthalene	µg/L	1	Org-023	<1	1	<1	<1	0		
Surrogate Dibromofluoromethane	%		Org-023	106	1	105	104	1	108	
Surrogate toluene-d8	%		Org-023	100	1	100	100	0	100	
Surrogate 4-BFB	%		Org-023	102	1	103	102	1	100	

QUALITY CONTR	ROL: vTRH(C6-C10)/B	TEXN in Water	نب حالت		Du	plicate	WELL	Spike Re	covery 🐎
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				11	21/10/2021	22/10/2021			
Date analysed	-				11	21/10/2021	22/10/2021			
TRH C ₆ - C ₉	µg/L	10	Org-023		11	<10	<10	0		
TRH C ₆ - C ₁₀	µg/L	10	Org-023		11	<10	<10	0		
Benzene	μg/L	1	Org-023		11	<1	<1	0		
Toluene	µg/L	1	Org-023		11	<1	<1	0		
Ethylbenzene	μg/L	1	Org-023		11	<1	<1	0		
m+p-xylene	µg/L	2	Org-023		11	<2	<2	0		
o-xylene	μg/L	1	Org-023		11	<1	<1	0		
Naphthalene	µg/L	1	Org-023		11	<1	<1	0		
Surrogate Dibromofluoromethane	%		Org-023		11	104	105	1		
Surrogate toluene-d8	%		Org-023		11	100	101	1		
Surrogate 4-BFB	%		Org-023		11	106	102	4		

QUALITY C	ONTROL: svT	RH (C10-C	40) in Water			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	280787-12
Date extracted	-			22/10/2021	1	22/10/2021	22/10/2021		22/10/2021	22/10/2021
Date analysed	-			22/10/2021	1	22/10/2021	22/10/2021		22/10/2021	25/10/2021
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	1	<50	<50	0	92	98
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	1	<100	<100	0	92	95
TRH C ₂₉ - C ₃₈	μg/L	100	Org-020	<100	1	<100	<100	0	99	85
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	1	<50	<50	0	92	98
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	1	<100	<100	0	92	95
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020	<100	1	<100	<100	0	99	85
Surrogate o-Terphenyl	%		Org-020	76	1	75	76	1	73	85

QUALITY	CONTROL: svT	RH (C10-C	40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				11	22/10/2021	22/10/2021			
Date analysed	-			- IVII	11	25/10/2021	25/10/2021			
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020		11	<50	<50	0		
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020		11	<100	<100	0		
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	117	11	<100	<100	0		
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020		11	<50	<50	0		
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020		11	<100	<100	0		
TRH >C ₃₄ - C ₄₀	µg/L	100	Org-020		11	<100	<100	0		
Surrogate o-Terphenyl	%		Org-020		11	87	85	2		

QUALI	TY CONTRO	L: PAHs in	Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	280787-2
Date extracted	-			22/10/2021	1	22/10/2021	22/10/2021		22/10/2021	22/10/202
Date analysed	-			22/10/2021	1	22/10/2021	22/10/2021		22/10/2021	22/10/202
Naphthalene	µg/L	1	Org-022/025	<1	1	<1	<1	0	76	98
Acenaphthylene	μg/L	1	Org-022/025	<1	1	<1	<1	0		
Acenaphthene	µg/L	1	Org-022/025	<1	1	<1	<1	0	63	83
luorene	μg/L	1	Org-022/025	<1	1	<1	<1	0	75	95
Phenanthrene	μg/L	1	Org-022/025	<1	1	<1	<1	0	86	114
Anthracene	μg/L	1	Org-022/025	<1	1	<1	<1	0		
Fluoranthene	μg/L	1	Org-022/025	<1	1	<1	<1	0	66	86
Pyrene	μg/L	1	Org-022/025	<1	1	<1	<1	0	70	93
Benzo(a)anthracene	μg/L	1	Org-022/025	<1	1	<1	<1	0		
Chrysene	μg/L	1	Org-022/025	<1	1	<1	<1	0	74	86
Benzo(b,j+k)fluoranthene	μg/L	2	Org-022/025	<2	1	<2	<2	0		
Benzo(a)pyrene	μg/L	1	Org-022/025	<1	1	<1	<1	0	70	88
ndeno(1,2,3-c,d)pyrene	μg/L	1	Org-022/025	<1	1	<1	<1	0		in in
Dibenzo(a,h)anthracene	μg/L	1	Org-022/025	<1	1	<1	<1	0		
Benzo(g,h,i)perylene	µg/L	1	Org-022/025	<1	1	<1	<1	0		
Surrogate p-Terphenyl-d14	%		Org-022/025	86	1	88	87	1	77	87

QUAL	ITY CONTRO	_: PAHs in	Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			111	11	22/10/2021	22/10/2021			
Date analysed					11	25/10/2021	25/10/2021			
Naphthalene	μg/L	1	Org-022/025		11	<1	<1	0		
Acenaphthylene	μg/L	1	Org-022/025		11	<1	<1	0		
Acenaphthene	μg/L	1	Org-022/025		11	<1	<1	0		
Fluorene	μg/L	1	Org-022/025		11	<1	<1	0		
henanthrene	μg/L	1	Org-022/025		11	<1	<1	0		
Anthracene	μg/L	1	Org-022/025		11	<1	<1	0		
Fluoranthene	μg/L	1	Org-022/025		11	<1	<1	0		
Pyrene	μg/L	1	Org-022/025		11	<1	<1	0		
Benzo(a)anthracene	μg/L	1	Org-022/025		11	<1	<1	0		
Chrysene	μg/L	1	Org-022/025		11	<1	<1	0		
Benzo(b,j+k)fluoranthene	µg/L	2	Org-022/025		11	<2	<2	0		
Benzo(a)pyrene	μg/L	1	Org-022/025		11	<1	<1	0		
Indeno(1,2,3-c,d)pyrene	μg/L	1	Org-022/025		11	<1	<1	0		
Dibenzo(a,h)anthracene	μg/L	1	Org-022/025		11	<1	<1	0		
Benzo(g,h,i)perylene	µg/L	1	Org-022/025		11	<1	<1	0		
Surrogate p-Terphenyl-d14	%		Org-022/025		11	93	98	5		

QUALITY Co	ONTROL: HI	M in watei	r - dissolved		17.7	Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	280787-2
Date prepared	-			22/10/2021	1	22/10/2021	22/10/2021		22/10/2021	22/10/2021
Date analysed	-			22/10/2021	1	22/10/2021	22/10/2021		22/10/2021	22/10/2021
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	<1			97	
Cadmium-Dissolved	µg/L	0.1	Metals-022	<0.1	1	<0.1			98	
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	<1			99	
Copper-Dissolved	μg/L	1	Metals-022	<1	1	<1			102	
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1			98	
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	110	101
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	<1			100	
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	3			101	

QUALITY CO	ONTROL: HI	∕l in wate	r - dissolved		8	Du	plicate		Spike R	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	280787-4
Date prepared	-				3	22/10/2021	22/10/2021			22/10/2021
Date analysed	-				3	22/10/2021	22/10/2021			22/10/2021
Arsenic-Dissolved	μg/L	1	Metals-022		3	<1	<1	0		98
Cadmium-Dissolved	μg/L	0.1	Metals-022	110	3	<0.1	<0.1	0		103
Chromium-Dissolved	μg/L	1	Metals-022	- 11	3	<1	<1	0		88
Copper-Dissolved	μg/L	1	Metals-022	1111	3	<1	<1	0		105
Lead-Dissolved	μg/L	1	Metals-022		3	<1	<1	0		96
Mercury-Dissolved	μg/L	0.05	Metals-021		3	<0.05				
Nickel-Dissolved	μg/L	1	Metals-022		3	<1	<1	0		103
Zinc-Dissolved	μg/L	1	Metals-022		3	2	2	0		109

QUALITY	CONTROL: HI	M in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				11	22/10/2021	22/10/2021			
Date analysed	-				11	22/10/2021	22/10/2021			
Arsenic-Dissolved	μg/L	1	Metals-022	1-1	11	<1				1111
Cadmium-Dissolved	µg/L	0.1	Metals-022	75.1	11	<0.1				
Chromium-Dissolved	µg/L	1	Metals-022	1-11	11	<1				1111
Copper-Dissolved	μg/L	1	Metals-022	100	11	4				
Lead-Dissolved	μg/L	1	Metals-022	107	11	<1				
Mercury-Dissolved	µg/L	0.05	Metals-021	1000	11	<0.05	<0.05	0		
Nickel-Dissolved	μg/L	1	Metals-022	1117	11	<1				
Zinc-Dissolved	µg/L	1	Metals-022		11	10				

Envirolab Reference: 280787

Revision No: R00

QUALITY CC	NTROL: HN	/l in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				12	22/10/2021	22/10/2021			
Date analysed	-				12	22/10/2021	22/10/2021			
Arsenic-Dissolved	µg/L	1	Metals-022		12	<1	<1	0		
Cadmium-Dissolved	μg/L	0.1	Metals-022		12	<0.1	<0.1	0		
Chromium-Dissolved	μg/L	1	Metals-022		12	<1	<1	0		
Copper-Dissolved	μg/L	1	Metals-022	101	12	4	4	0		
Lead-Dissolved	μg/L	1	Metals-022	1111	12	<1	<1	0		
Mercury-Dissolved	μg/L	0.05	Metals-021		12	<0.05				
Nickel-Dissolved	μg/L	1	Metals-022		12	3	3	0		
Zinc-Dissolved	μg/L	1	Metals-022		12	35	36	3		

QUALITY	CONTROL:	HM in wa	nter - total			Du	plicate	115 E	Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	280787-2
Date prepared	-			25/10/2021	1	22/10/2021	22/10/2021		25/10/2021	25/10/2021
Date analysed	-			25/10/2021	1	25/10/2021	25/10/2021		25/10/2021	25/10/2021
Arsenic-Total	µg/L	1	Metals-022	<1	1	<1	<1	0	99	102
Cadmium-Total	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	Ò	101	102
Chromium-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	98	100
Copper-Total	µg/L	1	Metals-022	<1	1	1	1	0	97	101
Lead-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	100	100
Mercury-Total	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	102	110
Nickel-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	96	99
Zinc-Total	μg/L	1	Metals-022	<1	1	3	3	0	97	101

QUA	LITY CONTROL:	HM in wa	ter - total	البادات		Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				11	22/10/2021	22/10/2021			
Date analysed	-			=10	11	25/10/2021	25/10/2021			
Arsenic-Total	µg/L	1	Metals-022		11	<1	<1	0		
Cadmium-Total	μg/L	0.1	Metals-022		11	<0.1	<0.1	O		
Chromium-Total	μg/L	1	Metals-022	6.11	11	2	2	0		
Copper-Total	μg/L	1	Metals-022		11	8	8	0		
ead-Total	µg/L	1	Metals-022	1111	11	<1	<1	0		
fercury-Total	µg/L	0.05	Metals-021		11	0.08	0.08	0		
lickel-Total	µg/L	1	Metals-022	7.11	11	2	2	0		
Zino-Total	μg/L	1	Metals-022		11	11	11	0		

QUALITY CO	NTROL: Metals i	n Waters	- Acid extractable		11	Du	plicate		Spike Re	сочегу %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	280787-3
Date prepared	-			22/10/2021	1	22/10/2021	22/10/2021		22/10/2021	22/10/2021
Date analysed	-			25/10/2021	1	25/10/2021	25/10/2021		25/10/2021	25/10/2021
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	1	<0.05	<0.05	0	102	104

QUALITY CONT	ROL: Metals i	n Waters -	- Acid extractable		110	Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				11	22/10/2021	22/10/2021			
Date analysed					11	25/10/2021	25/10/2021			
Phosphorus - Total	mg/L	0.05	Metals-020		11	<0.05	<0.05	0		

QUAL	ITY CONTRO	DL: Ion Ba	lance	T 11 E 25		Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	280787-2
Date prepared	-			21/10/2021	1	21/10/2021	21/10/2021		21/10/2021	21/10/2021
Date analysed	-			21/10/2021	1	21/10/2021	21/10/2021		21/10/2021	21/10/2021
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	0.6			90	
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	1			90	
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	4			96	-
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	<0.5			94	
Hydroxìde Alkalinity (OH⁻) as CaCO₃	mg/L	5	Inorg-006	<5	1	<5	m			THE RESERVE OF THE PERSON OF T
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	11				
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	<5	mn		11111	
Total Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	1	11			105	
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	1	1	0	90	90
Chloride, Cl	mg/L	1	Inorg-081	<1	1	6	5	18	96	89.
Ionic Balance	%		Inorg-040		1	-29				

QUAL	TY CONTRO	DL: Ion Bal	lance		111	Du	plicate	180 15	Spike F	Recovery %
Test Description	Units	POL	Method	Blank	#	Base	Dup.	RPD	[NT]	280787-6
Date prepared	120				5	21/10/2021	21/10/2021			21/10/2021
Date analysed	•				5	21/10/2021	21/10/2021			21/10/2021
Calcium - Dissolved	mg/L	0.5	Metals-020		5	<0.5	<0.5	0		94
Potassium - Dissolved	mg/L	0.5	Metals-020		5	<0.5	<0.5	0		96
Sodium - Dissolved	mg/L	0.5	Metals-020		5	5.2	5.2	0		94
Magnesium - Dissolved	mg/L	0.5	Metals-020		5	0.6	0.6	0		98
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	5	Inorg-006		5	<5				
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006		5	5				
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006		5	<5				100
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006		5	5				100
Sulphate, SO4	mg/L	1	Inorg-081		5	3				Pill
Chloride, Cl	mg/L	1	Inorg-081		5	6				
Ionic Balance	%		Inorg-040		5	-12				151

Envirolab Reference: 280787

Revision No: R00

QUALI	TY CONTRO	DL: Ion Ba	lance			Du	plicate	5 T A .	Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				10	21/10/2021	21/10/2021			
Date analysed	-				10	21/10/2021	21/10/2021			
Calcium - Dissolved	mg/L	0.5	Metals-020		10	<0.5	<0.5	0		
Potassium - Dissolved	mg/L	0.5	Metals-020		10	1	1	0		
Sodium - Dissolved	mg/L	0.5	Metals-020		10	3	3	0		
Magnesium - Dissolved	mg/L	0.5	Metals-020		10	<0.5	<0.5	0		
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	5	Inorg-006		10	<5				
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006		10	7				
Carbonate Alkalinity as CaCO₃	mg/L	5	Inorg-006		10	<5				10-1
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006		10	7				1.1
Sulphate, SO4	mg/L	1	Inorg-081		10	2				
Chloride, Cl	mg/L	1	Inorg-081		10	4				
onic Balance	%		Inorg-040		10	-23				0.07

QUALI	TY CONTRO	OL: Ion Bal	ance		Tu.	Du	plicate	44.7	Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				11	21/10/2021	21/10/2021			71.1
Date analysed	-				11	21/10/2021	21/10/2021			
Calcium - Dissolved	mg/L	0.5	Metals-020		11	0.6				
Potassium - Dissolved	mg/L	0.5	Metals-020		11	1				
Sodium - Dissolved	mg/L	0.5	Metals-020		11	5.3				
Magnesium - Dissolved	mg/L	0.5	Metals-020		11	<0.5				
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006		11	<5				
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006		11	9				
Carbonate Alkalinity as CaCO₃	mg/L	5	Inorg-006		11	<5				
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006		11	9				
Sulphate, SO4	mg/L	1	Inorg-081		11	2	2	0		117
Chloride, Cl	mg/L	1	Inorg-081		11	5	5	0		111
Ionic Balance	%		Inorg-040		11	-13				

QUALITY (CONTROL: Mis	scellaneo	us Inorganics	No.	La	Dı	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	280787-2
Date prepared	-			21/10/2021	1	21/10/2021	21/10/2021		21/10/2021	21/10/2021
Date analysed	-			21/10/2021	1	21/10/2021	21/10/2021		21/10/2021	21/10/2021
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	0.2	0.2	0	99	102
NOx as N in water	mg/L	0.005	inorg-055	<0.005	1	<0.005	<0.005	0	107	110
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	<0.005	<0.005	0	97	104
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	<0.005	<0.005	0	95	102

QUALITY	CONTROL: Mi	scellaneo	us Inorganics			Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[TN]	
Date prepared	-			INTI	11	21/10/2021	21/10/2021				
Date analysed	-				11	21/10/2021	21/10/2021				
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127		11	<0.1	<0.1	0			
NOx as N in water	mg/L	0.005	Inorg-055		11	0.01	0.01	0			
Ammonia as N in water	mg/L	0.005	Inorg-057		11	0.020	0.022	10			
Phosphate as P in water	mg/L	0.005	Inorg-060		11	<0.005	<0.005	0			

Result Definiti	ons
NT	Not tested
NA NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Blank Blank This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples. This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable. A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist. LCS (Laboratory Control Sample) This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike

Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 280787

Revision No:

R00

Report Comments

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab.

Note: there is a possibility some elements may be underestimated.

The mass inbalance may be caused by other ions that have not been measured.

TRACE METALS: In theory the total metal content should be higher than the dissolved metal content. However, in some samples this is not the case. The sample has been re-analysed for both Total and Dissolved metals and results have been confirmed.

Envirolab Services Pty Ltd
ABN 37 112 535 645
12 Ashley St Chatswood NSW 2067
ph 02 9910 6200 fax 02 9910 6201
customerservice@envirolab.com.au
www.envirolab.com.au

CERTIFICATE OF ANALYSIS 281301

Client Details	
Client	Martens & Associates Pty Ltd
Attention	R Kightley
Address	Suite 201, 20 George St, Hornsby, NSW, 2077

Sample Details		SA- 22 - BA DAY MA
Your Reference	P2007822 Bell Quarry	
Number of Samples	13 Water	
Date samples received	27/10/2021	
Date completed instructions received	27/10/2021	

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details		
Date results requested by	03/11/2021	
Date of Issue	03/11/2021	

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Results Approved By

Diego Bigolin, Inorganics Supervisor Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Priya Samarawickrama, Senior Chemist Steven Luong, Organics Supervisor **Authorised By**

Nancy Zhang, Laboratory Manager

VOCs in water-Low Level Our Reference		281301-13
Your Reference	UNITS	7822/MW201
Date Sampled		25/10/2021
Type of sample	A	Water
Date analysed	-	01/11/2021
MTBE	μg/L	<0.1
Dichlorodifluoromethane	μg/L	<2
Chloromethane	µg/L	<2
Vinyl Chloride	μg/L	<0.2
Bromomethane	μg/L	<2
Chloroethane	μg/L	<2
Trichlorofluoromethane	μg/L	<2
1,1-Dichloroethene	μg/L	<0.1
Trans-1,2-dichloroethene	μg/L	<0.1
1,1-dichloroethane	μg/L	<0.1
Cis-1,2-dichloroethene	μg/L	<0.1
Bromochloromethane	µg/L	<0.5
Chloroform	µg/L	<0.5
2,2-dichloropropane	μg/L	<0.1
1,2-dichloroethane	μg/L	<0.1
1,1,1-trichloroethane	μg/L	<0.1
1,1-dichloropropene	μg/L	<0.1
Carbon tetrachloride	μg/L	<0.1
Benzene	μg/L	<0.1
Dibromomethane	µg/L	<0.5
1,2-dichloropropane	μg/L	<0.1
Trichloroethene	μg/L	<0.1
Bromodichloromethane	μg/L	<0.1
trans-1,3-dichloropropene	μg/L	<0.1
cis-1,3-dichloropropene	µg/L	<0.1
1,1,2-trichloroethane	μg/L	<0.1
Toluene	µg/L	0.3
1,3-dichloropropane	µg/L	<0.1
Dibromochloromethane	μg/L	<0.1
1,2-dibromoethane	μg/L	<0.1
Tetrachloroethene	µg/L	<0.1
1,1,1,2-tetrachloroethane	µg/L	<0.1
Chlorobenzene	μg/L	<0.1
Ethylbenzene	μg/L	<0.1
Bromoform	μg/L	<0.1

VOCs in water-Low Level		
Our Reference		281301-13
Your Reference	UNITS	7822/MW201
Date Sampled	4-4-5	25/10/2021
Type of sample		Water
m+p-xylene	μg/L	<0.2
Styrene	μg/L	<0.1
1,1,2,2-tetrachloroethane	μg/L	<0.1
o-xylene	μg/L	0.2
1,2,3-trichloropropane	μg/L	<0.1
Isopropylbenzene	μg/L	<0.1
Bromobenzene	μg/L	<0.1
n-propyl benzene	μg/L	<0.1
2-chlorotoluene	μg/L	<0.1
4-chlorotoluene	μg/L	<0.1
1,3,5-trimethyl benzene	μg/L	<0.1
Tert-butyl benzene	μg/L	<0.1
1,2,4-trimethyl benzene	μg/L	0.1
1,3-dichlorobenzene	µg/L	<0.1
Sec-butyl benzene	µg/L	<0.1
1,4-dichlorobenzene	µg/L	<0.1
1-isopropyl toluene	μg/L	<0.1
,2-dichlorobenzene	μg/L	<0.1
n-butyl benzene	μg/L	<0.1
,2-dibromo-3-chloropropane	μg/L	<0.1
,2,4-trichlorobenzene	μg/L	<0.1
lexachlorobutadiene	μg/L	<0.2
,2,3-trichlorobenzene	µg/L	<0.1
Surrogate Dibromofluoromethane	%	106
Surrogate toluene-d8	%	102
Surrogate 4-BFB	%	96

Envirolab Reference: 281301

Revision No: R00

Our Reference		281301-1	281301-2	281301-3	281301-4	281301-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	29/10/2021	29/10/2021	29/10/2021	29/10/2021	29/10/2021
Date analysed	-	29/10/2021	29/10/2021	29/10/2021	29/10/2021	29/10/2021
「RH C6 - C9	µg/L	<10	<10	<10	<10	<10
TRH C6 - C10	µg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	<10
Benzene	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	μg/L	<1	<1	<1	<1	<1
n+p-xylene	μg/L	<2	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	110	109	108	108	110
Surrogate toluene-d8	%	101	102	101	101	100
Surrogate 4-BFB	%	109	107	108	108	110

Our Reference		281301-6	281301-7	281301-8	281301-9	281301-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW301A	7822/MW301E
Date Sampled		25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	29/10/2021	29/10/2021	29/10/2021	29/10/2021	29/10/2021
Date analysed	-	29/10/2021	29/10/2021	29/10/2021	29/10/2021	29/10/2021
TRH C6 - C9	μg/L	<10	<10	<10	<10	<10
TRH C6 - C10	µg/L	<10	<10	<10	<10	<10
TRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10	<10	<10
Benzene	μg/L	<1	<1	<1	<1	<1
Toluene	μg/L	<1	<1	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1	<1	<1
m+p-xylene	µg/L	<2	<2	<2	<2	<2
o-xylene	μg/L	<1	<1	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1	<1	<1
Surrogate Dibromofluoromethane	%	108	110	110	109	110
Surrogate toluene-d8	%	100	100	101	101	101
Surrogate 4-BFB	%	108	107	108	108	107

Envirolab Reference: 281301

Revision No: R00

Our Reference		281301-11	281301-12	281301-13
Your Reference	UNITS	7822/MB02	7822/MB03	7822/MW201
Date Sampled		25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water
Date extracted	-	29/10/2021	29/10/2021	29/10/2021
Date analysed	-	29/10/2021	29/10/2021	29/10/2021
TRH C6 - C9	µg/L	<10	<10	<10
TRH C6 - C10	μg/L	<10	<10	<10
FRH C ₆ - C ₁₀ less BTEX (F1)	μg/L	<10	<10	<10
Benzene	μg/L	<1	<1	<1
Foluene	μg/L	<1	<1	<1
Ethylbenzene	µg/L	<1	<1	<1
n+p-xylene	μg/L	<2	<2	<2
o-xylene	μg/L	<1	<1	<1
Naphthalene	μg/L	<1	<1	<1
Surrogate Dibromofluoromethane	%	110	109	110
Surrogate toluene-d8	%	100	101	100
Surrogate 4-BFB	%	105	108	107

Envirolab Reference: 281301

Revision No: R00

Our Reference	1 1 1 1/2 2	281301-1	281301-2	281301-3	281301-4	281301-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea	7822/SW01
Date Sampled	The s	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Date analysed	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	29/10/2021
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	µg/L	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆	µg/L	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	µg/L	<50	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	µg/L	<100	<100	<100	<100	<100
TRH >C ₃₄ - C ₄₀	µg/L	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	µg/L	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	84	95	73	98	108

svTRH (C10-C40) in Water		T. 121 171 17			U. U. S. Carrier	المراقب المسرور
Our Reference		281301-6	281301-7	281301-8	281301-9	281301-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW301A	7822/MW301B
Date Sampled	No. of the last	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	46	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Date analysed	•	29/10/2021	29/10/2021	29/10/2021	29/10/2021	29/10/2021
TRH C ₁₀ - C ₁₄	μg/L	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	μg/L	<50	<50	<50	<50	<50
TRH >C10 - C16	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	<50	<50	<50
TRH >C ₁₆ - C ₃₄	μg/L	<100	<100	<100	<100	<100
TRH >C34 - C40	μg/L	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	μg/L	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	84	85	80	139	85

svTRH (C10-C40) in Water		La Company		
Our Reference		281301-11	281301-12	281301-13
Your Reference	UNITS	7822/MB02	7822/MB03	7822/MW201
Date Sampled		25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water
Date extracted	-	28/10/2021	28/10/2021	28/10/2021
Date analysed	-	29/10/2021	29/10/2021	29/10/2021
TRH C10 - C14	μg/L	<50	<50	95
TRH C ₁₅ - C ₂₈	μg/L	<100	<100	240
TRH C ₂₉ - C ₃₆	μg/L	<100	<100	<100
Total +ve TRH (C10-C36)	μg/L	<50	<50	340
TRH >C10 - C15	μg/L	<50	<50	200
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	μg/L	<50	<50	200
TRH >C16 - C34	μg/L	<100	<100	120
TRH >C ₃₄ - C ₄₀	μg/L	<100	<100	<100
Total +ve TRH (>C10-C40)	μg/L	<50	<50	330
Surrogate o-Terphenyl	%	93	97	97

Our Reference	- 10 May - 10	281301-1	281301-2	281301-3	281301-4	281301-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample	con the same of th	Water	Water	Water	Water	Water
Date extracted		28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Date analysed	-	29/10/2021	29/10/2021	29/10/2021	29/10/2021	29/10/2021
Naphthalene	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Acenaphthylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
ndeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Total +ve PAH's	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	93	105	82	95	104

PAHs in Water - Low Level						
Our Reference		281301-6	281301-7	281301-8	281301-9	281301-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW301A	7822/MW301B
Date Sampled		25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Date analysed	-	29/10/2021	29/10/2021	29/10/2021	29/10/2021	29/10/2021
Naphthalene	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Acenaphthylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
ndeno(1,2,3-c,d)pyrene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	µg/∟	<0.5	<0.5	<0.5	<0.5	<0.5
otal +ve PAH's	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	90	97	80	125	92

Our Reference		281301-11	281301-12	281301-13
Your Reference	UNITS	7822/MB02	7822/MB03	7822/MW201
Date Sampled		25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water
Date extracted	-	28/10/2021	28/10/2021	28/10/2021
Date analysed		29/10/2021	29/10/2021	29/10/2021
Naphthalene	μg/L	<0.2	<0.2	<0.2
Acenaphthylene	μg/L	<0.1	<0.1	<0.1
Acenaphthene	μg/L	<0.1	<0.1	<0.1
Fluorene	μg/L	<0.1	<0.1	<0.1
Phenanthrene	μg/L	<0.1	<0.1	<0.1
Anthracene	μg/L	<0.1	<0.1	<0.1
Fluoranthene	μg/L	<0.1	<0.1	<0.1
Pyrene	μg/L	<0.1	<0.1	<0.1
Benzo(a)anthracene	μg/L	<0.1	<0.1	<0.1
Chrysene	µg/L	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	μg/L	<0.2	<0.2	<0.2
Benzo(a)pyrene	µg/L	<0.1	<0.1	<0.1
Indeno(1,2,3-c,d)pyrene	µg/L	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	μg/L	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	μg/L	<0.1	<0.1	<0.1
Benzo(a)pyrene TEQ	μg/L	<0.5	<0.5	<0.5
Total +ve PAH's	μg/L	<0.1	<0.1	<0.1
Surrogate p-Terphenyl-d14	%	101	98	129

Our Reference		281301-1	281301-2	281301-3	281301-4	281301-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea	7822/SW0
Date Sampled		25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/202
Date analysed	-	29/10/2021	29/10/2021	29/10/2021	29/10/2021	29/10/2021
alpha-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
нсв	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
peta-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
gamma-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Heptachlor	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
delta-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Aldrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Heptachlor Epoxide	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
gamma-Chlordane	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
llpha-Chlordane	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan I	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
p-DDE	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dieldrin	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan II	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
p-DDD	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
ndrin Aldehyde	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
p-DDT	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan Sulphate	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
/lethoxychlor	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate TCMX	%	90	96	71	82	98

Our Reference		281301-6	281301-7	281301-8	281301-9	281301-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW301A	7822/MW301E
Date Sampled		25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Date analysed	-	29/10/2021	29/10/2021	29/10/2021	29/10/2021	29/10/2021
alpha-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
НСВ	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
peta-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
gamma-BHC	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Heptachlor	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
delta-BHC	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Aldrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Heptachlor Epoxide	µg/L	<0,2	<0.2	<0.2	<0.2	<0.2
gamma-Chlordane	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
alpha-Chlordane	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan I	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
pp-DDE	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dieldrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan II	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
op-DDD	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endrin Aldehyde	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
pp-DDT	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Endosulfan Sulphate	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Methoxychlor	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate TCMX	%	89	85	82	125	94

Organochlorine Pesticides in Wa Our Reference		281301-11	281301-12	281301-13
Your Reference	UNITS	7822/MB02	7822/MB03	7822/MW20
Date Sampled	OWITO	25/10/2021	25/10/2021	25/10/2021
			1 3 1 1 1	TELL STEE
Type of sample Date extracted		Water	Water	Water
	-	28/10/2021	28/10/2021	28/10/2021
Date analysed	-	29/10/2021	29/10/2021	29/10/2021
alpha-BHC	μg/L	<0.2	<0.2	<0.2
HCB	μg/L	<0.2	<0.2	<0.2
beta-BHC	µg/L	<0.2	<0.2	<0.2
gamma-BHC	µg/L	<0.2	<0.2	<0.2
Heptachlor	μg/L	<0.2	<0.2	<0.2
delta-BHC	μg/L	<0.2	<0.2	<0.2
Aldrin	μg/L	<0.2	<0.2	<0.2
Heptachlor Epoxide	μg/L	<0.2	<0.2	<0.2
gamma-Chlordane	μg/L	<0.2	<0.2	<0.2
alpha-Chlordane	μg/L	<0.2	<0.2	<0.2
Endosulfan I	μg/L	<0.2	<0.2	<0.2
p-DDE	μg/L	<0.2	<0.2	<0.2
Dieldrin	μg/L	<0.2	<0.2	<0.2
Endrin	μg/L	<0.2	<0.2	<0.2
Endosulfan II	μg/L	<0.2	<0.2	<0.2
p-DDD	μg/L	<0.2	<0.2	<0.2
Endrin Aldehyde	µg/L	<0.2	<0.2	<0.2
p-DDT	µg/L	<0.2	<0.2	<0.2
Indosulfan Sulphate	µg/L	<0.2	<0.2	<0.2
/lethoxychlor	µg/L	<0.2	<0.2	<0.2
Surrogate TCMX	%	88	86	129

Our Reference		281301-1	281301-2	281301-3	281301-4	281301-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW0
Date Sampled		25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Date analysed	-	29/10/2021	29/10/2021	29/10/2021	29/10/2021	29/10/2021
Dichlorvos	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Diazinon	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyriphos-methyl	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ronnel	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyriphos	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos ethyl	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ethion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate TCMX	%	90	96	71	82	98

Our Reference		281301-6	281301-7	281301-8	281301-9	281301-10
	UNITO			The state of the s	7822/MW301A	7822/MW301E
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A		
Date Sampled		25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water	Water	Water
Date extracted	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Date analysed	-	29/10/2021	29/10/2021	29/10/2021	29/10/2021	29/10/2021
Dichlorvos	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Dimethoate	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Diazinon	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyriphos-methyl	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ronnel	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Fenitrothion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Malathion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorpyriphos	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Parathion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Bromophos ethyl	µg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Ethion	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	μg/L	<0.2	<0.2	<0.2	<0.2	<0.2
Surrogate TCMX	%	89	85	82	125	94

OP Pesticides in Water		William State		
Our Reference		281301-11	281301-12	281301-13
Your Reference	UNITS	7822/MB02	7822/MB03	7822/MW201
Date Sampled		25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water
Date extracted	-	28/10/2021	28/10/2021	28/10/2021
Date analysed	-	29/10/2021	29/10/2021	29/10/2021
Dichlorvos	µg/L	<0.2	<0.2	<0.2
Dimethoate	μg/L	<0.2	<0.2	<0.2
Diazinon	µg/L	<0.2	<0.2	<0.2
Chlorpyriphos-methyl	μg/L	<0.2	<0.2	<0.2
Ronnel	μg/L	<0.2	<0.2	<0.2
enitrothion	μg/L	<0.2	<0.2	<0.2
Malathion	μg/L	<0.2	<0.2	<0.2
Chlorpyriphos	μg/L	<0.2	<0.2	<0.2
Parathion	μg/L	<0.2	<0.2	<0.2
Bromophos ethyl	µg/L	<0.2	<0.2	<0.2
Ethion	μg/L	<0.2	<0.2	<0.2
Azinphos-methyl (Guthion)	µg/L	<0.2	<0.2	<0.2
Surrogate TCMX	%	88	86	129

PCBs in Water		
Our Reference		281301-13
Your Reference	UNITS	7822/MW201
Date Sampled		25/10/2021
Type of sample		Water
Date extracted	-	28/10/2021
Date analysed	-	29/10/2021
Aroclor 1016	μg/L	<2
Aroclor 1221	μg/L	<2
Aroclor 1232	μg/L	<2
Aroclor 1242	μg/L	<2
Aroclor 1248	μg/L	<2
Aroclor 1254	μg/L	<2
Arocior 1260	μg/L	<2
Surrogate TCMX	%	129

HM in water - dissolved Our Reference	VI I I HE THE REP STATE	281301-1	281301-2	281301-3	281301-4	281301-5
Your Reference	UNITS	7822/Pond 1				
Tour Reference	ONITS	/822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW0
Date Sampled		25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/202
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/202
Date analysed	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Arsenic-Dissolved	μg/L	<1	<1	<1	<1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	<1	<1	<1	<1
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	<1	<1	<1	<1
Zinc-Dissolved	μg/L	<1	<1	<1	<1	<1
Aluminium-Dissolved	µg/L	<10	<10	<10	30	40
ron-Dissolved	μg/L	20	40	190	<10	140
Manganese-Dissolved	μg/L	<5	48	37	<5	5
Antimony-Dissolved	μg/L	<1	<1	<1	<1	<1
Barium-Dissolved	μg/L	4	4	5	4	4
Beryllium-Dissolved	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Boron-Dissolved	μg/L	<20	<20	<20	<20	<20
Cobalt-Dissolved	μg/L	<1	<1	<1	<1	<1
ithium-Dissolved	µg/L	<1	<1	<1	<1	<1
Nolybdenum-Dissolved	μg/L	<1	<1	<1	<1	<1
Selenium-Dissolved	μg/L	<1	<1	<1	<1	<1
Silver-Dissolved	μg/L	<1	<1	<1	<1	<1
Strontium-Dissolved	µg/L	9	7	9	2	3
hallium-Dissolved	µg/L	<1	<1	<1	<1	<1
itanium-Dissolved	µg/L	<1	<1	<1	<1	<1
in-Dissolved	µg/L	<1	<1	<1	<1	<1
anadium-Dissolved	μg/L	<1	<1	<1	<1	<1

HM in water - dissolved Our Reference		281301-6	281301-7	281301-8	281301-9	281301-10
Your Reference	UNITS	7822/SW02	7822/MVV401	7822/MW302A	7822/MW301A	7822/MW301E
Date Sampled		25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared		28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Date analysed	<u> </u>	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Arsenic-Dissolved	μg/L	<1	<1	<1	<1	<1
Cadmium-Dissolved	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1	<1	<1
Copper-Dissolved	μg/L	<1	1	<1	1	10
Lead-Dissolved	μg/L	<1	<1	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	<1	<1	<1	3	<1
Zinc-Dissolved	μg/L	2	<1	<1	8	2
Aluminium-Dissolved	μg/L	60	<10	40	<10	30
Iron-Dissolved	μg/L	<10	<10	40	3,000	10
Manganese-Dissolved	µg/L	6	19	8	54	<5
Antimony-Dissolved	µg/L	<1		HI		
Barium-Dissolved	μg/L	5				
Beryllium-Dissolved	μg/L	<0.5				
Boron-Dissolved	μg/L	<20				
Cobalt-Dissolved	μg/L	<1				
Lithium-Dissolved	μg/L	<1				
Molybdenum-Dissolved	μg/L	<1				
Selenium-Dissolved	μg/L	<1				
Silver-Dissolved	µg/L	<1				
Strontium-Dissolved	μg/L	3				
Thallium-Dissolved	μg/L	<1				11111
Titanium-Dissolved	μg/L	<1				31111
Tin-Dissolved	μg/L	<1				3
Vanadium-Dissolved	μg/L	<1				

HM in water - dissolved			N. P.	
Our Reference		281301-11	281301-12	281301-13
Your Reference	UNITS	7822/MB02	7822/MB03	7822/MW201
Date Sampled		25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water
Date prepared	-	28/10/2021	28/10/2021	28/10/2021
Date analysed	-	28/10/2021	28/10/2021	28/10/2021
Arsenic-Dissolved	µg/L	<1	<1	<1
Cadmium-Dissolved	µg/L	<0.1	<0.1	<0.1
Chromium-Dissolved	μg/L	<1	<1	<1
Copper-Dissolved	μg/L	1	3	40
Lead-Dissolved	µg/L	<1	<1	<1
Mercury-Dissolved	μg/L	<0.05	<0.05	<0.05
Nickel-Dissolved	μg/L	1	3	11
Zinc-Dissolved	μg/L	14	78	77
Aluminium-Dissolved	µg/L	<10	40	<10
ron-Dissolved	μg/L	210	50	40
Manganese-Dissolved	μg/L	250	610	10

Envirolab Reference: 281301

Revision No: R00

HM in water - total Our Reference		281301-1	281301-2	281301-3	281301-4	281301-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Date analysed	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Arsenic-Total	μg/L	<1	<1	<1	<1	<1
Cadmium-Total	μg/L	<0.1	<0.1	<0.1	<0.1	<0.1
Chromium-Total	μg/L	<1	<1	<1	<1	<1
Copper-Total	μg/L	<1	<1	<1	<1	<1
_ead-Total	μg/L	<1	<1	<1	<1	<1
Mercury-Total	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Total	μg/L	<1	<1	<1	<1	<1
žinc-Total	μg/L	1	1	1	<1	<1
Aluminium-Total	μg/L	20	50	20	40	70
ron-Total	μg/L	190	240	620	<10	250
Manganese-Total	μg/L	35	72	65	<5	6
Antimony-Total	μg/L	<1	<1	<1	<1	<1
Barium-Total	μg/L	7	7	7	3	5
Beryllium-Total	μg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Boron-Total	μg/L	<20	<20	<20	<20	<20
Cobalt-Total	μg/L	<1	<1	<1	<1	<1
Lithium-Total	μg/L	<1	<1	<1	<1	<1
Molybdenum-Total	μg/L	<1	<1	<1	<1	<1
Selenium-Total	μg/L	<1	<1	<1	<1	<1
Silver-Total	μg/L	<1	<1	<1	<1	<1
Strontium-Total	µg/L	10	7.8	8.8	1.6	2.4
Thallium-Total	μg/L	<1	<1	<1	<1	<1
Titanium-Total	μg/L	<1	1.1	<1	<1	<1
Tin-Total	µg/L	<1	<1	<1	<1	<1
Vanadium-Total	μg/L	<1	<1	<1	<1	<1

HM in water - total			ELM LUIS			
Our Reference		281301-6	281301-7	281301-8	281301-9	281301-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW301A	7822/MW301I
Date Sampled		25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Date analysed	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Arsenic-Total	µg/L	<1	<1	6	<1	<1
Cadmium-Total	μg/L	<0.1	<0.1	0.1	<0.1	<0.1
Chromium-Total	µg/L	<1	<1	7	18	3
Copper-Total	μg/L	1	4	16	8	23
Lead-Total	μg/L	2	<1	37	1	3
Mercury-Total	μg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Nickel-Total	μg/L	<1	<1	4	4	<1
Zinc-Total	μg/L	2	<1	34	5	2
Aluminium-Total	μg/L	100	30	8,900	470	2,900
iron-Total	μg/L	45	18	13,000	9,000	830
Manganese-Total	μg/L	6	21	280	59	7
Antimony-Total	μg/L	<1				
Barium-Total	μg/L	6	Time	ddin		
Beryllium-Total	μg/L	<0.5	To the	pan -		
Boron-Total	μg/L	<20				
Cobalt-Total	μg/L	<1			144	
Lithium-Total	μg/L	<1	IUAI		141	
Molybdenum-Total	μg/L	<1			The III	
Selenium-Total	μg/L	<1	ll n	1401	H	
Silver-Total	µg/L	<1				
Strontium-Total	μg/L	2.7	The state of	Tion		
Fhallium-Total	μg/L	<1	n en		11111	
Titanium-Total	µg/L	<1	1004		11110	
Fin-Total	μg/L	<1				
Vanadium-Total	μg/L	<1	l l			

Envirolab Reference: 281301 Revision No: R00

Reference: 281301 Page | 21 of 52

Our Reference		281301-11	281301-12	281301-13
Your Reference	UNITS	7822/MB02	7822/MB03	7822/MW201
Date Sampled		25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water
Date prepared	-	28/10/2021	28/10/2021	28/10/2021
Date analysed	-	28/10/2021	28/10/2021	28/10/2021
Arsenic-Total	μg/L	<1	<1	<1
Cadmium-Total	μg/L	<0.1	<0.1	<0.1
Chromium-Total	μg/L	1	1	4
Copper-Total	μg/L	3	6	53
Lead-Total	μg/L	<1	1	3
Mercury-Total	μg/L	0.06	<0.05	<0.05
Nickel-Total	μg/L	2	4	11
Zinc-Total	μg/L	14	70	59
Aluminium-Total	μg/L	40	90	660
Iron-Total	μg/L	500	810	710
Manganese-Total	μg/L	260	550	12

Cations in water - Total				100000000000000000000000000000000000000	W. W. W. W.	
Our Reference		281301-1	281301-2	281301-3	281301-4	281301-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water	Water	Water
Date digested	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Date analysed	-	29/10/2021	29/10/2021	29/10/2021	29/10/2021	29/10/2021
Sodium - Total	mg/L	4	4	3	4	5.7
Potassium - Total	mg/L	1	1	1	<0.5	<0.5
Calcium - Total	mg/L	1	0.9	1	<0.5	<0.5
Magnesium - Total	mg/L	0.6	0.5	0.6	<0.5	0.7

Cations in water - Total		
Our Reference		281301-6
Your Reference	UNITS	7822/SW02
Date Sampled		25/10/2021
Type of sample		Water
Date digested	-	28/10/2021
Date analysed		29/10/2021
Sodium - Total	mg/L	6.3
Potassium - Total	mg/L	<0.5
Calcium - Total	mg/L	<0.5
Magnesium - Total	mg/L	<0.5

Our Reference		281301-1	281301-2	281301-3	281301-4	281301-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water	Water	Water
Date digested	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Date analysed	66	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Silicon*- Dissolved	mg/L	1.3	1.3	1	1.8	2.6
Sulfur - Dissolved	mg/L	0.5	0.5	0.6	<0.5	1.1

Our Reference	No. of the last	281301-6
Your Reference	UNITS	7822/SW02
Date Sampled		25/10/2021
Type of sample		Water
Date digested	-	28/10/2021
Date analysed	-	28/10/2021
Silicon*- Dissolved	mg/L	2.3
Sulfur - Dissolved	mg/L	<0.5

Metals in Waters - Acid extractab	le			The same of the same of		
Our Reference		281301-1	281301-2	281301-3	281301-4	281301-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Date analysed	•	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Phosphorus - Total	mg/L	<0.05	<0.05	<0.05	<0.05	<0.05
Silicon*- Total	mg/L	1.5	1.5	1.2	1.9	2.7
Sulfur -Total	mg/L	0.6	0.6	0.6	<0.5	0.8

Metals in Waters - Acid extractab	Te	0010010	004004 7	281301-8	281301-9	281301-10
Our Reference		281301-6	281301-7	281301-0	201301-9	
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW301A	7822/MW301E
Date Sampled		25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Date analysed	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Phosphorus - Total	mg/L	<0.05	<0.05	0.2	<0.05	<0.05
Silicon*- Total	mg/L	2.4	1194	104		111-1
Sulfur -Total	mg/L	<0.5	100			

Metals in Waters - Acid extractat	ole			ببستميدي
Our Reference		281301-11	281301-12	281301-13
Your Reference	UNITS	7822/MB02	7822/MB03	7822/MW201
Date Sampled		25/10/2021	25/10/2021	25/10/2021
Type of sample	The state of	Water	Water	Water
Date prepared	-	28/10/2021	28/10/2021	28/10/2021
Date analysed	-	28/10/2021	28/10/2021	28/10/2021
Phosphorus - Total	mg/L	<0.05	<0.05	<0.05

Miscellaneous Inorganics				No. of Concession, Name of Street, or other Designation, or other		-
Our Reference		281301-1	281301-2	281301-3	281301-4	281301-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea	7822/SW01
Date Sampled	STORY HARDON	25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Date analysed	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Total Nitrogen in water	mg/L	0.3	0.4	0.3	<0.1	<0.1
TKN in water	mg/L	0.3	0.4	0.3	<0.1	<0.1
Nitrate as N in water	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Nitrite as N in water	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Organic Nitrogen as N	mg/L	0.2	0.3	0.3	<0.2	<0.2
NOx as N in water	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Ammonia as N in water	mg/L	0.017	0.028	0.021	0.050	0.027
Phosphate as P in water	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005

Miscellaneous Inorganics				Name of Street	V	
Our Reference		281301-6	281301-7	281301-8	281301-9	281301-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW301A	7822/MW301E
Date Sampled		25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Date analysed	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
Total Nitrogen in water	mg/L	<0.1	<0.1	0.1	0.9	0.7
TKN in water	mg/L	<0.1	<0.1	0.1	<0.1	0.7
Nitrate as N in water	mg/L	<0.005	0.03	<0.005	0.90	<0.005
Nitrite as N in water	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005
Organic Nitrogen as N	mg/L	<0.2	<0.2	<0.2	<0.2	0.7
NOx as N in water	mg/L	<0.005	0.03	0.005	0.90	<0.005
Ammonia as N in water	mg/L	0.030	0.020	0.025	0.020	0.027
Phosphate as P in water	mg/L	<0.005	<0.005	<0.005	<0.005	<0.005

Envirolab Reference: 281301

Revision No: R00

Miscellaneous Inorganics	100	A DEL TELEPR		
Our Reference		281301-11	281301-12	281301-13
Your Reference	UNITS	7822/MB02	7822/MB03	7822/MW201
Date Sampled		25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water
Date prepared	-	28/10/2021	28/10/2021	28/10/2021
Date analysed	-	28/10/2021	28/10/2021	28/10/2021
Total Nitrogen in water	mg/L	0.2	2.1	0.5
TKN in water	mg/L	0.2	0.4	0.2
Nitrate as N in water	mg/L	0.006	1.7	0.54
Nitrite as N in water	mg/L	<0.005	<0.005	<0.005
Organic Nitrogen as N	mg/L	<0.2	0.3	<0.2
NOx as N in water	mg/L	0.008	1.7	0.54
Ammonia as N in water	mg/L	0.033	0.038	0.020
Phosphate as P in water	mg/L	<0.005	<0.005	<0.005

Ion Balance	No. of Lot,		W 10 10 10 10 10 10 10 10 10 10 10 10 10		10 TO 10 TO 1	1000
Our Reference		281301-1	281301-2	281301-3	281301-4	281301-5
Your Reference	UNITS	7822/Pond 1	7822/Pond 2	7822/Upstream	7822/Downstrea m	7822/SW01
Date Sampled		25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
Calcium - Dissolved	mg/L	1	0.9	1	<0.5	<0.5
Potassium - Dissolved	mg/L	1	1	1	0.6	<0.5
Sodium - Dissolved	mg/L	4	3	4	4	5.6
Magnesium - Dissolved	mg/L	0.7	0.5	0.6	<0.5	0.7
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO₃	mg/L	6	5	6	<5	<5
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO₃	mg/L	6	5	6	<5	<5
Sulphate, SO4	mg/L	1	1	1	1	3
Chloride, Cl	mg/L	5	5	6	6	8
lonic Balance	%	4.0	-2.0	2.0	3.0	2.0

Ion Balance					1,050 (A 5 8 8	
Our Reference		281301-6	281301-7	281301-8	281301-9	281301-10
Your Reference	UNITS	7822/SW02	7822/MW401	7822/MW302A	7822/MW301A	7822/MW301B
Date Sampled		25/10/2021	25/10/2021	25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water	Water	Water
Date prepared	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
Calcium - Dissolved	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Potassium - Dissolved	mg/L	<0.5	0.9	0.9	1	<0.5
Sodium - Dissolved	mg/L	6.1	5.6	6.0	4	5
Magnesium - Dissolved	mg/L	<0.5	<0.5	<0.5	<0.5	<0.5
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5	<5	<5
Bicarbonate Alkalinity as CaCO₃	mg/L	<5	<5	5	<5	<5
Carbonate Alkalinity as CaCO ₃	mg/L	<5	<5	<5	<5	<5
Total Alkalinity as CaCO ₃	mg/L	<5	<5	5	<5	<5
Sulphate, SO4	mg/L	<1	3	2	3	2
Chloride, Cl	mg/L	9	6	5	5	5
Ionic Balance	%	3.0	6.0	0	-4.0	8.0

Envirolab Reference: 281301

Revision No: R00

Ion Balance	Section 1			
Our Reference		281301-11	281301-12	281301-13
Your Reference	UNITS	7822/MB02	7822/MB03	7822/MW201
Date Sampled		25/10/2021	25/10/2021	25/10/2021
Type of sample		Water	Water	Water
Date prepared	-	27/10/2021	27/10/2021	27/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021
Calcium - Dissolved	mg/L	0.8	1	<0.5
Potassium - Dissolved	mg/L	2	3	<0.5
Sodium - Dissolved	mg/L	5.7	4	6.8
Magnesium - Dissolved	mg/L	<0.5	1	<0.5
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	<5	<5	<5
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	8	8
Carbonate Alkalinity as CaCO₃	mg/L	<5	<5	<5
Fotal Alkalinity as CaCO₃	mg/L	5	8	8
Sulphate, SO4	mg/L	2	2	2
Chloride, Cl	mg/L	7	5	6
onic Balance	%	-1.0	4.0	-10

Method ID	Methodology Summary
Ext-054	Analysed by MPL Envirolab
Inorg-006	Alkalinity - determined titrimetrically in accordance with APHA latest edition, 2320-B.
Inorg-040	The concentrations of the major ions (mg/L) are converted to milliequivalents and summed. The ionic balance should be within +/- 10% ie total anions = total cations +/-10%.
Inorg-055	Nitrate - determined colourimetrically. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055	Nitrite - determined colourimetrically based on APHA latest edition NO2- B. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-055/062/127	Total Nitrogen - Calculation sum of TKN and oxidised Nitrogen. Alternatively analysed by combustion and chemiluminescence.
Inorg-057	Ammonia - determined colourimetrically, based on APHA latest edition 4500-NH3 F. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a KCI extraction.
Inorg-060	Phosphate determined colourimetrically based on EPA365.1 and APHA latest edition 4500 P E. Waters samples are filtered on receipt prior to analysis. Soils are analysed following a water extraction.
Inorg-062	TKN - determined colourimetrically based on APHA latest edition 4500 Norg. Alternatively, TKN can be derived from calculation (Total N - NOx).
Inorg-081	Anions - a range of Anions are determined by Ion Chromatography, in accordance with APHA latest edition, 4110-B. Waters samples are filtered on receipt prior to analysis. Alternatively determined by colourimetry/turbidity using Discrete Analyser.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Metals-022	Determination of various metals by ICP-MS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.
Org-023	Water samples are analysed directly by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.

	CONTROL: VOC	s in wate	er-Low Level			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date analysed	-			01/11/2021					01/11/2021	
MTBE	μg/L	0.1	Ext-054	<0.1						
Dichlorodifluoromethane	μg/L	2	Ext-054	<2	14.1					
Chloromethane	μg/L	2	Ext-054	<2	100				пп	
Vinyl Chloride	μg/L	0.2	Ext-054	<0.2					111	
Bromomethane	μg/L	2	Ext-054	<2						
Chloroethane	μg/L	2	Ext-054	<2						
Frichlorofluoromethane	μg/L	2	Ext-054	<2					14	
1,1-Dichloroethene	µg/L	0.1	Ext-054	<0.1				T _R	97	
rans-1,2-dichloroethene	μg/L	0.1	Ext-054	<0.1				-		
,1-dichloroethane	µg/L	0.1	Ext-054	<0.1	- 1			н	6	
Cis-1,2-dichloroethene	μg/L	0.1	Ext-054	<0.1	пп					
Bromochloromethane	μg/L	0.5	Ext-054	<0.5	an					
Chloroform	μg/L	0.5	Ext-054	<0.5					96	
,2-dichloropropane	μg/L	0.1	Ext-054	<0.1		NIII I				
,2-dichloroethane	μg/L	0.1	Ext-054	<0.1					96	
,1,1-trichloroethane	μg/L	0.1	Ext-054	<0.1	TA .			М.	98	
,1-dichloropropene	μg/L	0.1	Ext-054	<0.1				14.1		
arbon tetrachloride	µg/L	0.1	Ext-054	<0.1	in.					
enzene	μg/L	0.1	Ext-054	<0.1					94	
ibromomethane	μg/L	0.5	Ext-054	<0.5						
,2-dichloropropane	μg/L	0.1	Ext-054	<0.1						
richloroethene	µg/L	0.1	Ext-054	<0.1					99	
romodichloromethane	µg/L	0.1	Ext-054	<0.1					97	
ans-1,3-dichloropropene	μg/L	0.1	Ext-054	<0.1						
is-1,3-dichloropropene	µg/L	0.1	Ext-054	<0.1						
1,2-trichloroethane	µg/L	0.1	Ext-054	<0.1						
oluene	μg/L	0.1	Ext-054	<0.1					97	
3-dichloropropane	µg/L	0.1	Ext-054	<0.1						
ibromochloromethane	µg/L	0.1	Ext-054	<0.1		100			100	
2-dibromoethane	μg/L	0.1	Ext-054	<0.1						
etrachloroethene	μg/L	0.1	Ext-054	<0.1		III.V				
1,1,2-tetrachloroethane	µg/L	0.1	Ext-054	<0.1						
hlorobenzene	μg/L	0.1	Ext-054	<0.1						
thylbenzene	µg/L	0.1	Ext-054	<0.1					96	
romoform	µg/L	0.1	Ext-054	<0.1					95	
+p-xylene	µg/L	0.1	Ext-054	<0.1		i				
			Ext-054	<0.2					93	
tyrene	μg/L	0.1								
1,2,2-tetrachloroethane	µg/L	0.1	Ext-054	<0.1						
-xylene	µg/L	0.1	Ext-054	<0.1					91	

QUALITY CO	NTROL: VO	Cs in wate	r-Low Level		. J A.	Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[TN]
1,2,3-trichloropropane	µg/L	0.1	Ext-054	<0.1						
sopropylbenzene	μg/L	0.1	Ext-054	<0.1						
Bromobenzene	µg/L	0.1	Ext-054	<0.1						
n-propyl benzene	μg/L	0.1	Ext-054	<0.1						
2-chlorotoluene	µg/L	0.1	Ext-054	<0.1						
4-chlorotoluene	µg/L	0.1	Ext-054	<0.1					П	
1,3,5-trimethyl benzene	µg/L	0.1	Ext-054	<0.1			-			
Tert-butyl benzene	µg/L	0.1	Ext-054	<0.1						
1,2,4-trimethyl benzene	µg/L	0.1	Ext-054	<0.1						
1,3-dichlorobenzene	µg/L	0.1	Ext-054	<0.1						
Sec-butyl benzene	μg/L	0.1	Ext-054	<0,1						
1,4-dichlorobenzene	µg/L	0.1	Ext-054	<0.1					94	
4-isopropyl toluene	µg/L	0.1	Ext-054	<0.1						
1,2-dichlorobenzene	µg/L	0.1	Ext-054	<0.1			100			
n-butyl benzene	µg/L	0.1	Ext-054	<0.1	150					
1,2-dibromo-3-chloropropane	µg/L	0.1	Ext-054	<0.1						
1,2,4-trichlorobenzene	µg/L	0.1	Ext-054	<0.1					· ·	
Hexachlorobutadiene	μg/L	0.2	Ext-054	<0.2						
1,2,3-trichlorobenzene	μg/L	0.1	Ext-054	<0.1						
Surrogate Dibromofluoromethane	%		Ext-054	103	I-T				103	
S <i>urrogate</i> toluene-d8	%		Ext-054	101					103	
Surrogate 4-BFB	%		Ext-054	98					97	

QUALITY CONT	ROL: vTRH(C6-C10)/B	TEXN in Water			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			29/10/2021	1	29/10/2021	01/11/2021		29/10/2021	
Date analysed	-			29/10/2021	1	29/10/2021	02/11/2021		29/10/2021	
TRH C ₆ - C ₉	μg/L	10	Org-023	<10	1	<10	<10	0	100	
TRH C ₆ - C ₁₀	μg/L	10	Org-023	<10	1	<10	<10	0	100	
Benzene	μg/L	1	Org-023	<1	1	<1	<1	0	105	
Toluene	μg/L	1	Org-023	<1	1	<1	<1	0	99	
Ethylbenzene	μg/L	1	Org-023	<1	1	<1	<1	0	97	
m+p-xylene	μg/L	2	Org-023	<2	1	<2	<2	0	99	
o-xylene	μg/L	1	Org-023	<1	1	<1	<1	0	97	
Naphthalene	μg/L	1	Org-023	<1	1	<1	<1	0		
Surrogate Dibromofluoromethane	%		Org-023	109	1	110	97	13	105	
Surrogate toluene-d8	%		Org-023	101	1	101	99	2	103	
Surrogate 4-BFB	%		Org-023	107	1	109	104	5	107	

QUALITY CONTE	ROL: vTRH(C6-C10)/B	TEXN in Water			Du	plicate	-57 (B	Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				11	29/10/2021	01/11/2021			
Date analysed	-				11	29/10/2021	02/11/2021			
TRH C ₆ - C ₉	µg/L	10	Org-023		11	<10	<10	0	ı	
TRH C ₆ - C ₁₀	µg/L	10	Org-023		11	<10	<10	0		
Benzene	µg/∟	1	Org-023	- H	11	<1	<1	0		10
Toluene	μg/L	1	Org-023		11	<1	<1	0		
Ethylbenzene	µg/L	1	Org-023	1111	11	<1	<1	0		
n+p-xylene	μg/L	2	Org-023		11	<2	<2	0		
o-xylene	µg/L	1	Org-023		11	<1	<1	0	-	
laphthalene	µg/L	1	Org-023	111	11	<1	<1	0		
Surrogate Dibromofluoromethane	%		Org-023		11	110	97	13		
Surrogate toluene-d8	%		Org-023		11	100	99	1		
Surrogate 4-BFB	%		Org-023	TILL THE	11	105	105	0		

QUALITY CON	NTROL: svTF	RH (C10-0	C40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	281301-2
Date extracted	-			28/10/2021	1	28/10/2021	28/10/2021		28/10/2021	28/10/2021
Date analysed	-			28/10/2021	1	28/10/2021	28/10/2021		28/10/2021	28/10/2021
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	<50	1	<50	<50	0	116	116
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020	<100	1	<100	<100	0	110	111
TRH C ₂₉ - C ₃₆	µg/L	100	Org-020	<100	1	<100	<100	0	109	111
TRH >C ₁₀ - C ₁₆	μg/L	50	Org-020	<50	1	<50	<50	0	116	116
TRH >C ₁₆ - C ₃₄	µg/L	100	Org-020	<100	1	<100	<100	0	110	111
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020	<100	1	<100	<100	0	109	111
Surrogate o-Terphenyl	%		Org-020	98	1	84	84	0	91	95

QUALITY CON	ITROL: svTl	RH (C10-C	40) in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				11	28/10/2021	28/10/2021			
Date analysed	-				11	29/10/2021	29/10/2021			
TRH C ₁₀ - C ₁₄	μg/L	50	Org-020	100	11	<50	<50	0		m
TRH C ₁₅ - C ₂₈	μg/L	100	Org-020		11	<100	<100	0		
TRH C ₂₉ - C ₃₈	μg/L	100	Org-020		11	<100	<100	0		
TRH >C ₁₀ - C ₁₆	µg/L	50	Org-020	100	11	<50	<50	0		
TRH >C ₁₆ - C ₃₄	μg/L	100	Org-020		11	<100	<100	0		
TRH >C ₃₄ - C ₄₀	μg/L	100	Org-020		11	<100	<100	0		
Surrogate o-Terphenyl	%		Org-020		11	93	93	0		

Envirolab Reference: 281301

Revision No: R00

Page | 34 of 52

QUALITY C	CONTROL: PA	Is in Wate	er - Low Level	BUT THE ST		Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	281301-3
Date extracted	-			28/10/2021	1	28/10/2021	28/10/2021		28/10/2021	28/10/202
Date analysed	-			29/10/2021	1	29/10/2021	29/10/2021		29/10/2021	29/10/202
Naphthalene	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	98	91
Acenaphthylene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		
Acenaphthene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	83	77
Fluorene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	88
Phenanthrene	μg/L	0.1	Org-022/025	<0,1	1	<0.1	<0.1	0	120	122
Anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		
Fluoranthene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	97	83
Pyrene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	109	93
Benzo(a)anthracene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		
Chrysene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	80	72
Benzo(b,j+k)fluoranthene	μg/L	0,2	Org-022/025	<0.2	1	<0.2	<0.2	0		
Benzo(a)pyrene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	106	100
ndeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		
libenzo(a,h)anthracene	μg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		
enzo(g,h,i)perylene	µg/L	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0		
<i>urrogate p</i> -Terphenyl-d14	%		Org-022/025	102	1	93	66	34	106	86

QUALITY C	ONTROL: PAI	Is in Wate	r - Low Level		.,21	Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				11	28/10/2021	28/10/2021			
Date analysed	-				11	29/10/2021	29/10/2021			
Naphthalene	μg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
Acenaphthylene	μg/L	0.1	Org-022/025		11	<0.1	<0.1	0		
Acenaphthene	μg/L	0.1	Org-022/025		11	<0.1	<0.1	0		
Fluorene	μg/L	0.1	Org-022/025		11	<0.1	<0.1	0		
Phenanthrene	μg/L	0.1	Org-022/025		11	<0.1	<0.1	0		
Anthracene	µg/L	0.1	Org-022/025		11	<0.1	<0.1	0		
Fluoranthene	μg/L	0.1	Org-022/025		11	<0.1	<0.1	0		
Pyrene	µg/L	0.1	Org-022/025		11	<0.1	<0.1	0		
Benzo(a)anthracene	µg/L	0.1	Org-022/025		11	<0.1	<0.1	0		
Chrysene	μg/L	0.1	Org-022/025		11	<0.1	<0.1	0		
Benzo(b,j+k)fluoranthene	µg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
Benzo(a)pyrene	µg/L	0.1	Org-022/025		11	<0.1	<0.1	0		
ndeno(1,2,3-c,d)pyrene	µg/L	0.1	Org-022/025		11	<0.1	<0.1	0		
Dibenzo(a,h)anthracene	µg/L	0.1	Org-022/025		11	<0.1	<0.1	0		
Benzo(g,h,i)perylene	µg/L	0.1	Org-022/025		11	<0.1	<0.1	0	11111	
Surrogate p-Terphenyl-d14	%		Org-022/025		11	101	78	26		

QUALITY CONTR	ROL: Organo	chlorine Pe	esticides in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	281301-3
Date extracted	-			28/10/2021	1	28/10/2021	28/10/2021		28/10/2021	28/10/2021
Date analysed	-			29/10/2021	1	29/10/2021	29/10/2021		29/10/2021	29/10/2021
alpha-BHC	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	90	83
нсв	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0		
beta-BHC	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	96	96
gamma-BHC	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0		
Heptachlor	µg/L	0.2	Org-022/025	<0,2	1	<0.2	<0.2	0	110	92
delta-BHC	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0		
Aldrin	μg/L	0,2	Org-022/025	<0.2	1	<0.2	<0.2	0	102	89
Heptachlor Epoxide	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	112	98
gamma-Chlordane	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	1111	
alpha-Chlordane	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0		
Endosulfan I	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0		
pp-DDE	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	97	84
Dieldrin	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	118	102
Endrin	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	102	93
Endosulfan II	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	100	in
pp-DDD	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	107	93
Endrin Aldehyde	μg/L	0.2	Org-022/025	<0,2	1	<0,2	<0.2	0		
pp-DDT	μg/L	0.2	Org-022/025	<0,2	1	<0,2	<0.2	0		
Endosulfan Sulphate	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	110	98
Methoxychlor	µg/∟	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0		
Surrogate TCMX	%		Org-022/025	92	1	90	68	28	100	84

QUALITY CON	TROL: Organo	chlorine Pe	esticides in Water			Du	plicate		Spike Re	ecovery 9
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT
Date extracted	-				11	28/10/2021	28/10/2021			
Date analysed	-				11	29/10/2021	29/10/2021			
alpha-BHC	μg/L	0.2	Org-022/025		11	<0.2	<0.2	0		110
нсв	μg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
oeta-BHC	μg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
gamma-BHC	μg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
Heptachlor	μg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
delta-BHC	µg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
Aldrin	μg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
leptachlor Epoxide	µg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
amma-Chlordane	µg/L	0.2	Org-022/025		11	<0.2	<0,2	0		8.1
lpha-Chlordane	µg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
ndosulfan I	μg/L	0,2	Org-022/025		11	<0.2	<0.2	0		
p-DDE	μg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
Dieldrin	μg/L	0.2	Org-022/025		11	<0,2	<0.2	0	nn.	
indrin	μg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
ndosulfan II	μg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
p-DDD	μg/L	0.2	Org-022/025		11	<0.2	<0.2	0	1111	
ndrin Aldehyde	µg/L	0,2	Org-022/025		11	<0.2	<0.2	0		
p-DDT	μg/L	0,2	Org-022/025		11	<0.2	<0.2	0	147	
ndosulfan Sulphate	μg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
ethoxychlor	μg/L	0.2	Org-022/025		11	<0.2	<0,2	0		
urrogate TCMX	%		Org-022/025		11	88	82	7		

QUALITY	CONTROL: O	P Pesticid	es in Water	of the		Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	281301-3
Date extracted	-			28/10/2021	1	28/10/2021	28/10/2021		28/10/2021	28/10/2021
Date analysed	-			29/10/2021	1	29/10/2021	29/10/2021		29/10/2021	29/10/2021
Dichlorvos	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	117	111
Dimethoate	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0		
Diazinon	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0		
Chlorpyriphos-methyl	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0		
Ronnel	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	104	89
Fenitrothion	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	96	90
Malathion	µg/L	0,2	Org-022/025	<0.2	1	<0.2	<0.2	0	117	110
Chlorpyriphos	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	113	104
Parathion	µg/L	0,2	Org-022/025	<0.2	1	<0.2	<0.2	٥	90	87
Bromophos ethyl	μg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0		
Ethion	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	94	80
Azinphos-methyl (Guthion)	µg/L	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0		γ
Surrogate TCMX	%		Org-022/025	92	1	90	68	28	100	84

QUALITY C	ONTROL: O	P Pesticid	es in Water			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				11	28/10/2021	28/10/2021			
Date analysed	-				11	29/10/2021	29/10/2021			
Dichlorvos	μg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
Dimethoate	μg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
Diazinon	μg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
Chlorpyriphos-methyl	µg/L	0.2	Org-022/025		11	<0,2	<0.2	0		
Ronnel	µg/L	0.2	Org-022/025		11	<0,2	<0.2	0		
Fenitrothion	μg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
Malathion	μg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
Chlorpyriphos	μg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
Parathion	μg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
Bromophos ethyl	μg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
Ethion	µg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
Azinphos-methyl (Guthion)	µg/L	0.2	Org-022/025		11	<0.2	<0.2	0		
Surrogate TCMX	%		Org-022/025		11	88	82	7		

Envirolab Reference: 281301

Revision No: R00

Q	UALITY CONTROI	L. PCBs in	Water			Du	plicate		Spike Red	overy %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W2	[NT]
Date extracted	-			28/10/2021					28/10/2021	
Date analysed	-			29/10/2021					29/10/2021	
Aroclor 1016	μg/L	2	Org-021	<2						
Aroclor 1221	μg/L	2	Org-021	<2	rej					
Aroclor 1232	μg/L	2	Org-021	<2				-		
Aroclor 1242	μg/L	2	Org-021	<2	N					
Aroclor 1248	μg/L	2	Org-021	<2						
Arodor 1254	μg/L	2	Org-021	<2					120	
Aroclor 1260	μg/L	2	Org-021	<2	1111			T part	11111	
Surrogate TCMX	%		Org-021	92					100	

QUALITY	/ CONTROL: HI	M in water	- dissolved			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W10	281301-2
Date prepared	-			28/10/2021	1	28/10/2021	28/10/2021		28/10/2021	28/10/202
Date analysed	-			28/10/2021	1	28/10/2021	28/10/2021		28/10/2021	28/10/202
Arsenic-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	93	94
Cadmium-Dissolved	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	95	97
Chromium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	92	85
Copper-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	91	95
Lead-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	87	89
Mercury-Dissolved	μg/L	0.05	Metals-021	<0.05	1	<0.05	1111		106	M
Nickel-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	92	94
Zinc-Dissolved	μg/L	1	Metals-022	<1	1	<1	1	0	92	99
Aluminium-Dissolved	μg/L	10	Metals-022	<10	1	<10	<10	0	95	85
ron-Dissolved	μg/L	10	Metals-022	<10	1	20	30	40	95	81
Manganese-Dissolved	μg/L	5	Metals-022	<5	1	<5	<5	0	93	95
Antimony-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	88	81
Barium-Dissolved	μg/L	1	Metals-022	<1	1	4	5	22	89	90
Beryllium-Dissolved	μg/L	0.5	Metals-022	<0.5	1	<0.5	<0.5	0	89	82
Boron-Dissolved	μg/L	20	Metals-022	<20	1	<20	<20	0	93	76
Cobalt-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	91	92
Lithium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	93	95
Molybdenum-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	91	74
Selenium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	92	98
Silver-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	95	95
Strontium-Dissolved	μg/L	1	Metals-022	<1	1	9	10	11	96	97
Thallium-Dissolved	µg/L	1	Metals-022	<1	1	<1	<1	0	90	94
Titanium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	88	82
Tin-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	95	77
Vanadium-Dissolved	μg/L	1	Metals-022	<1	1	<1	<1	0	93	91

QUALIT	Y CONTROL: HI	M in water	- dissolved			Du	plicate	700 U.	Spike F	Recovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	281301-4
Date prepared	-				3	28/10/2021	28/10/2021			28/10/2021
Date analysed	-				3	28/10/2021	28/10/2021			28/10/2021
Arsenic-Dissolved	μg/L	1	Metals-022		3	<1				A 1
Cadmium-Dissolved	μg/L	0.1	Metals-022		3	<0.1				
Chromium-Dissolved	μg/L	1	Metals-022	100	3	<1				
Copper-Dissolved	μg/L	1	Metals-022	187	3	<1				
Lead-Dissolved	μg/L	1	Metals-022	100	3	<1				100
Mercury-Dissolved	μg/L	0.05	Metals-021	11111	3	<0.05	<0.05	0		107
Nickel-Dissolved	μg/L	1	Metals-022		3	<1				7.7
Zinc-Dissolved	µg/L	1	Metals-022		3	<1				100
Aluminium-Dissolved	μg/L	10	Metals-022	1111	3	<10				NI
Iron-Dissolved	µg/L	10	Metals-022		3	190				
Manganese-Dissolved	μg/L	5	Metals-022	nin	3	37				1071
Antimony-Dissolved	μg/L	1	Metals-022		3	<1				<u>j</u> jerje
Barium-Dissolved	µg/L	1	Metals-022		3	5				
Beryllium-Dissolved	μg/L	0.5	Metals-022	11.1	3	<0.5				
Boron-Dissolved	μg/L	20	Metals-022		3	<20				
Cobalt-Dissolved	μg/L	1	Metals-022		3	<1				
Lithium-Dissolved	μg/L	1	Metals-022		3	<1				
Molybdenum-Dissolved	μg/L	1	Metals-022		3	<1				
Selenium-Dissolved	μg/L	1	Metals-022		3	<1				100
Silver-Dissolved	μg/L	1	Metals-022		3	<1				
Strontium-Dissolved	μg/L	1	Metals-022		3	9				
Fhallium-Dissolved	µg/L	1	Metals-022		3	<1				
Fitanium-Dissolved	µg/L	1	Metals-022		3	<1			t	
in-Dissolved	μg/L	1	Metals-022		3	<1				
/anadium-Dissolved	μg/L	1	Metals-022		3	<1				

QUALITY (CONTROL: HI	I in water	- dissolved	i i i i	= .	Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				11	28/10/2021	28/10/2021			
Date analysed	-				11	28/10/2021	28/10/2021			
Arsenic-Dissolved	μg/L	1	Metals-022		11	<1	<1	0		
Cadmium-Dissolved	µg/L	0.1	Metals-022		11	<0.1	<0.1	0		
Chromium-Dissolved	µg/L	1	Metals-022		11	<1	<1	0		
Copper-Dissolved	μg/L	1	Metals-022		11	1	2	67		
Lead-Dissolved	μg/L	1	Metals-022		11	<1	<1	0		
Mercury-Dissolved	μg/L	0.05	Metals-021	100	11	<0.05				
Nickel-Dissolved	μg/L	1	Metals-022		11	1	1	0		
Zinc-Dissolved	μg/L	1	Metals-022		11	14	14	0		
Aluminium-Dissolved	μg/L	10	Metals-022	111	11	<10	<10	0		
ron-Dissolved	μg/L	10	Metals-022		11	210	240	13		
Manganese-Dissolved	µg/L	5	Metals-022		11	250	280	11		

QUALIT	Y CONTROL: HI	M in water	- dissolved		4.	Du	plicate		Spike Re	covery
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				12	28/10/2021	28/10/2021			
Date analysed	-				12	28/10/2021	28/10/2021			
Arsenic-Dissolved	μg/L	1	Metals-022		12	<1				
Cadmium-Dissolved	μg/L	0.1	Metals-022		12	<0.1				
Chromium-Dissolved	μg/L	1	Metals-022		12	< 1				141
Copper-Dissolved	μg/L	1	Metals-022		12	3				111
Lead-Dissolved	µg/L	1	Metals-022		12	<1				
Mercury-Dissolved	µg/L	0.05	Metals-021		12	<0.05	<0.05	0		11
Nickel-Dissolved	μg/L	1	Metals-022		12	3				
Zinc-Dissolved	μg/L	1	Metals-022		12	78				
Aluminium-Dissolved	μg/L	10	Metals-022		12	40				
Iron-Dissolved	μg/L	10	Metals-022		12	50				
Manganese-Dissolved	μg/L	5	Metals-022		12	610	T			

QUA	ALITY CONTROL:	HM in wa	ter - total			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	281301-2
Date prepared	-			28/10/2021	1	28/10/2021	28/10/2021		28/10/2021	28/10/202
Date analysed	-			28/10/2021	1	28/10/2021	28/10/2021		28/10/2021	28/10/202
Arsenic-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	97	100
Cadmium-Total	μg/L	0.1	Metals-022	<0.1	1	<0.1	<0.1	0	98	99
Chromium-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	95	98
Copper-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	95	97
Lead-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	96	96
Mercury-Total	μg/L	0.05	Metals-021	<0.05	1	<0.05	<0.05	0	96	102
Nickel-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	96	98
Zinc-Total	μg/L	1	Metals-022	<1	1	1	<1	0	97	99
Aluminium-Total	μg/L	10	Metals-022	<10	1	20	20	0	98	106
Iron-Total	µg/L	10	Metals-022	<10	1	190	180	5	101	#
Manganese-Total	µg/L	5	Metals-022	<5	1	35	35	0	95	93
Antimony-Total	µg/L	1	Metals-022	<1	1	<1	<1	0	107	113
Barium-Total	µg/L	1	Metals-022	<1	1	7	7	0	98	95
Beryllium-Total	μg/L	0.5	Metals-022	<0.5	1	<0.5	<0.5	0	93	96
Boron-Total	μg/L	20	Metals-022	<20	1	<20	<20	0	94	91
Cobalt-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	94	97
Lithium-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	95	96
Molybdenum-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	96	98
Selenium-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	96	97
Silver-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	101	102
Strontium-Total	μg/L	1	Metals-022	<1	1	10	10	0	100	102
hallium-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	97	99
itanium-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	90	92
in-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	98	99
/anadium-Total	μg/L	1	Metals-022	<1	1	<1	<1	0	95	99

QUALIT	Y CONTROL:	HM in wate	er - total		Ţ.,	Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				11	28/10/2021	28/10/2021			
Date analysed	-				11	28/10/2021	28/10/2021			
Arsenic-Total	μg/L	1	Metals-022		11	<1	<1	0		
Cadmium-Total	μg/L	0.1	Metals-022		11	<0.1	<0.1	0		
Chromium-Total	µg/L	1	Metals-022		11	1	1	0		
Copper-Total	μg/L	1	Metals-022		11	3	3	0		
Lead-Total	μg/L	1	Metals-022		11	<1	<1	0		
Mercury-Total	μg/L	0.05	Metals-021	100	11	0.06	0.06	0		
Nickel-Total	μg/L	1	Metals-022		11	2	2	0		-
Zinc-Total	μg/L	1	Metals-022		11	14	14	0		
Aluminium-Total	μg/L	10	Metals-022		11	40	40	0		
ron-Total	μg/L	10	Metals-022		11	500	510	2		
Manganese-Total	μg/L	5	Metals-022		11	260	260	0		

QUALITY C	ONTROL: C	ations in w	vater - Total		Ţ.	Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	281301-3
Date digested	-			28/10/2021	1	28/10/2021	28/10/2021		28/10/2021	28/10/2021
Date analysed	-			29/10/2021	1	29/10/2021	29/10/2021		29/10/2021	29/10/2021
Sodium - Total	mg/L	0.5	Metais-020	<0.5	1	4	4	0	115	110
Potassium - Total	mg/L	0.5	Metals-020	<0.5	1	1	0.9	11	102	103
Calcium - Total	mg/L	0.5	Metals-020	<0.5	1	1	1	0	103	105
Magnesium - Total	mg/L	0.5	Metals-020	<0.5	1	0.6	0.6	0	105	105

QUALITY COM	NTROL: Meta	ils in Wate	er - Dissolved			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	281301-2
Date digested	-			28/10/2021	1	28/10/2021	28/10/2021		28/10/2021	28/10/2021
Date analysed	-			28/10/2021	1	28/10/2021	28/10/2021		28/10/2021	28/10/2021
Silicon*- Dissolved	mg/L	0.2	Metals-020	<0.2	1	1.3	1.4	7	109	105
Sulfur - Dissolved	mg/L	0.5	Metals-020	<0.5	1	0.5	0.5	0	100	127

QUALITY CONTI	ROL: Metals i	n Waters	- Acid extractable			Du	ıplicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	281301-3
Date prepared	-			28/10/2021	1	28/10/2021	28/10/2021		28/10/2021	28/10/2021
Date analysed	-			28/10/2021	1	28/10/2021	28/10/2021		28/10/2021	28/10/2021
Phosphorus - Total	mg/L	0.05	Metals-020	<0.05	1	<0.05	<0.05	0	117	123
Silicon*- Total	mg/L	0.2	Metals-020	<0.2	1	1.5	1.5	0	117	120
Sulfur -Total	mg/L	0.5	Metals-020	<0.5	1	0.6	0.6	0	110	110

QUALITY CO	NTROL: Metals i	n Waters -	- Acid extractable			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			117	11	28/10/2021	28/10/2021			1111
Date analysed	-				11	28/10/2021	29/10/2021			
Phosphorus - Total	mg/L	0.05	Metals-020	100	11	<0.05	<0.05	0		[H]

Envirolab Reference: 281301

Revision No: R00

QUALITY C	ONTROL: Mis	cellaneou	is Inorganics		17	Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	281301-2
Date prepared	-			28/10/2021	1	28/10/2021	28/10/2021		28/10/2021	28/10/2021
Date analysed	-			28/10/2021	1	28/10/2021	28/10/2021		28/10/2021	28/10/2021
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127	<0.1	1	0,3	0.3	0	110	114
TKN in water	mg/L	0.1	Inorg-062	<0.1	1	0.3	0.3	0		
Nitrate as N in water	mg/L	0.005	Inorg-055	<0.005	1	<0.005	<0.005	0	109	111
Nitrite as N in water	mg/L	0.005	Inorg-055	<0.005	1	<0.005	<0.005	0	115	110
Organic Nitrogen as N	mg/L	0.2		<0,2	1	0.2	0.2	0		h.i
NOx as N in water	mg/L	0.005	Inorg-055	<0.005	1	<0.005	<0.005	0	109	111
Ammonia as N in water	mg/L	0.005	Inorg-057	<0.005	1	0.017	0.022	26	112	100
Phosphate as P in water	mg/L	0.005	Inorg-060	<0.005	1	<0.005	<0.005	0	99	108

QUALITY CONTROL: Miscellaneous Inorganics						Duplicate				ecovery %
Test Description	Units	PQL	Method	Blank	并	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-				11	28/10/2021	28/10/2021			
Date analysed	-				11	28/10/2021	28/10/2021			
Total Nitrogen in water	mg/L	0.1	Inorg-055/062/127		11	0.2	0.2	0		
TKN in water	mg/L	0.1	inorg-062		11	0.2	0.2	0		
Nitrate as N in water	mg/L	0.005	Inorg-055		11	0.006	0.006	0		
Nitrite as N in water	mg/L	0.005	Inorg-055		11	<0.005	<0.005	0		
Organic Nitrogen as N	mg/L	0.2			11	<0.2	<0.2	0		
NOx as N in water	mg/L	0.005	Inorg-055		11	0.008	0.008	0		
Ammonia as N in water	mg/L	0.005	Inorg-057		11	0.033	0.035	6		1710
Phosphate as P in water	mg/L	0.005	Inorg-060		11	<0.005	<0.005	0		

QUALITY CONTROL: Ion Balance						Dι	ıplicate	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	281301-2
Date prepared	-			27/10/2021	1	27/10/2021	27/10/2021		27/10/2021	27/10/2021
Date analysed	-			27/10/2021	1	27/10/2021	27/10/2021		27/10/2021	27/10/2021
Calcium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	1	1	0	96	128
Potassium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	-1	1	0	96	129
Sodium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	4	4	0	107	128
Magnesium - Dissolved	mg/L	0.5	Metals-020	<0.5	1	0.7	0.6	15	97	129
Hydroxide Alkalinity (OH⁻) as CaCO₃	mg/L	5	Inorg-006	<5	1	<5				
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006	<5	1	6				
Carbonate Alkalinity as CaCO₃	mg/L	5	inorg-006	<5	1	<5				
Total Alkalinity as CaCO₃	mg/L	5	Inorg-006	<5	1	6			105	
Sulphate, SO4	mg/L	1	Inorg-081	<1	1	1	1	0	111	111
Chloride, Cl	mg/L	1	Inorg-081	<1	1	5	5	0	113	120
lonic Balance	%		Inorg-040		1	4.0				

QUALITY CONTROL: Ion Balance						Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date prepared	-				11	27/10/2021	27/10/2021				
Date analysed	-				11	27/10/2021	27/10/2021				
Calcium - Dissolved	mg/L	0.5	Metals-020		11	8,0	0.8	0			
Potassium - Dissolved	mg/L	0.5	Metals-020		11	2	1	67			
Sodium - Dissolved	mg/L	0,5	Metals-020		11	5.7	5.3	7			
Magnesium - Dissolved	mg/L	0.5	Metals-020		11	<0.5	<0.5	0			
Hydroxide Alkalinity (OH-) as CaCO ₃	mg/L	5	Inorg-006		11	<5					
Bicarbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006		11	5					
Carbonate Alkalinity as CaCO ₃	mg/L	5	Inorg-006		11	<5					
Total Alkalinity as CaCO ₃	mg/L	5	Inorg-006		11	5					
Sulphate, SO4	mg/L	1	Inorg-081		11	2	2	0			
Chloride, CI	mg/L	1	Inorg-081	E 11	11	7	7	0	1		
onic Balance	%		Inorg-040		11	-1.0					

Envirolab Reference: 281301

Revision No: R00

Client Reference: P2007822 Bell Quarry

NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Envirolab Reference: 281301 Revision No: R00

Client Reference: P2007822 Bell Quarry

Quality Control Definitions

Blank

This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.

Duplicate

This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.

Matrix Spike

A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.

LCS (Laboratory Control Sample)

This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.

Surrogate Spike

Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Envirolab Reference: 281301

Revision No:

R00

Client Reference: P2007822 Bell Quarry

Report Comments

TRH Water(C10-C40) NEPM - # Percent recovery for the surrogate/matrix spike is not possible to report as the high concentration of analytes in sample #13 have caused interference.

Dissolved Metals: no filtered, preserved sample was received, therefore the unpreserved sample was filtered through 0.45µm filter at the lab.

Note: there is a possibility some elements may be underestimated.

8 HM in water - Total - # Percent recovery is not applicable due to the high concentration of the element/s in the sample/s. However an acceptable recovery was obtained for the LCS.

Low level VOC + 281301-13 vTRH/BTEXN analysed by MPL report # 271424

Envirolab Reference: 281301 Revision No: R00

Appendix E

Revised Water Resources Assessment

Bell Quarry Rehabilitation Project

Revised Water Resources Assessment

Bell Quarry Rehabilitation Project Pty Ltd 19 November 2021

GHD Pty Ltd | ABN 39 008 488 373

133 Castlereagh Street, Level 15 Sydney, New South Wales 2000, Australia

T +61 2 9239 7100 | F +61 2 9239 7199 | E sydmail@ghd.com | ghd.com

Printed date	19/11/2021 4:05:00 PM
Last saved date	19 November 2021
File name	https://projectsportal.ghd.com/sites/sp01_02/bellquarrywastefacil/ProjectDocs/125413517-RPT_Revised Water Resources Assessment Working Draft_Revision B.docx
Author	Rod Towner and Stefan Charteris
Project manager	Karl Rosen
Client name	Bell Quarry Rehabilitation Project Pty Ltd
Project name	Bell Quarry Appeal
Document title	Bell Quarry Rehabilitation Project Revised Water Resources Assessment
Revision version	Rev 1
Project number	12541317

Document status

Revision	Author	Reviewer		Approved for issue		
** E		Name	Signature	Name	Signature	Date
1	R Towner S Charteris	A Dixon K Rosen	a. Dixon	A Dixon	a production	19/11/2021

© GHD 2021

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

Table 1.2

Abbreviations

Defi	nitions a	and abbreviations		6
1.	1.1 1.2 1.3	uction Background Site setting Project overview		8 8 8 9
	1.4 1.5	Amendments to water management Purpose		9 10
2.	Propos 2.1 2.2	sed development Surface water management Fill importation		12 12 12
3.	3.1 3.2 3.3	Introduction Surface water Groundwater		19 1 19 20
4.	Adopte 4.1 4.2	ed assessment criteria Surface water Groundwater		30 30 31
5.	Surfac 5.1 5.2 5.3 5.4 5.5 5.6 5.7	e waters assessment Overview Upstream surface water Site sediment-laden water Contact water Discussion Surface water monitoring Surface water TARP		32 32 32 33 42 44 45
6.	Groun 6.1 6.2 6.3	dwater Assessment Assessment approach Groundwater modelling method Groundwater modelling results		4 * 47 49 57
7.	6.4 6.5 Licens	Discussion Groundwater management plan ing requirements		60 62 7 1
8. 9.	Conclu	usions		72 73
Ta	ble in	dex		
Tah	le 1 1	Definitions		6

6

Table 1.1	SOFACs and overview responses	10
Table 2.1	Comparison of criteria in the ENM order (NSW EPA, 2014b) and the NSW EPA	
	Waste Classification Guidelines (NSW EPA, 2014a)	14
Table 2.2	Staged quantities and areas (subject to detailed design)	16
Table 2.3	Preliminary liner and capping specification	16
Table 3.1	Summary of groundwater quality results (September 20127 – October 2021)	22
Table 3.2	Groundwater elevations, 15 and 31 August 2017	25
Table 3.3	Groundwater elevation data summary	26
Table 3.4.	Monitoring data for surface water monitoring sites	27
Table 3.5	Hydraulic conductivity	29
Table 5.1	Technical Description	37
Table 5.2	Surface Water Monitoring	44
Table 5.3	Eastern Void Monitoring	45
Table 5.4	Surface Water TARP	46
Table 6.1	Estimated leachate concentrations	50
Table 6.2	Groundwater contributing areas	52
Table 6.3	Background water quality	54
Table 6.4	PHREEQC Model Inputs	56
Table 6.5	PHREEQC modelling results	58
Table 6.6	Comparison of acceptable leachate concentrations with estimated source	
	material leachate	61
Table 6.7	Site specific trigger levels	63
Table 6.8	Groundwater monitoring program	66
Table 6.9	Trigger Action Response Plan	69
Figure in	ıdex	
Figure 3.1	Groundwater monitoring locations (from Martens 15/10/2021)	21
Figure 3.2	Piper plot for groundwater and surface water - 19 October 2021	24
Figure 3.3	Current groundwater flow field showing groundwater contours (in mAHD)	28
Figure 3.4	Groundwater levels at swamp between 4 May 2021 and 11 October 2021	29
Figure 5.1	Water balance model configuration	35
Figure 5.2	Simulated Eastern Void storage volume for historical and future climate considerations	41
Figure 5.3	Average annual results for historical and future climate considerations	41
Figure 5.4	Statistics on maximum volume in the eastern void for historical and future climate considerations	42
Figure 6.1	Modelling methodology	48
Figure 6.2	The total catchment area for Bell Quarry indicating the recharge area upgradient from pit 1 (blue area) and the geochemical modelling area downgradient from the voids to the downstream channel (yellow area). Total catchment area is indicated by the sum of the green area, yellow area and blue area	53
Figure 6.3	Groundwater monitoring locations	65
	• • • • • • • • • • • • • • • • • • •	

Appendices

Appendix A Groundwater and surface water monitoring results
Appendix B PHREEQC water quality inputs and cell optimisation

Appendix C HELP Modelling

Appendix D Contact Water and Leachate Treatment Options

Definitions and abbreviations

Table 1.1 outlines various definitions of key terms used throughout this memo.

Table 1.1 Definitions

Term	Definition		
Clean water	Water which runs off rehabilitated areas and water which is stored in the ponds and not influenced by leachate, contacted water or potentially sediment laden water		
Contact water	Water which runoffs the exposed fill		
Field capacity	The amount of soil moisture held in the soil after excess water has drained away		
Groundwater	Water within the in-situ geology		
Leachate	Water which seeps through the proposed fill		
Potentially sediment laden water	Water which runoffs disturbed areas of the site including those undergoing rehabilitation		

Table 1.2 outlines the abbreviations used throughout this memo.

Table 1.2 Abbreviations

Abbreviation	Definition
1D	One-dimensional
AHD	Australian Height Datum
ANZECC	Australian and New Zealand Environment and Conservation Council
ANZG	Australian and New Zealand Guidelines
ARMCANZ	Agriculture and Resource Management Council of Australia and New Zealand
ASLP	Australian Standard Leaching Procedure
ASS:	Acid Sulfate Soils
BGL	Below ground level
BTEX	Benzene, toluene, ethylbenzene and xylene
CRPs	Current recommended practices
CV	Curriculum vitae
DDT	Dichlorodiphenyltrichloroethane
DGV	Default guideline value
DO	Dissolved oxygen
EC	Electrical conductivity
EIA	Environmental Impact Assessment
EIS	Environmental Impact Statement
ENM	Excavated natural material
EPA	Environment Protection Authority
GMP	Groundwater management plan
GRI	Geosynthetic Research Institute
На	Hectares

Abbreviation	Definition
HDPE	High density polyethylene
HELP	Hydrologic Evaluation of Landfill Performance
IWMEM	Industrial Waste Management Evaluation Model
К	Hydraulic conductivity
LLDPE	Linear low density polyethylene
LOR	Laboratory limit of reporting
MB	Monitoring bore
MVV	Monitoring well
NA	Not available
NARCIIM	NSW Government Climate Change modelling
NorBe	Neutral or Beneficial impact
OCP	Organochlorine pesticide
OEH	Office of Environment and Heritage
OPP	Organophosphorus pesticide
PAH	Polycyclic aromatic hydrocarbon
PASS	Potential acid sulfate soils
PCB	Polychlorinated biphenyl
POEO Act	Protection of the Environment Operations Act 1997
POEO Regulation	Protection of the Environment Operations (Waste) Regulation 2014
SEPP	State Environmental Planning Policy
SOFAC	Statement of Facts and Contentions
SSTLs	Sie specific trigger levels
SWL	Standing water level
TARP	Trigger action response plan
TCLP	Toxicity characteristics leaching procedure
TRH	Total recoverable hydrocarbons
TSS	Total suspended solids
USEPA	United States Environmental Protection Agency
UCPR	Uniform Civil Procedure Rules 2005
VENM	Virgin excavated natural material
WMP	Waste management plan
WRA	Water Resources Assessment
WSP	Water Sharing Plan

1. Introduction

1.1 Background

Bell Quarry Rehabilitation Project Pty Ltd (the Applicant) seeks to rehabilitate the Bell Quarry site, located on Sandham Road at Newnes Junction, approximately ten kilometres east of Lithgow in NSW. The development application seeks (DA) to achieve the final rehabilitated landform via importation of virgin excavated natural material (VENM), excavated natural material (ENM) or comparable material (that meets an exemption pursuant to clauses 91 and 92 of the *Protection of the Environmental Operations (Waste) Regulation 2014*), sourced from earthworks projects across Sydney and the local regional area (the Project).

The DA (294/18) is Designated Development and is also defined as Regional Development under clause 7, Schedule 7 of the State Environmental Planning Policy (State and Regional Development) 2011 (SRD SEPP). The DA was notified and assessed by Lithgow City Council (Council), and subject to consent by the Western Regional Planning Panel (WRPP).

An Environmental Impact Statement (EIS) was prepared by GHD Pty Ltd (GHD) to support the DA and submitted to Council in October 2018. The DA and EIS were placed on exhibition for a 60 day period from 19 January to 20 March 2019. A Response to Submissions (RtS) Report was prepared by GHD in June 2019 to address the issues raised in submissions during exhibition and additional responses were provided to Council in October and November 2019.

The WRPP refused the DA on 6 April 2020 following a public panel meeting. One of the keys reasons for the refusal was based around the perceived risk for adverse environmental impacts upon the downstream receiving environment in the Wollongambe River catchment and the Greater Blue Mountains World Heritage Area.

1.2 Site setting

Sand and sandstone extraction activities commenced at the Bell Quarry site in 1967. The quarry operated under a development consent issued by Lithgow City Council in 1994 and an Environment Protection Licence (EPL) issued by the NSW Environment Protection Authority. The extraction activities have now ceased and the EPL was surrendered in October 2014.

The site is located in close proximity to other extractive industries and rural residential properties in surrounding area. The Clarence Colliery pit top, rail loop and loading facilities are located around 750 metres to the north and the Hansen Quarry is located to the west of the mining operations. The approved Newnes Kaolin Mine is located between the colliery and the northern extent of Bell Quarry, however mining operation at this site have not commenced.

The Blue Mountains National Park is located to the east of Clarence Colliery and is one of the eight protected areas making up the World Heritage Listed Greater Blue Mountains Area (UNESCO 2013). The Newnes State Forest is located to the north and west of the site.

The Bell Quarry is located within the upper reaches of the Wollangambe River catchment. This river drains towards the east where it eventually drains into the Colo River which forms part of the broader Hawkesbury-Nepean catchment area. All water drains to the Wollongambe River catchment and the site (northern parcel and subject to this DA) does not form part of Sydney's drinking water catchment area.

The existing quarry pit contains a number of voids that are currently filled with water from combination of groundwater seepage and surface water runoff. An ephemeral tributary of the Wollangambe River runs in a north-easterly direction through the site and has its headwaters in the vicinity of the rail line upstream of the site. Surface flows from this area of the catchment now enter the site at the western edge of the north void and flow through the site to where it discharges from the site into a small sediment basin located partially within the adjoining Blue Mountains National Park.

Approximately 200 metres downstream of the water-filled voids the drainage line enters a swamp where under dry weather conditions, flows are predominantly subsurface. The swamp occupies the majority of the drainage line upstream of the confluence with a similar tributary, which runs to the north of the site. Downstream of this confluence the tributary enters a meandering reach which is somewhat confined by sandstone outcropping, which continues for approximately 1.5 kilometres before the confluence with the Wollangambe River.

Martens and Associates (Martens 2021) have identified that the groundwater from the quarry is hydraulically disconnected from the swamp downgradient of the Bell Quarry site.

1.3 Project overview

The development application seeks to rehabilitate the subject land, with the final rehabilitated landform to be achieved via importation of material sourced across Sydney and the local regional area which meets:

- the definition of virgin excavated natural material (VENM) as defined by the POEO Act from time to time
- the criteria of excavated natural material (ENM) as set out in the Excavated Natural Material Order and Exemption 2014 issued by the Environmental Protection Authority under clause 93 of the Protection of the Environmental Operations (Waste) Regulation 2014, or
- an exemption granted by the Environment Protection Authority pursuant to clauses 91 and 92 of the Protection of the Environmental Operations (Waste) Regulation 2014) and which specifically relates to the Land. This material is referred to below as comparable material.

Collectively these are referred to as fill from herein. The rehabilitated landform will be revegetated in stages. This is defined as the Project.

The Project aligns with NSW Government's key policy priority actions to increase recycling and reuse of materials and limiting the need for new landfills and reduce landfill disposal.

The key objectives for the Project continue to include:

- Rehabilitate the site to a condition closely representing the pre-quarry original landform and that of the adjoining Blue Mountains National Park.
- Maximise resource recovery through diversion of VENM/ENM and comparable materials away from landfill for beneficial reuse for site rehabilitation.
- Undertake the rehabilitation works to be sympathetic to the surrounding land-use and environmental setting.
- Provide ongoing local employment opportunities.
- Revegetate the site with locally endemic species to provide effective integration with the surrounding landscape.

The rehabilitation process will involve:

- Importation of approximately 992,550 cubic metres of material (made up of 966,600 m³ of fill with the remainder sidewall liner material ¹).
- Vehicle haulage at a rate of up to 140,000 tonnes per annum (tpa).
- Staged emplacement and compaction of soil material within the existing quarry voids.
- Shaping of fill to closely represent the pre-quarry landform and to allow surface water drainage across the final landform.
- Development of a water management system including management plans to control surface water discharges throughout the rehabilitation program and from the final landform.
- Revegetation of the site with locally endemic species to provide effective integration with the surrounding landscape.

1.4 Amendments to water management

A revised water management system has been developed for the site incorporating:

- Management of surface of water flows in three separate streams including:
 - Clean surface water from upstream catchment areas will be conveyed through and around the site to prevent interaction with site operations.
 - Sediment laden run-off from disturbed areas comprising naturally occurring site soils will be treated in sediment basins prior to release to receiving waters.

¹ Materials for liner preparation (groundwater depressurisation and seal bearing layer), intermediate cover and final capping works (assuming 600mm thick) are assumed to be won on site from within the proposed fill footprint area

- Contact water comprising any surface water flows that have come in contact with emplacement material
 will be captured in a contact water pond for reuse via on-site irrigation to prevent discharge of surface
 water from the site.
- Inclusion of an engineered barrier system (liner and drainage layers) in the base, sidewalls and cap to create
 a barrier to groundwater flow and infiltration of rainfall / surface water into the emplaced material.
- The water management system also includes provision for installation of a water treatment plant to be triggered based upon storage levels in a contact water pond reaching 45% of capacity. The water treatment plant will ensure any contact water or the leachate can be released from the site and is treated to background water quality prior to discharge.

A key change for the assessment approach is in relation to the management of any contact water running off the active emplacement areas. Separation of clean and potentially sediment laden flows from the contact water has enabled all contact water to be retained on site and stored within a re-purposed eastern void for reuse on site.

The site water balance indicates all contact water can be retained on site for the life of the project under historical and potential future climate scenarios. Contingency for the provision of a water treatment plant has also been included as part of the Supplementary EIS in the event that the contact water pond reaches 45% capacity to ensure that any releases from the site are treated to background water quality and achieve a neutral or beneficial effect for the catchment.

Additional surface and groundwater monitoring has been undertaken and demonstrated that there is no direct connection between groundwater flows from the quarry site and a hanging swamp located approximately 200 metres downslope. The adoption of lining system within the emplacement cell will also limit the potential for leachate within emplacement cell to impact upon the deeper local or regional groundwater systems and to also achieve a neutral or beneficial effect for the catchment.

1.5 Purpose

The purpose of this Revised Water Resources Assessment is to update and complement the Water Resources Assessment presented as Appendix C of the Bell Quarry Rehabilitation Project Environmental Impact Statement (GHD:2018). The assessment considers the potential impacts associated with the revised water management strategy proposed for the development and should be read in conjunction with a hydrological assessment prepared for the proposed development by Martens & Associates.

Furthermore, this Revised Water Resources Assessment has been developed to specifically assess and address the Statement of Facts and Contentions (SOFAC) with respect to the concern that the project presents an unacceptable risk to water quality during the operations and post closure period.

The relevant contentions addressed in this Report are outlined in Table 1.1, together with a summary of the issue and an overview of how it is addressed.

Table 1.1 SOFACs and overview responses

Contention(s)	Description of issues	Overview of response
1(ii)	The concern is that the development will have an unacceptable environmental impacts on the adjoining Blue Mountains National Park, the Greater Blue Mountains World Heritage Area and the Wollangambe and Colo River systems through the dewatering process nor the importation of fill over the life of the project and beyond.	The dewatering works will be undertaken in a manner such that there is a negligible risk of impacting on the swamp as the flow rates will be varied and less than the swamp experiences in high rainfall conditions. This is addressed in section 5.5.2 of this Report and by Martens. Furthermore, the project will achieve a neutral or beneficial effect on water quality in the catchment. This will be achieved by range of measures assessed and described in this report (and supporting documentation) including:
		 The approach documented in the EIS where surface waters were mixed and released from site has been revised. A containment approach is instead proposed, and it is considered that it is

Contention(s)	Description of issues	Overview of response
		very likely full containment onsite will be achieved for contact water for the life of the project
		 Sediment and erosion control measures have been increased in accordance with 'sensitive' environments criterion
		 A contingency water treatment plant that if needed will be able to treat excess contact water and leachate to background water quality levels before it is released from the site
		 An engineered barrier system on the floor and walls of the emplacement area to separate leachate from the surrounding groundwater
		 A capping barrier to minimise the infiltration of rainfall into the fill
		These assessments and findings are contained in this Report.
2(i), (ii), (v), (vi)	This contention relates to the concern that the project will adversely impact downstream water quality.	See above.
3	This contention relates to the concern that the project will adversely impact downstream water quality.	See above
6(c)	This contention relates to the concern that the project will adversely impact downstream water quality.	See above

Additional contentions are addressed by Martens in their Hydrological Assessment (Martens, 2021).

2. Proposed development

2.1 Surface water management

A revised surface water management system has been developed involving management of surface water within the site in three separate streams:

- Water from upstream catchment (off-site) areas: This water shall be conveyed through/around the site without interaction with site waters wherever practicable, with direct discharge to the downstream receiving system. Where mixing of upstream and site waters is unavoidable, (for example, a cascade of upstream waters currently enters the western void of the site) the upstream waters shall mix only with sediment-laden water (not contact water). Where this mixing occurs the sediment laden water management approach shall include the volumetric contribution of the upstream waters.
- Sediment laden water: This is runoff from areas where disturbed, non-vegetated soil is present but does not consist of foreign imported fill material. In these areas runoff is to be managed in accordance with Managing Urban Stormwater: Soils and Construction Volume 1, Landcom 2004 and Volume 2, DECC 2008. The requirements within the documents that apply to a "sensitive" receiving environment would be adopted.
- Contact water: This water comprises any surface water that has interacted with emplacement material and
 will be captured in a contact water pond for reuse via on-site irrigation to prevent discharge of surface water
 from the site. There will be no discharges of surface contact waters would occur other than when treated to
 background water quality conditions.

2.2 Fill importation

2.2.1 Acceptance criteria

The development application seeks to achieve the final rehabilitated landform via importation of virgin excavated natural material (VENM), excavated natural material (ENM) and comparable material sourced from earthworks projects across Sydney and the local regional area (the Project).

The NSW EPA considers fill material as a valuable resource for the construction and infrastructure sectors in NSW and as such encourages the recovery of resources from waste to be used as fill where it is beneficial and poses minimal risk of harm to the environment and or human health (NSW EPA, 2017).

To implement recovery of resources from waste the EPA has the powers under the POEO Waste Regulation to pre-classify waste and provided exemptions (via waste resource recovery orders and exemptions). Virgin excavated natural material (VENM) and excavated natural material (ENM) have been classified by the EPA as materials that should be preferentially used for beneficial purposes as opposed to going to a licensed landfill. These are type of materials that will primarily be accepted at the project site, together with any material subject to a specific resource recovery order and exemption, where sought and granted by the EPA.

As indicated on the EPA website², the Protection of the Environment Operations Act 1997 (POEO Act) defines VENM as:

"Natural material (such as clay, gravel, sand, soil or rock fines):

- a. that has been excavated or quarried from areas that are not contaminated with manufactured chemicals, or with process residues, as a result of industrial, commercial, mining or agricultural activities and
- b. that does not contain any sulfidic ores or soils or any other waste

and includes excavated natural material that meets such criteria for virgin excavated natural material as may be approved for the time being pursuant to an EPA Gazettal notice.'

Virgin excavated natural material (VENM) is a waste that has been pre-classified as general solid waste (non-putrescible)."

² Virgin excavated natural material (nsw.gov.au)

Within the ENM order (2014)³, ENM is defined as:

"naturally occurring rock and soil (including but not limited to materials such as sandstone, shale, clay and soil) that has:

- a. been excavated from the ground, and
- b. contains at least 98% (by weight) natural material, and
- c. does not meet the definition of Virgin Excavated Natural Material in the Act.

Excavated natural material does not include material located in a hotspot; that has been processed; or that contains asbestos, Acid Sulfate Soils (ASS), Potential Acid Sulfate soils (PASS) or sulfidic ores."

These definitions indicate that the material, while pre-classified as waste will be predominantly natural material that is not contaminated.

All fill material will meet the definition of either VENM, ENM or comparable material permitted under a specific resource recovery order and associated exemption.

2.2.2 Waste classes and environmental risk of harm

Emplacement material permitted to be accepted at the site is materially different to waste that has been generate at a site where potentially contaminating activities have or are occurring, and which would be required to be classified in accordance with the NSW EPA Waste Classification Guidelines (NSW EPA, 2014a) and transferred to landfill licensed to accept the classified waste.

VENM, ENM and comparable material permitted under a specific resource recovery order and associated exemption when applied to land are exempt from the licensing requirements under the POEO Act. These licensing exemptions reflect the intrinsic lower risk of environmental impact that these waste types present when applied to land compared to other waste classified as general solid waste, special waste and restricted waste.

As described above, VENM is material not contaminated with any man-made substances and does not contain sulphidic (acid forming) material or any other waste. The ENM Order states that ENM must comprise at least 98% natural material and other limiting criteria as discussed below. An application for comparable material in the form of a specific resource recovery order and associated exemption must demonstrate as a minimum that the material

- is fit for purpose in its proposed use,
- poses minimal risk of harm to the environment or human health; and
- is not intended to be land applied as a means of disposal (i.e., a landfilling activity).

The ENM Order outlines the maximum concentrations of substances and other attributes for acceptable ENM material, whilst the NSW EPA Waste Classification Guidelines (NSW EPA, 2014) identifies the maximum contaminant concentrations for general solid waste permitted at landfills licensed by the EPA. Special waste includes asbestos and restricted waste has higher contaminant concentrations than general solid waste.

For the substances that are present in both the Order and guidelines for general solid waste, it can be seen that the maximum concentrations for all substances in the NSW EPA Waste Classification Guidelines based on specific contaminant concentrations are greater than the maximum average concentrations in the ENM order.

There are, however, three substances which have a higher absolute maximum concentration in the NSW EPA ENM order compared to the maximum values for general solid waste in the NSW EPA Waste Classification Guidelines. This occurs for Nickel, Benzo(a)pyrene and chromium. However, on average, these concentrations are still less than those for general solid waste.

The VENM and ENM sought to be accepted at the site will be required to meet the definition of VENM in the POEO Act and the criteria outlined in the ENM Order, respectively. Any comparable material will be required to obtain a specific resource recovery order and exemption from the EPA by demonstrating that it poses minimal risk of harm to the environment or human health and addresses any other criteria stipulated by the EPA. These waste types (VENM, ENM and comparable material) present a lower risk of causing an environmental impact than waste that is able to be accepted at a licensed general solid waste landfill facility.

³ the excavated natural material order 2014 (nsw.gov.au)

Furthermore, additional mitigation measures, monitoring and if needed adaptive controls are proposed for the Project to ensure that the risk of environmental impact is negligible. These are described throughout this Report and the Environmental Management Plan (GHD 2021).

Comparison of criteria in the ENM order (NSW EPA, 2014b) and the NSW EPA Waste Classification Guidelines (NSW EPA, 2014a) Table 2.1

Substance	NSW EPA	A ENM order	NSW EPA Waste Classification Guidelines	General solid waste criteria in	
	Maximum average concentration for characterisation (mg/kg 'dry weight' unless otherwise specified)	Absolute maximum concentration (mg/kg 'dry weight' unless otherwise specified)	Maximum values of specific contaminant concentration for classification without TCLP. General solid waste (mg/kg)	relation to absolute maximum ENM concentration	
Mercury	0.5	1	4	4 x larger	
Cadmium	0.5	1	20	20 x larger	
Lead	50	100	100	Same value	
Arsenic	20	40	100	2.5 x larger	
Chromium (total)	75	150	1004	0.66 x smaller*	
Copper	100	200	No value specified	-	
Nickel	30	60	40	0.66 x smaller*	
Zinc	150	300	No value specified	-	
Electrical conductivity	1.5 dS/m	3 dS/m	No value specified	-	
pН	5 to 9 ⁵	4.5 to 10 ⁶	No value specified	-	
Total Polycyclic Aromatic hydrocarbons	20	40	200	5 x larger	
Benzo(a)pyrene	0.5	1	0.8	0.8 x smaller*	
Benzene	NA	0.5	10	20 x larger	
Toluene	NA	65	288	4.4 x larger	
Ethyl-benzene	NA	25	600	24 x larger	
Xylene	NA	15	1,000	66.7 x larger	
Total Petroleum Hydrocarbons C ₁₀ – C ₃₆	250	500	10,000	20 x larger	
Rubber, plastic, bitumen, paper, cloth, paint and wood	0.05%	0.10%	No value specified	-	

^{*} Maximum average concentrations are lower than for general solid waste

⁴ Cr(VI)

⁵ The ranges given for pH are for the minimum and maximum acceptable pH values in the excavated natural material ⁶ The ranges given for pH are for the minimum and maximum acceptable pH values in the excavated natural material

2.2.3 Emplacement activities

2.2.3.1 Overview

The emplacement activities will be largely as described in the original DA and located within the disturbance footprint of the former Bell Quarry. Key changes in relation to the emplacement activities are described below:

- The proposed fill staging has been altered to reflect the revised surface water management system.
- The footprint of the landform has been slightly but remains fully within the footprint included in the original DA and the maximum height of the final landform has not been altered.
- The eastern void is to be retained throughout the filling of the first 4 stages to allow for storage of contact water prior to disposal via irrigation (or, in the unlikely event a treatment plant is required, via treat and release).
- The fill footprint and final landform in the southern void have been adjusted to provide an alternative access which is developed as part of the filling of Stage 1.
- All areas proposed to be filled will be lined with HDPE geomembrane (or equivalent) on the base and clay on the sidewalls where they are adjacent to the natural substrate (i.e., in the pits).
- The basal lining of each stage includes a geonet drainage geocomposite (or equivalent) and riser to allow extraction of seepage (if required).
- Groundwater diversion system to promote groundwater movement down-gradient of the basal liner.
- A temporary clean water diversion system will be constructed to the west of the site to allow diversion of upstream catchment around active emplacement areas.
- The contact water dam will be lined with a geomembrane (or equivalent).
- Areas proposed to be filled will be capped with LLDPE geomembrane (or equivalent), overlaid with a subsurface drainage system and revegetated.
- Areas of the site have been identified for excavation works to supply site won material for site intermediate capping and a minimum of 600 mm of final capping materials.
- Excavation areas are within the extents of the proposed filling works and includes areas in the northern
 portion of the site as described in the original DA and a former deposition area in the eastern portion of the
 site
- A stockpile of site won material is to be placed in the northeast corner of the site (for the later stages use).

2.2.3.2 Work stages

The rehabilitation work is split into Site Establishment works and four stages of filling works as described in detail in the Supplementary EIS Report. A summary of staged quantities is included in Table 2.2 and detailed Staging Plans are presented in the Supplementary EIS Report.

Table 2.2 Staged quantities and areas (subject to detailed design)

	Excavation ⁷ (m ³)	Volume ⁸ (m³)	Base lining area** (m²)	SidewallI lining area** (m²)	Active filling area* (m²)	New intermediate cover area** (m²)	Final cap area** (m²)
Stage 1A		104,300	4,100	11,740	12,400	-	-
Stage 1B			-	4,500	12,400	7,390	5840
Stage 2		48,800	11,800	-	12,560	1,820	11,880
Stage 3a		89,850	10,500	3,600	17,900 ⁹	4,400 ⁵	0
Stage 3b	B .	244,200	-	10,450	16,700 ⁵	8,870 ⁵	11,690
Stage 3c		25,800	-	-	7,660	-	8,150
Stage 3d		169,050	-	8,160	6,500	4,340	10,150
Stage 4	Up to 60,500	255,250	3,800	13,500	15,180 ⁵	-	22,230
Total	60,500	1,053,050	30,200	51,950	-	26,820	69,930

^{*} plan area

2.2.3.3 Final cover and liner system

The profile of the final cover and basal and side wall liners are described below:

Final cover profile (top to bottom):

- Revegetation layer suitable for the establishment and long-term viability of vegetation.
- Subsurface drainage layer to ensure stability of the revegetation layer and minimise infiltration.
- Geosynthetic barrier system that will minimise infiltration to as low as reasonably practicable and prevent 'bath tubbing' above the basal liner.
- Seal bearing layer to support the geosynthetic barrier layer.

Basal and sidewall liner profile (top to bottom):

- Compacted clay sidewall barrier progressively placed in lifts to minimise the horizontal migration of leachate out of the fill and seepage of groundwater into the fill.
- Geonet drainage geocomposite (or equivalent) to minimise damage of the basal liner barrier system and allow monitoring of leachate in the cells.
- Geosynthetic basal barrier layer to form a barrier between the placed fill and the groundwater, soil and substrata and minimise seepage to as low as reasonably practicable.
- Seal bearing layer to support the geosynthetic barrier layer.
- Groundwater diversion system to promote groundwater movement.

A construction quality assurance (CQA) Plan for the liner system will be developed that outlines the material specifications, installation and testing requirements.

Individual components of each of these systems are summarised in Table 2.3 and are described below.

Table 2.3 Preliminary liner and capping specification

Name	Layer Type	Thickness (mm)	Notes	1. 12/2 L
Revegetation layer	Soil for vegetation	600	Site won material	

⁷ Excavation represents the stage/area where the excavation is achieved. It does not represent the timing of excavation works. All other values in this table assume that this excavation work is undertaken as required.

^{**} slope area

Volume represents volume from existing surface or design excavation surface to top of final cap. Stage fill capacities must also consider airspace lost to lining, cover and capping works.

⁹ Where the entire stage catchment area is greater than 1.3 ha, filling works will be staged and intermediate cover used to maintain an actual contact water area of less than 1.3 ha at any time. Additional intermediate cover material may be required to achieve this requirement. Additional onsite soil generation has been included for this purpose.

Name	Layer Type	Thickness (mm)	Notes
Subsurface drainage layer	Geonet drainage geocomposite	To be determined as part of detailed design	Designed to prevent saturation of the revegetation layer and minimise infiltration into the fill
Final cover barrier layer	Textured Linear Low Density Polyethylene (LLDPE) Geomembrane (or equivalent)	2	Manufactured in accordance with GRI - GM17 Standard Specification for "Test Methods, Test Properties and Testing Frequency for Linear Low Density Polyethylene (LLDPE) Smooth and Textured Geomembranes" (Geosynthetic Institute, 2019)
Seal bearing layer / intermediate cover layer	Cohesive soil material	300	Site won material made up of fine-grained material or if coarse material with a protection geotextile
Fill	VENM, ENM or material in accordance with a specific resource recovery order/exemption	Variable	Imported material
Sidewall barrier layer	Compacted clay material	500	Permeability of less than 10 ⁻⁹ m/s
Subsurface drainage layer	Geonet drainage geocomposite	To be determined as part of detailed design	Designed to protect the liner and allow extraction of seepage to prevent saturation of the fill causing bath-tubbing during operation
Basal barrier layer	High Density Polyethylene (HDPE) Geomembrane (or equivalent)	2	Manufactured in accordance with GRI - GM13 Standard Specification for "Test Methods, Test Properties and Testing Frequency for High Density Polyethylene (HDPE) Smooth and Textured Geomembranes" (Geosynthetic Research Institute, 2003)
Seal bearing layer	Cohesive soil material	300	Compacted site won material
Groundwater depressurisation layer	Free draining material	300	Free draining site won material

2.2.3.4 Groundwater diversion system

A groundwater diversion system will be included in the design of the basal lining in the pits to minimise the possibility of liner uplift and allow the flow of groundwater beneath and around the liner. The system will consist of a minimum of 300 mm of free draining site won or imported material with a similar geochemistry to the surrounding landscape. During detailed design of the basal liner the risk of liner uplift will be assessed and, if required, a sump and riser installed to allow depressurisation of the liner.

2.2.3.5 Leachate levels

Numerical groundwater modelling was performed Martens and Associates (2021).

The modelling established that, taking into consideration groundwater inflow and outflow, infiltration from the cap and seepage through the liner, over the long term, leachate levels are expected to rise and equalise with the surrounding groundwater table level (approximately 1037.5 mAHD).

The basal drainage layer at the base of the quarry void would allow monitoring of leachate in the fill: Monitoring of leachate levels at the riser will be undertaken to confirm that leachate is not accumulating/increasing within the quarry void creating a bathtub effectAs the site is being progressively capped and revegetated leachate levels will be able to be monitored during site operations. Monitoring and corrective actions (if needed) are outlined Section 6.5 of this Report.

2.2.3.6 Irrigation management

Contact water will result from runoff from active emplacement areas and minor quantities from any vehicle washdown. All contact water will be contained within the site or treated and discharged at background water quality conditions. Irrigation of contact water will only be applied within the contact water catchment.

Contact water will be contained by installation of diversion bunds and drained to the contact water storage. The accumulated contact water will be collected for irrigation within the emplacement area by:

- Tanker through application to the active placement area for dust suppression and moisture conditioning to achieve target compaction rates.
- Mobile sprinklers that will be located within the emplacement area outside of haulage routes.

The operation of the sprinklers will consider irrigation demand, wind speed and prevailing wind direction and elevation with the aim to prevent spray drift outside of the emplacement areas or exposure to workers. Irrigation activities will not take place during wet weather periods or during high wind speed condition depending on the elevation of the emplacement area. The mobile sprinklers will be sited within the emplacement area based on fill moisture monitoring by conductivity meter. The irrigation rate will be developed to minimise runoff, and to not exceed the capacity of the fill to absorb the contact water.

3. Existing Environment

3.1 Introduction

The purpose of this section is to complement the surface water and groundwater conditions presented in the EIS water resources assessment (GHD, 2018) using additional site data from site investigations undertaken by Martens and Associates since February 2021. Additional conceptualisation of surface and hydrogeological environment is provided in the EIS water resources assessment and in Martens (2021) Water Assessment and should be read in conjunction with the information provided in this section.

3.2 Surface water

As outlined in the previous EIS Water Resources Assessment, an ephemeral tributary of the Wollangambe River runs in a north-easterly direction from the project site. The quarry intersected this tributary's catchment, which has its headwaters in the vicinity of the rail line upstream of the site. Surface flows from this area of the catchment now enter the site at the western edge of the north void, where some erosion form high flow events is evident.

Water is discharged from the site through an established sediment basin on the external eastern edge of the site, which is located partially within adjoining national park surveyed boundary. The sediment basin contains considerable reed growth and aquatic vegetation and discharges into a drainage line that forms a continuation of the ephemeral tributary downstream of the site.

Downstream of the site, the drainage line enters a swamp. The swamp occupies the majority of the drainage line upstream of the confluence with a similar tributary, which runs to the north of the site. Downstream of this confluence the tributary enters a meandering reach which is somewhat confined by sandstone outcropping, which continues for approximately 1.5 kilometres before the confluence with the Wollangambe river.

The Wollangambe River winds eastwards through narrow canyons and is one of four major tributaries of the Colo River.

Martens and Associates (2021) have undertaken additional hydrological investigations for the project including analysis of surface water connectivity to the swamp. The investigations characterise the flow regime as follows:

- Flows to the hanging swamp appear to be directly related to incidence of local rainfall (i.e., flows appear to rely on surface flows from rainfall as opposed to base flows from groundwater).
- Local catchments have a relative rapid response with flows commencing not long after commencement of
 precipitation. This may be explained by the relatively shallow sandy catchment soils and frequent bedrock
 outcropping leading to runoff occurring relatively quickly following precipitation.
- Smaller flows upslope of the existing voids are captured by the voids, with overflows being directed to the hanging swamp downslope.
- Water levels in the voids are influenced largely by groundwater inflows and evaporation.
- Flows tend to be relatively minor (of the order of < 5 L/s) for most of the monitoring period, with the average flow rate skewed by less frequent flow events (median flows much less than average flows).

The previous EIS Water Resources Assessment (GHD 2018) also outlines surface water quality sampling results from both historical OEH (2015) investigations and sampling undertaken at the site. The results indicated generally a high-water quality of surface water in the reference sites compared at the time to downstream in the Wollongambe as a result of past discharges from the nearby Clarence Colliery.

In addition to this sampling further information is now available subsequent to the EIS Water Resources Assessment and presented in *Martens and Associates, 2021*. The surface water quality monitoring found the following:

 Water quality of overflows from the quarry voids is generally of relatively good quality when compared with trigger values given in the National Water Quality Management Strategy (2000) Australian and New Guidelines for Fresh and Marine Water Quality.

- Nutrient, heavy metal and hydrocarbon concentrations in surface discharges from the Site are low to below detection, indicating that the existing quarry and associated accesses are not significantly impacting on surface water quality downstream at the hanging swamp.
- Surface water is generally slightly acidic, most likely as a result of local geology.

3.3 Groundwater

Martens and Associates (2021) have undertaken additional groundwater investigations, which have been used to update the conceptualisation of the groundwater system for this assessment. The additional site data includes:

- Installation of groundwater monitoring wells to monitor groundwater elevations at the site and at the swamp downgradient of the site.
- Collection of groundwater samples from the wells to characterise baseline water quality.

The updated hydrogeological conceptualisation using this data is provided in the following sub-sections.

3.3.1 Groundwater quality

Groundwater monitoring was undertaken between September 2017 to October 2021 at both on and off-site wells MB02, MB03, MW021, MW301A, MW301B, MW302A, MW302B and MW401 (locations shown in Figure 3.1). Groundwater monitoring results are provided in Appendix A, with a summary of these results presented in Table 3.1. Background groundwater quality information was also available within groundwater investigations completed for the approval of the Newnes Junction Sand & Kaolin Extraction Project located immediately to the north of the site (GSS Environmental, 2011). Where applicable this information has also been summarised in Table 3.1.

Paper Size ISO A4 50

Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56

Bell Quarry Rehabilitation Project Pty Ltd Bell Quarry Appeal

Surface Water Monitoring Locations

Project No. 12541317

Revision No. B
Date 2/11/2021

FIGURE 3.1

A piper plot was also created to help characterise the relationships between groundwater wells and surface water and the uniformity of groundwater quality within the aquifers (Figure 3.2).

Table 3.1 Summary of groundwater quality results (September 20127 – October 2021)

Analyte	Units	DGV ⁽¹⁾⁽⁷⁾	%Values That Exceed the DGV	Mean ± Std (8)(9)	Min-Max	Comments
рН	pH units	6-5-7.5 ⁽²⁾	100	Not calculated	5.92-7.2	pH was only measured at MB02 and MB03 during the first two monitoring events. An average groundwater pH of 5.05 was measured as part of Newnes Kaolin WMP for the neighbouring site.
Electrical conductivity (EC)	μS/cm	NA	-	Not calculated ⁽	52-164	EC was only measured at MB02 and MB03 during the first two monitoring events
Total dissolved solids	mg/L	NA	-	90±83	30 - 216	An average groundwater TDS of 84 mg/L was measured as part of Newnes Kaolin WMP (GSS Environmental, 2011) for the neighbouring site
Calcium	mg/L	NA	-	Not calculated	<0.05-13	Concentrations were commonly less than the Limit of laboratory reporting (LOR)
Magnesium	mg/L	NA	-	Not calculated	<0.5-<1	Concentrations were commonly less than the LOR
Potassium	mg/L	NA	-	1.1±0.6	<0.5-2.1	
Sodium	mg/L	NA	-	5.6±4.2	2.8-21	
Chloride	mg/L	NA	-	5±1.2	4-9	
Sulfate	mg/L	NA	-	2±0.8	1-5	
Alkalinity (as CaCO ₃)	mg/L	NA	-	10±11	<5-52	
Ammonia (as N)	mg/L	0.32	0	0.023±0.026	<0.005- 0.096	
Nitrogen (Total Oxidised) (as N)	mg/L	1.0 ⁽⁶⁾	13	0.300±0.544	<0.005-1.8	Given the aquifer conditions likely to be present as nitrate
Nitrogen (Total)	mg/L	0.250(2)	33	1.0±3.0	<0.1-15	
Phosphate total (P)	mg/L	0.015 ⁽²⁾	0	Not calculated	<0.005	Concentrations were consistently less than the LOR
Phosphorus (Total)	mg/L	0.015 ⁽²⁾	29	Not calculated	<0.05-1.1	Concentrations were commonly less than the LOR
Dissolved aluminium	mg/L	0.027	25	Not calculated	0.005-0.031	EC only measured at MB02 and MB03 during the first two monitoring events
Dissolved arsenic	mg/L	0.0008 ⁽⁴⁾	85	Not calculated	<0.0002- <0.001	LORs were commonly greater than the nominated DGV
Dissolved cadmium	mg/L	0.00006	88	Not calculated	0.00006- <0.0001	LORs were commonly greater than the nominated DGV

Analyte	Units	DGV ⁽¹⁾⁽⁷⁾	%Values That Exceed the DGV	Mean ± Std (8)(9)	Min-Max	Comments
Dissolved chromium	mg/L	0.00001 ⁽⁵⁾	100	Not calculated	<0.0002- <0.001	Concentrations were consistently less than the LOR. LORs were greater than the nominated DGV
Dissolved copper	mg/L	0.001	54	0.012±0.038	<0.0005- 0.19	
Dissolved iron	mg/L	NA	NA	Not calculated	0.004-0.042	Iron only measured at MB02 and MB03 during the first two monitoring events
Dissolved lead	mg/L	0.001	0	Not calculated	<0.0001- <0.001	
Dissolved manganese	mg/L	1.2	50	Not calculated	0.101-2.85	Manganese only measured at MB02 and MB03 during the first two monitoring events
Dissolved mercury	mg/L	0.00006	85	Not calculated	<0.00005- <0.0001	The high LOR is greater than the nominated DGV
Dissolved nickel	mg/L	0.008	92	Not calculated	<0.001- 0.085	
Dissolved zinc	mg/L	0.0024	46	0.045±0.158	<0.001-0.8	
TRH	µg/L	NA	NA	Not calculated	<0.01 – 0.460 (all fractions)	Detections of TRH were present in upgradient well MW201 only.
BTEX and PAHs	µg/L	see Appendix A	0	<lor< td=""><td></td><td>All BTEX and PAH concentrations were below the LOR. It is noted that the LOR for anthracene, benzo(a)pyrene and phenanthrene was above the nominated DGVs.</td></lor<>		All BTEX and PAH concentrations were below the LOR. It is noted that the LOR for anthracene, benzo(a)pyrene and phenanthrene was above the nominated DGVs.

Notes

ANZG (2018) 99% protection level default guideline value (DGV) for fresh water.

ANZECC/ARMCANZ (2000) Trigger Values for Chemical Stressors for Southeast Australia Upland River ecosystem

Baseline groundwater data from #MW201 5/10/2021, where values <LOR the LOR was adopted

DGV used for As(V)

DGV used for Cr(VI)

Nitrate DGV taken from "Updating nitrate toxicity effects on freshwater aquatic species "

NA - not available

Mean±stdev not calculated if there was less than five results or if a large number of results were <LOR

In calculating mean±stdev values <LOR were given a value equal to the LOR.

Summary statistics presented in Table 3.1 and the piper plot indicate that water quality within the sandstone aquifer can be uniformly described as having:

- Na-Cl-HCO₃ to Na-HCO₃-Cl type waters.
- Slightly acid to neutral pH (ranging pH 5 to 7.5).
- Freshwater quality (TDS < 216 mg/L).
- Generally low concentrations of metals with detections likely attributed to the host sandstone rock.

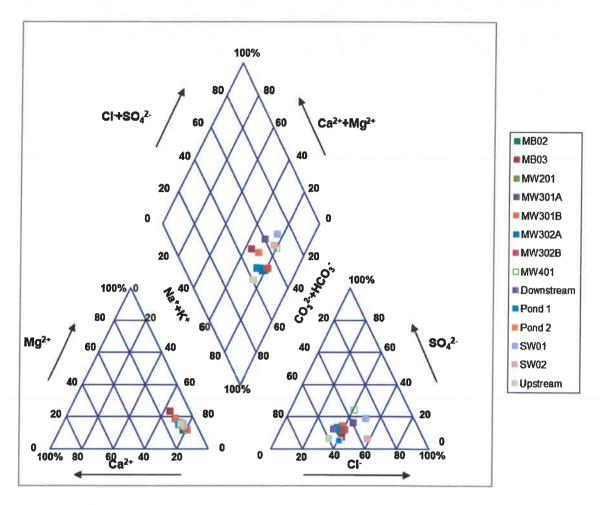


Figure 3.2 Piper plot for groundwater and surface water - 19 October 2021

Whilst many analytes exceeded the nominated default guideline value (DGV), observed concentrations are likely to be representative of natural background conditions given the mean, standard deviations, range of concentrations reported, and the similarity in ion composition to surface water sampled both on and downstream of the site. The variability in analyte concentrations observed between monitoring events and locations is likely attributed to inherent natural variability within the aquifer. Many of the noted exceedances were also attributable to elevated LORs that exceeded the nominated DGVs.

3.3.2 Groundwater levels

Groundwater elevation behaviour associated with the groundwater monitoring locations presented in Figure 3.1 are discussed below. MB01 is not present in the figure but is located in the approximate vicinity of MW201 and is up-gradient of the quarry voids.

Previously reported groundwater elevations (GHD, 2018) were based on data collected at the time of well installation on 15 and 31 August 2017. This data is presented in Table 3.2 and indicated that groundwater flow was to the north-east, in the direction of surface water drainage.

Table 3.2 Groundwater elevations, 15 and 31 August 2017

Site	Surface elevation (m AHD)	Total depth (m BGL)	Standing Water Level (m BGL)	Groundwater elevation (m AHD)
MB01	1067.62	21.52	19.32	1048.30
MB02	1043.75	28.0	17.45	1026.30
MB03	1038.13	23.25	12.82	1025.31

The water level observed in MB01 was higher than the surface water level in the western and eastern voids indicating that the site voids intercept groundwater from upgradient areas.

Recent groundwater elevation data has been collected using data loggers installed in the site wells between April and October 2021 as well as surface water monitoring sites. The average Standing Water Level (SWL) for the datalogger time period is tabulated in Table 3.3 and data for the surface water monitoring sites is presented in Table 3.4.

Table 3.3 Groundwater elevation data summary

Site	Surface Elevation (m AHD)	Total depth (m BGL)	Standing Water Level (m BGL)	Groundwater elevation (m AHD)	Observation Period
MVV201	1067.17	43.86	24.04	1043.13	20/4/21 to 13/10/2021
MB02	1043.75	28.17	13.95	1029.85	20/4/21 to 13/10/2021
MB03	1038.13	23.83	10.95	1027.24	20/4/21 to 13/10/2021
MW301A	1014.58	4.95	1.42	1013.16	20/4/21 to 13/10/2021
MW301B	1014.19	1.22	0.02	1014.17	29/4/21 to 13/10/2021
MW302A	1008.16	2.13	0.23	1007.93	29/4/21 to 13/10/2021
MW302B	1007.57	0.91	0.00	1007.58	29/4/21 to 13/10/2021
MW401	1022.02	11.86	2.14	1019.88	8/7/21 to 13/10/2021

Table 3.4. Monitoring data for surface water monitoring sites

Site	Surface Elevation (m AHD)	Depth above logger (m)	Water Level (m AHD)	Logger level (m AHD)	Observation Period
First pond	1037.82	0.71	1037.85	1037.07	20/4/21 to 13/10/2021
Second pond	1029.88	1.16	1029.78	1028.72	20/4/21 to 13/10/2021
Upstream channel	1024.45	N/A		1023.55	29/4/21 to 13/10/2021
Downstream channel	998.57	N/A		997.80	20/4/21 to 13/10/2021

Figure 3.3 provides the interpolated groundwater elevation contours and flow field using the average groundwater SWLs from the dataloggers. The spatial contouring was performed using kriging interpolation within ArcGIS Map.

Figure 3.3 Current groundwater flow field showing groundwater contours (in mAHD)

Figure 3.4 presents the groundwater levels from monitoring wells at the swamp (in locations at the upstream end of the swamp [MW301A (deep) and MW301B (shallow)] and middle areas of the swamp [MW302A (deep) and MW302B (shallow)]). The purpose of shallow and deep wells adjacent to each other is to characterise the vertical hydraulic gradient. MW301A and MW301B are effective at measuring vertical hydraulic gradient because of the difference in the well depth from 1.94 metres (shallow, in sand) to 5.84 metres (deep, in sandstone). MW302A and MW302B are less effective in measuring vertical hydraulic gradient due to both being screened in the same shallow sandy aquifer where vertical head differences cannot be established.

MW301A and MW301B demonstrate a downward vertical hydraulic gradient as seen by the shallower MW301B hydraulic head being higher than the deeper MW301A hydraulic head by approximately 1 metre. The shallower well is screened in the sand aquifer above the sandstone, while the deeper well is screened in the sandstone unit. This downward vertical gradient indicates that the groundwater is being recharged from the swamp with an approximate vertical hydraulic gradient calculated as 0.26.

The horizontal hydraulic gradient can be measured from the difference in hydraulic head (SWLs) between the same sandy aquifer of MW301 and MW302 compared to the distance between them. The calculated horizontal hydraulic gradient between MW301 and MW302 is 0.009 and reflects groundwater flow direction within the shallow aquifer between the two wells.

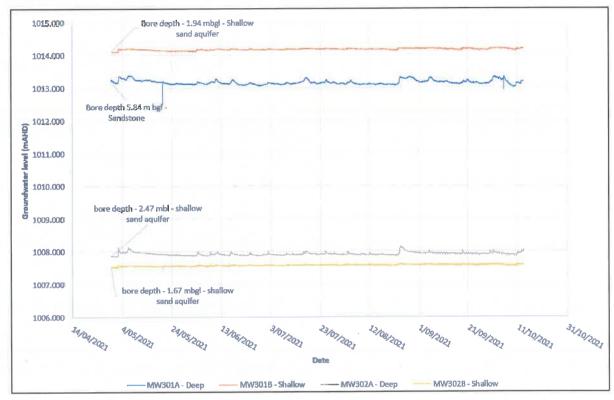


Figure 3.4 Groundwater levels at swamp between 4 May 2021 and 11 October 2021

3.3.3 Aquifer properties

Aquifer properties were previously described in GHD (2018). Hydraulic conductivities (k) were estimated from analysis of slug testing completed in onsite wells MB02 and MB03. The slug test data was analysed using the "initial response" and "Horslev's basic time lag" methods. The results of the analysis are summarised in Table 3.5. When the results were considered with literature values for the Banks Walls Sandstone aquifer intersecting the site, a range in horizontal hydraulic conductivity of 3 x 10⁻⁸ m/s to 6 x 10⁻⁷ m/s was used to establish low and high groundwater flow scenarios for the aquifer intersecting the site.

Table 3.5 Hydraulic conductivity

Site	K (m/s) Initial response	K (m/s) Horvlev's basic time lag
MB02	2.0 x 10 ⁻⁶	6.9 x 10 ⁻⁷
MB03	3.4 x 10 ⁻⁷	2.6 x 10 ⁻⁷

These two derivations for horizontal hydraulic conductivity have been applied to the seepage analysis calculations.

4. Adopted assessment criteria

4.1 Surface water

A revised surface water management system has been developed involving management of surface water within the site in three separate streams. As outlined in Section 2.1 a key change to the WRA is with relation to the management of water is water that has come into contact with material as it is being placed (contact water). This allows for the separation of different water types and management according to their risks as described below:

- Water from upstream (off-site) areas: This water will be conveyed through/around the site without interaction with site waters wherever practicable, with direct discharge to the downstream receiving system. Where mixing of upstream and site waters is unavoidable, (for example, a cascade of upstream waters currently enters the western void of the site) the upstream waters shall mix only with sediment-laden water (not contact water). Where this mixing occurs the sediment laden water management approach shall include the volumetric contribution of the upstream waters.
- Sediment laden water: This is runoff from areas where disturbed, non-vegetated soil is present but does not consist of foreign imported fill material. In these areas runoff is to be managed in accordance with Managing Urban Stormwater: Soils and Construction Volume 1, Landcom 2004 and Volume 2, DECC 2008. The requirements within the documents that apply to a "sensitive" receiving environment would be adopted.
- Contact water: No discharges of surface contact waters would occur other than when treated to background water quality conditions. Background water quality conditions were adopted from the derived 80th percentile water quality data (Newnes Plateau headwater streams) prepared by the Office of Environment and Heritage in 2015¹⁰. This reflects the methods recommended in ANZECC (2000).

The assessment criteria for the project has been developed based on the State Environmental Planning Policy (Sydney Drinking Water Catchment) 2011 as well as the corresponding WaterNSW guideline *Neutral or Beneficial Effect (NorBE) on Water Quality Assessment Guideline*.

The site is not located within Sydney's drinking water catchment, however the NorBE approach has been applied to the proposed development to achieve the highest level of protection given the sensitivities of receiving waters in the Wollongambe River catchment and the Greater Blue Mountains World Heritage area.

The assessment criteria is derived based on the following definition from the guideline:

A neutral or beneficial effect on water quality is satisfied if the development:

- a. has no identifiable potential impact on water quality, or
- will contain any water quality impact on the development site and prevent it from reaching any watercourse, waterbody, or drainage depression on the site

The assessment criteria has been applied to each category of water as follows:

- Where upstream water does not come into contact with site waters it is anticipated to have no identifiable
 potential impact on water quality and as such satisfy the Neutral or Beneficial requirement of the SEPP (refer
 Section 3.1a of the guideline).
- Sediment laden water would be managed in accordance with Managing Urban Stormwater: Soils and Construction Volume 1 and Volume 2 which are current recommended practices (CRPs) in accordance with the SEPP. The SEPP states that new developments or activities should incorporate CRPs and standards endorsed by Water NSW or adopt approaches that achieve the same or better water quality outcomes. Inferring that the outcomes achieved through implementation of the CRPs constitute the appropriate environmental outcomes under the SEPP.
- It is noted that the risk posed through leaching of substances from foreign imported materials is not fully covered under the abovementioned CRPs. As such, for contact runoff areas surface waters will either be contained or treated to achieve background conditions before discharge.

¹⁰ Clarence Colliery Discharge Investigation (nsw.gov.au)

4.2 Groundwater

The assessment criteria have been developed based on the primary receptor being terrestrial or aquatic ecosystems located immediately downgradient of the swamp. The swamp was identified to be the primary receptor in the EIS water resources assessment (GHD, 2018). Preliminary results from additional site investigations completed by Martens now indicate that the swamp is not hydraulically connected to groundwater emanating from the site and, as such, it has been conservatively assumed that: groundwater discharges to the creek line directly down gradient of the swamp and that the nearest ecological receptor is located at this point.

To maintain the nature of the ecological system of the National park and receiving environment area the groundwater assessment criteria have been designed to maintain the groundwater quality within the boundaries of the beneficial use potential of the receiving ecosystem and within the boundaries of having no identifiable adverse impact on water quality, which is consistent with a neutral or beneficial impact (NorBe) approach (Water NSW, 2021).

The specific values adopted for the groundwater assessment to achieve a neutral or beneficial affect at the nearest receptor are listed below:

- Where background groundwater quality data allows, a change of 10% of the median in background groundwater quality is considered to be acceptable.
- The ANZG (2018) criteria for the protection of 99% of freshwater ecosystems is adopted where the background groundwater quality data is scarcely detectable, non-detectable or absent and the limit of laboratory reporting (LOR) is above the criteria. A change in water quality that prevents a material change in the quantitative value of the ANZG (2018) criteria is considered to be acceptable (e.g., a change less than 0.5 times the criteria).
- The LOR is adopted where the background groundwater quality data is scarcely detectable, non-detectable or absent and the LOR is below the criteria for the protection of 99% of freshwater ecosystems. A change in water quality that prevents a material change in the LOR is considered to be acceptable (e.g., a change less than 0.99 times the LOR).

The development and implementation of these criteria rely on the characterisation of baseline/background groundwater quality. For this assessment the baseline groundwater monitoring data for all wells screened within the sandstone (the primary groundwater pathway), and presented in Appendix A, has been adopted and is discussed further in Section 6.2.2. To monitor for the emergence of unforeseen impacts during operation baseline groundwater monitoring program has been proposed and is detailed in Section 6.5.7.

The criteria have been applied to groundwater immediately prior to discharge into the creek to allow a separate assessment of impacts to the creek from surface water and groundwater, which:

- Allows the individual impacts of surface water and groundwater at the creek to be identified and managed.
- Prevents double counting of the attenuation capacity of the surface water environment.
- Is conservative, in that any additional attenuation capacity in surface water has not been considered as part of
 the groundwater assessment. It also means the surface water assessment can assume that groundwater
 does not result in additional impacts that need to be considered in the surface water attenuation assessment.
- It allows the adoption of baseline groundwater quality as target criteria rather than surface water criteria (which is representative of surface water and groundwater inputs).

5. Surface waters assessment

5.1 Overview

A key change to the EIS Water Resources Assessment (GHD 2018) is with relation to the management of water that has come into contact with fill material as it is being placed (contact water). Previously, this runoff was proposed to mix with other types of water and subsequently to discharge from the site. The impact assessment of the former Water Resources Assessment was conducted having regard to the predicted high quality of this discharge water. However, to lower the perceived risk of the site impacting downstream water quality and sensitive receptors, the management approach to the contact water has been revised. That is, contact water would now be either contained on-site with no surface water discharges or captured and treated to achieve background water quality before discharge.

According with the previous approach, a water balance was undertaken for the original EIS Water Resources Assessment (GHD 2018) that focussed on quantifying the mixing of different water types, to inform the predicted quality of discharges. The water balance also provided predictions of the range of volumetric flow rates downstream of the site.

With the change in approach a change in focus of the water balance was required. In particular, a revised representation of the contact water system with relation to containment or treatment (rather than mixing) was required.

Section 4.1 presents the adopted surface water criteria for the revised assessment based on the State Environmental Planning Policy (Sydney Drinking Water Catchment) 2011. It can be noted that the criteria are based on separating the different types of water and managing accordingly. Therefore, the assessment was undertaken with respect to the different water types as outlined in the following sections.

5.2 Upstream surface water

The filling plans have been revised to achieve separation of upstream surface water from contact water. This is achieved by alteration of the staging such that upstream inflows (that currently cascade into the western void at a defined flow point) can be diverted around active fill areas. This is implemented by temporarily (Stages 2 - 3C) diverting the location where upstream flows enter the void and not returning back to the original location until the void has been filled sufficiently to allow clean flows to flow over non-contact areas (Stages 3D onwards). Once this has occurred the route of the previous temporary flow diversion can be filled over to reach the rehabilitated landform and reinstate the approximate location of the original creek line pre-quarrying.

During the initial stages of the project, prior to any diversions occurring the upstream inflows would mix with site runoff in the main western void. However, this would occur in the same manner as the existing scenario, with no altered or filled areas being conveyed to the void. As such, it is not anticipated to materially alter the generally high-water quality of waters already in the pit.

Therefore, based on the revised staging the proposed works allow for conveyance of upstream surface flows around the proposed site activities and associated higher risk site surface waters.

5.3 Site sediment-laden water

Sediment laden water is runoff from site areas where disturbed, non-vegetated soil is present but does not consist of foreign imported fill material. As noted in Section 4.1, sediment laden water is proposed to be managed in accordance with the Water NSW Current Recommended Practice Document *Managing Urban Stormwater: Soils and Construction Volume 1 and Volume 2* for receiving environments recognised as "sensitive". The Current Recommended Practice documents are management practices that have been endorsed by WaterNSW, which is referenced in the 2011 SEPP and the 2021 NorBE Guidelines.

This is consistent with the approach adopted in the original Water Resources Assessment where a sediment settling zone requirement of 800 cubic metres per hectare of catchment was specified based on the procedures of the above document for a 95th Percentile 5-day rainfall event of 99.6 millimetres. Although any sediment basins

would be cleaned out after every significant runoff event, an additional volume of 200 cubic metres per hectare would be provided, resulting in a total volumetric requirement of 1 ML per hectare of catchment.

Filling plans presented in Appendix A have been developed. It can be noted that sediment generating intermediate cover areas are conveyed to proposed sediment basins with the sediment basins sized based on the above requirement. Where sediment laden areas need to be pumped to the sediment basins, the pumping capacity will be sized to convey the design 5-day rainfall event for the basin. It should be noted that for sediment generating areas that are below grade (e.g., excavations) significantly more storage will be provided by virtue of being below grade (in a pit) than would be required under *Managing Urban Stormwater: Soils and Construction*.

5.4 Contact water

The methodology and results of the revised assessment of contact water, based on containment or treatment, are presented in the following sections.

5.4.1 Contact water methodology

As noted in Section 4.1 the criteria adopted for contact water is that no discharges should occur other than when treated to background water quality conditions. As such, an assessment methodology was developed to determine:

- Ensure contact waters can be contained on-site.
- Irrespective of the above, development of a contingency plan involving treatment and discharge, if needed during site operations to further limit the contact water catchment.

The methodology adopted is outlined in the following sections.

It should be noted that the intermediate cap or rehabilitated areas are not managed as contact water on the basis that intermediate or final capping material will be sourced from on-site. As such, it does not pose the same risk as imported fill with relation to importation of material with different properties to that of the in-situ geology.

Staging review

A conservative approach was adopted where the most critical stage was identified, and the revised water balance simulated over a long meteorological period occurring over a static most critical site configuration. The critical phase was adopted as the one where containment of waters would be the most difficult to achieve, and is based broadly on the following two key parameters:

- Whether the exposed filling area is above-grade where it could drain via gravity to a discharge point. For
 example, filling the bottom of the large void would not be the critical stage as large rainfall events would fill up
 the lined void storage rather than discharge.
- The exposed fill area.

Based on this the selected critical stage is considered to be during Stage 3. During this period a maximum active fill area of 1.3 hectares would be maintained (using interim cover if required). An allowance of 0.1 hectares was also provided to consider the contact water flow paths, forming a total catchment of 1.4 hectares.

It was also identified that in order to implement a containment/treatment approach the eastern void would need to remain as a water storage. This void would be lined to the same standard as the areas containing the emplaced material.

System identification

Based on the critical stage identified as discussed above the contact water system includes a contact water catchment draining to the eastern void which would be operated as a lined contact water storage. Contact water is proposed to be managed via either/both irrigation over the emplaced material (only within the contact catchment) or treatment and discharge at background water quality concentrations. Therefore, the operation of the contact water system was identified as follows:

- Rainfall on the contact catchment would either:
 - Runoff (or be pumped) and enter the eastern void.

- Be taken up into the imported material as it is placed.
- Remain at or near the material surface and evaporate.
- Infiltrate where it could either:
 - Be taken up in lower, previously placed material.
 - Migrate to the subsurface system, from where it could potentially be extracted to the eastern void and/or be retained by the proposed liner.
- Rainfall that falls directly on the lined eastern void would contribute directly to the void water storage.
- The eastern void is to be lined to mitigate against leakage.
- Evaporation would occur from the eastern void water surface.
- Treated water (if applicable) would be withdrawn from the eastern void and discharged downstream at background water quality concentrations. Return brine would be recirculated and buried back within the active emplacement area or possibly taken off site for beneficial reuse (draft Environmental Management Plan, GHD,2021).
- Water would be irrigated from the eastern void over the contact water catchment, where it would undergo the same physical processes described above for rainfall on the contact catchment.

It is noted that quantifying all elements of the above system is complex. In particular, representing the potential downwards migration of rainfall or irrigation and subsequent wetting-up of previously placed material, whilst at the same time receiving new incoming material (note: further information on these features is described in the Environmental Management Plan GHD 2021). Therefore, a system approach to the water balance modelling was developed where not all flows of water within the system are quantified but rather:

- The system inputs could be determined with relative accuracy being:
 - 100 percent of rainfall that falls either on the contact catchment or the eastern void.
 - Minor groundwater ingress as the system is lined.
 - Incoming moisture content of the imported material.
- Only system outputs that could be quantified with more confidence were included being:
 - Treatment and disposal (if required).
 - Evaporation of the void water surface.
 - Minor seepage based on the system being lined.
 - Evaporation off the contact catchment surface where rainfall or irrigation over the catchment occurs.
 - Wetting up of the material as it is placed from the incoming moisture content to the field capacity.
- Conservatively, the downwards migration and subsequent wetting of material previously placed was not represented. That is, material is only wetted via irrigation as it comes in. During wet periods wetting up of material placed previously during dry periods cannot be relied upon. This is a conservative assumption in the conceptualisation of the system as being confined to the current emplacement area. In reality, applied irrigation would to some extent in time migrate downwards to the subsurface into previous stages of filling. In particular, since the critical stage is where filling occurs at relatively higher levels.
- Assuming excess catchment water immediately enters the eastern void without the time lag that would actually occur

Therefore, the adopted system configuration for the water balance modelling is shown in Figure 5.1. This system was modelled, not with the aim of quantifying all water elements, rather to confirm the feasibility of containment and to inform the required treatment rate (if any).

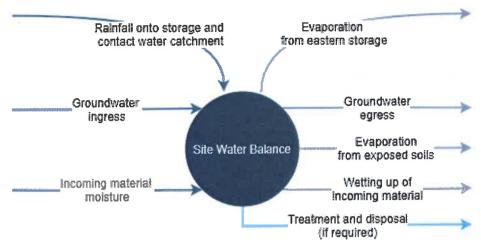


Figure 5.1 Water balance model configuration

Furthermore, as discussed in the "Adopted Approach" section below, an additional 'contingency' model was also established to determine the treatment requirements. As a precautionary and conservative approach, in the contingency model not all of the identified disposal mechanisms were represented. This is discussed further in the "Adopted Approach" section.

Assessment tools

As noted above, evaporation of water from the contact catchment surface is an output from the modelled system. Further, as noted in Section 4.1 surface water management criteria have been adopted in accordance with the 2011 SEPP which stipulates the use of WaterNSW Current Recommended Practices. One of these documents is the NSW EPA Environmental Guidelines – Solid Waste Landfills 2016 which specifies the use of the Hydrologic Evaluation of Landfill Performance (HELP) model. As such, the HELP model was adopted to estimate evaporation off a bare soil surface representing the contact catchment.

However, the water balance model requires the dynamic estimation of parameters based on the current system state. In particular, evaporation from the surface is dependent on whether water has been applied from the eastern void. This is in turn dependent on the water level in the void at that point in time. HELP does not have the ability to include dynamic considerations such as this.

Therefore, an approach was adopted where the water balance was developed using the GoldSIM software package but utilising a time series input from the simulation of a HELP model. GoldSIM is a flexible simulation tool that can be dynamically coded (similar to a spreadsheet) to allow custom representation of the modelled system.

Incoming material

In reviewing the system conceptualisation, it can be identified that the ability to contain contact water is dependent on the nature of the incoming materials. In particular:

- The incoming moisture content.
- The field capacity.
- Flow properties of the material such as particle size or porosity. These would influence the ability of the materials to retain water at the surface for evaporation.
- The compaction of the material when placed and subsequent impacts on hydrogeological properties.

Whilst these properties can be estimated with relative accuracy in terms of long-term trends and properties based on the anticipated nature of material to be imported, the definition of the project does not preclude the importation of materials at a certain point in time that may have less favourable properties with relation to the above parameters and achieving containment.

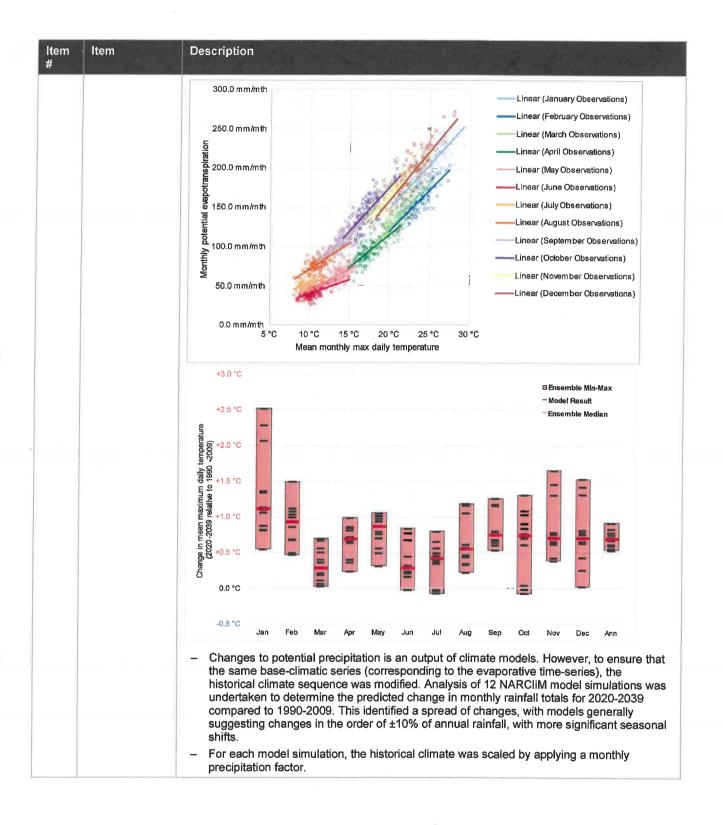
Therefore, an approach was adopted where a 'best-estimate' of likely incoming materials was adopted to test the likelihood of achieving containment without treatment. However, when stipulating a contingency arrangement involving treatment and disposal at background water quality conditions the following two disposal mechanisms were omitted to remove reliance on the properties of the incoming material:

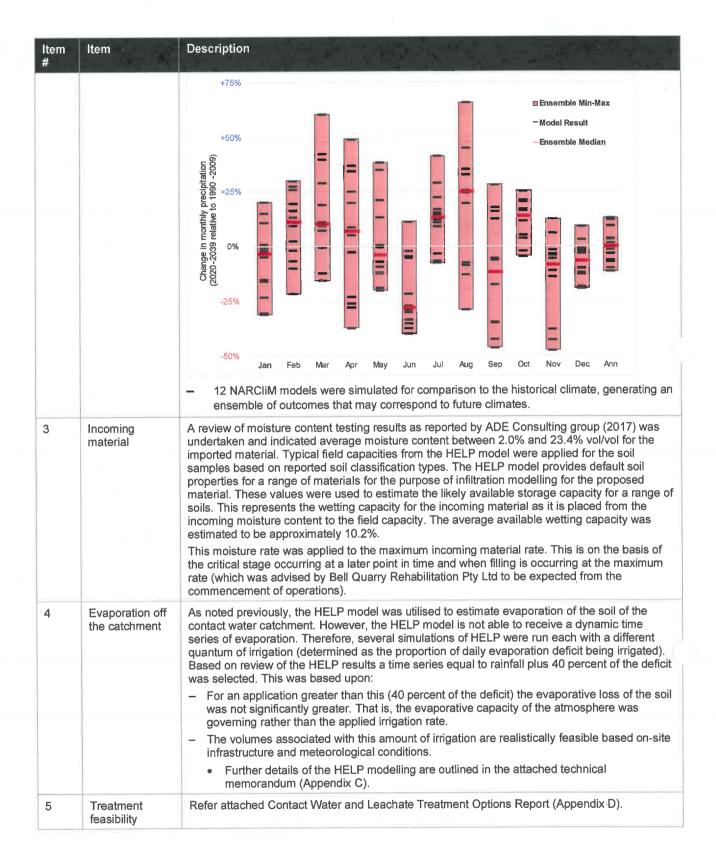
- Evaporation of the surface of the emplaced material.
- Wetting up of incoming material from the incoming moisture content to the field capacity.

Therefore, the contingency arrangement has been developed to satisfy the assessment criteria irrespective of fluctuations in the properties of imported material.

The following sections outline the adopted approach and results, including both the best-estimate and contingency assessments. It should be noted that whilst the best-estimate model provides a best-estimate of incoming material properties (that is, neither conservative nor non-conservative) it still includes other conservative assumptions in the approach such as not allowing wetting up of previously placed material.

Adopted approach


Based on the considerations as outlined the preceding sections the adopted approach for the contact system water balance is outlined as follows, with further details outlined in Table 5.1:


- A catchment area of 1.3 hectares (excluding the eastern void, with a 0.1 hectare allowance for drainage) as per the staging review.
- Meteorological data was revised from the data adopted for the previous WRA. This was based upon further review of available data and rainfall trends. Data was adopted based on interpolated data calculated by the SILO database centred on the site. This adopted data was compared to surrounding stations (Lithgow and Mount Wilson) and was found to represent the increasing West-East rainfall gradient. It was compared to the rainfall adopted for *Hydrology Study, Proposed Rehabilitation of Bell Quarry, Martens and Associates 2021* and found to be appropriately conservative for this assessment of contact water. This was based on the higher rainfall predicted (compared to the Martens data) for the highest 5 percent of rainfall months combined. The time series commenced at 1921 (the commencement of the HELP time series) and extended to 2020
- Evaporation off and direct rainfall on the eastern void as per the previous WRA.
- Groundwater seepage ingress and egress were estimated based on the provision of a liner as outlined as Item 1 in Table 5.1.
- The impacts of climate change with respect to both rainfall and evaporation were considered based on modelling of twelve potential climate change scenarios and confirming the predicted results apply for all scenarios. Details of the derivation of the scenarios is outlined as Item 2 in Table 5.1.
- The best-estimate model was simulated as follows:
 - On a monthly time-step. It was noted that the relatively large size of the void corresponds to months or years worth of rainfall over the catchment (not days). As such, a monthly timestep was appropriate.
 - Included wetting up of material as it comes in from an incoming moisture content to a field capacity
 moisture content. 10 percent moisture addition by mass was input which is discussed as Item 3 in
 Table 5.1.
 - Included evaporation off the bare-soil contact water catchment. This is discussed as Item 4 in Table 5.1
 - No treatment and subsequent discharge was included. On the basis that the model was intending to
 assess whether containment without treatment is likely to be feasible. As such the treatment protocol
 identified for the contingency model was not modelled.
- The contingency model was simulated as follows:
 - No net wetting of the material to form a disposal mechanism.
 - No evaporation off the contact water catchment (either of rainfall or irrigation water).
 - Various treatment contingency protocols were simulated to develop the proposed treatment contingency system. Protocols were based on commissioning a treatment system when the void reaches a nominated level then a lag time occurs before treatment is installed and operational (refer to Section 5.4.2). The simulation therefore commenced with the void at the water level corresponding to the trigger when treatment is commissioned. It then represents the void filling with no treatment disposal whilst the treatment is coming on-line. Then treatment occurs at the treatment capacity, with model results being iteratively reviewed to determine whether any overflows occur before the void is drawn down sufficiently by the treatment. The feasibility of treating the required volumes to background water quality conditions was reviewed as outlined in Item 5 of Table 5.1.

- The above protocols were represented over a wide range of climatic conditions. This was undertaken by resimulating the model multiple times, each time commencing at a different month in the modelled meteorological time period.
- Results were then extracted and discussed with particular relation to:
 - Prediction through the best-estimate model of whether containment of contact water without treatment is expected.
 - Iterating the treatment protocol and capacities in the contingency model to develop appropriate controls.

Table 5.1 Technical Description

Item #	Item	Description
1	Groundwater	A groundwater inflow into the lined emplacement areas was estimated as a relationship based upon the water level in the pit. Inflows varied but were in the range of 250 litres per day. This was considered a conservative estimate based on the groundwater inflows developed concurrently to the water balance assessment. It was noted that it was a minor contributor to the overall quantum of flows in the water balance.
2	Climate change	Consideration of potential changes to future climate was considered based upon NSW Government Climate Change modelling (NARCliM). Changes to the meteorological data was adopted based upon the following:
		 Changes to potential evapotranspiration is not an output of climate models. Historical correlation between mean monthly maximum temperature and monthly potential evaporation was determined as shown below. Analysis of 12 NARCliM model simulations was then undertaken to determine the predicted change in mean monthly max daily temperature for 2020-2039 compared to 1990-2009. This identified a spread of changes corresponding to a warmer future climate.
		 For each model simulation, using the change in mean monthly max daily temperature; the quantum of additional potential evapotranspiration was calculated. This typically resulted in between 0 to 125 mm/month of additional evapotranspiration. This was added on a monthly basis to the observed climatic period, with scaling applied to account for lower evapotranspiration from bare soils.

5.4.2 Contact water results

The results of the best estimate model are presented in Figure 5.2, which shows the predicted water levels in the eastern void (without the treatment contingency protocol) over the modelled time series for the different climate change realisations as well as historical climate. It can be noted that overflows from the contact water system are

not predicted based on the historical climate and are only predicted in four of the twelve climate change models. Average flows of the modelled system elements are shown on Figure 5.3.

The input parameters of the contingency model were iterated until no overflows from the contact water system were predicted for the historical climate even with the conservative assumptions of the contingency model (no wetting up of material, no evaporation from the material surface). Climate change models were also simulated for this model, with the median, 1st Decile and 9th Decile results analysed. The adopted parameters based on iteration were:

- When the eastern void exceeds 45 percent of the total capacity, receival of material would cease. Covering of all exposed fill areas is commenced and completed within 40 days. After this the catchment would be diverted around the eastern void. This was determined as the quantity of time required to minimise the risk of high levels in the eastern void.
- At the same time the arrangement for provision of treatment at 85 kL/day would commence and would be
 operational within 20 weeks (actual delivery and commissioning of the system based on the two vendor
 responses would be approximately 10-20 weeks). The treatment rate selected was determined as the rate
 required to manage levels in the eastern void and dewater to a level that permits the cover to be removed and
 material to resume being received at the site and emplaced.
- Receival of material would recommence once the eastern void is down to 20 percent full and treatment would be utilised to maintain the void at a regular level of 30 percent from there onwards.

The results of the contingency model demonstrating containment are shown on Figure 5.4. These results suggest that:

- The historical climate is not predicted to reach full capacity of the eastern void in any of the simulations. That
 is, under historical climate conditions, overflow is not predicted.
- Less than 0.5% of the 13,524 climate simulations are predicted to reach full capacity of the eastern void. That is, including consideration of the estimated range of potential climate change outcomes and the variability of the observed climate to date, there is a 1 in 200 likelihood of the proposed treatment contingency measures being insufficient to prevent overflow. It should be noted that this is the chance of overflow occurring, should treatment be required. However, based on the best-estimate model (including wetting up of the material and evaporation over the catchment) treatment may not necessarily be required. Combining these two considerations, the chance of overflow is considered very low and can essentially be eliminated by covering the emplaced material and diverting rainfall away from the eastern void.

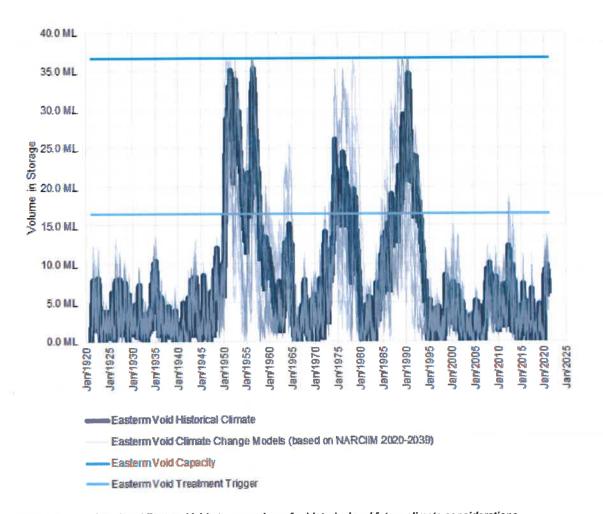
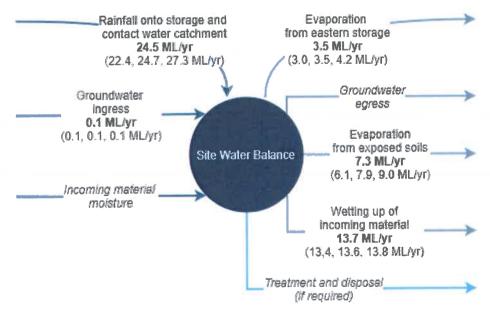



Figure 5.2 Simulated Eastern Void storage volume for historical and future climate considerations

Values in bold are based on the historical climate period.
(Values in brackets are shown as the 1st, 5th and 9th Decile of climate change models.)
Components in italics are not directly modelled

Figure 5.3 Average annual results for historical and future climate considerations

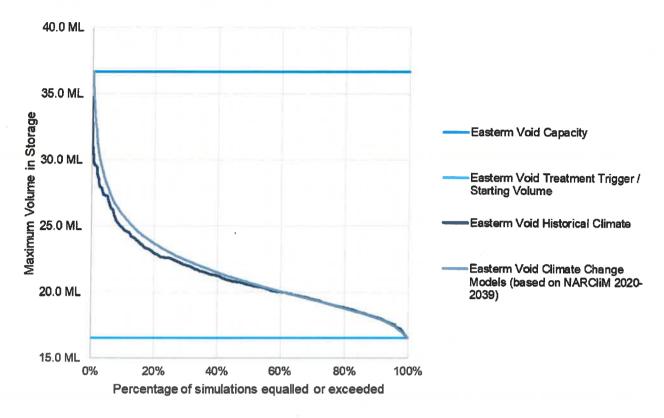


Figure 5.4 Statistics on maximum volume in the eastern void for historical and future climate considerations

With respect to the best estimate model, it is also noted that the likelihood of requiring to commission treatment (exceeding the treatment trigger threshold of 45%) has been analysed, based on historical and climate change models. It was estimated that for the historical climate the trigger is exceeded approximately 15 percent of the time and 11 percent of the time upon consideration of climate change. Noting that the critical phase modelled in the water balance only represents one stage of the project, there is therefore a significant likelihood of treatment not being required throughout the lifetime of the project. This supports the basis of adopting a trigger approach to commissioning treatment only if required.

5.5 Discussion

5.5.1 Criteria review

Reviewing the outcomes of the surface waters assessment described herein with respect to the surface water management criteria identified in Section 4.1 it can be noted:

- The revised staging the proposed works allow for conveyance of upstream surface flows around the proposed site activities and associated higher risk site surface waters.
- Site sediment laden water would be managed via separation from upstream water and contact water followed by collection and management in accordance with the WaterNSW Current Recommended Practice Managing Urban Stormwater: Soils and Construction.
- A best-estimate water balance model identified that the contact water catchment can be separated from other waters and could be fully contained without treatment, for the historical climate. However, to provide further contingency and consider climate change a contingency (treatment) model was developed specifying a treatment protocol. Under this contingency model overflows were not predicted for the historical climate. Including consideration of the estimated range of potential climate change outcomes and the variability of the observed climate to date, there is a rarer than 1 in 200 likelihood of the proposed treatment contingency measures being insufficient to prevent overflow. This is even with a set of conservative assumptions whereby disposal from wetting up of material or evaporation from the catchment surface is excluded. This very low risk

can essentially be eliminated by covering the emplaced material and diverting rainfall away from the eastern void.

On the basis of the above the surface water system is to operate in accordance with the 2011 SEPP and the NorBE criterion.

5.5.2 Downstream flow volumes

Further consideration was also undertaken subsequently to the previous WRA with relation to two items raised after its preparation:

- The potential for increasing stress on the downstream environments during dry periods by reducing the current reliability of surface flows. In particular, a swamp identified downstream of the site.
- Alteration of downstream volumetric flow patterns, resulting in issues with relation to downstream geomorphic stability.

These are discussed in the following sections.

Downstream flows during dry periods

It is noted that the revised staging presented in this revised WRA results in all periods of the project consisting of one of the following configurations:

- Existing conditions, where upstream flows cascade into the western site void and the site voids overflow to
 the downstream system, subject to rainfall conditions at the time.
- Dewatering of the western voids, where the upstream inflows enter the voids and are subsequently pumped out for discharge (along with water already in the pits).
- Diversion of upstream flows via gravity flow through the site, with separation from site waters, then discharging to the downstream environment.
- Final rehabilitated conditions, where upstream flows flow over the final landform, representative of natural catchment topography.

It can be noted from the above that at all times flows from upstream are volumetrically translated through the site. For the revised staging there is no point in time where upstream flows are captured within the site and reused over long periods within the site, which could potentially subsequently stress downstream environments. Rather, during any point where the upstream flow path is entering the void dewatering to downstream would occur regularly. Dewatering and staging would be timed such that dewatering would not be completed until the upstream gravity flow diversion is in place. Therefore, allowing a continual connection between the upstream catchment and downstream environment.

It is further noted:

- The revised staging minimises the contact water area, which is the area that needs to be captured and
 potentially contained (if treatment and discharge is not occurring). This area is approximately 1.4 hectares
 which is approximately 5-10 % of the upstream plus site catchment area draining to the site discharge point.
- Sediment laden areas of the site are anticipated to have similar runoff properties to the current site configuration and would be discharged after appropriate treatment in accordance with WaterNSW recommended practices.
- Runoff from rehabilitated areas within the site would be conveyed for discharge to represent pre-quarrying conditions.

On this basis, the proposed operational stages of the works are not anticipated to pose a significant risk to downstream flow rates during dry periods compared to existing or natural conditions.

Alteration to volumetric flow patterns

Based on the review of the staging discussed above, it can be noted that there is a period during the initial stages of the project where upstream flows would continue as is currently occurring to enter the western void as it is being dewatered, and then pumped out. Whilst the overall volumes of upstream inflows would be represented in the pumped discharges, the nature of the discharges would be altered. This is because pumped discharges would not fully replicate the temporal pattern of rainfall derived discharges. The following considerations are relevant to this:

- Martens and Associates have prepared a MUSIC model to estimate existing flow volumes in consideration of calibration to observed flow volumes undertaken since the previous WRA. This has predicted site discharges in the order of 2.9 ML/day are exceeded approximately 2 per cent of the time. Whilst 2 per cent is a small percent of the overall time series, at 7 days per year it represents a major proportion of days where significant flow is occurring. That is, it is a flow event that occurs regularly under existing conditions.
- The previous WRA predicted pumping-derived discharges during the maximum periods of the most critical stages (1 and 3) in the order of 1 to 2 ML/day.
- For the revised staging the maximum pumped discharges are anticipated to be less on the basis that
 upstream flows are diverted around the main north-western void before it is fully dewatered.
- As a general indication, 2 ML/day could dispose of the initial volume of water in the void in approximately 3 months, significantly less than the actual dewatering period.
- Therefore, the rate of flow during the dewatering stage would not be outside the range of flows typically experienced under existing conditions.
- In addition, Martens and Associates has undertaken additional geomorphological assessment which identified that low flows generally enter and infiltrate into the swamp, whereas larger flows in the swamp are broad flat, with some concentration in a central sag area in places as there is no defined channel occurs within the main swamp area, with a channel appearing at the downstream extent of the swamp as local gradient steepen.

5.6 Surface water monitoring

Surface water monitoring would be undertaken as outlined below:

Table 5.2 Surface Water Monitoring

able 3.2 Surface Water mointoring		
Location	Frequency	Analytes
 Within all site sediment-laden water storages 	Quarterly, and Prior to any managed discharge from the sediment laden system.	 Twice yearly sampling: TSS and Turbidity Prior to discharge: TSS, or turbidity if a TSS: Turbidity relationship has been developed based on a minimum of 10 observations
 At all site sediment-laden water overflows 	 If overflowing during operational hours, up to 4 times per year. Daily during any discharges occurring from rainfall below the design storm event (99.6 mm). 	- TSS and Turbidity.
Eastern void contact water storage	Quarterly, or Monthly if eastern void above 30 percent of capacity.	 Table 5.3 for the first four samples then rationalised by removing analytes demonstrably removed by the potential future. In situ field parameters (pH, DO, redox, EC, temp).
		The analytical suite, taking into account Table 6.7 would be reviewed should leachate be added to the contact water storage.
 Existing pit dewatering discharges during initial stages 	- Monthly, during dewatering.	In situ field parameters (pH, DO, redox, EC, temp)
Above upstream cascade inflow to site Immediately downstream of site outflows	When flowing, up to 4 times per year.	Cation and anions Chemical constituents (see Table 6.7– as per Groundwater Management Plan)

Table 5.3 Eastern Void Monitoring

Analytes		
рН	Cadmium (Total and Dissolved)	Ammonia as N
Electrical Conductivity	Chromium (Total and Dissolved)	Nitrite as N
Total Dissolved Solids 25°C	Cobalt (Total and Dissolved)	Nitrate as N
Total Dissolved Solids (sum ions)	Copper (Total and Dissolved)	Nitrite + Nitrate as N
Total Suspended Solids	Lead (Total and Dissolved)	Total Kjeldahl Nitrogen as N
Turbidity	Manganese (Total and Dissolved)	Total Nitrogen as N
Hydroxide Alkalinity as CaCO3	Molybdenum (Total and Dissolved)	Total Phosphorus as P
Carbonate Alkalinity as CaCO3	Nickel (Total and Dissolved)	Reactive Phosphorus as P
Bicarbonate Alkalinity as CaCO3	Vanadium (Total and Dissolved)	Total Organic Carbon
Total Alkalinity as CaCO3	Zinc (Total and Dissolved)	COD
Carbon Dioxide	Iron (Total and Dissolved)	Meta- & para-Xylene
Bicarbonate	Strontium (Total and Dissolved)	Naphthalene
Carbonate	Aluminium (Total and Dissolved)	Ortho-Xylene
Calcium Hardness as CaCO3	Antimony (Total and Dissolved)	Benzene
Magnesium Hardness as CaCO3	Lithium (Total and Dissolved)	Cyanide
Total Hardness CaCO3	Selenium (Total and Dissolved)	Total Anions
Sulfate as SO4	Thallium (Total and Dissolved)	Total Cations
Hydrogen Sulfide	Uranium (Total and Dissolved)	Oil & Grease
Chloride	Tin (Total and Dissolved)	Bacterial Analyses (total plate count
Fluoride	Titanium (Total and Dissolved)	Silica (reactive)
Bromide	Silver (Total and Dissolved)	Silica (total)
Calcium	Mercury (Total and Dissolved)	Arsenic (Total and Dissolved)
Magnesium	Boron (Total and Dissolved)	Beryllium (Total and Dissolved)
Sodium	Free Chlorine	Barium (Total and Dissolved)
Potassium		

5.7 Surface water TARP

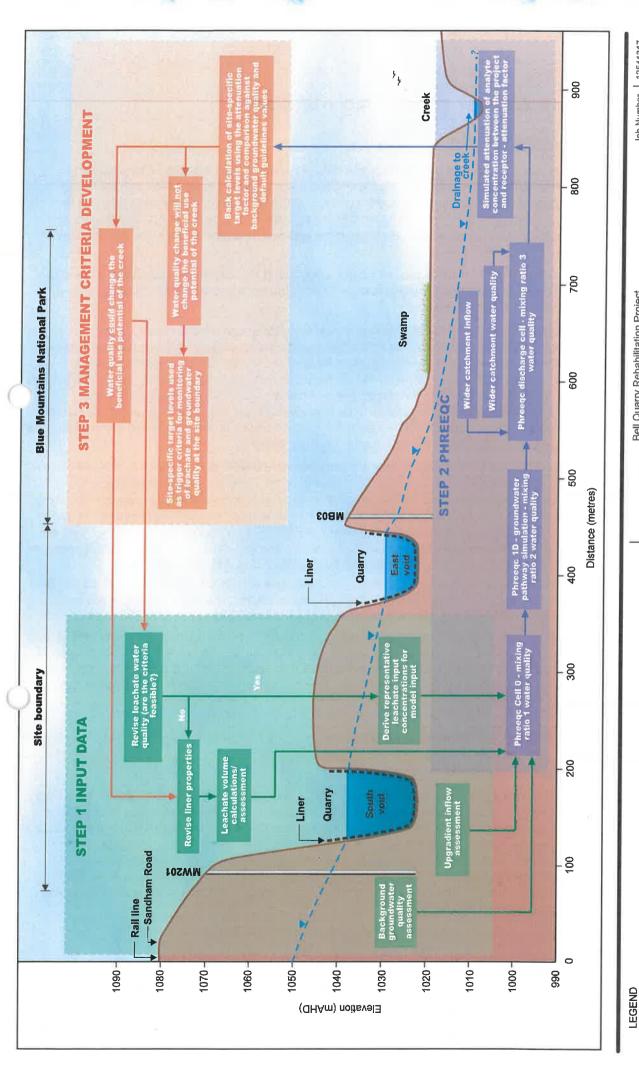
Table 5.4 shows the proposed surface water Trigger Action Response Plan with relation to surface water. This has been developed to support implementation of the surface water management strategy described previously. Key definitions with relation to this plan are as follows:

- Sediment laden water discharge criteria: A detailed study was undertaken by the NSW Office and Environment and Heritage (OEH 2015) and provides a detailed data set of background surface water quality in the area. This suggested a background concentration of Total Suspended Solids of 5 mg/L. Either this would be adopted for the design containment or a site specific value based on a reference site downstream monitoring (which would be undertaken in addition to monitoring specified in this revised WRA and recent side tributary monitoring by Martens). A relationship between turbidity and total suspended solids maybe be developed to aid in more rapid assessment of sediment concentrations in the site storages. This would be based on a minimum of 10 observations.
- Sediment laden water design event: consistent with the WaterNSW CRPs and the approach of the previous WRA this would be the 95th Percentile 5-day event of 99.6 millimetres.

Table 5.4 Surface Water TARP

Trigger	Implication	Action
Overflows from the sediment laden system occur when less than the design rainfall event has been experienced.	The sediment laden system is not operating as intended.	All subsequent rainfall events - dewater sediment basins after rainfall to provide design storm event capacity for subsequent storm.
Sediment laden water discharge criteria is exceeded for any managed discharge from the sediment laden system	The sediment laden system is not operating as intended.	All subsequent rainfall events - do not undertake a managed discharge without meeting discharge criteria. If criteria not met refer below trigger.
At the conclusion of the sediment basin management period following rainfall (5-days): - Flocculation has not been able to achieve the sediment laden water discharge criteria, and - Less than the required sediment management capacity is available for subsequent storms.	Due to the low discharge criteria required a higher than standard level of treatment is required to manage sediment laden water.	Other than the final stages of filling, below grade storage (e.g., Northern excavation area) is available for water to be temporarily transferred to until sediment laden water discharge criteria can be satisfied and further investigation/management measures developed if required. Therefore, transfer to below grade storage, where available, for this purpose. This trigger is unlikely to occur during the later stages. This is because if the in-situ sediments did result in an inability to treat with flocculant to the discharge standard then this would arise during the earlier stages.
The current water volume in the eastern void has exceeded 45 percent of capacity for the first time since being commissioned as the contact water storage.	The requirement for treatment has been triggered.	Cover all exposed material within 40 days and divert the catchment around the eastern void. Arrange treatment within 20 weeks.

6. Groundwater Assessment


6.1 Assessment approach

Whilst it is proposed to fully line the base and walls of the proposed emplacements area and contact water dam, the modelling approach takes into account that liners do seep small volumes and as such the impacts of predicted seepage migrating in groundwater to downgradient receptors has been assessed. Figure 6.1 presents on overview of the adopted modelling methodology.

The approach broadly includes three stages:

- Step 1 Assessment of baseline conditions to derive input parameters for groundwater modelling. This has
 focused on establishing the relative volumes and quality of leachate to background groundwater to facilitate
 groundwater modelling of groundwater impacts.
- Step 2 Groundwater modelling using derived input parameters to the assess attenuation along the groundwater pathway by water mixing and flow dispersion processes. This modelling is conservative when compared to the attenuation processes other fate and transport models used for landfill management planning adopt, such as, the Industrial Waste Management Evaluation Model (IWMEM) developed by the United States Environmental Protection Agency (USEPA). The model has been used to derive an attenuatior factor, which represents how much the leachate attenuates between the site and the nearest downgradient receptor.
- Step 3 The derived attenuation factor has been used to back calculate "acceptable leachate" concentrations in the fill material using the water quality assessment criteria outlined in Section 4.2 and the current baseline water quality. These values have been compared against "potential leachate" quality in the fill material (defined as ASLP results for a typical range of soil types, as presented in the water resources report (GHD, 2018) and ENM soils criteria leachate partitioning values (GHD, 2018)) to assess the potential for an impact to emerge.
- Acceptable leachate concentrations that were below estimated leachate concentrations from the fill material
 have instigated further assessment of the liner properties to improve modelled attenuation factors until such
 time that realistic leachate water quality data was achieved or that there was enough confidence in the
 outcomes to implement a monitoring-based approach (see Section 4.2).

Further detail on the input parameters derived and the modelling results are provided in the remainder of this section.

Groundwater modelling approach

Bell Quarry Rehabilitation Project Newnes Junction, NSW

- T - Groundwater

Job Number 12541317
Revision 0
Date 9 Nov 2021

Figure 6.1

Level 15, 133 Castlereagh Street Sydney NSW 2000 T 61 2 9239 7100 F 61 2 9239 7199 E sydmail@ghd.com W www.ghd.com © 2021. White every care has been taken to prepare that no prepare the map of CHD makes no representations or warrantles about its accuracy, reliability, completeness or suitability for any particular purpose and cannot accept liability and responsibility of any that or no representation in comparise, losses, demages and/or costs (Induding Indians or consequential damages) which AUNLaunceston/Projects/Admin/Graphics/12/541317/12541317_LST_01.cdr

6.2 Groundwater modelling method

6.2.1 Methodology

A geochemical model was developed to gain an understanding of the attenuation capacity of the underlying sandstone aquifer. The NSW guidelines for the assessment and management of groundwater contamination (NSW EPA, 2007) adopted the UK environment agency (UK EA, 2000) definition of natural attenuation as the "effect of naturally occurring physical, chemical and biological processes to reduce the load, concentration, flux or toxicity of polluting substances in groundwater". A conservative approach was maintained in the development of the model by:

Limiting the transport model to the migration of solutes solely due to flow processes: advection, dispersion
and diffusion, and excluding other natural attenuation mechanisms such as secondary mineral formation,
sorption, ion exchange or biodegradation.

Geochemical modelling software PHREEQC (Parkhurst and Appelo, 1999) was used to create a one- dimensional (1D) transport model to predict the potential metal and nutrient concentrations over the 450 m pathway between the lined areas and the discharge point at the downgradient edge of the swamp. Other parameters such as hydrocarbons, PCBs, and pesticides were not modelled as these parameters are not included in the database files used by PHREEQC, however, the design of the model, being primarily associated with mixing ratios and mechanical dispersion, enabled the modelling results to be conservatively applied to these analytes. The model used simulated solutions representative of ENM leachate and local groundwater and was limited to the mixing and transport of these solutions as depicted in Figure 6.1 and described below:

- Derivation of the water quality to represent leachate leakage from the lined area (Solution 0 in the PHREEQC transport model) was undertaken using a PHREEQC mixing model. Derivation of this water quality was required to account for the presence of the low permeability liner (geomembrane on the base (K = 10⁻¹⁴ m/s) and clay on the pit sides (K = 10⁻⁹ m/s), which acts to significantly reduce leakage from the voids. As part of the model inputs to derive Solution 0 (see cell 0 in Step 2 of Figure 6.1), a ratio of mixing between leachate water and background groundwater migrating beneath the liner was calculated. This was based on estimated flow volumes as described in Section 6.2.2. The ratio adopted for this model was 2.08%: 97.92%.
- The derived Solution 0 (see cell 0 in Step 2 of Figure 6.1) was then used to create a 1D PHREEQC transport model to simulate the migration of leachate impacted groundwater from just outside the lined voids to the discharge point 450 m downgradient (at the outflow point of the swamp) over a period of 500 years.
- To account for groundwater inputs from the surrounding catchment at the discharge point a final PHREEQC mixing model was completed. The ratio of groundwater migrating from the site to catchment groundwater at the discharge point was predicted by using the flow volumes described in Section 6.2.2 (this was estimated to be 17.7%: 82.3%). Modelled discharge concentrations were compared to background groundwater quality, ANZG (2018) DGVs and the LOR.

6.2.2 Derivation of model inputs

6.2.2.1 Distance to the point of discharge

A swamp located approximately 200 metres downstream of the project was previously identified to be the primary receptor in the EIS water resources assessment (GHD, 2018). Additional site investigations (see Section 3.3.2) now indicate that the swamp is not hydraulically connected to groundwater emanating from the site and, as such, it has been conservatively assumed that groundwater discharges to the creek line directly down gradient of the swamp and that the nearest ecological receptor is located at this point. In reality, groundwater discharge is expected to be further downgradient than this location, where the opportunity for attenuation of substances in groundwater emanating from the project is greater. On this basis the adopted distance to the point of discharge (the receptor) is considered to be conservative.

The distance to the down-gradient edge of the swamp was estimated to be 450 metres.

6.2.2.2 Leachate water quality

The leachate water quality adopted for this assessment was adapted from the previous water resources assessment (GHD, 2018). This broadly included:

- Nine Australian Standard Leaching Procedure (ASLP) testing results for leachate from samples expected to be typical of material that would be accepted at the site.
- The use of the ENM order soils criteria in a theoretical soil water partitioning equation to estimate leachate
 concentrations as well incorporation of bio-availability parameters where suitable. The partitioning
 equation adopted mid-range partitioning co-efficients for the assessment which had broad correlation with
 the ASLP testing results.

These values have been used as input values to the model to assess if the concentrations are attenuated to acceptable levels (as defined in Section 4.2) at the downgradient receptor. As discussed in Section 6.2.1, hydrocarbons, PCBs and pesticides were not modelled as these parameters are not included in the database files used by PHREEQC. However, concentrations of these parameters at the discharge point were calculated from the mixing and dispersion ratios determined by the groundwater modelling.

The leachate results are presented in Table 6.1 relative to the DGVs for the protection of 99 per cent of freshwater ecosystems (ANZG, 2018) and background groundwater quality.

The substances listed in the table represent those analysed as part of the ASLP testing and those presented in the ENM Order (2014).

Table 6.1 Estimated leachate concentrations

1 41010 011					
Parameter	Units	DGV (ANZG, 2018)	Background groundwater quality	Maximum ASLP result from representative soil testing	ENM partitioning (GHD, 2018)
рН	pH units	6.5 – 8.0	5.05	5.28	8
Arsenic	mg/L	0.0008 (AsV)	<0.001	0.001	0.0008
Copper	mg/L	0.001	0.04	0.013	0.002
Nickel	mg/L	0.008	0.005	0.006	0.002
Zinc	mg/L	0.0024	0.065	0.484	0.0048
Cadmium	mg/L	0.00006	<0.0001	0.0004	0.000063
Lead	mg/L	0.001	<0.001	0.01	0.00032
Chromium	mg/L	0.00001 (CrVI)	<0.001	0.007	0.588
Mercury	mg/L	0.00006	<0.00005	0.00005	0.00001
Nitrate	mg/L	1	0.53	2.35	
Ammonia	mg/L	0.32	0.013	0.11	
Reactive P	mg/L		<0.005	0.01	
Electrical conductivity	dS/m	0.35	0.065	0.712	1.436
Benzene	mg/L	0.6	<0.001		0.103
Toluene	mg/L	0.11	<0.001		10.057
Ethylbenzene	mg/L	0.05	<0.001		2.294
Total xylene	mg/L				
Ortho-xylene	mg/L	0.2	<0.001		0.319
Meta-xylene	mg/L	0.14	<0.002		0.95
Para-xylene	mg/L	0.14	<0.002		0.317
TPH C10-C36	mg/L		<0.050	<0.05	14.12

TRH					
TRH >C10 - C16	mg/L		<0.100	<0.100	
TRH >C16 - C34	mg/L		<0.100	<0.100	
TRH >C34 - C40	mg/L		<0.100	<0.100	
OPP					
Chlorpyrifos	mg/L	0.00000004		<0.0005	
ОСР					
Heptachlor	mg/L	0.000001		<0.0005	
Endosulfan	mg/L	0.000003		<0.0005	
Endrin	mg/L	0.000001		<0.0005	
4.4`-DDT	mg/L	0.000006		<0.002	
PAH					
Naphthalene	mg/L	0.0025	<0.001	<0.001	0.0032
Anthracene	mg/L	0.00001	<0.001	<0.001	
Benzo(a)pyrene	mg/L	0.00001	<0.001	<0.0005	0.00004
PCB	mg/L			<0.001	

Notes

Bolded values constitute exceedances of the DGV's

Background groundwater quality data represent the data from MW201 for 5 October 2021 supplemented with data from MB02 for electrical conductivity and the adjacent site (GSS Environmental, 2011) for pH. Concentrations of petroleum/recoverable hydrocarbons (TPH and TRH) values were identified in MW201 but have been removed as it is expected that background concentrations of TPH and TRH should be below detection. Red text in the table highlights exceedances of the background water quality.

6.2.2.3 Leachate volumes

The project design includes a geomembrane liner with a hydraulic conductivity of 10⁻¹⁴ m/s on the base of filled areas and a clay liner with hydraulic conductivity of 10⁻⁹ m/s on the sides of the filled pit voids. The contact water dam will be lined with a geomembrane. With these liners in place, groundwater from upgradient of the voids will flow beneath the project site with a volume represented by the volume of groundwater recharge over the area upgradient of the project site. To facilitate this flow regime a more permeable layer will be installed under the basal liner (Environmental Management Plan, GHD 2021). A small quantity will leak through the clay liner on the upgradient side of the voids to mix with the leachate (after operation) and seep out the eastern side of the voids. A small component will also leak through the liner from areas above groundwater located to the north and southeast of the voids. The leakage from these areas was estimated to be 1 L/ha/day or a total 2.7 L/day given that these areas are estimated to have a footprint of 2.7 hectares.

Martens and Associates (Martens 2021) have completed numerical groundwater modelling to assess the post closure groundwater conditions and the relationship of the site with the downgradient swamp. The preliminary results from the calibrated post closure groundwater model indicate that leachate seepage rates through the liner, after closure and capping of the emplaced fill, approximate 140 L/day. This includes approximately 100 L/day of groundwater through flow and 50 L/day of rainfall inputs.

6.2.2.4 Groundwater flow beneath the quarry and from the wider catchment

Upgradient groundwater interpreted to be seeping into or beneath the site is expected to originate from rainfall recharge in the blue shaded area in Figure 6.2, which has an area of 11.1 Ha as presented in Table 6.2. This represents groundwater that can mix with leachate emanating from the site at the start (Cell 0) in the PHREEQC model (see Figure 6.1).

Recharge to this area occurs as the resultant flux after surface runoff, soil water storage in the unsaturated zone, and evapotranspiration has been accounted for. The site is located in the Water Sharing Plan (WSP) for the *Greater Metropolitan Region Groundwater Sources 2011*, which adopts 6 per cent of average annual rainfall as a groundwater recharge value for this area. This is equivalent to 51 mm/yr. However, this is not based on any scientific recharge investigations. A review of groundwater recharge rates for sandstones in the Sydney basin completed for the M4-M5 link groundwater modelling (HydroSimulations, 2017) indicated a range of between 2 per

cent and 10 per cent of annual rainfall. The calibrated groundwater recharge rates adopted for the M4-M5 link modelling were between 2 per cent and 3 per cent of annual rainfall. For consistency with Marten's interim groundwater model, the calibrated recharge value of 2.6 per cent of average annual rainfall from the model was applied to the upgradient groundwater catchment (blue area in Figure 6.2) to estimate volumes flowing beneath the emplaced fill. Using the upgradient area and a recharge rate of 22.1 mm/yr the estimated groundwater flow beneath the site is 6.721 m³/day. This volume has been used to mix with leachate at the start (Cell 0) of the PHREEQC model.

The downstream receptor receives rainfall recharge from the geochemical modelled area (yellow) and the wider catchment area (green), which is approximately 82.3 per cent of the total catchment area (Figure 6.2). This water is mixed with the upgradient rainfall recharge (blue) and void leachate to provide a potential mixing ratio at the point of discharge to the downgradient receptor.

Table 6.2 Groundwater contributing areas

Area	Recharge area (up-slope from western pit – blue area)	Geochemical modelling area - yellow area	Wider groundwater contributing area discharging to "downstream channel monitoring point - green area	Total catchment groundwater contributing area (sum of all contributing areas)
Metres squared (m ²)	111,000	144,871	371,517	627,388
Hectares (Ha)	11.1	14.5	37.15	62.74
Proportion of total %	17.7%	23.1%	59.2%	100%

Figure 6.2 The total catchment area for Bell Quarry indicating the recharge area upgradient from pit 1 (blue area) and the geochemical modelling area downgradient from the voids to the downstream channel (yellow area). Total catchment area is indicated by the sum of the green area, yellow area and blue area

Based on the relative proportions of leachate to groundwater recharge the following mixing ratios have been used in the modelling:

- 2.08:97.92 of leachate with upgradient groundwater
- 17.7:82.3 of the simulated leachate plume at the receptor with groundwater from the wider catchment.

6.2.2.5 Background groundwater concentrations and variability

The water quality data for MW201 from 5 October 2021, located upgradient of the site, was used as the background water quality input to the model. In the absence of electrical conductivity (EC) data for MW201 the EC from MB02 was adopted. Concentrations of petroleum/recoverable hydrocarbons (TPH and TRH) values were identified in MW201 but have been removed as it is expected that background concentrations of TPH and TRH should be below detection (as is the case with all other wells monitored at the site). The water quality data are presented in Table 3.1, Table 6.3 and Appendix A.

To maintain the pristine nature of the ecological system an acceptable variability in background water quality was required to be established, from which the modelled concentrations could vary from the input concentrations (MW201 data), without having an adverse impact at the receptor. The process adopted for establishing an

acceptable variability is summarised below with the adopted variation and associated rationale provided in Table 6.3.

- Where background groundwater quality data is sufficient, a change of 10% of the median in background groundwater quality was adopted.
- The ANZG (2018) criteria for the protection of 99% of freshwater ecosystems was adopted where the background groundwater quality data was scarcely detectable, non-detectable or absent and the LOR is above the criteria. A change in water quality that prevented a material change in the quantitative value of the criteria was considered to be acceptable (e.g., a change less than 0.5 times the criteria).
- The limit of laboratory reporting was adopted where the background groundwater quality data was data was scarcely detectable, non-detectable or absent and the LOR was below the criteria for the protection of 99% of freshwater ecosystems. A change in water quality that prevented a material change in the quantitative value of the criteria was adopted (e.g., a change less than 0.99 times the LOR).

It is noted that there is variability in the background concentrations to those used as model input concentrations (e.g., the concentrations from MW201 for 5 October 2021). This is not considered likely to materially affect the modelling outcomes because with the model design a lower or higher background concentration results in a proportionately lower or higher concentration to achieve at the down gradient receptor.

Table 6.3 Background water quality

Parameter	Units	Laboratory Limit or Reporting (LOR)	DGV (ANZG, 2018)	Background water quality (MW210 5 October 2021)	Modelled background water quality	Estimated background variability in groundwater quality
pH	pH units		6.5-7.5	5.05	5.05	pH within range - just need to be within the 5 to 9 range
Arsenic	mg/L	0.0002	0.0008	<0.001	0.001	Only one detect to date for dissolved concentrations. LOR based value of 0.000099 adopted.
Copper	mg/L	0.0004	0.001	0.04	0.04	Based on review of data a change of 0.00035 mg/L was considered to be acceptable (unlikely to be perceptible) this is 10% of the median.
Nickel	mg/L	0.0005	0.008	0.005	0.005	Based on review of data a change of 0.00011 mg/L was considered to be acceptable (unlikely to be perceptible) this is 10% of the median.
Zinc	mg/L	0.001	0.0024	0.065	0.065	Based on review of data a change of 0.0021 mg/L was considered to be acceptable (unlikely to be perceptible) this is 10% of the median.
Cadmium	mg/L	0.00005	0.00006	<0.0001	0.0001	Only two detects to date for dissolved concentrations. LOR based value of 0.000099 adopted
Lead	mg/L	0.0001	0.001	<0.001	0.001	Only one detect to date for dissolved concentrations. LOR based value of 0.000099 adopted
Chromium	mg/L	0.0003	0.00001	<0.001	0.001	No detectable concentrations to date for dissolved concentrations. LOR based value of 0.000099 adopted
Mercury	mg/L	0.00004	0.00006	<0.00005	0.00005	Only two detects to date for dissolved concentrations. LOR

Parameter	Units	Laboratory Limit or Reporting (LOR)	DGV (ANZG, 2018)	Background water quality (MW210 5 October 2021)	Modelled background water quality	Estimated background variability in groundwater quality
	ZOUZZE	(EON)				based value of 0.000099 adopted
Nitrate	mg/L	0.01	1	0.53	0.53	Only two samples analysed, and one inferred at MW201) to date - data ranged from 0.09 to 0.89 - a change of 0.01 mg/L has been conservatively considered to be acceptable.
Ammonia	mg/L	0.005	0.32	0.013	0.013	Based on review of data a change of 0.0013 mg/L was considered to be acceptable (unlikely to be perceptible) this is 10% of the median.
Reactive P	mg/L	0.01	0.015	<0.005	0.005	Only two samples analysed to date. LOR based value of 0.000099 adopted
Electrical conductivity	dS/m	0.001		0.065	0.065	Based on 10% of the median change of 0.005 dS/m was considered to be acceptable (GSS environmental, 2011 data was included)
Benzene	mg/L	0.001	0.6	<0.001	0.001	Based on 99% of the LOR
Toluene	mg/L	0.001	0.11	<0.001	0.001	Based on 99% of the LOR
Ethylbenzene	mg/L	0.001	0.05	<0.001	0.001	Based on 99% of the LOR
Total xylene	mg/L	0.001				
Ortho-xylene	mg/L	0.001	0.2	<0.001	0.001	Based on 99% of the LOR
Meta-xylene	mg/L	0.001	0.14	<0.002	0.001	Based on 99% of the LOR
Para-xylene	mg/L	0.001	0.14	<0.002	0.001	Based on 99% of the LOR
TPH C10-C36	mg/L	0.05		<0.050	0.05	Based on 99% of the LOR
TRH						
TRH >C10 - C16	mg/L	0.05		<0.100	0.05	Based on 99% of the LOR
TRH >C16 - C34	mg/L	0.1		<0.100	0.1	Based on 99% of the LOR
TRH >C34 - C40	mg/L	0.1		<0.100	0.1	Based on 99% of the LOR
OPP						
Chlorpyrifos	mg/L	0.000005	0.00000004		0.000005	Based on 99% of the LOR
OCP						
Heptachlor	mg/L	0.000001	0.000001		0.000001	Based on 99% of the LOR
Endosulfan	mg/L	0.000001	0.000003		0.000001	Based on 99% of the LOR
Endrin	mg/L	0.000001	0.000001		0.000001	Based on 99% of the LOR
4.4`-DDT	mg/L	0.000001	0.000006		0.000006	Based on 99% of the LOR
PAH						2.
Naphthalene	mg/L	0.00002	0.0025	<0.001	0.001	Based on 99% of the LOR
Anthracene	mg/L	0.00001	0.00001	<0.001	0.00001	Based on 99% of the LOR

Parameter	Units	Laboratory Limit or Reporting (LOR)	DGV (ANZG, 2018)	Background water quality (MW210 5 October 2021)	Modelled background water quality	Estimated background variability in groundwater quality
Benzo(a)pyre ne	mg/L	0.00001	0.00001	<0.001	0.00001	Based on 99% of the LOR
PCB	mg/L	0.0001			0.0001	Based on 99% of the LOR

Notes:

DGV value adopted for pH was from the upland rivers default trigger value for south east Australia.

DGV value adopted for reactive phosphorus was from the upland rivers default trigger value for south east Australia.

6.2.3 Summary of model input parameters

The inputs adopted for the PHREEQC model prepared for the site are provided in Table 6.4.

Table 6.4 PHREEQC Model Inputs

Parameter	Value	Notes
Background and catchment groundwater quality	See section 3.3.1, section 6.2.2.5, Appendix A and Appendix B	Water quality data from upgradient well MW201 on 5/10/2021 was adopted, except for pH which was not monitored and was therefore derived from the average groundwater pH value from the neighbouring site (GSS Environmental, 2011). EC data from MB02 as adopted in the absence of data for MW210. A default pe of 4 and temperature of 18°C were also selected.
ENM / ASLP leachate water quality	See section 6.2.2.2 and Appendix B	The maximum leachate concentrations estimated from either: - ASLP testing of representative soils (as presented in the water resources report GHD, 2018) or
		 Application of partitioning equations to the NSW ENM Order (2014) soil concentrations using the process outlined in the water resources report (GHD, 2018),
		were used as input concentrations.
		It is noted that these initial values have little bearing on the outcomes of the modelling as the model is limited to mixing and dispersion processes, and the development of site specific target levels was based on a back calculation approach using mixing and dispersion ratios determined from the model outputs.
Database	minteq.v4.dat	Minteq V4 is a more comprehensive database than the PHREEQC default.
Solution 0 Derivation Mixing I	Model	
Mixing ratio	Local groundwater = 0.9792	See section for description on how ratios were calculated.
	ENM leachate = 0.0208	
1D Transport		d.
Flow direction	forward	•
Boundary condition	constant /constant	Groundwater inflow was represented as up-gradient groundwater through-flow. Outflow was represented by discharge to the downgradient edge of the swamp. Both inflow and outflow were simulated as constants (perennial flow). Constant and complete outflow to the discharge location is considered a conservative approach.
Flowpath length	450 m	From the voids to the discharge point at the edge of the swamp (see section 6.2.2.1)
Flow Velocity (u _L)	32.2 m/yr	Based on the following: K = 0.0098 m/day dh/dl = 27 m / 300 m between the outflow point at the northern void
		and MW301A Effective porosity = 0.01

Dispersivity (α)	10 m	Dispersion was conceptualised as comparably high compared to advection, given the fractured rock environment (1:1).	
Diffusion Coefficient (D)	0.3 x 10 ⁻⁹	Diffusion was considered negligible (PHREEQC default value adopted).	
Number of Cells	45	Cell lengths and numbers were optimised to minimise numeric	
Cell length	10 m	dispersion. Optimisation results are presented in Appendix B.	
Discharge Point Mixing Mo	del		
Mixing ratio	Site groundwater = 0.177	See Sections 6.2.1 and 6.2.2.4 for a description on how ratios were calculated.	
	Catchment = 0.823		

6.2.4 Modelling assumptions and limitations

The PHREEQC model developed by GHD for this site utilises available data and assumptions that GHD considers to be relevant to site characteristics as outlined in this report. Notwithstanding the above, GHD has adopted a modelling approach that conservatively manages uncertainty in the modelling input parameters and conceptual understanding of the site conditions.

The following assumptions/limitations apply to the PHREEQC modelling:

- That the data provided to and used by GHD is accurate and reliable.
- Constant material leachate, baseline groundwater and catchment groundwater composition, and hydraulic gradient for both low inflow and high inflow conditions.
- Catchment and baseline groundwater composition is similar to groundwater composition at upgradient MW201.
- All solutions are at equilibrium.
- Does not include mineral precipitation/dissolution, kinetic reactions, sorption/desorption, or ion exchange reactions.
- The system is closed with respect to CO₂ and O₂.
- Other specific assumptions related to parameter input selection can be found in Table 6.4.

6.3 Groundwater modelling results

Results from the PHREEQC modelling are summarised in Table 6.5.

PHREEQC modelling results

Applyte	90	DCV(1) (8)	Town + Months			TOTAL PROPERTY.	
(mg/L unless otherwise specified)	į		Quality Leachate (4)	Chality Groundwater (3)	solution of the solution (below the lined void)	Last modelled cell at 450 m after 500 yrs	Discharge after 500 yrs
pH (pH units)	1	6-5-7.5(2)	rC	5.05	5.05	5.05	5.05
Arsenic	0.0002	0.0008 ⁽⁵⁾	0.001	0.0010	0.001	0.001	0.001
Copper	0.0004	0.001	0.013	0.04	0.0394	0.0397	0.0399
Nickel	0.0005	0.008	0.006	0.005	0.0050	0.0050	0.0050
Zinc	0.001	0.0024	0.484	0.065	0.0737	0.0694	0.0658
Cadmium	0.00005	900000	0.0004	0.0001	0.0001	0.0001	0.0001
Lead	0.0001	0.001	0.01	0.001	0.0012	0.0011	0.0010
Chromium	0.0003	0.00001(6)	0.588	0.001	0.0132	0.0073	0.0021
Mercury	0.00004	0.00006	0.00005	0.00005	0.00005	0.00005	0.00005
Nitrate (as N)	0.01	1.0(7)	2.35	0.53	0.5306	0.5145	0.5006
Ammonia (as N)	0.005	0.32	0.11	0.013	0.000	0.000	0.000
Reactive phosphorus (as P)	0.01	0.015(2)	0.01	0.005	0.0051	0.0051	0.0050
Electrical conductivity (dS/m)	0.001		1.436	0.065	0.0935(9)	0.0795(10)	0.0676(11)
Benzene	0.001	9.0	0.103	0.001	0.0031(9)	0.0021(10)	0.0012(11)
Toluene	0.001	0.11	10.057	0.001	0.2102(9)	0.1077(10)	0.0199(11)
Ethylbenzene	0.001	0.05	2.294	0.001	0.0487(9)	0.0253(10)	0.0053(11)
Total xylene	0.001						
Ortho-xylene	0.001	0.2	0.319	0.001	0.0076(9)	0.0044(10)	0.0016(11)
Meta-xylene	0.001	0.14	0.95	0.001	0.0207(9)	0.0111(10)	0.0028(11)
Para-xylene	0.001	0.14	0.317	0.001	0.0076(9)	0.0044(10)	0.0016(11)
TPH C10-C36	0.05		14.12	0.05	0.3427(9)	0.1993(10)	0.0764(11)
TRH							

Analyte (mg/L unless otherwise specified)	LOR	DGV ⁽¹⁾ (8)	Input Water Quality Leachate (4)	Input Water Quality Groundwater ⁽³⁾	Solution 0 (below the lined void)	Last modelled cell at 450 m after 500 yrs	Discharge after 500 yrs
TRH >C10 - C16	0.05		0.100	0.05	0.051(9)	0.051(10)	0.050(11)
TRH >C16 - C34	0.1		0.100	0.1	0.100(9)	0.100(10)	0.100(11)
TRH >C34 - C40	0.1		0.100	0.1	0.100(9)	0.100(10)	0.100(11)
ОРР							
Chlorpyrifos	0.000005	0.00000004	0.0005	0.000005	0.000015(9)	0.00001(10)	0.000006(11)
OCP							
Heptachlor	0.000001	0.000001	0.0005	0.000001	0.00001(9)	0.00001(10)	0.000002(11)
Endosulfan	0.000001	0.000003	0.0005	0.000001	0.00001(9)	0.00001(10)	0.000002(11)
Endrin	0.000001	0.000001	0.0005	0.000001	0.00001(9)	0.00001(10)	0.000002(11)
4.4`-DDT	0.000001	0.000000	0.002	0.000001	0.00004(9)	0.00002 ⁽¹⁰⁾	0.000005(11)
РАН							
Naphthalene	0.00002	0.0025	0.0032	0.00002	0.0000000	0.00005(10)	0.00003(11)
Anthracene	0.00001	0.00001	0.001	0.00001	0.00003(9)	0.00002(10)	0.00001(11)
Benzo(a)pyrene	0.00001	0.00001	0.0005	0.00001	0.00002(9)	0.00002(10)	0.00001(11)
PCB	0.0001		0.001	0.0001	0.0001(9)	0.0001(10)	0.0001(11)

Notes:

ANZG (2018) 99% protection level DGVs for fresh water

ANZECC/ARMCANZ (2000) Trigger Values for Chemical Stressors for Southeast Australia Upland River ecosystem

Baseline groundwater data from #MW/201 5/10/2021, where values <LOR the LOR was adopted

Worst case values from ADE (2017) - leachate testing or estimated concentrations by applying partitioning equations to the NSW ENM Order 2014 soil concentrations (GHD, 2018)

DGV used for As(V)
DGV used for Cr(VI)

Nitrate DGV taken from "Updating nitrate toxicity effects on freshwater aquatic species."

If no value presented there is no criterion.

Calculated from (leachate concentration * 0.0208) + (groundwater concentration * 0.9792) = Solution 0 concentration

Calculated from (solution 0 concentration * 0.51) + (groundwater concentration * 0.49) = Last cell at 450 m after 500 yrs concentration, determined from the PHREEQC transport output Calculated from (last cell after 500 yrs concentration * 0.177) + (groundwater concentration * 0.823) = Discharge after 500 yrs concentration The modelling indicates that pH, reactive phosphorus, arsenic, copper, nickel, zinc, cadmium, lead, mercury, nitrate, ammonia, benzene, TRH, OPP, OCP, PAH (excluding naphthalene) and PCB concentrations at the discharge point were similar to the background groundwater concentrations (MW201 5/10/2021) or below the nominated DGVs after 500 years of modelling. Some variation was noted for nitrate and ammonia, with discharge concentrations being lower than background, but this can be attributed to nitrogen speciation undertaken by the model due to the redox conditions set for the model (i.e. pe =4). All other analytes had notably higher concentrations than those used in the model to represent background water quality. The modelling therefore suggests that, when using the material leachate concentrations adopted for this model, mixing and dispersion processes alone are not sufficient to attenuate all potential ENM analytes seeping from the lined area to background concentrations after a period of 500 years. The results have been considered relative to acceptable background variations in water quality in 6.4.

Back calculations on the modelled results indicate that, as a result of mixing and dispersion attenuation processes along the flow path at the discharge point, 0.19 per cent of the discharging groundwater is comprised of leachate from the lined area, with the remaining 99.81 per cent comprised of background/catchment groundwater. These mixing percentages can be applied to other analytes that have not been included in the model to predict their concentrations at discharge, such has been done for hydrocarbons, PCBs, and pesticides. These mixing percentages can also be used to set suitable site-specific target levels for leachate from the fill material based on the conservatively calculated attenuation capacity associated with mixing and dispersion processes within the aquifer. The background variability will, however, need to be considered when site specific target values are derived. The derivation of these target levels will help prevent future impacts at the discharge point associated with the potential seepage of leachate from the lined area.

6.4 Discussion

The back-calculated acceptable site leachate concentrations using the groundwater model have been compared against to the ASLP and estimated ENM partitioning values (see Section 6.2.2.2) to further contextualise the likelihood of an impact occurring. This comparison is provided in Table 6.6 and is summarised below:

- Noting that calculated acceptable site leachate concentrations that are above all leachate concentrations
 estimated from ASLP testing and ENM partitioning means that there is no potential risk, the acceptable site
 leachate concentrations are colour coded as follows:
 - Orange indicates the acceptable site leachate concentration is below the estimated leachate partitioning value only.
 - Red indicates the acceptable site leachate concentration is below the ASLP leachate result.
 - Clear indicates the acceptable site leachate concentration is above all material leachate estimates
- The ASLP results are all below the acceptable site leachate concentrations (except for DDT) suggesting that soils originating from those areas are unlikely to pose a potential adverse impact to the downgradient receptor. The reason for DDT being above the ASLP result is expected be because of the LOR being orders of magnitude above the adopted assessment criteria and is expected to be resolved with sampling analysis using lower LORs.
- The estimated ENM leachate concentrations for chromium, toluene, ethylbenzene, m-xylene and TPH C10-C36 are above the acceptable site leachate concentrations. Noting that the concentrations in the ASLP results are acceptable, there is a greater risk these analytes result in leachate concentrations being generated above the acceptable site concentrations.

The estimated ENM leachate concentrations established for TPH, ethylbenzene, toluene and m-xylene by applying partitioning equations to the ENM criteria are generally representative of a contaminated site, which indicates that the partitioning equation inputs/results are overly conservative and not representative of \VENM and ENM material that will be accepted at the site. Further to this, the acceptable site leachate concentrations are also representative of groundwater concentrations that would be present within the vicinity of petroleum impacted soils, which is also not representative of VENM and ENM material that will be accepted at the site. As such, it is considered unlikely that leachable concentrations from ENM and VENM of these analytes would be above the acceptance site leachate concentrations and that the ASLP results are more representative of concentrations that would leach.

With regard to chromium the estimated ENM partitioning results are approximately 80 times the ASLP result suggesting the partitioning equations are likely to be conservative. Further the ASLP chromium values

represent total concentrations as opposed to hexavalent chromium which is expected to drive chromium toxicity in freshwater. Speciated chromium analysis will be completed as part of monitoring at the site to provide further clarity on this.

Noting the risk identified for chromium, a monitoring program has been developed to monitor for and respond to the emergence of impacts, which is detailed in Section 6.5. The monitoring system provides an early warning system that will allow a response to be implemented during operation of the site many years before any adverse impact would potentially eventuate at downgradient receptors.

 All other analytes are not predicted to represent an impact when compared against the acceptable site leachate concentrations.

Table 6.6 Comparison of acceptable leachate concentrations with estimated source material leachate

Parameter	Units	Maximum ASLP result	Estimated ENM partitioning values (GHD, 2018)	Acceptable site leachate concentrations
рН	pH units	5.28	8	5.3
Arsenic	mg/L	0.001	0.0008	0.053
Copper	mg/L	0.013	0.002	0.225
Nickel	mg/L	0.006	0.002	0.06
Zinc	mg/L	0.484	0.0048	1.18
Cadmium	mg/L	0.0004	0.000063	0.025
Lead	mg/L	0.01	0.00032	0.052
Chromium	mg/L	0.007	0.588	0.105
Mercury	mg/L	0.00005	0.000008	0.0052
Nitrate	mg/L	2.35		5.5
Ammonia	mg/L	0.11		0.7
Reactive P	mg/L	0.01		0.5
Electrical conductivity	dS/m		1.436	2.7
Benzene	mg/L	<0.001	0.103	0.5
Toluene	mg/L	<0.002	10.057	0.5
Ethylbenzene	mg/L	<0.002	2.294	0.5
Total xylene	mg/L			
Ortho-xylene	mg/L	<0.002	0.319	0.5
Meta-xylene	mg/L	<0.002	0.95	0.5
Para-xylene	mg/L	<0.002	0.317	0.5
TPH C10-C36	mg/L	<0.05	14.12	0.55
TRH				
TRH >C10 - C16	mg/L	<0.100		0.55
TRH >C16 - C34	mg/L	<0.100		0.6
TRH >C34 - C40	mg/L	<0.100		0.6
OPP				
Chlorpyrifos	mg/L	<0.0005		0.0005
OCP				
Heptachlor	mg/L	<0.0005		0.005
Endosulfan	mg/L	<0.0005		0.0037
Endrin	mg/L	<0.0005		0.0053

Parameter	Units	Maximum ASLP result	Estimated ENM partitioning values (GHD, 2018)	Acceptable site leachate concentrations
4.4`-DDT	mg/L	<0.002		0.09028
PAH				0
Naphthalene	mg/L	<0.001	0.0032	0.006
Anthracene	mg/L	<0.001		0.005
Benzo(a)pyrene	mg/L	<0.0005	0.00004	0.0046
PCB	mg/L	<0.001		0.1

6.5 Groundwater management plan

6.5.1 Introduction and objectives

The primary aim of the groundwater management plan (GMP) is to:

- Prevent adverse water quality impacts to down gradient sensitive ecosystems by eveloping a monitoring program that:
 - Characterises baseline groundwater conditions from which groundwater changes associated with the project.
 - Monitors for any changes in groundwater conditions outside those assessed to be acceptable.
 - Characterises emergence of unforeseen impacts early to facilitate changes to operational procedures while the plant is operating.
 - Developing trigger action response procedures to appropriately manage any unforeseen impacts that emerge as part of the monitoring program.

The management measures proposed to meet these objectives are provided in the remainder of this GMP.

For this GMP the primary receptor is considered to be groundwater adjacent to the potential terrestrial and aquatic ecosystems located within the creek directly downgradient of the swamp (450 metres downgradient of the site). It is noted that the swamp is not considered to be hydraulically connected to groundwater emanating from the project (see Section 3.3.2) and that groundwater emanating from the project may actually discharge further down gradient.

6.5.2 Summary of management approach

The overarching management approach to preventing the development of adverse groundwater quality impacts from leachate includes:

- Emplacement of a low permeability liner as detailed in Section 6.2.2 to limit migration to underlying groundwater.
- Controlling the type of material that can be accepted at the site and limiting it to VENM, ENM or material subject to a specific resource recovery order and exemption.
- Monitoring the effectiveness of the management system, detecting unforeseen changes in groundwater conditions early and implementing additional protection measures that prevent adverse impacts and limit long term monitoring obligations.

To facilitate early detection of potential impacts and subsequently an early response to unforeseen potential impacts, site specific monitoring criteria will be developed using the attenuation factors established by the conservative groundwater modelling (see Section 6.3).

The monitoring criteria will be applied to leachate water quality in the emplaced fill and to groundwater immediately down gradient of the filled areas. This will allow management measures to be implemented many years before the potential risk could be realised at the nearest downgradient receptor.

If groundwater conditions are deemed to represent a potential adverse impact additional trigger action response measures will be implemented to investigate (act) and adequately respond (mitigate) potential impacts identified.

An adaptive monitoring and management approach will be adopted at the site whereby:

- Site specific monitoring criteria will be readily updated as additional baseline data is collated.
- The revision of the method for assessing potential impacts based on trends in the expanding baseline, leachate and downgradient monitoring well data set.

6.5.3 Site specific assessment criteria

Using the groundwater model attenuation factors established from the groundwater modelling presented in Section 6.3 the site-specific trigger levels (SSTLs) presented in Table 6.7, for leachate and groundwater immediately downgradient of the site, have been developed. The SSTL's have been developed for dissolved phase concentrations only.

Table 6.7 Site specific trigger levels

Parameter	Units	Site specific leachate criteria	Site specific criteria for groundwater at the site boundary
рН	pH units	5 to 9	5 to 9
Arsenic	mg/L	0.053	0.0021
Copper	mg/L	0.225	0.0438
Nickel	mg/L	0.06	0.0061
Zinc	mg/L	1.18	0.0882
Cadmium	mg/L	0.052	0.0012
Lead	mg/L	0.052	0.0021
Chromium	mg/L	0.053	0.0021
Mercury	mg/L	0.026	0.00059
Nitrate	mg/L	5.5	0.6334
Ammonia	mg/L	0.7	0.0273
Reactive P	mg/L	0.5	0.0153
Electrical conductivity	dS/m	2.7	0.1198
Benzene	mg/L	0.5	0.0114
Toluene	mg/L	0.5	0.0114
Ethylbenzene	mg/L	0.5	0.0114
Total xylene	mg/L	0	
Ortho-xylene	mg/L	0.5	0.0114
Meta-xylene	mg/L	0.5	0.0114
Para-xylene	mg/L	0.5	0.0114
TPH C10-C36	mg/L	0.55	0.0604
TRH			
TRH >C10 - C16	mg/L	0.55	0.0604
TRH >C16 - C34	mg/L	0.6	0.1104
TRH >C34 - C40	mg/L	0.6	0.1104
OPP			
Chlorpyrifos	mg/L	0.005	0.0001
ОСР			

Parameter	Units	Site specific leachate criteria	Site specific criteria for groundwater at the site boundary
Heptachlor	mg/L	0.005	0.0001
Endosulfan	mg/L	0.005	0.0001
Endrin	mg/L	0.005	0.0001
4.4`-DDT	mg/L	0.005	0.0001
PAH			
Naphthalene	mg/L	0.006	0.0011
Anthracene	mg/L	0.005	0.0001
Benzo(a)pyrene	mg/L	0.0046	0.0001
PCB	mg/L	0.048	0.0011

Notes: chromium analysis should be speciated into hexavalent and trivalent results with comparison of hexavalent chromium against the site specific criteria

Based on the conservatism built into the modelling the SSTLs are conservative and are expected to maintain the groundwater quality within the boundaries of the beneficial use potential and result in no identifiable adverse impact on water quality, at the downgradient receptor.

As these criteria rely on background water quality values and statistics, they will be updated each time new groundwater monitoring data becomes available using the methods described in Sections 6.1 and 6.2.

Subject to an appropriate number of baseline data points consideration will be given to revising this approach to compare the baseline/background groundwater quality 80th percentile value (reference site) with the median value in leachate and groundwater multiplied by the relevant attenuation factors established by the modelling (Section 6.3). This reflects the methods recommended in ANZECC (2000).

6.5.4 Managing the quality of material coming on to site

Only material defined as VENM, ENM or material that meets an order and exemption pursuant to clauses 91 and 92 of the Protection of the Environmental Operations (Waste) Regulation 2014 (which would require the approval of the EPA) would be accepted at the site.

A mapping system will be developed to document the location of material deposited on site from each off-site location it originated from. This will facilitate the development of management measures should SSTLs be exceeded.

6.5.5 Monitoring program

The following monitoring will be undertaken to establish baseline conditions and assess the emergence of unforeseen impacts during construction and operation:

- 1. Leachate monitoring to check that leachate concentrations in the emplaced fill are less than the leachate SSTLs.
- 2. Groundwater monitoring immediately downgradient of the emplaced fill to check that concentrations in groundwater are less than the groundwater SSTLs.
- Upgradient groundwater quality monitoring to characterise baseline groundwater conditions on which changes
 in groundwater quality associated with the project can be assessed and which the SSTLs can be modified.

A summary of the monitoring program is presented in Table 6.8. The monitoring locations are presented in Figure 6.3.

Baseline monthly monitoring has been proposed to facilitate the collection of an extensive data set prior to the commencement of operations, which will consolidate the development of SSTLs and provide flexibility for using alternative methods to revise the SSTLs.

The LORs adopted for monitoring would be equivalent to those presented in Table 6.3.

Paper Size ISO A4

the sample of

0 25 50 75 100 Meters

Map Projection: Transverse Mercator Horizontal Datum: GDA 1994 Grid: GDA 1994 MGA Zone 56

Bell Quarry Rehabilitation Project Pty Ltd Bell Quarry Appeal

> Proposed Groundwater Monitoring Program

Project No. 12541317

Revision No. A
Date 2/11/2021

FIGURE 6.3

Table 6.8

Purpose	To assess leachate levels are not excessively elevated. To assess leachate water quality against SSTLs.	To characterise baseline/backgroun d groundwater conditions and consolidate groundwater pathways	To characterise baseline/backgroun d groundwater conditions and consolidate groundwater pathways.	To monitor for unforeseen impacts downgradient of the emplaced fill and verify the design.	To monitor for unforeseen impacts downgradient of the emplaced fill and verify the design.
Monitoring parameters	Leachate elevation. Insitu field parameters (pH, DO, redox, EC, temp) Cation and anions Chemical constituents (see Table 6.6)	Groundwater elevation. Insitu field parameters (pH, DO, redox, EC, temp) Cation and anions Chemical constituents (see Table 6.7)	Groundwater elevation. Insitu field parameters (pH, DO, redox, EC, temp) Cation and anions Chemical constituents (see Table 6.7)	Groundwater elevation. Insitu field parameters (pH, DO, redox, EC, temp) Cation and anions Chemical constituents (see Table 6.7)	Groundwater elevation. Insitu field parameters (pH, DO, redox, EC, temp) Cation and anions Chemical constituents (see Table 6.7)
Monitoring frequency	Quarterly during operation biannually (2 ⁸ years post closure).	Monthly (baseline), quarterly (operation), biannually (2 ⁸ years post closure).	Monthly (baseline), quarterly (operation), biannually (2 years post closure).	Monthly (baseline), quarterly (operation), biannually (2 years post closure).	Monthly (baseline), quarterly (operation), yearly (2 years post closure).
Monitoring media	Leachate	Groundwater	Groundwater	Groundwater	Groundwater
Project Stage	Operation (all stages) and post closure (2 years).	Baseline, operation (all stages) and post closure			
Location description	New well to be located within the lined imported material ^A	Existing up gradient well	New well up- gradient of the site (surveyed to m AHD)	Existing well immediately downgradient of filling areas	Existing well immediately downgradient of filling areas
Location ID	Leachate well ^A	MW201	MW202	MB02	MB03

Purpose	To monitor for unforeseen impacts downgradient of the emplaced fill and verify the design.	To monitor for unforeseen impacts downgradient of the emplaced fill and verify the design.	To monitor for changes in the groundwater pathway (discharge to the swamp)	To monitor for changes in the groundwater pathway (discharge to the swamp)
Monitoring parameters	Groundwater elevation. In situ field parameters (pH, DO, redox, EC, temp) Cation and anions Chemical constituents (see Table 6.7)	Groundwater elevation. In situ field parameters (pH, DO, redox, EC, temp) Cation and anions Chemical constituents (see Table 6.7)	Groundwater elevation	Groundwater elevation
Monitoring frequency	Monthly (baseline), quarterly (operation), biannually (2 years post closure).	Monthly (baseline), quarterly (operation), biannually (2 years post closure).	Daily using data loggers	Daily using data loggers
Monitoring media	Groundwater	Groundwater	Groundwater	Groundwater
Project Stage		Baseline, operation (all stages) and post closure.	Baseline, operation (all stages) and post closure.	Baseline, operation (all stages) and post closure.
Location description	Existing well downgradient of filling areas	New well immediately down gradient of the south void filling area (surveyed to m AHD)	Existing well within the downgradient swamp	Existing well within the downgradient swamp
Location ID	MW401	MW402/MB04	MW301A	MW301B

A This well will be relocated to the deepest part of filled areas as the filling operation progresses. At the early stages of infilling the well may be replaced by a sump in a low-lying area that captures fill seepage to facilities samples being collected.

Samples being collected.

Two years post closure monitoring has bene proposed as it represents a reasonable time frame for leachate quality to stabilise after capping. Subject to monitoring results and trend analysis indicating stabilisation, monitoring would cease.

6.5.6 Data Analysis

At the times of monitoring and reporting (see Section 6.5.7.3) data analysis will include the following tasks:

- Updating the SSTL's using the methods described in Sections 6.1 to 6.3.
- Comparison of leachate and groundwater quality against the SSTLs.
- Establishment of trends in the data using a recognised statistical analysis.

Exceedance of an SSTL does not constitute an actual impact rather an early warning alarm system, providing time for actions to be taken to rectify the emergence of a potential impact. The emergence of actual impacts if it were to occur at the nearest downgradient receptor (immediately downstream of the swamp) are expected to be greater than 10 years. As such an exceedance of an SSTL will provide sufficient time to investigate and implement additional management measures if required.

In addition to the SSTL alarm system, the trend analysis will be used to identify any migration toward the SSTLs to provide an additional tool in responding to the emergence of unforeseen impacts before the SSTLs are exceeded.

6.5.7 Groundwater response plan

The identification process and response protocols to respond to a change in site groundwater elevations or quality conditions outside of those considered to be acceptable are provided in the TARP outlined in Table 6.9. The responses proposed incorporate a staged assessment and development of management measures considered to be appropriate for each individual event should it occur.

The model predictions and an expanding baseline monitoring dataset will provide the basis for trigger levels and take into account predicted responses to filling. Preliminary site-specific triggers have been designed to alert observed parameter responses that are outside of modelled effects or where observed parameter values do not follow anticipated trends.

6.5.7.1 Trigger action response plan

The TARP (Table 6.9) provides appropriate triggers and corresponding response actions for prevention or mitigation of potential impacts to the downgradient receptors as a result of filling the quarry.

The TARP is based on there being a sufficient baseline dataset as outlined in section 6.5.5 and the revision of SSTLs as outlined in Section 6.5.3 and Section 6.5.6.

The TARP has been designed to detect changes to groundwater quality created by the filling operation, outside of those expected, using an early detection system that compares leachate water quality and groundwater quality immediately downgradient of the project against site specific target levels. This system will provide many years to manage any unexpected changes prior to groundwater coming into contact with sensitive ecological communities (the nearest down-gradient receptor).

Maintenance of downward head gradients between wells MW301A and MW301A are included in the TARP to ensure that an alternative and more sensitive groundwater conditions (discharge to the swamp) does not eventuate. It is noted that this more sensitive condition has been simulated by the preliminary Martens and Associated numerical groundwater model not to occur.

Maintenance of leachate levels 4 m below the overtopping point of the main void are included in the TARP to ensure that leachate does not discharge to surface water at the site. It is noted that overtopping of leachate has been simulated by the preliminary Martens and Associated numerical groundwater model not to occur.

Table 6.9 Trigger Action Response Plan

Purpose	in one potentially investigate and report on leachate concentrations potentially impacting the receptor.	ngaged Identify, investigate and report on leachate levels potentially seeping to surface water at the site.	in one potentially investigate and report on leachate concentrations potentially impacting the receptor.	ngaged Identify, investigate and report on changes to the groundwater discharge point.
Timing	Consultant engaged within one month. Inform relevant agencies within one month	Consultant engaged within one month. Inform relevant agencies within one month	Consultant engaged within one month. Inform relevant agencies within one month	Consultant engaged within one month. Inform relevant agencies within one month
Person responsible	Site owner (or delegate)			
Action	Engage an appropriately qualified consultant to investigate exceedances and develop a management / remedial strategy	Engage an appropriately qualified consultant to investigate exceedances and develop a management / remedial strategy	Engage an appropriately qualified consultant to investigate exceedances and develop a management / remedial strategy	Engage an appropriately qualified consultant to investigate exceedances and develop a management / remedial strategy
Trigger	Exceedance of the site-specific target levels for leachate.	Leachate levels exceeding of 1037.5 m AHD in the main void	Exceedance of the site-specific target levels for groundwater quality.	The development of an upward head gradient between MW301A and MW301B. (i.e., groundwater flow into the swamp)
Purpose	Early detection of leachate water quality that represents a potential risk to downgradient receptors.	Early detection of the potential for overtopping of the voids by leachate levels	Early detection of groundwater quality that represents a potential risk to downgradient receptors.	Early detection of an alternative conceptual hydrogeological condition whereby groundwater discharges to the swamp.
Frequency	Quarterly during operation and for two years after operation	Quarterly during operation and for two years after operation	Quarterly during operation and for two years after operation	Elevations during operation and for two years after operation
Parameter	Leachate quality	Leachate levels	Groundwater quality	Groundwater elevations

6.5.7.2 Response action

In the event of an exceedance of the triggers outlined in Table 6.9 the actions outlined in Table 6.9 would be instigated. This includes:

 Engaging an appropriately qualified consultant to investigate the exceedances and develop a management strategy / response program. This is considered to be an appropriate initial action as the TARP is designed to detect impacts early, such that there is time to investigate and respond to exceedances many years before an actual adverse impact could emerge.

In developing an appropriate management strategy for site exceedances the consultant engaged for investigating and developing a management / remedial strategy will consider:

- Additional site conceptualisation investigations to characterise downstream risks long the groundwater pathway (E.g. an expanded monitoring program)
- Additional fate and transport/groundwater modelling using new site data to further characterise the emergence of actual downstream impacts.
- Limiting the material accepted at the site by the implementation of revised (site specific) acceptance criteria.
- Manipulating the chemical conditions in the fill material to reduce leachate quality to acceptable levels.
- Transfer of leachate within the fill mass to improve water quality or lower the leachate elevation.
- Investigating the integrity of the already capped rehabilitated areas for possibly excessing rainfall infiltration and rectify capping system, if needed.
- Transfer leachate to the contact water storage pond, with potential treatment if contact water trigger is reached. If this management measure is adopted the analytical schedule outlined in Table 5.4 should be adopted for monitoring of leachate as outlined in Section 6.5.5.
- Cessation of filling works.
- (If appropriate) no change to operations.

6.5.7.3 Data recording and reporting

6.5.7.3.1 Data management

All water quality data collected by the monitoring program will be checked for quality assurance and representativeness and stored within a dedicated database.

6.5.7.3.2 Annual reporting

It is proposed that reporting on the groundwater conditions monitored would be completed annually with the result provided to the relevant authorities as required and placed on a publicly accessible database (ie web site). The report would include:

- Results and analysis of all surface water and groundwater monitoring relative to adopted assessment criteria.
- Details of the measures undertaken/proposed to address any identified issues.
- Updating of the Water Management Plan to align with site conditions which could include tightening or relaxing/removing the site SSTLS.

6.5.7.3.3 Trigger action response reporting

An exceedance of the SSTLs will trigger an investigation into the cause of the exceedance and preparation of a corrective action plan to re-establish or introduce appropriate management measures as necessary.

The corrective action plan will be approved by the relevant authority who administers the site's development consent, with the mitigation actions determined at that time, as relevant to the exceedance.

7. Licensing requirements

7.1.1 Surface water

Part 1 of Schedule 4 of the Water Management (general) Regulation 2018 includes a list of activities that are exempt from the requirement to obtain a water access license.

The list includes activities considered to be excluded works making reference to Schedule 1 of the regulation.

Schedule 1 – Excluded Works of the regulation identifies dams used solely for the capture, containment and recirculation of drainage and/or effluent, consistent with best management practice to prevent the contamination of a water source, that are located on a minor stream as an excluded work.

The project surface water management system is considered to fall within this definition and is therefore not required to have a water access licence.

7.1.2 Groundwater

Section 5.2.3 of the previous EIS WRA (GHD, 2018) indicated a take of up to 80 ML/yr would be required during operation of the project. The report indicated that there was enough resource available and that trading in the water market to get that volume of water was likely (based on historic trading activity).

In terms of changes to groundwater inflows relative to the previous investigation the following differences are noted:

- During installation of the voids, dewatering consistent with the volumes identified within the previous EIS WRA (GHD, 2108) will be required. For clarity, and using new site data where applicable, the amount of groundwater dewatering is estimated to range between 11 m³/day (4 ML/yr) and 215 m³/day (78 ML/yr). This is based on adopting the analytical flow model described by R Marinelli & W Niccoli (2000), a recharge rate of 2.6% from Martens preliminary groundwater flow model, and a range in hydraulic conductivity of between 3x10-8 m/s and 6x10-7 m/s (as per the previous WRA report).
- There will be progressive lining of the voids and other areas below the groundwater table to reduce inflow. This means there will be a progressive reduction in the groundwater inflows identified above. Once fully lined, seepage from the surrounding groundwater system into the voids will be in the order of 0.1 m³/day (based on preliminary results of the Martens model), this seepage will migrate through the lined area and back into the groundwater system on the down gradient side of the lined voids. As such, once lining is complete there will be no net take from the groundwater system.
- Once the emplacement area is lined there will be a reduction in rainfall recharge to groundwater in this area. This is expected to be a difference of approximately 21.2 mm/yr¹¹. When considering the liner footprint this approximates a reduction in recharge of 1,378 m³/year (1.4 ML/yr). This reduction in recharge, will be due to increased run-off to surface water, which is expected to be where groundwater discharges further downstream.

Noting the above an 80 ML/yr licenced groundwater take for construction and operation of the project is required and is consistent with the previous EIS WRA report (GHD 2018).

¹¹ This is based on a groundwater recharge rate of 2.6% of annual rainfall (22.1 mm/yr) being reduced to 1 mm/yr by the fill capping.

GHD | Bell Quarry Rehabilitation Project Pty Ltd | 12541317 | Bell Quarry Rehabilitation Project

8. Conclusions

A revised water management system has been developed for the site to ensure the proposed development achieves a neutral of beneficial effect for receiving waters within the catchment.

The management system involves separation of surface water flows to ensure that all surface water released from the site drains only from naturally occurring soils within the catchment or is treated to standard to meet background water quality concentrations.

Upstream catchment flows will be transferred directly through or around the site which will minimise potential for water to be captured and stored within the existing voids during extended dry periods. This will reduce potential stress the downstream receiving water environment and sensitive ecological receptors.

The management system will ensure that all contact water draining from operational areas will be captured in a contact water pond for reuse via on-site irrigation in the active emplacement cell. A water balance has been prepared and indicates all contact water can be retained on site for the lfe of the project under best estimate assumptions emplacement operations when assessed against historical and potential future climate scenarios.

Contingency for the provision of a water treatment plant has also been included as part of the proposed development in the event that the contact water pond approaches approximately 50% capacity to ensure that any releases from the site are treated to meet background water quality standards.

Surface and groundwater monitoring has been undertaken and demonstrated that there is no direct connection between groundwater flows from the quarry site and a hanging swamp located approximately 200 metres downslope.

The adoption of lining system within the emplacement cell will also limit the potential for leachate within emplacement cell to impact upon local or regional groundwater systems. The limited potential for seepage through the lined emplacement cell will result in less than a 0.2% contribution to groundwater volume at the assessed closest discharge point to surface waters downslope of the hanging swamp.

Conservative assumptions have been adopted in relation to the potential concentrations for leachate generation within the emplacement cell and indicates that it is unlikely that leachate generated in the emplacement cell would result in any deterioration of water quality in the aquifer. Site specific leachate target levels have been developed to provide an early warning system of any emerging groundwater impacts arising from the site operations and stipulated in the trigger action response plan.

A detailed surface and ground water monitoring programs have been developed to confirm the conservative predictions in this assessment.

9. References

ADE Consulting Group (2017), Soil and water sampling – Bell Quarry Rehabilitation Project, Blue Mountains NSW, Silverwater NSW

Allison and Allison (2005), Partitioning coefficients for metals in surface water, soil and waste. U.S. Environmental Protection Agency, Washington, DC. 2005

ANZECC (2000) Australian Water Quality Guidelines for Fresh and Marine Waters. Australian and New Zealand Environment Conservation Council, Canberra.

ANZG 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Australian and New Zealand Governments and Australian state and territory governments, Canberra ACT, Australia. Available at www.waterquality.gov.au/anz-guidelines

Environmental Protection Agency (1999), Use of monitored natural attenuation at Superfund, RCRA Corrective Action, and underground storage tank sites, Directive 9200.4-17P, 32 pp., EPA, Office of Solid Waste and Emergency Response, Washington, D.C.

GHD (2018), Bell Quarry Rehabilitation Project Water Resources Assessment, Technical report 2125774.

GSS Environmental (2011) Water Management Plan, Newnes Junction Sand & Kaolin Extraction Project

NSW EPA (2017), Guidelines for the assessment and management of groundwater contamination, Department of Environment and Conservation, Sydney

NSW EPA (2017), Guidelines on resource recovery orders and exemptions, for the land application of waste materials as fill, State of NSW and Environment Protection Authority, Sydney, Australia

NSW EPA (2014a) Waste Classification Gudelines - Part 1: Classifying Waste. Sydney.

NSW EPA (2014b) The excavated natural material order 2014.

Office of Environment and the Heritage. (2015). Clarence Colliery Discharge Investigation. Sydney.

R Marinelli & W Niccoli: Vol 38, No.2, Groundwater Mar-Apr 2000 pp311 - 314

HydroSimulations, 2017. Westconnex M4-M5 Link. Groundwater Modelling Report, Annexure H – Groundwater modelling report, August 2017.

UK EA (2000), Guidance on the assessment and monitoring of natural attenuation of contaminants in groundwater, UK Environment Agency, Bristol.

WaterNSW (2021), Neutral or Beneficial Effect on Water Quality Assessment Guideline, WaterNSW.

Appendices

Appendix A

Groundwater and surface water monitoring results

Acidity & Alkalinity

	r	1	1
4 ss surorigeoria es P	Mo/	00	
	ma/l	0.1	
(istoT) negortiV	ma/L	0.1	
	ma/L	0.005	Î
(N as) estrain	T/Bu	0.01	
(N 25) statiN	mg/L	0.0	-
V ss sinommA	mg/L	0.005	1
lonic Balance	%		
IstoT anoinA	meq/L	0.01	
Cations Total		0.01	
Sulfate (Filtered)	mg/L	-	
Chloride	mg/L	-	
Sodium (Filtered)	mg/L	0.5	
Magnesium (Filtered)	mg/L	0.5	
(Filtered)	mg/L	0.5	
Hardness as CaCO3 (Filtered)	mg/L	-	
	-	-	
Alkalinity (Bicarbonate as CaCO3)	mg/L	-	
Alkalinity (Carbonate as CaCO3)	mg/L		
Sodium Adsorption Ratio (Filtered)	d	-	
	-	co	
Total Dissolved Solids (est.)	ا ا		
Electrical conductivity (lab)	ns/cu	-	
(dsJ) Hq	H units	0.01	
			SP% (updated 26 July 2021)
	Electrical conductivity (lab) Total Dissolved Solids (eat.) Sodium Adsorption Ratio (Filtered) Alkalinity (Carbonate as CaCO3) Alkalinity (Hydroxide as CaCO3) Calcium (Filtered) Calcium (Filtered) Solicum (Filtered) Cations Total Cations Total Pulrate (Filtered) Cations Total Cations Total Cations Total Mitrate (as N) Withte (as N) Withogen (Total Oxidised) (as N) Withogen (Total Oxidised) Withogen (Total Oxidised) Withogen (Total Oxidised)	Electrical conductivity (lab) Total Suspended Solids Total Suspended Solids Total Suspended Solids Sodium Adsorption Ratio (Filtered) Alkalinity (Carbonate as CaCO3) Alkalinity (Bicarbonate as CaCO3) Alkalinity (Hydroxide	1 October (Total Discolar (as N) 1 October (Total Oxidised) (as N) 2 October (Total Oxidised) (as N) 2 October (Total Oxidised) (as N) 3 October (Total Oxidised) (as N) 4 October (Total Oxidised) (as N) 5 October (Total Oxidised) (as N) 5 October (Total Oxidised) (as N) 6 October (Total Oxidised) 6 October (Total Oxidised) 7 October (Total Oxidised) 8 October (Total Oxidised) 9 October (Total Oxidised)

100000000000000000000000000000000000000	n 279832-4	Downstream	5/10/2021		-			\$	5	\$	<5	Ť	40.5 A	<0.5 C	<0.5	4	r	ŀ					0.007			1000		ŀ
7822/Downstream	n 280787-4	Downstream	19/10/2021		,		ļ.	t	+	+	2 0	t	+	-	4	+	+	'	•	-	•	7	0.007	ı		<0.005	v0.1	1
MB01	1	MBOI	31/08/2017	7.56	218	t	1	+	-	V .	2 2	t	-	-	5 C	+	+	, 1	•		, ,	P P	<0.00>	٠		<0.005	٥ 1.0	
MB02	ES1721890002	MB02	1/09/2017	2.09	2		H	۲	t	V	2 5	ļ.	+	- 7	2 4	+	+	•		1 3	6.6	+	×	i				
MB02	ES1809234001		28/03/2018	6.74	t	+	1	+	t	7	1 6		+	+	+	+	+	t		0.5	ò	•			•			1
822/MR02	269664-5	MR02	20/05/2024	5	t	+	+	+	+	7 4	17	Ť	-	+	+	Ω,	+	20	V0.7	0.43	0.62	•	×0.01	0.09	<0.01	0.09	<0.1	<0.1 0.06
7822/MR02	279832-12	MROS	5400004			+	+	+	+	9 4	9 4	+	_	4	1.2 4.4	4	+	•	٠	١	•	თ	0.033		1	0.01	40.1	,
COOMMON OF	21 2002 12	MOON	4000000					+	+	2	9		-	4	1	9	-	1	•	1	1	7	0.025	,		600.0	<0.1	
SZZIWIDUZ	79470707007	MB0Z	1202/01/81				'	+	+	Ŷ	တ		\dashv	<0.5		Н	7	•	•	٠	٠	-13	0.02			0.01	×0.1	
MBUS	EST/20506001		15/08/2017	7.2		Н	Н	Н	25	⊽	25	-		V	2 21	9	•	24	١	1.61	1.79	·					,	ļ,
MB03	ES1809234002		28/03/2018	5.92	25	34	30 0.72	7	Н	V	00	ľ	V		2 3	H		m	<0.1	0.18	0.36	ŀ	0.1	0.89	VO 04	0.89	-	000
7822/MB03	269664-6	MB03	20/05/2021	•		•	•	×5.	2	\$	7		1.1	0.9	2.1 2.8	-	6	ŀ	ŀ	ŀ	ŀ	c	0.029	3	2	3 0	- a	
7822/MB03	279832-13	MB03	5/10/2021	r			•	\$	80	r.	œ		-	9.0	H	⊬	H	ŀ		ŀ	ŀ	ď	0000			5 6	0 0	
7822/MB03	280787-12	MB03	19/10/2021		ı			<5×	-	\$	7		0.7	₽	2	╁	H	ŀ	ŀ			2 0	2000			i c	7 .	
7822/MW201	269664-7	MW201	20/05/2021				,	\$	ŀ	V V2	=	,	t	+	n.	+		1	ŀ			,	20.00			0 0	2 5	
7822/MW201	279832-14	MW201	5/10/2021	,				×5	╁	\$ ²	o	,	+	+	+	+	t	ľ			1		0000			4.0	, ,	,
7822/MW201	280787-13	MW201	19/10/2021					t	⊦	5	_	į,	+	+	+	+	+	ļ				- 0	200			0.33	- 3	
822/MW301A	269664-3	MW301A	20/05/2021					V25	ľ	V V	. \$2	,	-	+-	+	+	t	1				p	50.00			0.53	9.6	
7822/MW301A	279832-10	MW301A	5/10/2021				ľ	V 25	+	V 22	\$5	+	-	+	+	+	+	1				'n	0.000	•	•	0.02	V0.1	
7822/MW301A	280787-9	MW301A	19/10/2021			2.	,	t	╁	7	u	+	-	+	+	+	+	1		•		7 3	0000			0.02	0.1	
7822/MW301B	269664-4	MW301B	20/05/2021			ľ	H	t	7	5 14	, 4	Ť	-	4	+	+	4	1		•	•	7-	0.013			0.007	0.1	
822/WW301B	279832-11	MW301B	5/10/2021		Ì.	+	+	t	+	2 4	, 4	+		4	4	4	+	'	•		٠	-	0.015			<0.005	0.1	
822/MW301B	280787-10	MANAGOTE	19/10/2021		1	ł	+	t	+	7	9 1	•	-	4	6.0	+	+	'	í	i	•	ო	0.008			<0.005	<0.1	,
2822/MANA/302A	269664-4	MANAZOZA	20005/2021			+	+	t	+	ဂ္ဂ			-	-	4	+	+	٠	i	ï	٠	-53	900'0	•		0.01	0.1	
7822MMA/302A	270832 8	RANZOZA	2010312021			+		+	+	Ω,	, K	1	-	-	4	-	+	١	٠	٠	•	-12	960'0	,	·	600.0	0.7	
7822#WW302A	280787.8	MANAGOGA	40MONO04			+	+	+	+	ç,	ç,	1	-	4	0.8	9	7	1	ì	1	٠	7	0.011	ı	,	<0.005	<0.1	
7822/MMA/202E	D 101000	MAKSOS	130 1012021			-	:	+	00	ç ı	ω,	•	-	-	4	Н	~	1	٠	1	٠	-18	<0.005			<0.005	0.2	,
7822/MAY302D	270832 0	MANAGOGE	20/02/2021			+	+	+	+	₽ '	ω .		-	-	-	-	H	•	1	•	٠	11	0.051			600.0	0.1	,
ZOODWINDOW	2700007	WALES OF THE PARTY	2010/2021				'	+	+	0	20		-	-	<0.5 6.2	2	7	,	١	٠	1	-14	0.022			0.01	0.2	
DEZ/INIVACI	7-70000	IWW401	1202/01/6		,	1	'	+	H	\$	<2×		-	<0.5 0.	0.8 6.1	1 6	ß	٠	,	٠		ო	<0.005	ŀ		0.02	100	,
OZZIWWY4UI	/-/8/087	MW401	19/10/2021	•		1			9	Ϋ́	9	,	<0.5 <(<0.5 0.	0.9 5.7	7 5	4		•	,		-13	0 011	,	ŀ	000		1
/822/Pond 1	279832-1	Pond 1	5/10/2021		1	•	*(×2	2	\$	S		0.9	0.6	0.9	H	2	ŀ	ŀ	1	ŀ	-	2000	ŀ		2000		
'822/Pond 1	280787-1	Pond 1	19/10/2021			1	ň	\$	H	Ϋ́	7		9.0	<0.5	4	H	-				ŀ	- 20	40 005			2000	2 0	
7822/Pond 2	279832-2	Pond 2	5/10/2021	1		•	_	\$	'n	ŝ	2	,	\vdash	0.5	4	H	ŀ	ŀ				3 -	2000	t		0000	7 0	1
7822/Pond 2	280787-2	Pond 2	19/10/2021	1		*		\$ \$	19	\$	10	1		<0.5	4	H	-	ŀ	ŀ	,		- 55	<0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0			20000	D 0	,
7822/SW01	279832-5	CIAIO	E INDIONA				ĺ		ĺ																			

	Kjeldahl Nitrogen Total	mg/L mg/L				-			-	<0.005 <0.1 -		36 36 2 2	19 1	0.1	0,007 0.1 0.2 0.02		15 0.2	15 0,2 15 0,2	15 0.2 15 0.2 0.7	15 0.2 15 0.2 0.7 5 0.1 0.125	15 0.2 15 0.2 0.7 0.125 2.5
	(N zs) Withite	mg/L	0.01									2	0	<0.01	Q		<0.01	ND 0.01	0.07 O	ND 0.005	0.005 0.005
	N ss sinommA (N ss) stsrtiV	=		0.32"		- 900'0			-	<0.005		36 2	22	<0.005	0.005	0.1 0.89	İ	0.1	0.1	0.016 0.008	0.1 0.016 0.008 0.023
	lonic Balance	١.	21			12	٠ ع	19	-	23			-	-		1.99 14		-	÷	-	-
	Sations Total	med/L med/L	0.01 0.01				·	x	1			-	-	-	Н	-		-	-	\rightarrow	-
	Sulfate (Filtered)	'L mg/L	1 0.1							-		5 2		-		÷	NID NO		8.2	+ -	+
	Chloride Sulfate	L mg/L	-			က	V	, ,	-	1		34	32	<u>\</u>	-	Н	22	-	2.6	2.6	3.2 2.6
	Potassium (Filtered) Sodium (Filtered)	"L mg/L	-			<0.5 5.2	2	2	4	4		39	39	_	2.8	21	7.		١.	4.4	3.6
	Calcium (Filtered) Magnesium (Filtered)	'L mg/L	9.0			<0.5 0.6 <	< 0.5 < 0.5 <	<0.5	0.5	<0.5		39 39	10	<0.5 <0.5 <	9'0	-	-		0.39	0.39	0.39 0.25 0.21
	Hardness as CaCO3 (Filtered)	mg/L	-			5 - <(<5 - <	- <		-		2	28 1 1	⊽	ιΩ	67 5 1	ro		10	2.75	2.75
Delding & Alkalling	Alkalinity (Hydroxide as CaCO3)	mg/L n	-			\$>	< 2	<5	\$	² 2		33	0	⊽	Q	\$	2		2.2	2.2	2.2
	Alkalinity (Carbonate as CaCO3)	7	1			55	<5 5	\$ 6	<5 6	<5 10		39 39	0	₹	Q	H	2	ł	_	2.2	2.2 2.5 0.68
	ebilo& bebnedau& lstoT Sodium Adsorption Ratio (Filtered)	_	5 0.01				,	•	1	1		2 2	2 2	30 0.72	\vdash	46 1,15	46 1.15			38 0.935	o
Horganics	Clearly (view)	1	1					1		-		5 2	5	52 34	52 34	218 42	218 42		114	72 38	
	Hq (Lab)	its	0.01						1	H		ເດ	2	5.92	H	7.56 2	7.56 2	ł	6.9	+	
					Sampled Date	19/10/2021	5/10/2021	19/10/2021	5/10/2021	19/10/2021											
				96 fulo 20241	Location Code	SW01	SW02	SW02	Upstream	Upstream											
				SN775 (2018) - FM - 99% (undated 96 fully 282)	SamoleCode	280787-5	279832-6	280787-6	279832-3	280787-3	Vac	52	ts	ıtration		ntration			tration	iration	Iration ation on
			FOI	AMPRICATION PL	Field ID	7822/SW01	7822/SW02	7822/SW02	7822/Upstream	7822/Upstream	Statistical Summary	Number of Results	Number of Detects	Minimum Concentration	Minimum Detect	Maximum Concentration	Maximum Detect		Average Concent	Average Concentration Median Concentration	Average Concentrati Median Concentrati Standard Deviation

Env Stds Comments
#1:Measured as NH3-N at pH 8□
#2:Atlabes laken from "Updating nitrate toxicity effects on freshwater aquatic species, 2013"□
#2:(PH >6.5, 0.8 ug/L for hH-6.5)□
#4:(n absence of total As guideline, As (V) guideline has been adopted.□
#5:n absence of total Cr guideline, Cr (VI) guideline has been adopted.

Data Comments #1 NIL (+)VE

2 of 8

						Organic Indicators										2	Metals					1
				(9) latot alandare (7)	(lstoT) sunordeoriq	Dissolved Organic Carbon	mulnimulA	(Filtered)	oineanA		muimbe⊃	Cadmium (Filtered)	Chromium (III+VI)	Chromium (III+VI) (Filtered)	Copper	Copper (Filtered)	Forl (Filtered)	pead home	Lead (Filtered)	Manganese	Manganese (Filtered)	
Eal				mg/L 0.005	0.01	mg/L	0.005		-	mg/L 0.0002 0	0.00005	mg/L 0.00005	mg/L	mg/L	_	ے ہے	= 0	2	-		-	ارا
ANZG (2018) - FW	- 99% (updated	26 July 2021)					0.027	1	-		-	0		100	_				0.0001	20005 F0	5 0.0005	8
Field_ID	SampleCode	Location Code	Sampled Date																			
7822/Downstream	279832-4	Downstream	5/10/2021	<0.005 <0.05		2		-	<6,030	<6.001	6,0500	c6,000r.	Carrier .	> 1/48/39	<0.001	<0.001		- <0.001	01 <0.001	1	ŀ	Γ
7822/Downstream	280787-4		19/10/2021	<0.005	<0.05					ř		<0,000.0>	100,000	100 as	0.003	1	ŀ		_	H		T
MBOJ	ES1/21890001	1 MB01	31/08/2017				111	0.023				05600042	0.825	CO. STUDIES	16.5						0.396	9
MB02	ES1809234001		28/03/2018		. 6	. 7	24.4	0.005	2	<0.0002 -0.00002		<0.00005	0.0484	50000	5	10	22.9 0.0	0.004 0.085		101 0.892		-
7822/MB02	269664-5	Т	20/05/2021	<0.005	200	,				SULMORE.		900000		7 10 10 10	Ť		- 0.042		<0.0001	- 100	0.192	2
7822/MB02	279832-12	MB02	5/10/2021	<0.005	<0.05				26 Mfr		Language Control	< 30,000°.	. 0	TO THE REAL PROPERTY.	- WWW	1000	+	T	-		•	
7822/MB02	280787-11		19/10/2021	<0.005	<0.05	,							0.002	I I I I I I				00.00	01 00.001		•	7
MB03	ES1720506001		15/08/2017	130	ř		31.6	160.0	0.0064	0.0002	10000T	<0.00005	0.0436	0.0002	b	LO.	15 0.016		-	1	2.85	
MBO3	ES1809234002		28/03/2018		0.05	2	*	0.019	,	<0.0002		900000		3 (duty)	-	0.0089					1.86	
7822/MB03	279832-13	MB03	5/10/2021	<0.005 <0.005	0.0.0 50.05		r			00000		0.0000		10000		0.002	1	*	<0.001	- 10	'	
7822/MB03	280787-12	MB03	19/10/2021	<0.005	-					100000	9 49949	Contract of	2000	The second	9,000		+		_	4	•	
7822/MW201	269664-7	MW201	20/05/2021	<0.005	-			,		1,001		S. Chille	2000	Ca Billion	1	0.004		- 00.001	01 <0.001	4	1	1
7822/MW201	279832-14	MW201	5/10/2021	<0.005	-				106/10	of finite	100000	CO COSTON	50.000	1,000	0.043	0.04	+	0	-	1 1		T
7822/MW201	280787-13	MW201	19/10/2021	<0.005	-				100/00	<0.007	a region.	1,000,0	0.018	ct/mil			+		-	L		
7822/MW301A	269664-3	MW301A	20/05/2021	<0.005	_			•		1000	i.	Salatan F		ではい		0.017	1	•		L	ŀ	Т
7822/MAY201A	280787 0	MANAGOTA	10/10/2021	\$0.000 500.000	50.05					STATE OF	8.02029-1	Samor .	0:001	10000				<0.001	01 <0.001	- 10	ŀ	П
7822/MW301B	269664-4	MW301B	20/05/2021	<0.005	20.05	.						The state of the s	0,004	S0.000	0.004		•	<0.001	_	- 10	•	
7822/MW301B	279832-11	MW301B	5/10/2021	<0.005	<0.05 0.05				1			THE PERSON NAMED IN	-	1000	-	4		•	1	٦	•	
7822/MW301B	280787-10	MW301B	19/10/2021	<0.005	<0.05								0.000	1000		4	+	0.003		٠.	•	
7822/MW302A	269664-1	MW302A	20/05/2021	<0.005	0.2			,	ŀ	No.		THE STREET	0.000	Contraction of the last	0.0008	4	+	0.005			1	
7822/MW302A	279832-8	MW302A	5/10/2021	<0.005	1				0.024		TANA	A HANNE	4 4.00	CIL MARIL		- L00.0>	+			- 10	١	
7822/MW302A	280787-8	MW302A	19/10/2021	<0.005	0.2	•			0.005	ON SHAPE	1,000		0.000	The same of	2000		+	Ť			1	П
7822/MW302B	269664-2	MW302B	20/05/2021	<0.005	20.0	1			Ī	CHOPS .		1000000		10 900		0 000		ó		1	×	7
7822/MW302B	279832-9	MW302B	5/10/2021	<0.005	0.2	,			9000	and spirit a	District C	o tanger	0.048	Tal March		2000		0.00	1	1	1	T
7822/MW401	279832-7	MW401	5/10/2021	<0.005	<0.05								1000	San San S	t.	H		ľ	60.00	1		T
7822/MW401	280787-7	MW401	19/10/2021	<0.005	<0.05									100.0			+	+	+	1	1	T
/822/Pond 1	2/9832-1	Pond 1	5/10/2021	<0.005	<0.05		•							V Luit I	<0.001	L	H	T	+		· ·	Т
7822/Pond 2	279832-2	Pond 1	19/10/2021	40,005 40,005	<0.05			•			A STATE OF		1,000	10000	_	Н	1	T	+	L	ŀ	Т
	280787-2	Pond 2	19/10/2021	<0.000 <0.005	<0.05 0.05		• 10							S THE S				П	\vdash	-	•	
	279832-5	SW01	5/10/2021	_	<0.05						John St.			> Made	-	4	+		-	- 10	•	
					2010				10000	Section 1	SHEETS	1007	- Mario	<0.2004	<0.001	<0.001		<0.001	01 <0.001	- 10	r	

Appendix A Table 1 Water quality results

(g)

				20181 - FW - 98% (undated 26 July 2021)
	(9) lstot etsingsond	mg/L	0.005	
1	(listoT) suroriqeori¶	mg/L	0.01	
Organic Indicators	Dissolved Organic Carbon	mg/L	-	
-	muinimulA		Н	F
-	(berefil3) muinimulA	-	-	H
	Arsenic (Ellhored)			0.0
	Arsenic (Filtered)		Н	00'0 "800
	Cadmium (Filtered)	/L mg/l	0002 0.000	0000 0,0000
	(IV+III) muimontO	Щ.	_	9
	Chromium (III+VI) (Filtered)			0.00001
	Copper	mg/L		
	Copper (Filtered)	mg/L	0,0005	0.001
Metalls	lon	-	-	
ŀ	(Filtered)	-	-	0
ŀ	Lead	-	-	
ŀ	Lead (Filtered) Manganese			
ŀ		-	5 0.0005	

7822/SW01 280787-5 SW01 19/10/2021 <0.005 <0.05 <	59/10/2021 <0.005 5/10/2021 <0.005	<0.05											
280787-5 SW01 19/10/2021 <-0.005 279832-6 SW02 5/10/2021 <-0.005 270832-6 SW02 5/10/2021 <-0.005 270832-6 SW02 5/10/20210.005	19/10/2021 <0.005 5/10/2021 <0.005	<0.05						Ì	l	l			
279832-6 SW02 5/10/2021 <0.005	5/10/2021 <0.005		•	-			<0.001	<0.001)>	.001 <0	:0.001	
200 O. MODIONION CONTROL		<0.05					<0,001	<0.001		·	.001 <0	0.001	
280/8/-6 3002 13/10/2021 <0.003	19/10/2021 <0.005	<0.05		-			<0.001	<0.001)>	0.001 <0	0.001	
279832-3 Upstream 5/10/2021 <0.005	5/10/2021 <0.005	<0.05				100	<0.001	<0.001)> -	0> 1001	0.001	
280787-3 Upstream 19/10/2021 <0.005	19/10/2021 <0.005	<0.05		-			<0.001	<0.001)>	.001 <0	0.001	

Number of Results	34	36	2	60	5	30	39	30	39	30	39	8	39	ന	ιΩ	30	39	က	10
Number of Defects	0	7	-	m	2	9	2	22	2	14	0	20	20	e	ιΩ	11	-	ო	ιΩ
Minimum Concentration	<0.005 <0.05	<0.05	₽	24.4	0,005	<0.001	<0.0002	<0.0001	<0.00005	<0.001	<0.0002	<0.001	<0.0005	15	0.004	<0.001	<0.0001	0.892	0,101
Minimum Defect	QN	0.05	2	24.4	0,005	0.005	0.0002	0.0001	9000000	0.001	QN	0.001	0.001	15	0.004	0.001	0.0002	0.892	0.101
Maximum Concentration	<0.005	1.1	2	277	0.031	0,0681	<0.001	0.223	0.00042	0,825	<0.001	16.5	0.19	348	6.000	1.83	<0.001	14.5	2.85
Maximum Detect	QN	1.1	2	277	0.031	0.0681	0.0002	0,223	0.00042	0,825	QN	16.5	0.19	348	0.079	1.83	0.0002	14.5	2.85
Average Concentration	0.0025	0.074		111	0.018	0.0043	0.00045	0.0075	0.000058	0.035	0.00045	0.59	0.0084	129	0.032	0.078	0.00045	7.7	-
Median Concentration	0.0025		1.25	31.6	0.019	0.0005	0.0005	0.00005	0,00005	0.0005	0.0005	0.0045	0.001	22.9	0.018	0.0006	0.0005	7.81	0.396
Standard Deviation	0			144	0.01	0.013	0.00012	0.041	9000000	0.15	0.00014	e	0.031	190	0.03	0.33	0.00014	8.9	1.2
Number of Guideline Exceedances	0	0	0	e	-	30	34	30	36	30	39	20	20	0	0	11	0	2	7
Number of Guideline Exceedances(Detects Only)	0	0	0	m	-	ဖ	0	2	2	14	0	20	20	0	0	11	0	2	2

Env Stds Comments
#1:Measured as NH3-N at pH 8□
#2:Values taken from "Updating nitrate toxicity effects on freshwater aquatic:
#3:(pH >6.5, 0.8 ugL for pH<6.5)□
#4:In absence of total As guideline, As (V) guideline has been adopted.
#5:In absence of total Cr guideline, Cr (VI) guideline has been adopted.

Data Comments #1 NfL (+)VE

Appendix A Table 1 Water quality results

Bell Quarry Rehabilitation Project Newnes NSW

	усеияридлене	/ E	-	-
	C10-C36 (Sum of Total)	10	50	3
TRH - NEPM 1999	C29-636 Fraction	9	6	3
NEPM	C15-C28 Fraction	1	901	2
RH-	C10-C14 Fraction	1	50	
	e-C-9 Fraction	1	10	
Ī	>C10-C40 (Sum of Total)	J/bri	20	
	F4 (>C34-C40 Fraction)	na/L	100	Ì
2013	F3 (>C16-C34 Fraction)	-	⊢	ł
TRH - NEPM 2013	>C10.C16 Fraction	-	1-	Ì
TRH.	F2 (>C10-C16 minus Naphthalene)	7/6rl	20	İ
	C6-C10 Fraction	hg/L	9	
	F1 (C6-C10 minus BTEX)	T/6rl	10	Ī
	enalsrihitasi Applitibalene	Mg/L	-	
	Naphthalene (BTEXN suite)	Yor Pig/	2	4
	BTEX (Sum of Total) - Lab Calc	hg/L	-	
	Xylene Total	hg/L	7	
DIEX	Xylene (m & p)	hg/L	2	
•	хујепе (о)	ηg/L	-	200
	Ethylbenzene	ng/L	-	VX
	euenlo1	hg/L	-	440
Ì	Benzene	ng/L	-	S S
1	(Filtered)	mg/L	0.001	1000
ľ	Zinc			1024
-		\rightarrow	-	0 00
	Nickel (Filtered)	-	0.0005	00.0
	ИіскеІ	mg/L	0.0005	BOO.
-	Mercury (Filtered)	76	0.00004	BOOK
-	(L-22-24131)	Ε	0.0	0.0
	Мегсигу	뒿	0000	MOOR

7822/Downstream	279832-4	Downstream	5/10/2021	<0.00005	<0.00005	<0.001	<0.001	0.002	OXGOX <1	12	<u>^</u>	7	<2>			7	<10 <1	<10 <50	052	/100	7100	H	740 750	7400	100	t
7822/Downstream	280787-4	Downstream	19/10/2021	<0.00005	<0.00005	<0.001	<0.001 0	0.002	A BAS	×4	V	7	H	H		+	-	+	+	3 5	-	. 9	-		001.5	, 1
MB01	ES1721890001	MB01	31/08/2017	<0.000rl	<0,000	Н		+-	Н	+	ŀ		+	ł		+	-	-	+	3	-	-	2	3	200.5	000
MB02	ES1721890002	MB02	1/09/2017	<0.0001	<0.0001		0.0017	143	<0.001			,	ł	+			+	+	1			+	1			
MB02	ES1809234001	MB02	28/03/2018		0.00007		0.001		3	ľ	ľ	C	-	+	4		-	1 700		, 00	. 00			-+		
7822/MB02	269664-5	MB02	20/05/2021		<0.00005	,	40.001		h	+	+	1 2	+	+		+	-		_	-		2	-	-+	000	200
7822/MB02	279832-12	MB02	5/10/2021	0.0001	<0.00005	0.000			h	+	7	7	+	+		+	-		+		2001	+	-		2001>	е
822/MB02	280787-11	MB02	19/10/2021	0.00008	5000000	0000				+	7	7 7	+	+		+	-	-	+	-+-	-	-	-	\rightarrow	<100	,
MBO3	ES1720506001	MB03	15/08/2017	- A Militar	vid. 07670 4		0.0011		0001	+		,	+	+		+	5	5	<u>۷</u>	2015	onL>	500	×10 ×50	<100	<100	220
MBO3	ES1809234002	MB03	28/03/2018		0.00007		0.0005			ľ	Ŧ,	?	6	7				-		-4	-	-	-	-		
7822/MB03	269664-6	MB03	20/05/2021	,	-50.00005-	1	0.003		DAM.	+	+	7 4	+	+		+		`	٧.	-	-	<1000	_	-	×20	~20 ~20
7822/MB03	279832-13	MB03	5/10/2021	<0.00005	<0.00005	0.004	0.005	682 0	A	+	7 0	٠	7 0			+	-	V 000	200	200	2100	+	_	-	×100	
7822/MB03	280787-12	MB03	19/10/2021	+-	<0.00005	0.003	0.003	928	A AVO	+	7	t	H	+		+	-	+	+	-	4	-	-	-	×100	
7822/MW201	269664-7	MW201	20/05/2021	+-	<0.00005		0.085		V 110	+	V	H	+	÷		+		4	-	2,490	4	5	-	,	<100	20
7822/MW201	279832-14	MW201	5/10/2021	<0.00005	<0.00005	0.007	0.005	0 690	> 590	+	V	t	+	÷		+	-	,	220	3 6	100	+	-	-	0012	•
7822/MW201	280787-13	MW201	19/10/2021	<0.000005	<0.00005 <0.00005		F	0.24 0	100	+	v	V	+	+		+		-	+	+	_	, ,	071 017	28	071	
7822/MW301A	269664-3	MW301A	20/05/2021	ă	<0.00005		800.0	-	A 510	V	V	V	0	+		+	-	-	+	+	-	+	-	-+-	200	000
7822/MW301A	279832-10	MW301A	5/10/2021	<0.00005	<0.00005	<0.001	<0.00.0	0.004	0.002	\ \ \	V	\ \ \	42.	ŀ		+	-	+	⊹	+-	4100	+	-		2007	
7822/MW301A	280787-9	MW301A	19/10/2021	<0.00005	<0.00005 <0.00005	<0,001	<0.001	0.004 0	0.005	1	V	V	<2>			17	+-	4	+	+-	4	6	4		3 6	
7822/MW301B	269664-4	MW301B	20/05/2021	a	<0,00005		<0.001	-	0.001	v	v	V	0	H		+	+-	4	+	+	4	-	-		200	220
822/MW301B	279832-11	MW301B	5/10/2021	<0.00005	<0.00005 <0.001	H	+	0 001	0.000	H	7	7	+	+		+	-	4	+	30	301	v .	-		200	
7822/MW301B	280787-10	MW301B	19/10/2021			11			+	+	7 1	7 7	+	1	1	7 7	2 5	000	-	200	-	-+			×100	
7822/MW302A	269664-1	MW302A	20/05/2021		<0.000005	-	٠		+	+	. 7	7	ł	ł		+	+	4	+	0012	-	012 062	-		<100	200
7822/MW302A	279832-8	MW302A	5/10/2021	9,00008	<0.00005	0.011	<0.001	2	+	+	7	7	+			7 3	-	-	-	001.>		+	-		×100	
7822/MW302A	280787-8	MW302A	19/10/2021	<0.000005	<0.000005	0.005	٠) I I I	+	H	. 7	+	ł	+		+	2 5		+	0012		-+			×100	
7822/MW302B	269664-2	MW302B	20/05/2021		<0.00005	+			+	t	7	+	+	+		+	-	4	+		-	20 <30	-	-	×190	\$20
822/MW302B	279832-9	MW302B	5/10/2021	0.00007	<0.00005	0.01	<0.00 O>	920	+	+	7 7	+	, ,	+	1	+	-	-	-			- <10	-	-	×100	
7822/MW401	279832-7	MW401	5/10/2021	<0.00005	<0.00005	-	<0.00 o>	0	+	+	7	+	+	1		7 7	200	210 250	-	001>	4	<10	-	-	<100	
7822/MW401	280787-7	MW401	19/10/2021	<0.00005	<0.00005	÷	<0.001	003 0		1	V	+	+	÷		+	-	710	200	001	4	+	4	-	×100	
7822/Pond 1	279832-1	Pond 1	5/10/2021	<0.00005	<0.00005	+	<0.001	001	0 000	+	7	+	+	÷		+	-	-	-		4	5	4	-	v100	200
7822/Pond 1	280787-1	Pond 1	19/10/2021	<0.000005	<0.00005	H	<0.001	003 0	+	+	V	+	+	+		+	-	200	200	001	4	+	-	-	×100	
7822/Pond 2	279832-2	Pond 2	5/10/2021	<0.00005	<0.000005	<0.001	<0.001	003 0	1000	+	V	H	0	ŀ		+	-	-	+	00 0	0012	5	-	-	001v	200
7822/Pond 2	280787-2	Pond 2	19/10/2021	<0.00005	<0.00005	<0.001		0.001	000	+	7	+		+		+	-	-	+	2 5	4	- VI	-		2100	, ,
7822/SWI01	370822 E	C13/04	EMO/2004	200000	70000			0000		-	1	+				t	4	4	4	2017	_	-	220	3	200	l ne>

			rí									N X						TRH - NEPM 2013	EPW 20	2			F E	TRH - NEPM 1999	66	
				Rercury	(Filtered)	ј	lickel (Filtered)	oni; (Filtered)	guzuaç	Toluene	enesene (e) eselvy	χλιеυе (ш g b) χλιευε (o)	Kylene Total	BTEX (Sum of Total) - Lab Calc	(efiles NX∃TE) (define) (defi	F1 (C6-C10 minus BTEX)	notion Traction	F2 (>C10-C16 minus Naphthalene)	>C10-C16 Fraction F3 (>C16-C34 Fraction)	F4 (>C34-C40 Fraction)	(Sum of Total)	C6-C9 Fraction	C10-C14 Fraction	C15-C28 Fraction	C29-C36 Fraction C10-C36 (Sum of Total)	Acenaphthene
				ma/L	Ĺ	L	١.	+	H	hg/L				T		1	-	١.		13	-	hg/L	1	1	1	1
FOI				Lo	4	1.	ın			-	\vdash		2	-		-	Н	Н		0 100		10		_		_
ANZG (2018) - FW - 99% (updated 26 July 2021)	99% fundated 2	6 July 2021)		0.00006	0,00005	0.008	0.008 0.0	0.0024 0.0024	324 680	110	50 2	200			2.5									i		
Field ID	SampleCode	Location Code	Sampled Date																							
7822/SW01	280787-5	SW01	19/10/2021	<0.00005	<0,00005	<0.001 <	<0.001 0,	0.001 0.002	02 <1	₹	v V	<1 <2	·	-	- <1	<10	_		_		02> 0	-			<100 <50	-
7822/SW02	279832-6	SW02	5/10/2021	<0.00005	<0,000005	<0.001	<0.001 0.	-	01 <1	, ,	۷ ۲	<1 <2		1	-		×10	-	-			-	-			_
7822/SW02	280787-6	SW02	19/10/2021	<0.00005	<0.000005	<0.001 <		0.002 0.001	01 <1	را دا	۸ ۱	<1 <2		ı	-		v10	-	-		0 <50	-	-	_	<100 <50	Ц
7822/Upstream	279832-3	Upstream	5/10/2021	<0.00005	<0.000005	<0.001 <	<0.001	0.002	02 <1	7	٧ ٧	<1 <2	٠	ı	-	Н	0,70	\rightarrow	-			-		<100 <	-	_
7822/Upstream	280787-3	Upstream	19/10/2021	<0.00005	<0.00005	<0.001	<0,001	0.005	02 <1	V		<1 <2	-	1		-40	~10 ~10	×20	<50 <100	20 <100	220	V 10	· 20	<100 <	<100 <50	0 <1
Statistical Summary	>											3												1	- 1	1
Number of Results				တ္ထ	39	30	39	30 3	39 36	36	-			-		-	ဗ္ဗ	-		`	15	98	36	38		-
Number of Detects				4	2	12	12		2 0	0		0 0			-	_	0	-	-	-	-	-	\rightarrow	_	-	_
Minimum Concentration	tion			<0.00005	<0.00005	<0.001	<0.001 0.	0.001 <0.001	201	₹	·	<1 <2	~	· V	\$ v1	÷	×10		÷	*		_	_	_	-	_
Minimum Defect				0.00007	0.00007	0,002	0.001 0.	0.001 0.001	O4 ND	2	Q	QN QN	Q	QN	QN QN	-	_		-	-	_	-	120	-	-	-
Maximum Concentration	ation			0.0001	0.00027	4.62	-	11.1	0.8	7			_	-	-	-	_	-	-	۰	٧.	_	120	-	-	-
Maximum Detect				0.0001	0,00027	4.62		H	Н	Q	-	_	9	Q Q	QN QN	-	2		-	_	-		120	-	120 ND	2
Average Concentration	uoi			0.000035	0.000034	0.16	-	-	-	0.53	-	0.53 1			1	~/	5.3		-	50	-	-	28	-	51	-
Median Concentration	Lic			0.000025	0.000025	0.0005		4	0.002 0.5	-	-		-	0.5	2.5 0.5	-	'n	-	-	-	25	-	52	20	-	
Standard Deviation				0.000021	0.00004	0.84	4	2 0.		0.12	7	2			0	`	1.2	32	35 70	0	8.8	-	16	-	13 0	0
Number of Guideline Exceedances	3 Exceedances			1	co	9	က		19 0	0	0	0	0	0	\dashv	0	0	-	-	4	0	0	٥	0	-	+
Manufactor of Children Evene deposed Octobro	2/2007	Otopto Ophy		P	0	Œ	-	22 10	H	c		0	c	c	_	-	c		-	L	c	0	c	c	c	_

Env Stds Comments
#1:Measured as NH3-N at pH 8□
#2:Yethues taken from "Updating nitrate toxicity effects on freshwater aquatic: #3:(pH >6.5, 0.8 ug/L for pH<6.5)□.
#4:in absence of total As guideline, As (V) guideline has been adopted.□
#5:In absence of total Cr guideline, Cr (VI) guideline has been adopted.□

Data Comments #1 NIL (+)VE

8 of 8

Appendix A Table 1 Water quality results

(g)

PAHs - extended	B(a)P Total Potency Equivalent	T/bri	LD.	
PAHs - e	Benzo(b+j+k)filuoranthene	T/Grt	7	
П	Total 8 PAHs (as BaP TEQ)(zero LOR) - Lab Calc	hg/L	0.5	
П	PAHs (Sum of total) - Lab calc	hg/L		
	eHA9 8f brabrase to mu2	hg/L	9.0	
	Pyrene	hg/L	+	
	enenthnaned9	hg/L	٠	0.5
	Indeno(1,2,3-c,d)pyrene	hg/L	1	
	Fluorene	hg/L	-	
d 16	Fluoranthene	ng/L	-	-
PAHs - standard 16	Dibenz(a,h)anthracene	hg/L	r	
s - st	Сһуузепе	ng/L	-	
PA		hg/	_	
	Benzo(k)fluoranthene	년 원	-	
	Benzo[b+j]fluoranthene	hg/	-	
	Benzo(a)pyrene	ng/L	0.5	0.1
	Benz(a)anthracene	hg/L	-	
	enesenthnA	hg/L	-	10.0
	Acenatrings and principles of the second of	J/GH	-	

7822/Downstream	279832-4	Downstream	5/10/2021	₹	V		ľ		V	V	V	V	Ý	Ý	7	1	ľ	1#2	ŀ	5	1
7822/Downstream	280787-4	Downstream	19/10/2021	V	V		ľ	ļ.	V	7	V	V	V	V	h	1	t	0 100		, ,	7 4
MB01	ES1721890001	MB01	31/08/2017	ŀ		3	ļ.	1	Ŀ	Ŀ					į.	-				,	9
MB02	ES1721890002	MB02	1/09/2017		-		1			ŀ	ŀ			ŀ		,	,	,			1
MB02	ES1809234001	MB02	28/03/2018	Ų	1>		V	7	7	v	Ÿ	v	₹	V	100	+	40.5 V		40.5	1	1
7822/MB02	269664-5	MB02	20/05/2021	۲ <u>۰</u>	V	-	'		7	٧	٧	^	₹	<u>^</u>		V	,	1,#0		0	\$
7822/MB02	279832-12	MB02	5/10/2021	۲ ۲	V	7	ľ		2	₹	⊽	V	₹	V	V	V	١,	0 0		10	i rê
7822/MB02	280787-11	MB02	19/10/2021	۲	V	-	ľ		7	₹	₹	V	⊽	₹	V	V	,	- to		10	45
MB03	ES1720506001	MB03	15/08/2017							ı	ŀ	·	1					,		Ī	1
MB03	ES1809234002	MB03	28/03/2018	7	\> \	-	V	V	^	V	₹	v	₹	V	1/2	₹	<0.5		<0.5		
7822/MB03	269664-6	MB03	20/05/2021	۲ ۲	<u>^</u>	-			V	٧	₹	⊽	₹	7	100	₹		D#1		2	150
7822/MB03	279832-13	MB03	5/10/2021	٧,	 	-	1	1	7	₹	V	Ÿ	⊽	V	ī	V		# ₀		42	\$
7822/MB03	280787-12	MB03	19/10/2021	1>	<u>۱</u>	7	•	'	₹	₹	V	Ý	V	₹	100	V		***	154	\$ \$	15
7822/WW201	269664-7	MW201	20/05/2021	V	, ,	W	'	1	⊽	٧	V	V	⊽	₹	7	₹		15°C		<2>	S.
7822/MW201	279832-14	MW201	5/10/2021	ļ,	<	¥	•	·	⊽	v	₹	₹	⊽	V	7	₹		, to		22	, v
7822/MW201	280787-13	MW201	19/10/2021	ý	į.	NA.	•		√	₹	v	٧	₹	۲	V	V		1,00		<2>	\$
7822/MW301A	269664-3	MW301A	20/05/2021	ţ.	<u>~</u>	-	,	•	۷,	₹	7	₹	₹	₹	T	V		*0		25	\$
/822/MW301A	279832-10	MW301A	5/10/2021	V	, v	<u> </u>	'	•	<u>۷</u>	V	Ÿ	7	⊽	V	7	⊽		#0		<2>	\$
RZZ/MW301A	280/87-9	MW301A	19/10/2021	V	V .		•	•	v	₹	V	√	⊽	V	1	V		# ₀		<2>	\$
822/MW301B	269664-4	MW301B	20/05/2021	√	V	_]	•	1	₹	₹	⊽	٧	7	V	H	₹	,	10		22	<5
822/MW301B	279832-11	MW301B	5/10/2021	⊽	√		ı	•	₹	⊽	₹	Ÿ	Ÿ	٧	1	7		L#0		2	\$
822/MW301B	280787-10	MW301B	19/10/2021	۲.	V		'	٠	V	7	٧	V	7	V	F	7		0#1		<2>	5
822/MW302A	269664-1	MW302A	20/05/2021	V	⊽		1	1	V	₹	⊽	V	۲,	۷,	1.5	<u>~</u>		0#1	40	2	Ϋ́
8ZZ/MW3UZA	2/9832-8	MVV302A	5/10/2021	₹	⊽		'	•	V	V	√	₹	⊽	⊽	i e	V		0#1	è	27	ιδ
822/MW302A	280787-8	MW302A	19/10/2021	7	√		•	•	V	7	⊽	٧	V	√	Ţ	<u>-</u>		0#L	Ŧ	22	52
822/MW302B	269664-2	MW302B	20/05/2021	V	V		1		V	₹	₹	٧	v	v	Ü	V		1#0	7	<2>	ŝ
822/MW302B	279832-9	MW302B	5/10/2021	₹	V	8	•	٠	V	⊽	v	₹	₹	⊽	, v	V		1#0	4	27	\$
822/MW401	279832-7	MW401	5/10/2021	V	V	V	•	٠	V	V	V	⊽	₹	₹	V	V		1#0		2	\$
822/MW401	280787-7	MW401	19/10/2021	₹	ν.	0	1	٠	٧	v	Š	7	⊽	₹	V	v		L#0		2	\$
822/Pond 1	279832-1	Pond 1	5/10/2021	₹	y B	٧	•	1	v	V	₹	7	⊽	₹	V	₹		0#1	-	22	\$
/822/Pond 1	280787-1	Pond 1	19/10/2021	⊽	V	V	•	1	V	₹	7	۲۷	⊽	V	V	7		1#0	i	<2>	\$
7822/Pond 2	279832-2	Pond 2	5/10/2021	v	V	Ž.	1	٠	V	⊽	7	7	V	ر.	V	⊽		0,,,1	4	<2>	\$
7822/Pand 2	2-780/8/-2	Pond 2	19/10/2021	۲		V	*	1	V	7	V	√	V	V	V	₹		*0		<2>	S
DAAC/27	2/3832-5	SWO	5/10/2021	v		Š	Ī														

8 of 8

Appendix A Table 1 Water quality results

(HB)

xtended	B(a)P Total Potency Equivalent	hg/L	ιΩ	
PAHs - extended	Benzo(b+¦+t)ozneB	ηg/L	2	
T	Total 8 PAHs (as BaP TEQ)(zero LOR) - Lab Calc	hg/L	9.0	
	PAHs (Sum of total) - Lab calc	hg/L	-	
	sHA9 31 brabhaste to muS	hg/L		
	Pyrene	hg/L	-	
	Рһепалधारеле	1/g4	-	0.6
-	Indeno(1,2,3-c,d)pyrene	L µg/L	-	
-	enerouF7	L ug/L	-	
ard 16	Fluoranthene	-	-	-
PAHs - standard 16	Dibenz(a,h)апthrасепе Сhrуѕеле	hg/L µg/L		
AHs-	Benzo(g,h,i)perylene	1	-	i
-	Benzo(k)fluoranthene	1-1	-	
ŀ	Benzo[b+j]fluoranthene	_		ľ
	Benzo(a)pyrene	hg/L	0.5	2.00
	Benz(a)anthracene	J/bri	-	
	eneosidinA	Vbm	-	0 0
	Acenaphthylene	no/L	-	
				Print to Delay Anny desired the State William

T822/SW01 280787-5 SW01 19/10/2021 <1 ST ST ST ST ST ST ST S	Field ID	SampleCode	Location Code	Sampled_Date															ĺ			
279832-6 SW02 5/10/2021 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	7822/SW01	280787-5	SW01	19/10/2021	⊽	٧	1		•				V	٧	Ý	W	<u>۲</u>	1	, O		<2	\$
280787-6 SW02 19110/2021 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	7822/SW02	279832-6	0,	5/10/2021	Ÿ	۷	-	į		` ·	V	V	7	⊽	\ \	0	<u>۲</u>	ı	0,4	•	<2	\$
279832-3 Upstream 5/10/2021 <1 <24 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1<	7822/SW02	280787-6	S	19/10/2021	₹	V	-		ľ	٧	V	٧	<u>^</u>	٧	\ \	0	۲,	ı	0#1	٠	<2	<5
280787-3 Upstream 19/10/2021 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	7822/Upstream	279832-3	2	5/10/2021	V	٧	-		ľ	V	V	7	Δ	Ÿ	٧	Ū	٧,	٠	0#1		<2	\$
36 36 36 36 36 36 36 36	7822/Upstream		2	19/10/2021	7	V	V	,		V	Н	Н	^	\ 1	Ÿ	ě.	V	٠	0#		<2	\$
36 36 36 36 36 36 36 36 36 36 38 3 39 38 3	Statistical Summ	ý																				
	Number of Results				Н	H	-	H	H	-	-	-	-	-	36		38	2	怒	0	34	¥

38 38	36	H	95	36 2	36 2 2	36 2 2 36	36 36 36 36 36	36 36 36 36 36 36	36 36 36 36 36 36 36	36 36 36 36 36 36 36 36	36 36 36 36 36 36 36 36 36	36 36 36 36 36 36 36 36 36 2	36 36 36 36 36 36 36 36 36
8	+	95	200	2000	30 2 2	30 20 30	30 00 00 00 00 00 00 00 00 00 00 00 00 0						
0	+	0	0	0	0 0 0	0 0 0							
4 4	-	<0.5	<0.5 <1	<0.5 <1 <1	<0.5 <1 <1 <1 <1	<0.5 <1 <1 <1 <1 <1	<0.5 <1 <1 <1 <1 <1	< < > < < < < < < < < < < < < < < < <	<0.5 <1 <1 <1 <1 <1 <1	40.5 <1 <1 <1 <1 <1 <1 <1 <1	40.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<0.5 <1 <1 <1 <1 <1 <1 <1 <0.5	< 0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1
QN QN QN	2	QN QN		Q	GN GN GN GN	ON ON ON ON	ON ON ON ON ON	ON ON ON ON ON ON	ON ON ON ON ON ON ON	ON ON ON ON ON ON ON ON	ON ON ON ON ON ON ON ON	ON ON ON ON ON ON ON ON ON	ON ON ON ON ON ON ON ON ON ON ON
∇ ∇	⊽	₹ ₹	H	₹	<1 <1 <1 <1	\ \ \ \	4 4 4 4 4	4 4 4 4	4 4 4 4 4 4	4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <0.5	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <
ON ON ON	2	QN QN	F	2	QN QN	QN QN QN	ON ON ON ON ON	ON ON ON ON ON	ON ON ON ON ON ON ON	ON ON ON ON ON ON ON ON	ON ON ON ON ON ON ON ON ON	ON ON ON ON ON ON ON ON ON	ON ON ON ON ON ON ON ON ON ON
0.5 0.5 0.5	0.49	0.49	0.49	0.49	0.5 0.5	0.5 0.5 0.5	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0
0.5 0.5 0.5	0.5	0.5 0.5	0.5 0.5 0.5	9.0	0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
0 0 0	.058	0.058	0.058	0 0 0		0	0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0
0 36 0	ဗ္ဗ	36	H	0	0	0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	0 96 0 0 0 0 0 0 0	0 0 98 0 0 0 0 0 0 0	0 0 0 98 0 0 0 0 0 0 0
0	c		c	0	0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0

Env Stds Comments
#1.Measured as NH3-N at pH 8□
#2.Valuee taken from "updating nitrate toxicity effects on freshwater aquatic: #2.Valuee taken from "updating nitrate toxicity effects on freshwater aquatic: #3.(pH > 6.5, 0.8 ugL, for pH<6.5)□
#4.in absence of total As guideline, As (V) guideline has been adopted.□
#5.in absence of total Cr guideline, Cr (VI) guideline has been adopted.

Data Comments #1 NIL (+)VE

Appendix B

PHREEQC water quality inputs and cell optimisation

SOLUTION	1 Leachate	#ADE worst case leachate
temp	18	
рН	5	#worst case from low value of max concentration range pH 5-9 from NSW ENM Order 2014
pe	4	
redox	pe	
units	mg/l	
density	1	
Alkalinity	3	as Ca.5(CO3).5
S(6)	21	as SO4
CI	20	
Ca	0.5	
Mg	0.5	
Na	23	
K	0.5	
Cd	0.0004	
Cu	0.0004	
Ni	0.013	
Pb	0.008	
	0.01	
As		
Zn	0.484	
Hg	0.00005	
Cr	0.588	NUO
N(-3)	0.11	as NH3
N(+5)	2.35	
Р	0.01	
groundwate temp	er 18	# MW201 5/10/2021 where values were <lor #estimated="" adopted="" aquifer<="" at="" based="" locations="" lor="" mesaured="" monitoring="" on="" other="" previous="" td="" temperature="" the="" this="" values="" was="" within=""></lor>
рН	5.05	# average value from neighbouring Newnes site
ре	4	
redox	pe	
units	mg/l	
density	1	
Alkalinity		as Ca.5(CO3).5
S(6)	2	as SO4
Cl	5	
Ca	0.6	
Mg	0.5	
Na	6.1	
K	0.5	
Cd	0.0001	
Cu	0.0001	
Ni	0.005	
Pb	0.003	
	0.001	
As	0.065	
Zn		
Hg	0.00005	
Cr N/ 2)	0.001	on AILI2
N(-3)	0.013	
N(+5)	0.53	
Р	0.005	

Phreeqc Cell Optimisation

Numerical dispersion in PHREEQC 1D transport models can occur when a model grid is too coarse. As such optimisation of the model grid was undertaken in a stepwise fashion as described in Table A1. An optimal cell length of 10 m was chosen for the transport model.

Phreeqc 1D transport model cell optimisation Table A1

							,								
			Lengths	Cells			Ave. linear							print and	
		Flow	(of cell)	(of cell) (number			flow velocity Time	Time	Time step		Boundary		correct	bruch	Output Zn
cenario	Model	length (m) (m)	(m)		Lengths	Years	(m/y)	step (y)	(s)	Shifts	conditions	Dispersivity disp	disp	cells	(mg/L)
	Cell Opr 4		5	06	90*5			0.16	4897959	3219		5		06	0.1881
	Cell Ont 3		10	45	45-10			0.31	9795918	1610	400400000	10	9	917	0.1881
	Cell Out. 2	450	20	0	9*50	nne	37.7	1.55	48979592	322	CONSTANTACONSTANT	90	200	6	0.1881
	Cell Ont		06	5	2*90			2.80	88163265	179		06		9	0.1886

Model outputs

-		mg/L	0 0.0051			P mg/L	0.0051			M - mg/L	0.0050
The same	1	mg/l	0000	+		mg/l	00000	1	-	uou.	0000
		10 M	906	+	-	N I	5145 0	+	-	L No.	900
-		일	0.5306			NO3 n	50.6			NO3 n	0.5
-		Ha ma	0.00005			Hg mg	604 8.8561 0.00005 0.4			Ho mg	8.9135 0.00005 0.5006 0.0000
-		103mg/l	8,7887 0.	1		l/gmg/l	8.8561			10.3mg/l	8.91%
0.0		mity CaC				inity CaC				nity Cat	
	- 4	-				A effeat	wir .				
		O mo	5.312			C mg	5.160			S mg	5.028
		Zn mon	0.0737 5.3121			Zn mg/l	0.0695	THE PERSON NAMED IN		Zn mor	0.0658
	1	6) mg/l	2.3952	1		6) mg/I	2 2030			6) mg/l	2.0357
	1	S Ingm	0.0012			S I/ou	1.0011			S I/du	00 00
	-	In India	8.4998 0.5000 6.4517 0.0050 0.0012 2.3952			Mg/I P	3 0.0050 0.0011 2.2030 0.0695 5.1604		-	III Jou	0000
	-	9/1 1/6	17 0.0	-		9/1 1/6	0.0			D/I	20 00
		E E	8.45			Ma m	5,2808 0.			Na G	6.13
		Ma mg/	0.5000			Mg mg/	0.4997 0 5000			Mg mg/	0.5000
-		I/Gm X	8,4996			K mg/l	0.4997			K mg/l	0.4998
6		Cu mg/l	0.0394			Cu mg/l	0.0001 0.0073 0.0397 (Co mail	0,0001 0,0021 0,0399 0,4598 0,5000 6,1320 0,0050 0,0010 2,0357 0,0658 5,0284
***		Cr mg/l	0.0132			Cr mg/l	0,0073			Cr mg/l	0.0021
***		Cd mg/l	0.0001 0.0132 0.0394			Cd mg/l	0.0001			Cd mg/l	0.0001
ì		Ca mort	0.5979			Ce mg/l	0.5969			Ca mail	0.5998
		As mon				As mor	0.00.0			As mail Ca mail	0.0010
		rm.	000046			OW	00045			tu.	0.00044
		Gmai	30			temp	100			ten	-
		Ha	6.04529			Ha	5 04835			Hd	5.04718
1		cept	L			gets	1610		output	ster	=
	The same of the sa	time	0			time	1.58E+10		Discharge upgradient + catchmet groundwater output	lime	0
1		elist x	8		el output	dist x			hmnet git	dist ×	66-
	ouput	ujus	-		Vrs last c.	ujos			ent + catc	aoin	
	0 mixing	atata	react		ransport after 599 yrs last cell outpu	state	transo		le upgradi	state	react
	Solution 9	Aim	873		ranspo	wis	-		Dischan		m

Appendix C HELP Modelling

Memorandum

19 November 2021

Introduction 1.

This memorandum outlines the methodology, assumptions and results of the infiltration and evapotranspiration modelling performed using the US EPA's Hydraulic Evaluation of Landfill Performance (HELP) model and in accordance with the NSW EPA Environmental Guidelines: Solid Waste Landfills, 2nd Edition (NSW EPA, April 2016). These include guidance on soil materials and whilst applicable to landfills are also relevant to soil emplacement facilities.

The HELP model was used generally in the Revised Water Resources Assessment for the proposed works at Bell Quarry:

To estimate evapotranspiration loss off the bare soil of the contact water catchment. This modelling was used to inform the water balance assessment (Section 3).

2. Reliance

GHD relied upon the following information to undertake the infiltration modelling:

- ADE Consulting Group (2017) Soil and water sampling Bell Quarry Rehabilitation Project, Blue Mountains NSW, dated 6th December 2017
- Bureau of Meteorology (BOM) (2021), climate data for Lithgow (Birdwood St) (BOM station number 063224
- NSW EPA (2016), Environmental Guidelines: Solid Waste Landfills, 2nd Edition, dated April 2016
- SILO weather data (SILO | LongPaddock | Queensland Government) from point data source located at a latitude of -33.50 and a longitude of 150.25
- US EPA (1994) The Hydrologic Evaluation of Landfill Performance (HELP) Model, dated 1994

Contact water catchment evaporation 3.

As outlined in the revised Water Resources Assessment the HELP model was utilised to estimate evaporation off the bare soil of the contact water catchment for the 'best-estimate' water balance assessment.

3.1 General

Two key inputs were required for the infiltration modelling:

- Climate data (specifically rainfall, temperature, and evaporation data)
- Cover profile (including material type and depth)

3.2 Climate data

Climate data was obtained as described in Section 2.

The precipitation data obtained was modified to incorporate irrigation into the model. Several simulations of HELP were run each with a different quantum of irrigation (determined as the proportion of daily evaporation deficit being irrigated).

Precipitation data was created and modelled as follows:

- Original precipitation data
- Original precipitation data + 30% of the deficit
- Original precipitation data + 40% of the deficit

As outlined in the Revised Water Resources Assessment for an application greater than 40 percent of the deficit the evaporative loss of the soil was not significantly greater. That is, the evaporative capacity of the atmosphere was governing rather than the applied irrigation rate. As such the 40% scenario was adopted.

3.3 Modelling assumptions

The HELP model considered the following key assumptions:

- The infiltration was considered through the cover arrangements as outlined in Table 1.
- HELP standard values for porosity, field capacity, wilting point and hydraulic conductivity were utilised for the selected material types based on the results of the ADE (2017) soil and water sampling, engineering judgement and previous experience.

Table 1 Capping arrangements

Arrangements	Profile (top to bottom)
0.3 m evaporative zone depth Bare ground conditions Graded for 5% and a 50 m slope length	500 mm thick sandy clay layer (HELP soil profile #13) 5000 mm thick sandy clay fill (HELP soil profile #13)

3.4 Results

The results of HELP modelling resulted in a time series of evapotranspiration in response to various irrigation scenarios. This output formed a time series input into the water balance, documented in the Revised Water Resources Assessment.

The HELP model outputs can be viewed in Appendix A.

4. Summary

The HELP model was used in the Revised Water Resources Assessment for the proposed works at Bell Quarry:

 To estimate evaporation loss off the bare soil of the contact water catchment, to inform the water balance assessment

The contact water catchment evaporation modelling resulted in a time series of evapotranspiration outputs corresponding to various irrigation scenarios. This output formed a time series input into the water balance, documented in the Revised Water Resources Assessment.

Appendix A

HELP modelling outputs

Rainfall scenario with irrigation - 30% rain

Assumptions:
Bare ground
Sandy clay
No initial moisture content set
100% runoff available

Voor I	Aonth	Data farm		C	- ination
	/lonth			Evapotran	spiration
	anuary	1/01/1		79.87	
	ebruary	1/02/19		68.38	
1921 M		1/03/19		65.49	
1921 A	•	1/04/19		44.56	
1921 N	•	1/05/19			
1921 J		1/06/19			
1921 J	•	1/07/19		39.74	
1921 A	_	1/08/19		40.31	
	eptembe	1/09/19	921	49.93	
1921 O		1/10/19	921	68.18	
1921 N	lovember	1/11/19	921	79.75	
1921 D	ecember	1/12/19	921	88.14	
1922 Ja	anuary	1/01/19	922	78.07	
1922 F	ebruary	1/02/19	922	68.54	
1922 M	larch	1/03/19	922	66.39	
1922 A	pril	1/04/19	922	34.95	
1922 M	lay	1/05/19	922	37.59	
1922 Ju	une	1/06/19	922	31.63	
1922 Ju	uly	1/07/19	322	37.8	
1922 A	•	1/08/19	922	41.01	
	eptembe	1/09/19	922	48.23	
1922 O	•	1/10/19		66.54	
	ovember	1/11/19		66.39	
	ecember			82.95	
1923 Ja		1/01/19		71.61	
	ebruary	1/02/19		53.5	
1923 M	•	1/03/19		60.43	
1923 A		1/04/19		45.33	
1923 M	•	1/05/19		39.13	
1923 Ju	•	1/06/19		32.65	
1923 Ju		1/07/19		38.28	
1923 Au		1/07/18		41.46	
	eptembe	1/09/19		47.78	
1923 O	•	1/10/19			
	ovember			67.73	
		1/11/19		65.22	
	ecember	1/12/19		65.73	
1924 Ja	•	1/01/19		72.43	
1924 Fe	•	1/02/19		69.34	
1924 Ma		1/03/19		66.15	
1924 Ap		1/04/19		42.01	
1924 Ma	•	1/05/19		36.82	
1924 Ju		1/06/19		31.03	
1924 Ju	•	1/07/19		38.4	
1924 Au	-	1/08/19		42.86	
	eptembe	1/09/19		49.33	
1924 O		1/10/19		70.8	
	ovember	1/11/19		75.26	
	ecember	1/12/19		84.17	
1925 Ja	nuary	1/01/19	25	72.16	

1925 February	1/02/1925	68.06
1925 March	1/03/1925	65.34
1925 April	1/04/1925	44.88
1925 May	1/05/1925	38.14
1925 June	1/06/1925	32.56
1925 July	1/07/1925	36.62
_	1/08/1925	40.95
1925 August	1/09/1925	45.5
1925 Septembe		
1925 October	1/10/1925	62.03
1925 November	1/11/1925	76.86
1925 December	1/12/1925	82.61
1926 January	1/01/1926	79.04
1926 February	1/02/1926	61.82
1926 March	1/03/1926	53.02
1926 April	1/04/1926	44.6
1926 May	1/05/1926	36.35
1926 June	1/06/1926	32.19
1926 July	1/07/1926	38.84
1926 August	1/08/1926	42.84
1926 Septembe	1/09/1926	48.47
1926 October	1/10/1926	65.98
1926 November	1/11/1926	53.39
1926 December	1/12/1926	82.31
1927 January	1/01/1927	80.14
1927 February	1/02/1927	67.06
1927 March	1/03/1927	59.28
1927 April	1/04/1927	43.49
1927 May	1/05/1927	35.88
1927 June	1/06/1927	29.74
1927 July	1/07/1927	19.13
1927 August	1/08/1927	23.71
1927 August 1927 Septembe	1/09/1927	38.55
1927 October	1/10/1927	72.68
1927 November	1/11/1927	78.03
1927 November	1/12/1927	87.02
1928 January	1/01/1928	78
1928 February	1/01/1928	71.31
•		
1928 March	1/03/1928 1/04/1928	67.28
1928 April		45.21
1928 May	1/05/1928	35.83
1928 June	1/06/1928	31.41
1928 July	1/07/1928	38.51
1928 August	1/08/1928	43.96
1928 Septembe	1/09/1928	38.95
1928 October	1/10/1928	67.2
1928 November	1/11/1928	66.51
1928 December	1/12/1928	66.56
1929 January	1/01/1929	61.51
1929 February	1/02/1929	65.36
1929 March	1/03/1929	66.78
1929 April	1/04/1929	43.17
1929 May	1/05/1929	36.62
1929 June	1/06/1929	30.65
1929 July	1/07/1929	35.24
1929 August	1/08/1929	41.45
1929 Septembe	1/09/1929	47.23
1929 October	1/10/1929	70.19
1929 November	1/11/1929	75.49

1929 December	1/12/1929	88.41	
1930 January	1/01/1930	79.58	
1930 February	1/02/1930	70.19	
1930 March	1/03/1930	66.49	
1930 April	1/04/1930	43.29	
1930 May	1/05/1930	37.44	
1930 June	1/06/1930	32.91	
1930 July	1/07/1930	39.74	
1930 August	1/08/1930	42.46	
1930 Septembe	1/09/1930	47.38	
1930 October	1/10/1930	69.02	
1930 November	1/11/1930	77.53	
1930 December	1/12/1930	86.58	
1931 January	1/01/1931	79.33	
1931 February	1/02/1931	68.31	
1931 March	1/03/1931	66.64	
1931 April	1/04/1931	43.5	
1931 May	1/05/1931	38.18	
1931 June	1/06/1931	31.98	
1931 July	1/07/1931	38	
1931 August 1931 Septembe	1/08/1931 1/09/1931	37.62 44.99	
1931 Septembe	1/10/1931	44.99 64.01	
1931 November	1/10/1931	75.95	
1931 November	1/12/1931	86.22	
1932 January	1/01/1932	79.6	
1932 February	1/02/1932	70	
1932 March	1/03/1932	66.96	
1932 April	1/04/1932	43.75	
1932 May	1/05/1932	37.72	
1932 June	1/06/1932	30.6	
1932 July	1/07/1932	37.29	
1932 August	1/08/1932	42.97	
1932 Septembe	1/09/1932	48.6	
1932 October	1/10/1932	68.92	
1932 November	1/11/1932	78.13	
1932 December	1/12/1932	82.27	
1933 January	1/01/1933	79.76	
1933 February	1/02/1933	63.83	
1933 March	1/03/1933	46.95	
1933 April	1/04/1933	43.87	
1933 May	1/05/1933	37.37	
1933 June	1/06/1933 1/07/1933	31.84 39.42	
1933 July 1933 August	1/07/1933	39.42 39.75	
1933 Septembe	1/09/1933	47.81	
1933 October	1/10/1933	72.54	
1933 November	1/11/1933	75.19	
1933 December	1/12/1933	86.99	
1934 January	1/01/1934	80.01	
1934 February	1/02/1934	66.8	
1934 March	1/03/1934	67.91	
1934 April	1/04/1934	43.97	
1934 May	1/05/1934	37.84	
1934 June	1/06/1934	30.66	
1934 July	1/07/1934	39.02	
1934 August	1/08/1934	42.56	
1934 Septembe	1/09/1934	49.31	

1934 October	1/10/1934	68.4	
1934 November	1/11/1934	75.91	
1934 December	1/12/1934	85.54	
1935 January	1/01/1935	78.7	
1935 February	1/02/1935	66.86	
1935 March	1/03/1935	64.99	
1935 April	1/04/1935	43.34	
1935 May	1/05/1935	36.06	
1935 June	1/06/1935	26.09	
1935 July	1/07/1935	37.82	
1935 August	1/08/1935	42.35	
1935 Septembe	1/09/1935	47.35	
1935 October	1/10/1935	71.81	
1935 November	1/11/1935	72.37	
1935 December	1/12/1935	87.81	
1936 January	1/01/1936	79.37	
1936 February	1/02/1936	69.18	
1936 March	1/03/1936	65.3	
1936 April	1/04/1936	42.48	
1936 May	1/05/1936	37.45	
1936 June	1/06/1936	30.03	
1936 July	1/07/1936	38.99	
1936 August	1/08/1936	43.75	
1936 Septembe	1/09/1936	46.95	
1936 October	1/10/1936	62.21	
1936 November	1/11/1936	45.27	
1936 December	1/12/1936	86.59	
1937 January	1/01/1937	79.76	
1937 February	1/02/1937	67.17	
1937 March	1/03/1937	65.66	
1937 April	1/04/1937	42.9	
1937 May	1/05/1937	36.62	
1937 June	1/06/1937	30.88	
1937 July	1/07/1937	36.92	
1937 August	1/08/1937	43.31	
1937 Septembe	1/09/1937	49.35	
1937 October	1/10/1937	72.58	
		77.92	
1937 November	1/11/1937		
1937 December	1/12/1937	92.49	
1938 January	1/01/1938	80.86	
1938 February	1/02/1938	67.3	
1938 March	1/03/1938	63	
1938 April	1/04/1938	40.44	
1938 May	1/05/1938	39.16	
1938 June	1/06/1938	31.49	
1938 July	1/07/1938	37.29	
1938 August	1/08/1938	41.62	
1938 Septembe	1/09/1938	48.38	
1938 October	1/10/1938	69.47	
1938 November	1/11/1938	80.76	
1938 December	1/12/1938	77.07	
1939 January	1/01/1939	79.92	
1939 February	1/02/1939	72.37	
1939 March	1/03/1939	67.35	
1939 April	1/04/1939	45.18°	
1939 May	1/05/1939	39.04	
1939 June	1/06/1939	32.02	
1939 July	1/07/1939	36.22	

.

	1939 August	1/08/1939	42.16	
	1939 Septembe	1/09/1939	47.07	
	1939 October	1/10/1939	68.95	
	1939 November	1/11/1939	76.11	
	1939 December	1/12/1939	70.57	
	1940 January	1/01/1940	78.52	
	1940 February	1/02/1940	55.32	
	1940 March	1/03/1940	43.41	
	1940 April	1/04/1940	42.9	
	1940 May	1/05/1940	36.03	
	1940 June	1/06/1940	31.2	
	1940 July	1/07/1940	30.6	
	1940 August	1/08/1940	27.91	
	1940 Septembe		32.25	
	1940 October	1/10/1940	67.16	
	1940 November	1/11/1940	72.59	
	1940 December	1/12/1940	91.58	
	1941 January	1/01/1941	77.51	
	1941 February	1/02/1941	65.87	
	1941 March	1/03/1941	64.62	
	1941 April	1/04/1941	44.96	
	1941 May	1/05/1941	36.81	
	1941 June	1/06/1941	31	
	1941 July	1/07/1941	38.23	
	1941 August	1/08/1941	30.83	
	1941 Septembe		48.64	
	1941 October	1/10/1941	69.24	
	1941 November		79.6	
	1941 December	1/12/1941	59.28	
	1942 January	1/01/1942	59.58	
	1942 February	1/02/1942	66.1	
	1942 March	1/03/1942 1/04/1942	67.33	
	1942 April 1942 May	1/04/1942	44.89	
	1942 May 1942 June	1/05/1942	36.78 32.59	
	1942 July	1/00/1942	38.14	
	1942 July 1942 August	1/08/1942	42.81	
	1942 Septembe	1/09/1942	48.13	
	1942 October	1/10/1942	69.19	
)	1942 November	1/11/1942	76.23	
	1942 December	1/12/1942	88.56	
	1943 January	1/01/1943	78.57	
	1943 February	1/02/1943	68.71	
	1943 March	1/03/1943	58.57	
	1943 April	1/04/1943	42.94	
	1943 May	1/05/1943	36.99	
	1943 June	1/06/1943	29.99	
	1943 July	1/07/1943	35.98	
	1943 August	1/08/1943	39.22	
	1943 Septembe	1/09/1943	46.38	
	1943 October	1/10/1943	69.43	
	1943 November	1/11/1943	72.82	
	1943 December	1/12/1943	85.7	
	1944 January	1/01/1944	83.07	
	1944 February	1/02/1944	70.39	
	1944 March	1/03/1944	59.47	
	1944 April	1/04/1944	41.65	
	1944 May	1/05/1944	36.26	
	-			

1944 June	1/06/1944	30.17	
1944 July	1/07/1944	37.82	
1944 August	1/08/1944	41.74	
1944 Septembe		48.68	
1944 October	1/10/1944	72.02	
1944 November		53.52	
1944 December		67.16	
1945 January	1/01/1945	70.52	
1945 February	1/02/1945	66.73	
1945 March	1/03/1945	65.04	
1945 April	1/04/1945	43.84	
1945 May	1/05/1945	36.45	
1945 June	1/06/1945	33.16	
1945 July	1/07/1945	36.96	
1945 August		42.69	
1945 Septembe	1/09/1945	47.19	
1945 October	1/10/1945	44.5	
1945 November	1/11/1945	63.89	
1945 December	1/12/1945	89.04	
1946 January	1/01/1946	79.87	
1946 February	1/02/1946	70.41	
1946 March	1/03/1946	64.17	
1946 April	1/04/1946	42.89	
1946 May	1/05/1946	36.74	
1946 June	1/06/1946	30.36	
1946 July	1/07/1946	39.24	
1946 August	1/08/1946	28.47	
1946 Septembe		35.57	
1946 October	1/10/1946	58.6	
		79.99	
1946 November			
1946 December		90.59	
1947 January	1/01/1947	73.98	
1947 February	1/02/1947	66.61	
1947 March	1/03/1947	67.14	
1947 April	1/04/1947	44.04	
1947 May	1/05/1947	39.18	
1947 June	1/06/1947	31.78	
1947 July	1/07/1947	37.72	
1947 August	1/08/1947	41.23	
1947 Septembe	1/09/1947	48.12	
1947 October	1/10/1947	69.34	
1947 November	1/11/1947	72.98	
1947 December	1/12/1947	87.04	
1948 January	1/01/1948	74.9	
1948 February	1/02/1948	71.29	
1948 March	1/03/1948	63.31	
1948 April	1/04/1948	42.09	
1948 May	1/05/1948	35.97	
1948 June	1/06/1948	31.87	
1948 July	1/07/1948	35.94	
1948 August	1/08/1948	23.04	
1948 Septembe	1/09/1948	48.3	
1948 October	1/10/1948	70.55	
1948 November	1/11/1948	73.16	
1948 December	1/12/1948	69.24	
1949 January	1/01/1949	76.78	
-	1/01/1949	67.22	
1949 February			
1949 March	1/03/1949	66.64	

1949 April	1/04/1949	42.12
1949 May	1/05/1949	36.75
1949 June	1/06/1949	30.06
1949 July	1/07/1949	37.62
1949 August	1/08/1949	41.64
1949 Septembe	1/09/1949	48.18
1949 October	1/10/1949	74.07
1949 November	1/11/1949	66.53
1949 December	1/12/1949	87.98
1950 January	1/01/1950	79.65
1950 February	1/02/1950	66.55
1950 March	1/03/1950	67.23
1950 April	1/04/1950	44.14
1950 May	1/05/1950	37.46
1950 June	1/06/1950	32.96
1950 July	1/07/1950	40.35
1950 August	1/08/1950	41.71
1950 Septembe	1/09/1950	50.28
1950 October	1/10/1950	70.27
1950 November	1/11/1950	74.31
1950 December	1/12/1950	83.37
1951 January	1/01/1951	77.85
1951 February	1/02/1951	68.45
1951 March	1/03/1951	68.96
1951 April	1/04/1951	41.98
1951 May	1/05/1951	34.74
1951 June	1/06/1951	33.1
1951 July	1/07/1951	37.41
1951 August	1/08/1951	40.18
1951 Septembe	1/09/1951	50.19
1951 October	1/10/1951	69.09
1951 November	1/11/1951	59.37
1951 December	1/12/1951	77.76
1952 January	1/01/1952	77.36
1952 February	1/02/1952	55.1
1952 March	1/03/1952	66.7
1952 April	1/04/1952	43.76
1952 May	1/05/1952	36.37
1952 June	1/06/1952	32.08
	1/07/1952	37.97
1952 August	1/08/1952	42.81
1952 Septembe	1/09/1952	48.03
1952 October 1952 November	1/10/1952	70.53
	1/11/1952 1/12/1952	73.67
1952 December		79.25 77.78
1953 January	1/01/1953 1/02/1953	77.76 65
1953 February 1953 March	1/02/1953	66.85
1953 March 1953 April	1/03/1953	46.01
1953 April 1953 May	1/05/1953	37.35
1953 May 1953 June	1/06/1953	30.75
1953 July	1/00/1953	28.25
1953 July 1953 August	1/07/1953	27.41
1953 August 1953 Septembe	1/09/1953	45.33
1953 October	1/10/1953	69.06
1953 October 1953 November	1/11/1953	75.98
1953 December	1/12/1953	86.43
1954 January	1/01/1954	76.86

1954 February	1/02/1954	66.63
1954 March	1/03/1954	64.96
1954 April	1/04/1954	39.7
1954 May	1/05/1954	36.49
1954 June	1/06/1954	31.28
1954 July	1/07/1954	38.08
1954 August	1/08/1954	42.83
•	1/09/1954	46.92
1954 Septembe 1954 October		71.11
	1/10/1954	77.99
1954 November	1/11/1954	
1954 December	1/12/1954	85.2
1955 January	1/01/1955	67.22
1955 February	1/02/1955	67.27
1955 March	1/03/1955	68.73
1955 April	1/04/1955	45.63
1955 Ma y	1/05/1955	36.85
1955 June	1/06/1955	31.55
1955 July	1/07/1955	36.71
1955 August	1/08/1955	42.43
1955 Septembe	1/09/1955	48.3
1955 October	1/10/1955	70.92
1955 November	1/11/1955	74.63
1955 December	1/12/1955	84.16
1956 January	1/01/1956	78.16
1956 February	1/02/1956	69.2
1956 March	1/03/1956	67.71
1956 April	1/04/1956	43.93
1956 May	1/05/1956	37.15
1956 June	1/06/1956	31.21
1956 July	1/07/1956	37.22
1956 August	1/08/1956	40.37
1956 Septembe	1/09/1956	45.85
1956 October	1/10/1956	67.56
1956 November	1/11/1956	63.08
1956 December	1/12/1956	85.96
1957 January	1/01/1957	79.42
1957 February	1/02/1957	67.02
1957 March	1/03/1957	66.41
1957 April	1/04/1957	45.12
1957 May	1/05/1957	35.84
1957 June	1/06/1957	26.21
1957 July	1/07/1957	35.99
1957 August	1/08/1957	42.14
1957 Septembe	1/09/1957	48.38
1957 October	1/10/1957	46.22
1957 November	1/11/1957	79.94
1957 December	1/12/1957	77.2
1958 January	1/01/1958	81.5
1958 February	1/02/1958	69.34
1958 March	1/03/1958	68.24
1958 April	1/04/1958	45.59
1958 May	1/05/1958	39.11
1958 June	1/06/1958	32.14
1958 July	1/07/1958	37.74
1958 August	1/08/1958	43.17
1958 Septembe	1/09/1958	46.31
1958 October	1/10/1958	69.73
1958 November	1/11/1958	72.03

1958 December	1/12/1958	86.61
1959 January	1/01/1959	81.25
1959 February	1/02/1959	69.9
1959 March	1/03/1959	67.7
1959 April	1/04/1959	44.75
1959 April 1959 May	1/04/1959	33.48
_		
1959 June	1/06/1959	27.04
1959 July	1/07/1959	38.33
1959 August	1/08/1959	42.26
1959 Septembe	1/09/1959	43.13
1959 October	1/10/1959	67.42
1959 November	1/11/1959	82.79
1959 December	1/12/1959	87.36
1960 January	1/01/1960	85.42
1960 February	1/02/1960	70.33
1960 March	1/03/1960	66.24
1960 April	1/04/1960	43.6
1960 May	1/05/1960	34.93
1960 June	1/06/1960	30.07
1960 July	1/07/1960	38.52
1960 August	1/08/1960	40.97
1960 Septembe	1/09/1960	47.6
1960 October	1/10/1960	70.43
1960 November	1/11/1960	73.79
1960 December	1/12/1960	86.36
1961 January	1/01/1961	79.93
1961 February	1/02/1961	68.23
1961 March	1/03/1961	66.55
	1/03/1961	
1961 April		44.42
1961 May	1/05/1961	35.99
1961 June	1/06/1961	31.45
1961 July	1/07/1961	37.3
1961 August	1/08/1961	40.84
1961 Septembe	1/09/1961	47.75
1961 October	1/10/1961	74.51
1961 November	1/11/1961	78.32
1961 December	1/12/1961	88.7
1962 January	1/01/1962	77.84
1962 February	1/02/1962	68.11
1962 March	1/03/1962	66.21
1962 April	1/04/1962	43.35
1962 May	1/05/1962	35.57
1962 June	1/06/1962	32.91
1962 July	1/07/1962	33.43
1962 August	1/08/1962	41.36
1962 Septembe	1/09/1962	47.61
1962 October	1/10/1962	67.62
1962 November	1/11/1962	76.06
1962 December	1/12/1962	79.14
1963 January	1/01/1963	78.93
1963 February	1/02/1963	68.04
1963 March	1/03/1963	65.55
1963 April	1/04/1963	44.09
1963 May	1/05/1963	38.37
1963 June	1/06/1963	31.45
1963 July	1/07/1963	36.74
1963 July 1963 August	1/07/1963	41.59
1963 August 1963 Septembe	1/09/1963	47.81
1909 Sehtering	1700/1800	77.01

1963 October 1963 November 1963 December 1964 January 1964 February 1964 March 1964 April 1964 May 1964 July 1964 August 1964 October 1964 October 1964 December 1965 January 1965 February 1965 March 1965 April 1965 May 1965 July 1965 Septembe 1965 October 1965 November 1965 Septembe 1965 October 1965 November 1965 December 1965 December 1966 January 1966 February 1966 March 1966 April 1966 May 1966 June 1966 July 1966 August 1966 August 1966 August 1966 Septembe	1/10/1963 1/11/1963 1/12/1963 1/01/1964 1/02/1964 1/03/1964 1/05/1964 1/05/1964 1/06/1964 1/08/1964 1/09/1964 1/10/1964 1/10/1965 1/01/1965 1/02/1965 1/03/1965 1/05/1965 1/05/1965 1/05/1965 1/05/1965 1/05/1965 1/05/1965 1/05/1965 1/05/1965 1/05/1965 1/05/1965 1/05/1966 1/05/1966 1/05/1966 1/05/1966 1/05/1966 1/05/1966 1/05/1966 1/05/1966 1/05/1966 1/05/1966 1/05/1966 1/05/1966 1/05/1966 1/05/1966 1/05/1966 1/05/1966 1/05/1966 1/05/1966 1/05/1966	71.13 73.75 88.3 80.66 69.13 66.06 44.05 36.12 31.6 37.64 40.5 48.39 66.03 77.96 81.96 58.55 50.37 53.86 25.12 36.6 25.12 36.26 42.35 50.99 69.53 75.04 88.28 77.01 67.19 65.58 43.82 35.42 31.19 33.6 32.98 46.54
•		
	1/06/1965	
•		
•		
•	-	
_		
	1/06/1966	31.19
_		
1966 Septembe 1966 October	1/09/1966	46.54 67.81
1966 November	1/10/1966	75.47
1966 December	1/12/1966	85.57
1967 January	1/01/1967	79.82
1967 February	1/02/1967	66.71
1967 March	1/03/1967	62.15 43.7
1967 April 1967 May	1/04/1967 1/05/1967	36.47
1967 June	1/06/1967	33.16
1967 July	1/07/1967	37.07
1967 August	1/08/1967	39.82
1967 Septembe	1/09/1967	46.66
1967 October	1/10/1967 1/11/1967	70.92 71.14
1967 November 1967 December	1/11/1967	65.06
1968 January	1/01/1968	78.44
1968 February	1/02/1968	69.25
1968 March	1/03/1968	63.27
1968 April	1/04/1968	45.06
1968 May	1/05/1968	35.08 29.92
1968 June 1968 July	1/06/1968 1/07/1968	29.92 31.05
1000 July	1/01/1000	31.00

1968 August	1/08/1968	34.39	
1968 Septembe	1/09/1968	46.28	
1968 October	1/10/1968	68.76	
1968 November	1/11/1968	59.25	
1968 December	1/12/1968	79.63	
1969 January	1/01/1969	73.61	
1969 February	1/02/1969	63.51	
1969 March	1/03/1969	66.83	
1969 April	1/04/1969	44.02	
1969 May	1/05/1969	36.42	
1969 June	1/06/1969	31.13	
1969 July	1/07/1969	38.49	
1969 August	1/08/1969	43.63	
1969 Septembe 1969 October	1/09/1969	44.37	
1969 November	1/10/1969 1/11/1969	68.59 74.08	
1969 November	1/12/1969	87.19	
1970 January	1/01/1970	80.79	
1970 February	1/02/1970	74.04	
1970 March	1/03/1970	66.14	
1970 April	1/04/1970	45.12	
1970 May	1/05/1970	35.11	
1970 June	1/06/1970	31.99	
1970 July	1/07/1970	31.09	
1970 August	1/08/1970	38.59	
1970 Septembe	1/09/1970	44.14	
1970 October	1/10/1970	73.43	
1970 November	1/11/1970	73.01	
1970 December	1/12/1970	88.59	
1971 January	1/01/1971	80.53	
1971 February	1/02/1971	68.02	
1971 March	1/03/1971	70.24	
1971 April	1/04/1971	45.46	
1971 May 1971 June	1/05/1971 1/06/1971	37.02 31.13	
1971 July	1/00/1971	34.4	
1971 August	1/08/1971	41.96	
1971 Septembe	1/09/1971	49.77	
1971 October	1/10/1971	76.48	
1971 November	1/11/1971	74.13	
1971 December	1/12/1971	84.12	
1972 January	1/01/1972	73.94	
1972 February	1/02/1972	69.27	
1972 March	1/03/1972	66.22	
1972 April	1/04/1972	43.83	
1972 May	1/05/1972	37.06	
1972 June	1/06/1972	31.5	
1972 July	1/07/1972	37.78	
1972 August	1/08/1972	40.32	
1972 Septembe	1/09/1972	53.98	
1972 October	1/10/1972	70.33	
1972 November	1/11/1972	77.69	
1972 December	1/12/1972	100.82	
1973 January	1/01/1973	85.81 61.08	
1973 February 1973 March	1/02/1973 1/03/1973	61.98 68.15	
1973 March	1/03/19/3	44.92	
1973 April 1973 May	1/05/1973	38.17	

1973 June	1/06/1973	30.89
1973 July	1/07/1973	39.74
1973 August	1/08/1973	41.26
1973 Septembe	1/09/1973	48.17
1973 October	1/10/1973	66.96
1973 November	1/11/1973	71.18
1973 December	1/12/1973	82.9
1974 January	1/01/1974	72.15
1974 February	1/02/1974	60.51
1974 March	1/03/1974	63.84
1974 April	1/04/1974	42.47
1974 May	1/05/1974	36.9
1974 June	1/06/1974	31.11
1974 July	1/07/1974	37.41
1974 August	1/08/1974	39.81
1974 Septembe	1/09/1974	43.79
1974 October	1/10/1974	64.91
1974 November	1/11/1974	70.71
1974 December	1/12/1974	79.06
1975 January	1/01/1975	78.97
1975 February	1/02/1975	66.69
1975 March	1/03/1975	62.85
1975 April	1/04/1975	41.01
1975 May	1/05/1975	37.2
1975 June	1/06/1975	30.78
1975 July	1/07/1975	39.16
1975 August	1/08/1975	41.02
1975 Septembe	1/09/1975	46.86
1975 October	1/10/1975	64.43
1975 November	1/11/1975	79.77
1975 December	1/12/1975	73.25
1976 January	1/01/1976	73.1
1976 February	1/02/1976	65.14
1976 March	1/03/1976	63.54
1976 April	1/04/1976	41.93
1976 May	1/05/1976	36.57
1976 June	1/06/1976	23.16
1976 July	1/07/1976	38.46
1976 August	1/08/1976	40.99
1976 Septembe 1976 October 1976 November 1976 December	1/09/1976 1/10/1976 1/11/1976 1/12/1976	44.01 61.03 74.36 99.07 85.94
1977 January 1977 February 1977 March 1977 April 1977 May	1/01/1977 1/02/1977 1/03/1977 1/04/1977 1/05/1977	71.02 66.34 45.38 36.64
1977 June	1/06/1977	30.76
1977 July	1/07/1977	36.47
1977 August	1/08/1977	42
1977 Septembe	1/09/1977	45.27
1977 October	1/10/1977	69.19
1977 November	1/11/1977	57.53
1977 December	1/12/1977	90.13
1978 January	1/01/1978	77.41
1978 February	1/02/1978	73.77
1978 March	1/03/1978	67.99

1978 April	1/04/1978	43.74
1978 M ay	1/05/1978	37.72
1978 June	1/06/1978	31
1978 July	1/07/1978	36.9
1978 August	1/08/1978	40.14
_		
1978 Septembe	1/09/1978	45.32
1978 October	1/10/1978	67.92
1978 November	1/11/1978	74.23
1978 December	1/12/1978	82.45
1979 January	1/01/1979	93.62
1979 February	1/02/1979	78.23
1979 March	1/03/1979	66.73
1979 April	1/04/1979	44.78
1979 May	1/05/1979	36.27
1979 June	1/06/1979	32.76
1979 July	1/07/1979	37.67
1979 August	1/08/1979	39.21
1979 Septembe	1/09/1979	44.39
1979 October	1/10/1979	71.43
1979 November	1/11/1979	82.47
1979 December	1/12/1979	109.36
1980 January	1/01/1980	82.44
1980 February	1/01/1980	76.2
1980 March	1/02/1980	75.82
1980 March 1980 April		
-	1/04/1980	47.45
1980 May	1/05/1980	38.39
1980 June	1/06/1980	32.16
1980 July	1/07/1980	38.1
1980 August	1/08/1980	44.85
1980 Septembe	1/09/1980	56.87
1980 October	1/10/1980	67.89
1980 November	1/11/1980	90.3
1980 December	1/12/1980	94.17
1981 January	1/01/1981	90.9
1981 February	1/02/1981	70.1
1981 March	1/03/1981	70.23
1981 April	1/04/1981	48.78
1981 May	1/05/1981	37.88
1981 June	1/06/1981	30.99
1981 July	1/07/1981	37.61
1981 August	1/08/1981	40.76
1981 Septembe	1/09/1981	53.38
1981 October	1/10/1981	73.84
1981 November	1/11/1981	71.51
1981 December	1/12/1981	92.5
1982 January	1/01/1982	84.51
1982 February	1/02/1982	74.58
1982 March	1/03/1982	63.23
1982 April	1/04/1982	45.15
1982 May	1/05/1982	37.39
1982 June	1/06/1982	30.47
1982 July	1/06/1962	27.14
1982 August	1/08/1982	18.47
1982 Septembe	1/09/1982	40.76
1982 October	1/10/1982	73.06
1982 November	1/11/1982	80.79
1982 December	1/12/1982	76.27
1983 January	1/01/1983	90.36

1/02/1983	79.5
	77.71
	42.78
	38.58
	31.12
	37.33
	35.96
	50.81
-	69.09
1/11/1983	74.07
1/12/1983	85.28
1/01/1984	74.28
1/02/1984	70.87
1/03/1984	63.51
1/04/1984	42.67
	36.45
	32.62
	37.04
	42.5
	44.6
	68.61
	79.18
	91.17
	91.44
	68.16
1/03/1985	70.38
1/04/1985	43.56
1/05/1985	37.77
1/06/1985	30.86
1/07/1985	37.48
1/08/1985	41.28
1/09/1985	46.18
	67.48
	73.34
	88.2
	80.02
	70.51
	65.23
	48.83
	38.12
	30.93
	38.11
	41.64
	48.45
	65.88
	72.07
1/12/1986	89.02
1/01/1987	86.27
1/02/1987	68.91
1/03/1987	62.61
1/04/1987	44.6
	37.18
	32.38
	37.45
	43.19
	50.19
	66.7
	76.91
1/11/1907	10.01
	1/01/1984 1/02/1984 1/03/1984 1/04/1984 1/05/1984 1/06/1984 1/07/1984 1/08/1984 1/09/1984 1/10/1984 1/10/1984 1/11/1984 1/11/1985 1/02/1985 1/03/1985 1/05/1985 1/06/1985 1/06/1985 1/07/1985 1/01/1985 1/01/1986 1/02/1986 1/03/1986 1/03/1986 1/04/1986 1/05/1986

1987 December	1/12/1987	86.22
1988 January	1/01/1988	83.27
1988 February	1/02/1988	68.06
1988 March	1/03/1988	64.68
1988 April	1/04/1988	41.75
1988 May	1/04/1988	
•		37.94
1988 June	1/06/1988	32.43
1988 July	1/07/1988	40.56
1988 August	1/08/1988	35.9
1988 Septembe	1/09/1988	49.56
1988 October	1/10/1988	78.52
1988 November	1/11/1988	64.56
1988 December	1/12/1988	86.65
1989 January	1/01/1989	72.54
1989 February	1/02/1989	67.44
1989 March	1/03/1989	65.89
1989 April	1/04/1989	43.55
1989 May	1/05/1989	39.07
1989 June	1/06/1989	31.76
1989 July	1/07/1989	36.78
1989 August	1/08/1989	39.08
1989 Septembe	1/09/1989	48.52
1989 October	1/10/1989	72.33
1989 November	1/11/1989	74.77
1989 December	1/12/1989	88.62
1990 January	1/01/1990	80.88
1990 February	1/02/1990	62.89
1990 March	1/03/1990	65.86
1990 April	1/04/1990	42.72
1990 April 1990 May	1/05/1990	38.58
1990 May 1990 June	1/05/1990	30.93
	1/07/1990	38.31
1990 July		
1990 August	1/08/1990 1/09/1990	39.67
1990 Septembe		45.82
1990 October	1/10/1990	69.51
1990 November	1/11/1990	69.65
1990 December	1/12/1990	105.25
1991 January	1/01/1991	89.73
1991 February	1/02/1991	80.79
1991 March	1/03/1991	72.99
1991 April	1/04/1991	42.34
1991 May	1/05/1991	38.22
1991 June	1/06/1991	35.14
1991 July	1/07/1991	38.27
1991 August	1/08/1991	41.85
1991 Septembe	1/09/1991	49.46
1991 October	1/10/1991	69.64
1991 November	1/11/1991	67.76
1991 December	1/12/1991	77.15
1992 January	1/01/1992	78.53
1992 February	1/02/1992	64.36
1992 March	1/03/1992	66.02
1992 April	1/04/1992	42.6
1992 May	1/05/1992	36.69
1992 June	1/06/1992	31.04
1992 July	1/07/1992	39.34
1992 August	1/08/1992	41.53
1992 Septembe	1/09/1992	46.13
-		

1992 October	1/10/1992	68.14
1992 November	1/11/1992	71.11
1992 December	1/12/1992	78.98
1993 January	1/01/1993	81.86
1993 February	1/02/1993	69.47
1993 March	1/03/1993	63.05
1993 April	1/04/1993	45.9
•		
1993 May	1/05/1993	37.06
1993 June	1/06/1993	31.11
1993 July	1/07/1993	39.72
	1/08/1993	43.58
1993 August	-	
1993 Septembe	1/09/1993	47.35
1993 October	1/10/1993	69.18
1993 November	1/11/1993	76.47
1993 December	1/12/1993	85.94
1994 January	1/01/1994	90.55
1994 February	1/02/1994	70.87
1994 March	1/03/1994	62.62
1994 April	1/04/1994	44.96
1994 May	1/05/1994	38.05
1994 June	1/06/1994	29.43
	1/07/1994	38.59
1994 July		
1994 August	1/08/1994	26.64
1994 Septembe	1/09/1994	40.79
1994 October	1/10/1994	61.37
1994 November	1/11/1994	80.53
1994 December	1/12/1994	94.12
1995 January	1/01/1995	73.45
1995 February	1/02/1995	67.12
•		
1995 March	1/03/1995	66.47
1995 April	1/04/1995	42.81
1995 May	1/05/1995	38.31
1995 June	1/06/1995	32.01
1995 July	1/07/1995	37.21
1995 August	1/08/1995	36.9
1995 Septembe	1/09/1995	43.18
1995 October	1/10/1995	67.34
1995 November	1/11/1995	58.21
1995 December	1/12/1995	83.82
1996 January	1/01/1996	76.58
1996 February	1/02/1996	67.56
1996 March	1/03/1996	65.9
1996 April	1/04/1996	42.28
1996 May	1/05/1996	39.14
1996 June	1/06/1996	32.95
1996 July	1/07/1996	38.4
1996 August	1/08/1996	42.52
1996 Septembe	1/09/1996	51.23
1996 October	1/10/1996	70.99
1996 November	1/11/1996	75.29
1996 December	1/12/1996	88.55
1997 January	1/01/1997	74.96
1997 February	1/02/1997	71.19
1997 March	1/03/1997	68.8
1997 April	1/04/1997	33.43
1997 May	1/05/1997	35.52
1997 June	1/06/1997	32.28
1997 July	1/07/1997	38.16

1997 August	1/08/1997	41.94
1997 Septembe	1/09/1997	47.8
1997 October	1/10/1997	72.51
1997 November	1/11/1997	72.01
1997 December	1/12/1997	88.54
1998 January	1/01/1998	82.53
1998 February	1/02/1998	77.33
1998 March	1/03/1998	77.36
1998 April	1/04/1998	40.26
1998 May	1/05/1998	37.81
1998 June	1/06/1998	32.18
1998 July	1/07/1998	38
1998 August	1/08/1998	43.05
1998 Septembe	1/09/1998	49.92
1998 October	1/10/1998	68.39
1998 November	1/11/1998	69.47
1998 December	1/12/1998	89.87
1999 January	1/01/1999	84.05
1999 February	1/02/1999	66.07
1999 March	1/03/1999	67.75
1999 April	1/04/1999	41.82
1999 May	1/05/1999	37.69
1999 June	1/06/1999	28.2
1999 July	1/07/1999	39.38
1999 August	1/08/1999	43.53
1999 Septembe	1/09/1999	50.08
1999 October	1/10/1999	69.78
1999 November	1/11/1999	67.7
1999 December	1/12/1999	80.89
2000 January	1/01/2000	74.19
2000 February	1/02/2000	74.96
2000 March	1/03/2000	65.52
2000 April	1/04/2000	42.2
2000 May	1/05/2000	36.45
2000 June	1/06/2000	31.1
2000 July	1/07/2000	39.21
2000 August	1/08/2000	41.84
2000 Septembe	1/09/2000	53.15
2000 Oeptembe 2000 October	1/10/2000	68.11
2000 November	1/11/2000	73.5
2000 December	1/12/2000	94.37
2001 January	1/01/2001	89.51
2001 February	1/02/2001	70.53
2001 March	1/03/2001	64.68
2001 March	1/04/2001	45.79
2001 April 2001 May	1/05/2001	36.85
2001 June	1/06/2001	29.39
2001 July	1/07/2001	29.9
2001 August	1/08/2001	42.24
2001 August 2001 Septembe	1/09/2001	51.12
2001 September 2001 October	1/10/2001	70.42
2001 October 2001 November	1/11/2001	73.83
2001 November 2001 December	1/11/2001	90.27
2001 December 2002 January	1/01/2001	79.47
2002 January 2002 February	1/02/2002	63.17
2002 February 2002 March	1/02/2002	68.52
2002 March 2002 April	1/03/2002	47.2
2002 April 2002 May	1/04/2002	37.54
2002 IVIAY	110312002	J1.J4

.

2002 June	1/06/2002	32.42
		38.54
2002 July	1/07/2002	
2002 August	1/08/2002	24.25
2002 Septembe	1/09/2002	45.88
2002 October	1/10/2002	54.36
2002 November	1/11/2002	67.41
2002 December	1/12/2002	93.22
	1/01/2003	85.78
2003 January		
2003 February	1/02/2003	67.29
2003 March	1/03/2003	64.67
2003 April	1/04/2003	42.8
2003 May	1/05/2003	38.45
2003 June	1/06/2003	33.78
2003 July	1/07/2003	38.73
2003 August	1/08/2003	42.73
•		51.63
2003 Septembe	1/09/2003	
2003 October	1/10/2003	65.89
2003 November	1/11/2003	75.75
2003 December	1/12/2003	90.82
2004 January	1/01/2004	80.3
2004 February	1/02/2004	82.05
2004 March	1/03/2004	68.57
2004 March	1/04/2004	47.87
2004 May	1/05/2004	25.6
2004 June	1/06/2004	32
2004 July	1/07/2004	30.49
2004 August	1/08/2004	41.28
2004 Septembe	1/09/2004	49.84
2004 October	1/10/2004	73.19
2004 November	1/11/2004	79.04
2004 December	1/12/2004	89.83
	1/01/2005	85.77
2005 January		
2005 February	1/02/2005	70.48
2005 March	1/03/2005	65.61
2005 April	1/04/2005	48.89
2005 May	1/05/2005	38.89
2005 June	1/06/2005	33.27
2005 July	1/07/2005	39.78
2005 August	1/08/2005	30.69
2005 Septembe	1/09/2005	43.45
2005 October	1/10/2005	71.49
2005 November	1/11/2005	74.82
2005 December	1/12/2005	98.69
2006 January	1/01/2006	79.87
2006 February	1/02/2006	71.69
2006 March	1/03/2006	51.6
2006 April	1/04/2006	36.45
2006 May	1/05/2006	22.92
2006 June	1/06/2006	30.3
	1/07/2006	38.98
2006 July		
2006 August	1/08/2006	43.54
2006 Septembe	1/09/2006	53.69
2006 October	1/10/2006	59.52
2006 November	1/11/2006	71.96
2006 December	1/12/2006	73.32
2007 January	1/01/2007	88.23
2007 February	1/02/2007	67.61
2007 Pebruary 2007 March	1/02/2007	66.55
ZUU/ Warch	1/03/2007	00.00

	2007 April	1/04/2007	44.85	
	2007 May	1/05/2007	39.88	
	2007 June	1/06/2007	30.36	
	2007 July	1/07/2007	36.93	
	2007 August	1/08/2007	37.06	
	2007 Septembe	1/09/2007	50	
	2007 October	1/10/2007	62.46	
	2007 November	1/11/2007	75.2	
	2007 December	1/12/2007	80.01	
	2008 January	1/01/2008	76.64	
	2008 February	1/02/2008	61.82	
	2008 March	1/03/2008	67.32	
	2008 April	1/04/2008	40.64	
	2008 May	1/05/2008	37.73	
	2008 June	1/06/2008	33.67	
	2008 July	1/07/2008	38.12	
	2008 August	1/08/2008	39.38	
	2008 Septembe	1/09/2008	51.1	
	2008 October	1/10/2008	74.25	
	2008 November	1/11/2008	69.28	
	2008 December	1/12/2008	85.97	
	2009 January	1/01/2009	87.65	
	2009 February	1/02/2009	71.28	
	2009 March	1/03/2009	68.77	
	2009 April	1/04/2009	43.49	
	2009 May	1/05/2009	37.63	
	2009 June	1/06/2009	32.46	
	2009 July	1/07/2009	38.94	
	2009 August	1/08/2009	46.08	
	2009 Septembe	1/09/2009	51.48	
	2009 October	1/10/2009	66.69	
	2009 November	1/11/2009	91.2	
	2009 December	1/12/2009	93.46	
	2010 January	1/01/2010	85.84	
	2010 February	1/02/2010	66.47	
	2010 March	1/03/2010	65.72	
	2010 April	1/04/2010	45	
	2010 May	1/05/2010	36.8	
	2010 June	1/06/2010	31.58	
)	2010 July	1/07/2010	38.59	
	2010 August	1/08/2010	40.82	
	2010 Septembe	1/09/2010	48.08	
	2010 October	1/10/2010	66.17	
	2010 November	1/11/2010	72.77	
	2010 December	1/12/2010	81.25	
	2011 January	1/01/2011	81.1	
	2011 February	1/02/2011	69.13	
	2011 March	1/03/2011	63.22	
	2011 April	1/04/2011	42.4	
	2011 May	1/05/2011	35.63	
	2011 June	1/06/2011	31.47	
	2011 July	1/07/2011	37.72	
	2011 August	1/08/2011	43.97	
	2011 Septembe	1/09/2011	50.56	
	2011 October	1/10/2011	66.48	
	2011 November	1/11/2011	75.48	
	2011 December	1/12/2011	73.21	
	2012 January	1/01/2012	72.99	

		00.05
2012 February	1/02/2012	62.35
2012 March	1/03/2012	62.12
2012 April	1/04/2012	43.82
2012 May	1/05/2012	36.65
2012 June	1/06/2012	31.76
2012 July	1/07/2012	38.73
2012 August	1/08/2012	42.58
2012 Septembe	1/09/2012	47.26
2012 October	1/10/2012	67.9
2012 November	1/11/2012	60.8
2012 December	1/12/2012	80.73
2013 January	1/01/2013	90.8
2013 February	1/02/2013	65.52
2013 March	1/03/2013	62.35
2013 April	1/04/2013	40.31
2013 May	1/05/2013	37.88
2013 June	1/06/2013	32.71
2013 July	1/07/2013	40.66
2013 July 2013 August	1/08/2013	39.05
2013 August 2013 Septembe	1/09/2013	41.07
•	1/10/2013	59.21
2013 October		73.36
2013 November	1/11/2013	
2013 December	1/12/2013	85.73
2014 January	1/01/2014	87.86
2014 February	1/02/2014	64.62
2014 March	1/03/2014	64.59
2014 April	1/04/2014	43.83
2014 May	1/05/2014	30.58
2014 June	1/06/2014	30.53
2014 July	1/07/2014	28.87
2014 August	1/08/2014	34.86
2014 Septembe	1/09/2014	49.75
2014 October	1/10/2014	77.69
2014 November	1/11/2014	76.97
2014 December	1/12/2014	90.17
2015 January	1/01/2015	78.95
2015 February	1/02/2015	68.34
2015 March	1/03/2015	70.31
2015 April	1/04/2015	42.29
2015 May	1/05/2015	37.5
2015 June	1/06/2015	32.6
2015 July	1/07/2015	37.22
2015 August	1/08/2015	40.65
2015 Septembe	1/09/2015	48.95
2015 October	1/10/2015	72.44
2015 November	1/11/2015	81.66
2015 December	1/12/2015	83.1
2016 January	1/01/2016	76.34
2016 February	1/02/2016	75.86
2016 March	1/03/2016	72.31
2016 April	1/04/2016	39.74
2016 May	1/05/2016	27.29
2016 June	1/06/2016	29.36
2016 July	1/07/2016	39.98
2016 August	1/08/2016	42.1
2016 Septembe	1/09/2016	46.49
2016 October	1/10/2016	68.55
2016 November	1/11/2016	82.86

2016 December	1/12/2016	95.36	
2017 January	1/01/2017	92.71	
2017 February	1/02/2017	79.88	
2017 March	1/03/2017	67.35	
2017 April	1/04/2017	42.4	
2017 May	1/05/2017	32.35	
2017 June	1/06/2017	32.59	
2017 July	1/07/2017	25.09	
2017 August	1/08/2017	39.63	
2017 Septembe	1/09/2017	31.09	
2017 October	1/10/2017	60.65	
2017 November	1/11/2017	75.93	
2017 December	1/12/2017	93.31	
2018 January	1/01/2018	89.6	
2018 February	1/02/2018	73.06	
2018 March	1/03/2018	71.57	
2018 April	1/04/2018	51.09	
2018 May	1/05/2018	27.07	
2018 June	1/06/2018	30.41	
2018 July	1/07/2018	33.14	
2018 August	1/08/2018	36.32	
2018 Septembe		49.43	
2018 October	1/10/2018	71.54	
2018 November		77.39	
2018 December	1/12/2018	96.82	
2019 January	1/01/2019	96.74	
2019 February	1/02/2019	72.59	
2019 March	1/03/2019	70.59	
2019 April	1/04/2019	46.87	
2019 May	1/05/2019	37.77	
2019 June	1/06/2019	31.82	
2019 July	1/07/2019	40.13	
2019 August	1/08/2019	32.69	
2019 Septembe		52.33	
2019 October	1/10/2019	78.72	
2019 November	1/11/2019	76.01	
2019 December	1/12/2019	71.67	
2020 January	1/01/2020	85.22	
2020 February	1/01/2020	70.71	
2020 March	1/02/2020	64.16	
	1/03/2020		
2020 April		44.02	
2020 May	1/05/2020	35.9	
2020 June	1/06/2020	32.52	
2020 July	1/07/2020	39.69	
2020 August	1/08/2020	41.14	
2020 Septembe	1/09/2020	50.62	
2020 October	1/10/2020	64.78	
2020 November	1/11/2020	82.27	
2020 December	1/12/2020	82.38	

•

Rainfall scenario with irrigation - 40% rain

Assumptions:
Bare ground
Sandy clay
No initial moisture content set
100% runoff available

Year		Month	Date f	orm: Ev	apotranspiration	
			1/01/1		79.87	
	1001	February			68.38	
	1921	March	1/02/1			
					65.49	
			1/04/1		44.6	
	1921		1/05/1		38.89	
			1/06/1		32.25	
	1921	•	1/07/1		39.76	
		August			40.31	
		Septembe			49.93	
					68.18	
		November			79.75	
		December			88.21	
	1922	January	1/01/1	922	78.07	
	1922	February	1/02/1	922	68.54	
	1922	March			66.39	
	1922		1/04/1		47.14	
	1922	May	1/05/1	922	37.59	
	1922	June	1/06/1	922	31.63	
	1922	July	1/07/1	922	37.8	
	1922	August	1/08/1	922	41.12	
		Septembe			48.23	
	1922	October	1/10/1	922	72.26	
	1922	November	1/11/1	922	79.37	
	1922	December	1/12/1	922	90.44	
	1923	January	1/01/1	923	79.79	
	1923	February	1/02/1	923	70.48	
	1923	March	1/03/1	923	68.81	
	1923	April	1/04/1	923	45.33	
		May	1/05/1	923	39.13	
			1/06/1		32.65	
			1/07/1		38.28	
		August	1/08/1	923	41.47	
		Septembe			47.78	
		October			70.02	
		November				
		December			92.47	
		January	1/01/1		79.02	
		February	1/02/1		69.37	
		March	1/03/1		66.17	
		April	1/04/1		42.02	
		May	1/05/		36.82	
		June	1/06/		31.03	
		July	1/07/		38.37	
		August	1/08/		42.86	
		Septembe			49.33	
		October	1/10/		70.8	
		November			75.27	
		December			84.17	
		January	1/01/		77.73	
	1370	January	17017	1323	11.15	

1925 February 1	/02/1925	68.07
•		65.34
		44.88
•		38.14
		32.51
1925 July 1/	/07/1925	36.62
1925 August 1/	/08/1925 <i>4</i>	40.96
1925 Septembe 1/	09/1925	45.5
•		70.22
1925 November 1/		77.14
1925 December 1/		39.57
		79.04
-		
•		73.03
		37.66
•	04/1926	44.6
7		36.35
1926 June 1/	06/1926 3	32.19
1926 July 1/	07/1926 3	38.84
1926 August 1/	08/1926	12.84
1926 Septembe 1/	09/1926 4	8.47
·		1.12
1926 November 1/		0.24
1926 December 1/		34.37
		30.15
•		
•		7.06
		6.19
•		3.49
•		5.88
		80.08
•		9.52
1927 August 1/0	08/1927 2	4.75
1927 Septembe 1/0	09/1927	44.9
1927 October 1/	10/1927 7	2.71
1927 November 1/2	11/1927 7	8.06
1927 December 1/2	12/1927 8	7.02
1928 January 1/0	01/1928	78
1928 February 1/0	02/1928 7	1.31
		7.29
		5.21
•		5.83
•		1.41
		8.51
•		4.07
1928 Septembe 1/0		1.07
		70.8
1928 November 1/1		8.55
1928 December 1/1		8.84
•		0.07
•		6.88
1929 March 1/0	03/1929	66.8
•		3.18
1929 May 1/0		6.63
1929 June 1/0	06/1929 3	0.65
		5.39
•		1.45
1929 Septembe 1/0		7.23
		70.2
1929 November 1/1		75.5

1929 December		88.42
1930 January	1/01/1930	79.59
1930 February	1/02/1930	70.19
1930 March	1/03/1930	66.5
1930 April	1/04/1930	43.3
1930 May	1/05/1930	37.44
1930 June	1/06/1930	32.91
1930 July	1/07/1930	39.74
1930 August	1/08/1930	42.46
1930 Septembe	1/09/1930	47.38
1930 October	1/10/1930	72.61
1930 November	1/11/1930	77.54
1930 December	1/12/1930	87.87
1931 January	1/01/1931	79.33
1931 February	1/02/1931	68.31
1931 March	1/03/1931	66.64
1931 April	1/04/1931	43.5
1931 May	1/05/1931	38.18
1931 June	1/06/1931	31.98
1931 July	1/07/1931	38
1931 August	1/08/1931	41.61
1931 Septembe	1/09/1931	46.64
1931 October	1/10/1931	69.24
1931 November	1/11/1931	75.99
1931 December	1/12/1931	87.21
1932 January	1/01/1932	84.56
1932 February		70.35
1932 March	1/03/1932	66.96
1932 April	1/04/1932	43.75
1932 May	1/05/1932	37.72
1932 June	1/06/1932	30.6
1932 July	1/07/1932	37.29
1932 August	1/08/1932	42.97
1932 Septembe		48.6
1932 October	1/10/1932	68.92
1932 November		78.13
1932 December		87.72
1933 January	1/01/1933	79.76
1933 February		66.93
1933 March	1/03/1933	68.64
1933 April	1/04/1933	43.87
1933 May	1/05/1933	37.39
1933 June	1/06/1933	31.84
1933 July	1/07/1933	39.42
1933 August	1/08/1933	39.75
1933 Septembe		47.85
1933 October	1/10/1933	72.54 75.19
1933 November 1933 December		86.99
1934 January	1/01/1934	80.01
1934 February		66.8
1934 Pebruary	1/02/1934	67.91
1934 April	1/03/1934	43.97
1934 May	1/05/1934	37.84
1934 June	1/06/1934	30.66
1934 July	1/07/1934	39.02
1934 August	1/08/1934	42.56
1934 Septembe		49.31
zapreme		

1934 October	1/10/1934	68.4
1934 November		75.91
1934 December	er 1/12/1934	85.54
1935 January	1/01/1935	78.7
1935 February	1/02/1935	66.86
1935 March	1/03/1935	64.99
1935 April	1/04/1935	43.34
1935 May	1/05/1935	36.06
1935 June	1/06/1935	30.03
1935 July	1/07/1935	37.82
1935 August	1/08/1935	42.94
1935 September		47.35
1935 October	1/10/1935	71.81
1935 Novembe	r 1/11/1935	77.14
1935 Decembe	r 1/12/1935	87.81
1936 January	1/01/1936	79.37
		69.18
1936 February		
1936 March	1/03/1936	65.3
1936 April	1/04/1936	42.48
1936 May	1/05/1936	37.52
1936 June	1/06/1936	30.03
1936 July	1/07/1936	38.99
•	1/08/1936	43.73
1936 August		
1936 September		46.95
1936 October	1/10/1936	72.38
1936 November	r 1/11/1936	64.7
1936 December	r 1/12/1936	86.96
1937 January	1/01/1937	79.76
1937 February	1/02/1937	67.17
1937 March	1/03/1937	65.66
1937 April	1/04/1937	42.9
1937 May	1/05/1937	36.62
1937 June	1/06/1937	30.88
1937 July	1/07/1937	36.92
1937 August	1/08/1937	43.31
1937 Septembe	1/09/1937	49.35
1937 October	1/10/1937	72.58
1937 November		77.92
1937 December		92.49
	1/01/1938	80.86
1938 February		67.3
1938 March	1/03/1938	69.49
1938 April	1/04/1938	45.99
1938 May	1/05/1938	39.16
1938 June	1/06/1938	31.49
1938 July	1/07/1938	37.29
1938 August	1/08/1938	
•		41.62
1938 Septembe		48.38
1938 October	1/10/1938	74.25
1938 November	1/11/1938	80.76
1938 December	1/12/1938	91.8
1939 January	1/01/1939	85.4
1939 February		72.38
•	1/03/1939	67.36
1939 April	1/04/1939	45.18
1939 May	1/05/1939	39.04
1939 June	1/06/1939	32.02
1939 July	1/07/1939	36.14

1939 August 1/08/1939	42.16
1939 Septembe 1/09/1939	47.09
1939 October 1/10/1939	68.95
1939 November 1/11/1939	76.11
1939 December 1/12/1939	89.19
1940 January 1/01/1940	82.89
1940 February 1/02/1940	72.27
1940 March 1/03/1940	70.58
1940 April 1/04/1940	44.33
1940 May 1/05/1940	36.03
1940 June 1/06/1940	31.2
1940 July 1/07/1940	35.47
1940 August 1/08/1940	31.68
1940 Septembe 1/09/1940	40.95
1940 October 1/10/1940	73.94
1940 November 1/11/1940	76.32
1940 December 1/12/1940	91.61
1941 January 1/01/1941	77.53
1941 February 1/02/1941	65.89
1941 March 1/03/1941	64.63
	44.97
	36.81
,	30.01
1941 June 1/06/1941	38.16
1941 July 1/07/1941	
1941 August 1/08/1941	36.66 48.9
1941 Septembe 1/09/1941	69.26
1941 October 1/10/1941	79.61
1941 November 1/11/1941	88.22
1941 December 1/12/1941	78.6
1942 January 1/01/1942	66.5
1942 February 1/02/1942 1942 March 1/03/1942	67.63
	44.91
1942 April 1/04/1942 1942 May 1/05/1942	39.6
1942 June 1/06/1942	32.59
1942 July 1/07/1942	38.14
	42.81
1942 August 1/08/1942 1942 Septembe 1/09/1942	48.13
1942 October 1/10/1942	69.19
1942 October 1/10/1942 1942 November 1/11/1942	76.23
1942 December 1/12/1942	88.57
1943 January 1/01/1943	78.57
1943 February 1/02/1943	68.72
1943 March 1/03/1943	69.57
1943 April 1/04/1943	42.94
1943 May 1/05/1943	36.99
1943 June 1/06/1943	29.99
1943 July 1/07/1943	35.98
1943 August 1/08/1943	39.22
1943 Septembe 1/09/1943	46.38
1943 October 1/10/1943	69.43
1943 November 1/11/1943	72.82
1943 December 1/12/1943	85.7
1944 January 1/01/1944	83.07
1944 February 1/02/1944	70.39
1944 March 1/03/1944	65.27
1944 April 1/04/1944	41.65
1944 May 1/05/1944	36.26
100/10-14	30,20

1944 June	1/06/1944	30.17
1944 July	1/07/1944	37.82
1944 August	1/08/1944	41.75
1944 Septembe	1/09/1944	48.68
1944 October	1/10/1944	73.43
1944 November		82.66
1944 December		89.19
1945 January	1/01/1945	76.4
1945 February	1/02/1945	66.75
1945 March	1/03/1945	65.05
1945 April	1/04/1945	43.84
1945 May	1/05/1945	36.46
1945 June	1/06/1945	33.16
1945 July	1/07/1945	36.96
•	1/08/1945	42.7
1945 August		47.21
1945 Septembe	1/10/1945	
1945 October 1945 November		65.09
		73.96
1945 December		89.84
1946 January	1/01/1946	86.13
1946 February	1/02/1946	70.44
1946 March	1/03/1946	64.2
•	1/04/1946	42.9
	1/05/1946	36.74
	1/06/1946	30.36
	1/07/1946	39.25
	1/08/1946	36.27
1946 Septembe		40.99
	1/10/1946	67.78
1946 November		80.01
1946 December		90.61
•	1/01/1947	82
•	1/02/1947	68.99
	1/03/1947	67.15
·	1/04/1947	44.05
	1/05/1947	39.07
	1/06/1947	31.78
•	1/07/1947	37.72
	1/08/1947	41.23
1947 Septembe		48.12
	1/10/1947	69.34
1947 November		72.99
1947 December		87.05
•	1/01/1948	74.9
•	1/02/1948	71.29
	1/03/1948	63.31
•	1/04/1948	42.1
	1/05/1948	35.97
	1/06/1948	31.87
•	1/07/1948	35.92
_	1/08/1948	28.31
1948 Septembe		48.3
	1/10/1948	70.55
1948 November 1		75.66
1948 December 1		90.6
•	1/01/1949	76.79
1949 February		67.23
1949 March 1	1/03/1949	66.65

*

.

1949 April	1/04/1949	42.12
1949 May	1/05/1949	36.75
1949 June	1/06/1949	30.06
1949 July	1/07/1949	37.77
1949 August	1/08/1949	41.65
1949 Septembe	1/00/10/0	48.18
•		
1949 October	1/10/1949	74.07
1949 November	1/11/1949	75.28
1949 December	1/12/1949	88.27
1950 January	1/01/1950	79.66
1950 February		66.56
1950 March	1/03/1950	67.24
1950 April	1/04/1950	44.14
1950 May	1/05/1950	37.46
w .		32.96
1950 June	1/06/1950	
1950 July	1/07/1950	40.35
1950 August	1/08/1950	41.72
1950 Septembe	1/09/1950	50.28
1950 October	1/10/1950	70.27
1950 November		74.31
1950 December	1/12/1950	89.15
1951 January	1/01/1951	77.85
1951 February	1/02/1951	68.45
1951 March	1/03/1951	68.96
1951 April	1/04/1951	42.03
1951 May	1/05/1951	37.21
1951 June	1/06/1951	33.1
1951 July	1/07/1951	37.41
		40.18
1951 August	1/08/1951	
1951 Septembe		50.2
1951 October	1/10/1951	69.09
1951 November	1/11/1951	75.53
1951 December		87.73
1952 January	1/01/1952	83.71
1952 February		69.94
1952 March	1/03/1952	66.72
1952 April	1/04/1952	43.76
1952 May	1/05/1952	36.37
1952 June	1/06/1952	32.08
1952 July	1/07/1952	37.97
1952 August	1/08/1952	42.81
1952 Septembe	1/09/1952	48.03
1952 October	1/10/1952	70.54
1952 November		73.68
1952 December		87.02
1953 January	1/01/1953	77.79
1953 February	1/02/1953	65
1953 March	1/03/1953	66.85
	1/04/1953	46.03
1953 April		
1953 May	1/05/1953	37.35
1953 June	1/06/1953	30.74
1953 July	1/07/1953	34.04
1953 August	1/08/1953	33.47
1953 Septembe		47.15
1953 October	1/10/1953	69.08
1953 November		76
1953 December		91.58
1954 January	1/01/1954	78.59
•		

1954 February	1/02/1954	66.64
1954 March		65.33
1954 April	1/04/1954	45 62
1954 May		
1954 June		
1954 July		
1954 August		42.87
1954 Septembe		46.92
1954 October		71.11
1954 November	1/11/1954	77.99
1954 December	1/12/1954	88.57
1955 January	1/01/1955	80.67
1955 February	1/02/1955	67.27
1955 March	1/03/1955	68.74
1955 April	1/04/1955	45.63
1955 May	1/05/1955	30.00
1955 June		
1955 July		
1955 August		
1955 Septembe	1/09/1955	48.3
1955 October	1/10/1955	70.93
1955 November	1/11/1955	74.63
1955 December	1/12/1955	84.16
1956 January		78.16
1956 February		69.2
1956 March	1/03/1956	67.71
1956 April	1/03/1956	43.93
		37.15
1956 May	1/00/1800	
1956 June		31.21
1956 July		37.22
1956 August		40.37
1956 Septembe		45.85
1956 October		67.56
1956 November	1/11/1956	72.82
1956 December	1/12/1956	88.76
1957 January	1/01/1957	82.57
1957 February		67.04
1957 March	1/03/1957	66.43
	1/04/1957	45.12
•	1/05/1957	35.92
	1/06/1957	30.5
	1/07/1957	35.99
•	1/08/1957	42.15
1957 Septembe		48.38
	1/10/1957	70.53
1957 November		80.81
1957 December		96.52
1958 January		81.51
1958 February		69.35
	1/03/1958	68.25
	1/04/1958	45.6
•	1/05/1958	39.11
1958 June 1	1/06/1958	32.14
1958 July	1/07/1958	37.75
-	1/08/1958	43.17
1958 Septembe		46.31
	1/10/1958	69.73
1958 November		81.47
. UUU I TOT QIIIIOO		

4050 D	4/40/4050	00.04
1958 December		86.84
1959 January	1/01/1959	81.25
1959 February	1/02/1959	69.9
1959 March	1/03/1959	67.7
	1/04/1959	44.75
*		
1959 May	1/05/1959	36.22
1959 June	1/06/1959	31.56
1959 July	1/07/1959	38.32
*	1/08/1959	42.27
1959 Septembe		47.97
1959 October	1/10/1959	67.42
1959 November	1/11/1959	82.8
1959 December	1/12/1959	87.37
1960 January	1/01/1960	85.42
1960 February		70.33
1960 March	1/03/1960	66.24
1960 April	1/04/1960	43.6
1960 May	1/05/1960	34.93
1960 June	1/06/1960	30.07
		38.52
1960 July	1/07/1960	
1960 August	1/08/1960	40.98
1960 Septembe	1/09/1960	47.6
1960 October	1/10/1960	70.43
1960 November		73.8
1960 December		86.36
1961 January		79.93
1961 February	1/02/1961	68.23
1961 March	1/03/1961	66.55
1961 April	1/04/1961	44.42
•	1/05/1961	35.97
1961 May		
1961 June	1/06/1961	31.45
1961 July	1/07/1961	37.3
1961 August	1/08/1961	40.84
1961 Septembe	1/09/1961	47.75
1961 October	1/10/1961	74.51
1961 November		78.32
1961 December	1/12/1961	88.7
1962 January	1/01/1962	77.84
1962 February		68.11
1962 March	1/03/1962	66.21
1962 April	1/04/1962	43.38
1962 May	1/05/1962	35.57
1962 June	1/06/1962	32.95
1962 July	1/07/1962	35.09
1962 August	1/08/1962	41.36
-		
1962 Septembe		47.61
1962 October	1/10/1962	67.62
1962 November	1/11/1962	78.24
1962 December	1/12/1962	84.93
1963 January	1/01/1963	78.93
1963 February		68.04
1963 March	1/03/1963	65.55
1963 April	1/04/1963	44.09
1963 May	1/05/1963	38.37
1963 June	1/06/1963	31.45
1963 July	1/07/1963	36.74
1963 August	1/08/1963	41.59
1963 Septembe	1/09/1963	47.81

1963 October 1/	10/1963	71.13
1963 November 1/		73.75
1963 December 1/		88.3
1964 January 1/0		80.66
1964 February 1/0		69.13
1964 March 1/0		66.06
1964 April 1/0	04/1964	44.13
1964 May 1/0		36.12
1964 June 1/0		31.6
1964 July 1/0		37.64
1964 August 1/0		41.44
1964 Septembe 1/0		48.39
	10/1964	66.03
1964 November 1/1	1/1964	77.96
1964 December 1/1		86.94
1965 January 1/0		77.21
1965 February 1/0		69.54
1965 March 1/0	3/1965	68.6
1965 April 1/0		42.54
1965 May 1/0		36.63
1965 June 1/0		30.87
1965 July 1/0		36.26
1965 August 1/0		42.47
1965 Septembe 1/0		51.85
· ·	0/1965	72.44
1965 November 1/1	1/1965	75.06
1965 December 1/1	2/1965	88.3
1966 January 1/0	1/1966	79.96
1966 February 1/0		67.2
1966 March 1/0		65.59
	4/1966	43.82
	5/1966	35.42
1966 June 1/0	6/1966	31.19
•	7/1966	35.39
1966 August 1/0	8/1966	36.33
1966 Septembe 1/0		46.52
1966 October 1/1	0/1966	67.8
1966 November 1/1		75.46
1966 December 1/1:	2/1966	85.57
	1/1967	79.81
1967 February 1/0		66.71
	3/1967	62.14
	4/1967	43.69
•	5/1967	36.64
	6/1967	33.16
•	7/1967	37.07
3	8/1967	39.82
1967 Septembe 1/09		46.66
	0/1967	70.91
1967 November 1/1		76.84
1967 December 1/12		85.2
	1/1968	79.21
	2/1968	72.66
	3/1968	68.09 45.06
'	4/1968	45.06
•	5/1968	35.08
	3/1968 7/1968	29.97 34.22
1968 July 1/07	111900	34.22

.

1968 August	1/09/1069	35.58
1968 Septembe		46.28
1968 October	1/10/1968	69.62
1968 November	1/11/1968	77.91
1968 December	1/12/1968	85.72
	1/01/1969	83.42
	1/02/1969	68.26
	1/03/1969	66.84
1969 April	1/04/1969	44.02
1969 May	1/05/1969	36.42
	1/06/1969	31.13
	1/07/1969	38.49
•	1/08/1969	43.63
1969 Septembe	1/09/1969	44.37
1969 October	1/10/1969	68.59
1969 November	1/11/1969	74.08
1969 December		87.2
	1/01/1970	80.79
1970 January		
	1/02/1970	74.04
1970 March	1/03/1970	66.14
1970 April	1/04/1970	45.12
1970 May	1/05/1970	35.11
*	1/06/1970	31.99
	1/07/1970	37.7
1970 July		
1970 August	1/08/1970	40.67
1970 Septembe		44.14
1970 October	1/10/1970	73.43
1970 November	1/11/1970	73.01
1970 December		88.59
1971 January	1/01/1971	80.53
*		
1971 February		68.02
1971 March	1/03/1971	70.24
1971 April	1/04/1971	45.46
1971 May	1/05/1971	37.02
1971 June	1/06/1971	31.13
1971 July	1/07/1971	36.55
1971 August	1/08/1971	42.08
1971 Septembe		49.77
	1/10/1971	76.49
1971 October		
1971 November		74.14
1971 December		84.13
1972 January	1/01/1972	73.95
1972 February	1/02/1972	69.27
1972 March	1/03/1972	66.22
1972 April	1/04/1972	43.83
1972 May	1/05/1972	37.06
	1/06/1972	31.5
1972 June		
1972 July	1/07/1972	37.89
1972 August	1/08/1972	43.22
1972 Septembe	1/09/1972	53.98
1972 October	1/10/1972	70.33
1972 November	1/11/1972	77.69
1972 December		100.82
1973 January	1/01/1973	88.89
1973 February		61.98
1973 March	1/03/1973	68.15
1973 April	1/04/1973	44.92
1973 May	1/05/1973	38.17
J.		

1973 June	1/06/1973	31.53		
1973 July		39.74		
1973 August				
1973 September				
1973 October		66.96		
1973 Novembe		71.18		
1973 Decembe		82.9		
1974 January		72.15		
1974 February				
1974 March				
1974 April				
1974 May	1/05/1974			
1974 June	1/06/1974			
1974 July				
1974 August				
1974 September			140	
1974 October				
1974 November				
1974 December				
1975 January				
1975 February				
1975 March				
1975 April				
1975 May				
1975 June	1/06/1975			
1975 July				
1975 August	1/08/1975			
1975 Septembe				
1975 October	1/10/1975	64.43		
1975 November		79.77		
1975 December		88.39		
1976 January		73.17		
1976 February 1976 March		65.15		
1976 March		63.54 41.93		
1976 April 1976 May	1/04/1976			
•	1/05/1976 1/06/1976	36.67 30.15		
1976 June 1976 July	1/07/1976	38.46		
1976 July 1976 August	1/08/1976	40.99		
1976 August		44.01		
1976 October	1/10/1976	61.04		
1976 November		74.36		
1976 December		99.07		
1977 January	1/01/1977	85.94		
1977 February	1/02/1977	71.02		
1977 March	1/03/1977	66.34		
1977 April	1/04/1977	45.38		
1977 May	1/05/1977	36.64		
1977 June	1/06/1977	30.76		
1977 July	1/07/1977	36.47		
1977 August	1/08/1977	43.8		
1977 Septembe		45.97		
1977 October	1/10/1977	76.4		
1977 November		83.05		
1977 December		100.57		
	1/01/1978	77.42		
•	1/02/1978	73.78		
•	1/03/1978	68		

1978 April	1/04/1978	43.74
1978 May	1/05/1978	37.72
1978 June	1/06/1978	31
1978 July	1/07/1978	36.9
1978 August 1978 Septembe	1/08/1978	40.14 45.32
1978 October	1/10/1978	67.92
1978 November		74.23
1978 December		82.45
1979 January	1/01/1979	93.73
1979 February	1/02/1979	78.92
1979 March	1/03/1979	66.76
1979 April	1/04/1979	44.79
1979 May	1/05/1979	36.27
1979 June	1/06/1979	32.76
1979 July	1/07/1979	37.6
1979 August	1/08/1979	41.38
1979 Septembe 1979 October	1/10/1979	47.5 71.45
1979 November		82.48
1979 December		109.37
1980 January	1/01/1980	82.58
1980 February	1/02/1980	76.21
1980 March	1/03/1980	75.83
1980 April	1/04/1980	48.93
1980 May	1/05/1980	38.97
1980 June	1/06/1980	
1980 July	1/07/1980	
1980 August 1980 Septembe	1/08/1980	44.85 56.87
1980 October	1/10/1980	
1980 November		
1980 December		98.84
1981 January	1/01/1981	90.91
1981 February		70.1
1981 March	1/03/1981	71.63
1981 April	1/04/1981	48.78
1981 May	1/05/1981 1/06/1981	37.88 30.99
1981 June 1981 July	1/06/1981	
1981 August	1/07/1981	
1981 Septembe		
1981 October	1/10/1981	
1981 November		
1981 December		
1982 January	1/01/1982	
1982 February	1/02/1982	
1982 March 1982 April	1/03/1982 1/04/1982	
1982 April 1982 May	1/05/1982	
1982 June	1/06/1982	
1982 July	1/07/1982	
1982 August	1/08/1982	
1982 Septembe		44.87
1982 October	1/10/1982	
1982 November		
1982 December 1983 January	1/01/1982	
1900 January	110 11 1000	. JT.21

1983 February 1/02/1983	79.59
1983 March 1/03/1983	77.77
1983 April 1/04/1983	42.79
1983 May 1/05/1983	38.59
1983 June 1/06/1983	31.12
1983 July 1/07/1983	37.34
1983 August 1/08/1983	39.84
1983 Septembe 1/09/1983	50.82
1983 October 1/10/1983	69.11
1983 November 1/11/1983	74.09
1983 December 1/12/1983	85.3
1984 January 1/01/1984	74.29
1984 February 1/02/1984	70.88
1984 March 1/03/1984	63.52
1984 April 1/04/1984	42.68
1984 May 1/05/1984	36.45
1984 June 1/06/1984	32.62
1984 July 1/07/1984	37.04
1984 August 1/08/1984	42.51
1984 Septembe 1/09/1984	44.6
1984 October 1/10/1984	70.39
1984 November 1/11/1984	79.19
1984 December 1/12/1984	91.17
1985 January 1/01/1985	91.44
1985 February 1/02/1985	68.16
1985 March 1/03/1985	70.38
1985 April 1/04/1985	43.56
1985 M ay 1/05/1985	37.77
1985 June 1/06/1985	30.95
1985 July 1/07/1985	37.68
1985 August 1/08/1985	41.28
1985 Septembe 1/09/1985	46.18
1985 October 1/10/1985	67.48
1985 November 1/11/1985	73.34
1985 December 1/12/1985	88.2
1986 January 1/01/1986	80.02
1986 February 1/02/1986	70.51
1986 March 1/03/1986	73.96
1986 April 1/04/1986	49.5
1986 May 1/05/1986 1986 June 1/06/1986	38.13
1986 June 1/06/1986 1986 July 1/07/1986	31.01 38.11
1986 August 1/08/1986	41.64
1986 Septembe 1/09/1986	48.46
1986 October 1/10/1986	65.89
1986 November 1/11/1986	72.08
1986 December 1/12/1986	89.04
1987 January 1/01/1987	89.73
1987 February 1/02/1987	73.86
1987 March 1/03/1987	62.64
1987 April 1/04/1987	44.61
1987 May 1/05/1987	37.18
1987 June 1/06/1987	32.38
1987 July 1/07/1987	37.45
1987 August 1/08/1987	43.2
1987 Septembe 1/09/1987	50.2
1987 October 1/10/1987	66.7
1987 November 1/11/1987	76.92

1987 December	1/12/1087	86.22
1988 January		83.27
1988 February		68.06
1988 March	1/03/1988	64.68
1988 April	1/04/1988	41.75
	1/05/1988	37.94
•		32.43
	1/06/1988	
	1/07/1988	40.56
1988 August	1/08/1988	40.26
1988 Septembe	1/09/1988	49.56
,	1/10/1988	79.75
1988 November		77.57
1988 December		86.65
1989 January	1/01/1989	72.54
1989 February	1/02/1989	67.44
•	1/03/1989	65.89
1989 April	1/04/1989	43.55
		39.07
1989 May	1/05/1989	
1989 June	1/06/1989	31.76
1989 July	1/07/1989	36.78
1989 August	1/08/1989	39.08
1989 Septembe		48.52
•		72.33
1989 October	1/10/1989	
1989 November		74.77
1989 December	1/12/1989	88.62
1990 January	1/01/1990	80.88
1990 February		62.89
1990 March	1/03/1990	65.86
1990 April	1/04/1990	42.72
1990 May	1/05/1990	38.58
1990 June	1/06/1990	30.93
1990 July	1/07/1990	38.31
1990 August		39.67
1990 Septembe		45.82
•		
1990 October	1/10/1990	69.51
1990 November		84.11
1990 December	1/12/1990	105.25
1991 January	1/01/1991	89.73
1991 February	1/02/1991	80.79
-	1/03/1991	75.25
1991 April	1/04/1991	46.89
1991 M ay	1/05/1991	38.88
1991 June	1/06/1991	35.14
1991 July	1/07/1991	38.28
1991 August	1/08/1991	41.86
		49.47
1991 Septembe		
1991 October	1/10/1991	75.59
1991 November	1/11/1991	79.2
1991 December	1/12/1991	84.09
1992 January	1/01/1992	78.56
1992 February	1/02/1992	64.39
		66.04
1992 March	1/03/1992	
1992 April	1/04/1992	42.61
1992 May	1/05/1992	36.69
1992 June	1/06/1992	31.04
1992 July	1/07/1992	39.34
1992 August	1/08/1992	41.53
1992 Septembe		46.13
1992 Gehiciline	110011002	70.13

1992	2 October	1/10/1992	68.15	
1992	Novembe Novembe	r 1/11/1992	71.12	
1992	2 Decembe	r 1/12/1992	78.99	
1993	3 January	1/01/1993	81.86	
		1/02/1993	69.48	
	March		63.06	
	3 April			
	-	1/05/1993		
	June			
	July			
	August			
	•	1/09/1993		
	October	1/10/1993 1/11/1993		
		r 1/11/1993		
		1/01/1993		
		1/01/1994		
		1/02/1994		
		1/04/1994		
	•	1/05/1994		
	June			
	July	1/07/1994		
	August			
		1/09/1994		
	October	1/10/1994		
1994	November	1/11/1994		
1994	December	1/12/1994	94.17	
1995	January	1/01/1995	73.48	
1995	February	1/02/1995	67.14	
		1/03/1995	66.49	
		1/04/1995		
		1/05/1995		
		1/06/1995		
	-	1/07/1995		
	August	1/08/1995		
	Septembe		46.11	
	October	1/10/1995	72.33	
	November		71.36	
	December January	1/12/1995	83.83 76.59	
	February	1/01/1996	67.57	
	March	1/03/1996	65.91	
1996		1/04/1996	44.39	
1996	-	1/05/1996	39.18	
1996		1/06/1996	32.95	
1996		1/07/1996	38.41	
	•	1/08/1996	42.52	
	Septembe		51.23	
	•	1/10/1996	70.99	
1996	November	1/11/1996	75.29	
1996	December	1/12/1996	88.55	
1997	January	1/01/1997	74.96	
1997	February	1/02/1997	71.19	
1997	March	1/03/1997	68.8	
1997	-	1/04/1997	47.93	
1997	•	1/05/1997	37.79	
1997		1/06/1997	32.28	
1997	July	1/07/1997	38.16	

1997 August	1/08/1997	42.01
1997 Septembe		47.8
,		74.57
	1/10/1997	
1997 November		90.17
1997 December	1/12/1997	99.65
1998 January	1/01/1998	82.54
	1/02/1998	77.34
•	1/03/1998	77.37
	1/04/1998	46.49
1998 May	1/05/1998	37.81
1998 June	1/06/1998	32.18
1998 July	1/07/1998	38
	1/08/1998	43.05
		49.92
1998 Septembe		
1998 October	1/10/1998	68.39
1998 November	1/11/1998	69.47
1998 December	1/12/1998	89.88
	1/01/1999	84.05
, , , , , , , , , , , , , , , , , , , ,	1/02/1999	66.07
	1/03/1999	67.75
	1/04/1999	41.82
1999 May	1/05/1999	39.26
1999 June	1/06/1999	32.15
1999 July	1/07/1999	39.4
1999 August	1/08/1999	43.53
-		
1999 Septembe		50.08
1999 October	1/10/1999	69.78
1999 November	1/11/1999	67.7
1999 December	1/12/1999	80.89
2000 January	1/01/2000	74.19
2000 February		74.96
		65.52
2000 March	1/03/2000	
2000 April	1/04/2000	42.2
2000 May	1/05/2000	36.45
2000 June	1/06/2000	31.1
2000 July	1/07/2000	39.21
2000 August	1/08/2000	41.84
2000 Septembe		53.15
•		
2000 October	1/10/2000	68.11
2000 November		73.5
2000 December	1/12/2000	94.37
2001 January	1/01/2001	89.51
2001 February	1/02/2001	70.53
2001 March	1/03/2001	64.68
2001 April	1/04/2001	45.79
2001 May	1/05/2001	36.85
2001 June	1/06/2001	31.94
2001 July	1/07/2001	32.08
2001 August	1/08/2001	42.25
2001 Septembe		51.12
2001 October	1/10/2001	70.42
2001 November		74.79
2001 December		94.17
2002 January	1/01/2002	85.42
2002 February	1/02/2002	63.17
2002 March	1/03/2002	68.52
2002 April	1/04/2002	47.2
2002 April 2002 May	1/05/2002	37.54
2002 IVIAY	1100/2002	J1.J→

2002 June	1/06/2002	32.42
2002 July	1/07/2002	39.1
2002 August	1/08/2002	34.92
2002 September		51.41
2002 September 2002 October	1/10/2002	73.54
2002 Novembe		83.35
2002 Decembe		93.67
2003 January	1/01/2003	91.54
2003 February	1/02/2003	69.81
2003 March	1/03/2003	64.68
2003 April	1/04/2003	42.8
2003 May	1/05/2003	38.45
2003 June	1/06/2003	33.78
2003 July	1/07/2003	38.73
2003 August	1/08/2003	42.73
2003 August 2003 September		51.63
2003 September		65.9
	1/10/2003	
2003 Novembe		75.76
2003 December		90.82
2004 January	1/01/2004	89.34
2004 February	1/02/2004	82.05
2004 March	1/03/2004	68.57
2004 April	1/04/2004	47.87
2004 May	1/05/2004	38.37
2004 June	1/06/2004	32.89
2004 July	1/07/2004	39.01
2004 August	1/08/2004	43.48
2004 September		49.85
2004 September 2004 October	1/10/2004	73.22
2004 November		79.06
2004 December		89.85
2005 January	1/01/2005	85.79
2005 February	1/02/2005	70.5
2005 March	1/03/2005	65.62
2005 April	1/04/2005	48.9
2005 May	1/05/2005	38.89
2005 June	1/06/2005	33.77
2005 July	1/07/2005	39.76
2005 August	1/08/2005	37.5
2005 Septembe		43.55
2005 October	1/10/2005	71.49
2005 November		74.82
2005 December		99.02
2006 January	1/01/2006	82.58
2006 February		
•		71.69
	1/03/2006	68.73
2006 April	1/04/2006	44.88
2006 May	1/05/2006	29.79
2006 June	1/06/2006	30.01
2006 July	1/07/2006	38.98
2006 August	1/08/2006	43.71
2006 Septembe	1/09/2006	53.76
2006 October	1/10/2006	77.28
2006 November		85.41
2006 December		85.59
2007 January	1/01/2007	88.29
2007 February		67.62
2007 March	1/03/2007	66.56
2007 Walter	110012001	50.50

2007 A	pril	1/04/20	007	44.85
2007 M	•	1/05/20	107	39.88
	•			
2007 Ju		1/06/20		30.36
2007 Ju	uly	1/07/20	007	37.11
2007 A	uaust	1/08/20	007	41.21
	eptembe			50
	•			
2007 O		1/10/20		78.84
2007 N	ovember	1/11/20	007	75.21
2007 D	ecember	1/12/20	007	80.01
2008 Ja		1/01/20		76.65
		1/02/20	J08	61.82
2008 M	larch	1/03/20	800	67.32
2008 A	pril	1/04/20	208	40.64
2008 M	•	1/05/20		37.73
2008 J		1/06/20		33.7
2008 Ji	uly	1/07/20	308	38.12
2008 A	ugust	1/08/20	008	39.38
	eptembe			51.1
2008 O		1/10/2		74.25
2008 N	lovember	1/11/2	800	74.45
2008 D	ecember	1/12/20	800	85.97
2009 Ja		1/01/2		87.65
		1/02/2		71.28
2009 N		1/03/2		68.77
2009 A	pril	1/04/2	009	43.49
2009 N	lav	1/05/2	009	37.64
2009 J	•	1/06/2		32.46
		1/07/2		38.94
2009 J	•			
2009 A	_	1/08/2		46.08
2009 S	eptembe	1/09/2	009	51.48
2009 C	ctober	1/10/2	009	66.69
	lovember			91.2
	ecember			93.46
	anuary	1/01/2		85.84
2010 F	ebruary	1/02/2	010	66.47
2010 N	1arch	1/03/2	010	65.72
2010 A		1/04/2		45
2010 N	•	1/05/2		37.47
2010 J		1/06/2		31.58
2010 J	uly	1/07/2	010	38.59
2010 A	waust	1/08/2	010	40.82
	Septembe			48.08
	•			
	October	1/10/2		66.17
	lovember			72.77
2010 ₺	ecember	1/12/2	010	81.25
	anuary	1/01/2		81.1
	ebruary	1/02/2		69.13
	-			
2011 N		1/03/2		63.22
2011 A	April	1/04/2	011	42.4
2011 N	/lay	1/05/2	011	35.63
	une	1/06/2		31.47
	uly	1/07/2		37.72
	-			
	August	1/08/2		43.97
	Septembe			50.56
2011 0	October	1/10/2	011	66.48
	November	1/11/2	011	78.71
	December			73.21
2012 J	lanuary	1/01/2	.012	72.99

2012 February	1/02/2012	62.35
2012 March	1/03/2012	62.12
2012 April	1/04/2012	43.82
2012 April 2012 May	1/05/2012	36.66
	1/06/2012	31.76
2012 June		
2012 July	1/07/2012	38.73
2012 August	1/08/2012	42.64
2012 Septembe		51.03
2012 October	1/10/2012	73.11
2012 November		81.2
2012 December	1/12/2012	90.35
2013 January	1/01/2013	90.82
2013 February	1/02/2013	65.53
2013 March	1/03/2013	65.58
2013 April	1/04/2013	44.15
2013 May	1/05/2013	37.97
2013 June	1/06/2013	32.71
2013 July	1/07/2013	40.67
2013 August	1/08/2013	44.44
2013 Septembe.		48.1
5.7	1/10/2013	77.19
2013 October 2013 November		77.19
2013 November 2013 December		94.86
,	1/01/2014	87.87
	1/02/2014	71.18
	1/03/2014	64.59
	1/04/2014	43.83
•	1/05/2014	34.54
	1/06/2014	31.13
	1/07/2014	36.09
	1/08/2014	34.66
2014 Septembe		49.75
2014 October	1/10/2014	78.98
2014 November	1/11/2014	90.78
2014 December	1/12/2014	90.49
2015 January	1/01/2015	78.96
2015 February	1/02/2015	68.35
2015 March	1/03/2015	70.31
	1/04/2015	42.29
	1/05/2015	37.5
•	1/06/2015	32.6
	1/07/2015	37.22
	1/08/2015	42.41
2015 Septembe		48.95
·	1/10/2015	78.64
2015 November		81.81
2015 December 1		92.4
	1/01/2016	76.35
2016 February		75.87
•	1/03/2016	72.32
	1/04/2016	48.12
•	1/05/2016	38.61
•	1/06/2016	30.73
	1/05/2016	
•		39.99
•	1/08/2016	42.11
2016 Septembe 1		46.5
	1/10/2016	68.57
2016 November 1	1/11/2016	82.89

	4 14 0 10 0 4 0	00.00
2016 December		96.02
2017 January	1/01/2017	92.73
2017 February	1/02/2017	79.9
2017 March	1/03/2017	67.36
2017 April	1/04/2017	42.4
	1/05/2017	37.62
2017 May		
2017 June	1/06/2017	32.63
2017 July	1/07/2017	26.65
2017 August	1/08/2017	42.01
2017 September	1/09/2017	51.29
2017 October	1/10/2017	62.39
2017 November		75.99
	1/12/2017	93.37
	1/01/2018	89.64
2018 January		
2018 February		73.09
2018 March	1/03/2018	71.59
2018 April	1/04/2018	51.1
2018 May	1/05/2018	37.47
2018 June	1/06/2018	31.81
2018 July	1/07/2018	39.59
2018 August	1/08/2018	41.86
		49.45
	1/09/2018	
2018 October	1/10/2018	71.59
	r 1/11/2018	77.44
	r 1/12/2018	96.87
2019 January	1/01/2019	96.78
2019 February	1/02/2019	72.61
2019 March	1/03/2019	70.61
2019 April	1/04/2019	46.87
2019 May	1/05/2019	37.77
2019 June	1/06/2019	31.82
2019 July	1/07/2019	40.13
2019 August	1/08/2019	42.54
2019 September		52.33
2019 October	1/10/2019	78.73
2019 Novembe	r 1/11/2019	92.94
2019 Decembe	r 1/12/2019	106.43
2020 January	1/01/2020	93.65
2020 February		70.75
2020 March	1/03/2020	64.19
	1/03/2020	44.02
2020 April		
2020 May	1/05/2020	35.9
2020 June	1/06/2020	32.52
2020 July	1/07/2020	39.69
2020 August	1/08/2020	41.15
2020 September	e 1/09/2020	50.63
2020 October	1/10/2020	71.43
2020 Novembe		82.28
2020 Decembe		82.39
ZUZU DECENTIDE	. 1/12/2020	02.00

Appendix D

Contact Water and Leachate Treatment Options

Contact Water and Leachate Treatment Options

Bell Quarry Rehabilitation Project Pty Ltd
19 November 2021

Bell Quarry Appeal

GHD Pty Ltd | ABN 39 008 488 373

133 Castlereagh Street, Level 15 Sydney, New South Wales 2000, Australia

T +61 2 9239 7100 | F +61 2 9239 7199 | E sydmail@ghd.com | ghd.com

Printed date	19 November 2021	
Last saved date	19 November 2021	
File name	https://projectsportal.ghd.com/sites/sp01_02/bellquarrywastefacil/ProjectDocs/12541317. REP_Contact Water and Leachate Treatment Options.docx	
Author	Paul McFadyen	
Project manager	Karl Rosen	
Client name	Bell Quarry Rehabilitation Project Pty Ltd	
Project name	Bell Quarry Appeal	
Document title	Contact Water and Leachate Treatment Options Bell Quarry Appeal	
Revision version	Rev 1	
Project number	12541317	

Document status

Revision	Author	Reviewer		Approved for	Approved for issue		
		Name	Signature	Name	Signature	Date	
1	P McFadyen	M Brannock	Juga	A Dixon	a. Dixon	19/11/21	

© GHD 2021

This document is and shall remain the property of GHD. The document may only be used for the purpose for which it was commissioned and in accordance with the Terms of Engagement for the commission. Unauthorised use of this document in any form whatsoever is prohibited.

Contents

1.	Introd	luction		1
	1.1	Overvi	iew	1
	1.2	Purpos	se of this report	1
	1.3	Definit	tions and Abbreviations	1
	1.4	Backg	round	2
2.	Water	treatme	nt	4
	2.1		of Design	4
		2.1.1	Feed Flow	
		2.1.2	Feed Water Quality	5
		2.1.3	Treatment Requirements	9
		2.1.4	Assumptions	11
		2.1.5	Shortlisted Options	12
		2.1.6	Pros and cons	12
	2.2	Preferr	red Option	14
		2.2.1	Vendor Engagement	14
		2.2.2	General Treatment Process	14
		2.2.3	Estimated Treatment Performance	14
		2.2.4	Delivery and Commissioning Timeframe	15
		2.2.5	Footprint	16
		2.2.6	Electrical Requirements	16
		2.2.7	Waste Management	16
3.	Concl	usion		17
4.	Refere	ences		18
	Appen	dix A – A	ssessment Team	20
	• •		Paul McFadyen	20
			Matthew Brannock	20
			Brendan Dagg	20
Tak	ole in	dex		
Table	e 1.1	Defi	nitions	1
Table	e 1.2	Abbi	reviations	2
Table	2.1		er Quality Sampling data (Samples taken November 2017, Sample erence Number 12950).	6
Table	2.2		tact Water and Leachate Sample Analysis Requirements	8
Table	2.3		ated Water Quality Targets	9
Table			s and Cons assessment of the shortlisted treatment options	12

Figure index

Figure 2.1	Bells Quarry Site at Newnes Junction, NSW	4
Figure 2.2	Example simplified process schematic (courtesy of MAK Water)	14

Appendices

Appendix A Assessment Team

1. Introduction

1.1 Overview

This report has been prepared to support the amendments to the Development Application related to contact water and leachate quality treatment.

GHD Pty Ltd (GHD) have prepared a contingency water quality treatment strategy to manage excess contact water in the unlikely event it cannot be managed on site in a fully contained system (see the Revised Water Resources Assessment GHD, 2021). If the volumetric contact water storage trigger were exceeded in the contact water storage, a treatment plant would be commissioned and operated to treat the contact water to a high quality to ensure that any water to be discharged off-site will have a neutral or beneficial effect NorBE) on receiving water quality.

The Bell Quarry Rehabilitation Project has the benefit that a detailed study was undertaken by the NSW Office and Environment and Heritage (OEH 2015), and more recent surface water monitoring as summarised in the Revised Water Resources Assessment (GHD, 2021). These provide a detailed data set of background surface water quality in the area. As such, a contingency contact water treatment plant is proposed.

The treatment process has been designed to treat the contact water and leachate and achieve background water quality (OEH 2015).

Based on the available data it is expected that the trigger values for groundwater quality in the Revised Water Resources Assessment (GHD, 2021) will not be exceeded. It would be a period of time (if it ever eventuated) before groundwater levels exceeded and presented a risk of seeping out of the lined cells. The strategy involves a detailed monitoring program to confirm the leachate quality should it be needed to be treated and confirm the treatment plant's specifications are also suitable for it.

However, potential treatment of the leachate has been considered in this assessment in the case that it is necessary. Treatment of the leachate represents the worst-case scenario in terms of water treatment on the site and ability to meet the discharge water quality targets as discussed further in section 2.1.

1.2 Purpose of this report

This report presents the alternative treatment options that are able to achieve the background water quality (OEH 2015).

1.3 Definitions and Abbreviations

Table 1.1 outlines various definitions of key terms used throughout this report.

Table 1.1 Definitions

Term	Definition
Leachate	Water which seeps through the proposed fill
Contact Water	Water which runs off the exposed fill
Clean Water	Water which runs off rehabilitated areas and water which is stored in the ponds and not influenced by leachate, contacted water or potentially sediment laden water
Potentially sediment laden water	Water which runoffs disturbed areas of the site including those undergoing rehabilitation
Groundwater	Water within the in-situ geology

Table 1.2 outlines the abbreviations used throughout this report.

Table 1.2 Abbreviations

Abbreviation	Definition
AC	Alternating Current
AS	Antiscalant
ASLP	Australian Standard Leaching Procedure
CF	Cartridge Filter
DA	Development Application
EIS	Environmental Impact Statement
ENM	Excavated Natural Material
ID	Insufficient Data
LEC	Land and Environment Court
OEH	Office and Environment and Heritage
RO	Reverse Osmosis
RtS	Response to Submission
SEPP	State Environmental Planning Policy
SMBS	Sodium Metabisulfite
SRD	State and Regional Development
TOC	Total Organic Carbon
TSS	Total Suspended Solids
UCPR	Uniform Civil Procedures Rules
UF	Ultrafiltration
VENM	Virgin Excavated Natural Material
WRPP	Western Regional Planning Panel

1.4 Background

Bell Quarry Rehabilitation Project Pty Ltd (the Applicant) seeks to rehabilitate the Bell Quarry site, located on Sandham Road at Newnes Junction, approximately ten kilometres east of Lithgow in NSW. The development application (DA) seeks to achieve the final rehabilitated landform via importation of virgin excavated natural material (VENM), excavated natural material (ENM) or comparable material (that meets an exemption pursuant to clauses 91 and 92 of the Protection of the Environmental Operations (Waste) Regulation 2014), sourced from earthworks projects across Sydney and the local regional area (the Project).

The DA (294/18) is Designated Development and is also defined as Regional Development under clause 7, Schedule 7 of the State Environmental Planning Policy (State and Regional Development) 2011 (SRD SEPP). The DA was notified and assessed by Lithgow City Council (Council), and subject to consent by the Western Regional Planning Panel (WRPP).

An Environmental Impact Statement (EIS) was prepared by GHD to support the DA and submitted to Council in October 2018 (GHD, 2018). The DA and EIS were placed on exhibition for a 60-day period from 19 January to 20 March 2019. A Response to Submissions (RtS) Report was prepared by GHD in June 2019 to address the issues raised in submissions during exhibition and additional responses were provided to Council in October and November 2019.

The WRPP refused the DA on 6 April 2020 following a public panel meeting. The primary reasons for the refusal were based around the potential for adverse environmental impacts upon the downstream receiving environment in the Greater Blue Mountains World Heritage Area and disruption to the amenity of the local community.

The Supplementary EIS modifies the original DA to rehabilitate a former quarry site via importation of VENM and ENM or comparable material (that meets an exemption pursuant to clauses 91 and 92 of the Protection of the Environmental Operations (Waste) Regulation 2014), sourced from earthworks projects across Sydney and the local regional area (the Project).

Modifications to the original DA related to water quality management include:

- Adjusted staging plans to facilitate the separation of clean, contact and potentially sediment laden waters
- Implementation of a refined surface water management system to mitigate the contact of surface flows with the fill material
- Implementation of a contact management system to provide detention and irrigation of contact water and filtration of sediment prior to release to the receiving environment
- Management plans to control filling, sequencing, runoff, and the different water types.

2. Water treatment

Based on the current water quality observed at the quarry (Hydrological Study Proposed Rehabilitation of Bell Quarry, Martens, November 2021), there will be a requirement to treat the contact water prior to discharge from the site (if contact water discharge is required as detailed in the Revised Water Resources Assessment (GHD, 2021)). This section outlines the basis of design, options investigated, preferred option and vendor engagement for the treatment of contact water and leachate to an acceptable limit as outlined in section 2.1.3.

To reiterate, based on the assessment contained in the Revised Water Resources Assessment (GHD, 2021), there is a low likelihood that the treatment plant will be needed as it is predicted that the contact water will be able to be fully contained on the site. The conditions under which the treatment plant would be required are detailed in the Revised Water Resources Assessment (GHD, 2021).

2.1 Basis of Design

Figure 2.1 depicts an aerial of the Bell Quarry site.

Figure 2.1 Bells Quarry Site at Newnes Junction, NSW

2.1.1 Feed Flow

Feed to the treatment process will come from the approximately 35 ML eastern void storage on site. If treatment is required, there would be a requirement to treat approximately 85 kL/d of flow (weather dependent) which will be drawn from this pond. Treated water from the selected technology will be discharged off site with the location depicted on the staging plans for the project. The waste from the system will be initially contained in a tank and as needed transported to the active emplacement area and disposed on site as further described in the draft Environmental Management Plan (GHD, 2021).

2.1.2 Feed Water Quality

Feed water quality was based on the ADE data (ADE Consulting Group, 2017) plus some parameters were assumed based on previous project experience as outlined in Section 2.1.4. As it is predicted there will be a period of several operational years before any treatment plant is required (if ever), there will be the opportunity to undertake additional sampling prior to detailed design.

ASLP data based on 12 analytical results from 9 soil samples has been used to estimate the feed water quality. The ASLP is expected to be a conservative representation of the contact water quality directed to the contact water pond. This is because of the difference between the conditions which generate site runoff contact water (contact time and intensity of water/soil mixing) and the method used for ASLP testing.

To provide explanation and context for the ASLP testing method, it is based on samples being agitated with a leaching solution for a period of 18 hours. Each sample is screened to remove larger particles and placed in the rotary agitation apparatus with the leaching fluid. Each sample is rotated in an end-over-end fashion at a speed of 30+/- 2 rotations per minute for a period of 18 hours (+/- 2 hours).

The water in rainfall run-off from the site fill will have limited contact because it is flowing over the surface rather than being mixed within the material as is the case with ASLP testing. Further, once run-off is initiated, surface flow will be quick and the contact time with the fill will be short, minimising the time for partitioning from soil to water. ASLP, on the other hand, agitates soil samples in solution for 18 hours.

It is noted that in some instances water may pond in dedicated locations across the site for short periods before being pumped to the contact pond, which will increase the contact time relative to rainfall run-off. However, the nature of a ponded water column still limits contact with the underlying sediment (relative to ASLP) and any water contacting and migrating into the sediment will ultimately become leachate in the pits as opposed to being directed to the contact water pond.

Leachate from the rainwater and groundwater that seeps into the fill material will have a longer contact time for chemical reactions and dissolution of contaminants to occur. Therefore, the ASLP data is expected to more closely represent the leachate water quality than the contact water quality.

The ASLP data has been adopted as the basis of design for feedwater quality to a water treatment plant and this is expected to reflect worst-case conditions (leachate rather than contact water). Typically, the volume of leachate is expected to be small relative to that of contact water or clean water from the site, so the feed water quality to the plant should generally be of higher quality than the ASLP data.

Water quality available at this point in time is outlined within Table 2.1.

Note that the sample data is pre the approximately 35 ML eastern void storage and as such flow entering the treatment process will be slightly different in composition due to the benefit and chemistry effects that occur in feed ponds. This includes but is not limited to minor offgassing of CO₂ leading to pH change and the precipitation of some metals. Due to the limited number of samples available currently there is potential for higher concentrations of some substances in the eastern void storage. As outlined above, further sampling will occur to further define this feed water quality in future phases.

It is also noted that there are several parameters that are important for treatment design and performance purposes were not analysed in the ASLP testing; this is discussed in subsequent sections. Additional sampling is to include laboratory analysis of the analytes/parameters provided in Table 2.2 to enable assessment of treatment requirements (if treatment is determined to be necessary). Additional field analyses are required to complement these laboratory analyses as outlined in the Revised Water Resources Assessment (GHD, 2021). The collection and assessment of operational phase water quality data for the contact water and leachate will be utilised in the final design of the treatment plant, if treatment is found to be necessary.

A number of contingencies are available in the event that additional water quality data indicates contact water or leachate water has higher contaminant concentrations than the RO system can treat to achieve the required limits. These are discussed further in section 2.2.3.

Carting Cart	(ASLP (ASLP	(ASLP Using Quarry Water-Sin(Silty CLAY) <2 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10		ASLP Caechade using Quarry	arrain (DI) Addoc-ASLP Addoc-ASLP ing ing ing ing ing ing ing ing ing ing	(DI) OAQC- (OAQC- ASLP Duplicate of Leachate 12950-Tuggerah) Using Delonised Delonised SAND	(QAQC-Duplicate of 12850- Tuggerah) <1 <10 <100 <100 <0.1
ug/L <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<pre><2 <10 <10 <10 <11 <1 <1 <1 <1 <10 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <</pre>	42 410 410 41 41 41 410 60 4100 60 4100 60 4100 60 4100 60 4100 60 4100 60 4100 60 4100 60 61 61 61 61 61 61 61 61 61 61 61 61 61		. 9 9 9	.5 .5 .00 .00 .00	. 0 0 0	<pre><1 <100 <100 <100 <100 <0.1 </pre>
ug/L 410 <10	 <10 <0.1 <1 <1 <1 <10.5 <100 <100 <100 <100 <10 <10 <1 <1 <13 <1 	. 9 9 9		9 9 9	5 5 50 00		<100 <100 <100 <100 <0.1
ug/L c1 c0.1 c	 /ul>						4100 4100 4100 40.1
ug/L c1 c	5 <0.5 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100		2. 00 00 C. 2.				4100 4100 4100 40.1
ug/L <1	5 <0.5 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100		8. 000 000 L. 8.				4100 4100 4100 4100 4100 4100 4100 4100
ug/L <1	5 <0.5 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100 00 <100						4100 4100 4100 60.1
ug/L 60.5 6.0.5 60.5 <t< td=""><td> <0.5 <100 <100 <100 <10.4 <1 <20 <0.5 <1 /ul></td><td></td><td></td><td></td><td></td><td></td><td><100 <100 <100 <0.1</td></t<>	 <0.5 <100 <100 <100 <10.4 <1 <20 <0.5 <1 /ul>						<100 <100 <100 <0.1
nn ug/L <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <100 <	 <100 <100 <100 <10 <1 /ul>						<100 <100 <100 <0.1
Age Fraction ug/L c100	00 <100 10 <100 0.4 <1 <1 <1 20 <20 5 <0.5						<100 <100 <0.1
40 Fraction ug/L < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100 < 100	00 <100 0.4 <1 <1 <1 5 <0.5						<0.1
tum total ug/L c0.1 c1.2 c1.4 c1.7	0.4 <1	2 7 2 9 2 7		19			<0.1
modulational mg/L <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	5 <0.5 13		Σ ω δ Σ	r,			
def mg/L 5 8 20 10 5 5 yrifos ug/L -0.5	5 <0.5 7 13	2 7 6 5	₽ \$ \$	ις		₽	
yrifiost ug/L <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	5 <0.5 7 7 13	2 7 6	0 7		6	кo	
lium total ug/L 1 2 7 1 <1 <1 ar total ug/L <1	7 13				<0.5 <0.5	5 <0.5	
rotation ug/L <1 2 13 2 <1 <1 real Conductivity cre/1/100mL <2	13			7	<1 15	14	⊽
Cel U,100mL <2 <1 <1 <1 cal Conductivity uS/cm 30 36 124 58 35 33 uuffan uS/cm <0.5			حا حا	7	1 8	rc C	⊽
onductivity uS/cm 36 124 58 35 33 ug/L <0.5	7		ح ح	<2	<1 <2	₽	
total ug/L <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <t< td=""><td>124</td><td></td><td>33 31</td><td>248</td><td>43 4</td><td>31</td><td></td></t<>	124		33 31	248	43 4	31	
forms ug/L <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <t< td=""><td><0.5</td><td></td><td><0.5 <0.5</td><td><0.5</td><td><0.5</td><td>5 <0.5</td><td></td></t<>	<0.5		<0.5 <0.5	<0.5	<0.5	5 <0.5	
forms CFU/100mL 2600 <1 <2 <2 <1 <1 ug/L 60.5 60.1 </td <td><0.5</td> <td></td> <td><0.5 <0.5</td> <td><0.5</td> <td><0.5 <0.5</td> <td>5 <0.5</td> <td></td>	<0.5		<0.5 <0.5	<0.5	<0.5 <0.5	5 <0.5	
ug/L <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <th< td=""><td>\$</td><td></td><td><1 <1</td><td><2</td><td><1 32</td><td>e</td><td></td></th<>	\$		<1 <1	<2	<1 32	e	
teal og/L <1 3 10 4 <1 <1 sium total mg/L <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<0.5	8	<0.5 <0.5	<0.5	<0.5 <0.5	.5 <0.5	
sium total mg/L <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	10		حا حا	7	<1 2	2	⊽
y ug/L co.1 co	₽		₹	₽	₹	⊽	
alene ug/L <1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1	<0.1		<0.1 <0.1	<0.1	<0.1 <0.1	1 <0.1	<0.05
total ug/L <1 6 <1 <1 6 ug/L 10 20 2350 20 20 30 ug/L <10	<0.1		<0.1 <0.1	<0.1	<0.1 <0.1	1 <0.1	
ug/L 10 20 2350 20 20 30 ug/L <10	9		6	4	2 6	7	۲,
ug/L <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <td>2350</td> <td></td> <td>30 <10</td> <td>40</td> <td>130 <10</td> <td>20</td> <td></td>	2350		30 <10	40	130 <10	20	
rsphorus total pH Unit 6.67 6.16 6.38 6.04 4.86 5.28 sssium total ug/L 40 <10	<10		<10 <10	<10	<10 <10	<10	
al ug/L 40 <10 80 <10 10 <10 10 10 10 10 10 10 10 10 10 10 10 10 1	6.38		5.28 5.76	6.42	6.42 5.93	3 5.65	
mg/L <1 <1 <1 <1 2	80		<10 <10	<10	<10 20	<10	
			2 <1	-1	7	₹	
Reactive Phosphorous ug/L <10 <10 <10 10 <10 <1	<10		<10 <10	<10	<10 30	20	
Sodium total mg/L 4 16 23 11 5 4 6	23			43	80 F	ស	
Sulfate mg/L 2 2 21 8 8 6 5	21			21	2 <1	2	

Analyte/Parameter	Units	Tuggerah (ASLP Leachate using Quarry Water - SAND)	Faulconbridge (ASLP Leachate using Quarry Water - Sity SAND)	Blacktown (ASLP Leachate using Quarry Water - Silty CLAY)	Ashfield (ASLP Leachate using Quarry Water - Weathered Shale)	Glenorie (ASLP Leachate using Quarry Water - SilvSilty CLAY)	Lucas Heights (ASLP Leachate using Quarry Water - Clayey SAND)	Hawkesbury (ASLP Leachate using Quarry Water - SANDSTONE)	South Creek (ASLP Leachate using Quarry Water - Silty SAND)	Disturbed Terrain (DI) QAQC-ASLP Leachate using Deionised Water - Silty SAND	Tuggerah (DI) QAQC- ASLP Leachate using Deionised Water -	12950-BR1 (QAQC: Duplicate of 12950-Tuggerah)	12950-SR1 (QAQC-Duplicate of 12950- Tuggerah)
Total Alkalinity	mg/L	ro.	က	m	<u>~</u>	₹	۷.	₽	4	4	₹	CC CC	
Total Kjeldahl Nitrogen	ng/L	400	200	009	<100	100	<100	100	<100	200	400	200	
Total Nitrogen	ng/L	400	200	3000	<100	100	<100	100	<100	300	400	200	
Zinc total	ng/L	30	74	484	54	43	135	42	64	160	528	33	d

Note: values above with '<' are less than the limit of detection for the test used

Table 2.2 Contact Water and Leachate Sample Analysis Requirements

Analyte/Parameter	Analyte/Parameter	Analyte/Parameter
pH Value	Arsenic (Total and Dissolved)	Boron (Total and Dissolved)
Electrical Conductivity	Beryllium (Total and Dissolved)	Free Chlorine
Total Dissolved Solids 25°C	Barium (Total and Dissolved)	Silica (reactive)
Total Dissolved Solids (sum ions)	Cadmium (Total and Dissolved)	Silica (total)
Total Suspended Solids	Chromium (Total and Dissolved)	Ammonia as N
Turbidity	Cobalt (Total and Dissolved)	Nitrite as N
Hydroxide Alkalinity as CaCO ₃	Copper (Total and Dissolved)	Nitrate as N
Carbonate Alkalinity as CaCO₃	Lead (Total and Dissolved)	Nitrite + Nitrate as N
Bicarbonate Alkalinity as CaCO ₃	Manganese (Total and Dissolved)	Total Kjeldahl Nitrogen as N
Total Alkalinity as CaCO ₃	Molybdenum (Total and Dissolved)	Total Nitrogen as N
Carbon Dioxide	Nickel (Total and Dissolved)	Total Phosphorus as P
Bicarbonate	Vanadium (Total and Dissolved)	Reactive Phosphorus as P
Carbonate	Zinc (Total and Dissolved)	Total Organic Carbon
Calcium Hardness as CaCO ₃	Iron (Total and Dissolved)	COD
Magnesium Hardness as CaCO ₃	Strontium (Total and Dissolved)	Meta- & para-Xylene
Total Hardness CaCO ₃	Aluminium (Total and Dissolved)	Naphthalene
Sulfate as SO ₄	Antimony (Total and Dissolved)	Ortho-Xylene
Hydrogen Sulfide	Lithium (Total and Dissolved)	Benzene
Chloride	Selenium (Total and Dissolved)	Cyanide
Fluoride	Thallium (Total and Dissolved)	Total Anions
Bromide	Uranium (Total and Dissolved)	Total Cations
Calcium	Tin (Total and Dissolved)	Oil & Grease
Magnesium	Titanium (Total and Dissolved)	N/A
Sodium	Silver (Total and Dissolved)	Bacterial Analyses (total plate count
Potassium	Mercury (Total and Dissolved)	

Note: Bold indicates necessary for treatment plant design

The analytes in Table 2.2 represent those necessary for the design of a treatment plant and also those required to allow comparison of estimated treated water quality concentrations with background concentrations. Per Table 17 in the Bell Quarry Appeal, Revised Water Resources Assessment (2021), this analysis suite would be undertaken quarterly for the first year of the project for leachate and contact water. Following the first year, these may be rationalised to remove those analytes that will be comfortably treated in the treatment plant to the background limits (if the treatment plant is ever required).

Once the monthly monitoring of contact water and leachate is initiated following the 30% contact water storage capacity trigger, at least 6 months of full treatment design sample analyses (bolded in Table 2.2) will be required to enable confident design of the treatment plant.

Per the Revised Water Resources Assessment (GHD, 2021), when the eastern void exceeds 45% of the total capacity, receival of material would cease. Covering of all exposed fill areas is commenced and completed within 40 days. After this the catchment would be diverted around the eastern void. This was determined as the period of time required to minimise the risk of high water level in the eastern void, enabling sufficient time for the treatment plant to be implemented.

The likelihood of the historical climate exceeding the 45% capacity trigger is approximately 15 percent of the time and when climate change is considered, the likelihood reduces to 11% (Revised Water Resources Assessment

GHD, 2021). Noting that this is based on the critical phase modelled in the water balance only represents one stage of the project, and as there is approximately 12 months before the first stage of filling extends above the land surrounding the quarry void, there is sufficient time to retain contact water in the void, if needed and not exceed the 45% capacity trigger. During this time the 6 months of full treatment design sample analyses (bolded in Table 2.2) to enable confident design of the treatment plant would be able to be obtained should the 30% contact water storage capacity be exceeded. Also if needed, this may involve reducing the filling area to less than 1.3 Ha to slow down the rise of contact water in the storage.

Manual dosing of chemical flocculants into the sediment basins to manage water quality for discharge from those basins will be carefully managed as it is acknowledged flocculants can foul the membranes in a reverse osmosis treatment plant. If a treatment plant is implemented, consultation with the vendor on appropriate flocculants and pond dosing methodologies will occur. Non-polymer flocculants (e.g. gypsum) are preferred upstream of membrane treatment systems.

2.1.3 Treatment Requirements

Table 2.3 outlines the treated water quality targets adopted for this project, with the analysis being based on the Specification. The specification represents the 80th %ile water quality data for the background water quality (Office of Environment and the Heritage, 2015).

Table 2.3 Treated Water Quality Targets

Analyte/Parameter	Specification - Based on Receiving water stream 80th %ile (mg/L)
Aluminium dissolved	0.192
Aluminium total	0.516
Ammonia N	0.02
Antimony Dissolved	0.0006
Antimony total	0.00102
Arsenic dissolved	0.00175
Arsenic total	0.001409
Barium dissolved	0.01132
Barium total	0.013
Benzene	Not Included
Beryllium dissolved	0.000151
Beryllium total	0.000152
Bicarbonate Alkalinity	3
Boron dissolved	0.05
Boron total	0.05
Cadmium dissolved	0.000117
Cadmium total	9.28E-05
Calcium dissolved	0.377011
Calcium total	0.3
Carbonate Alkalinity	3
Chloride	7.5
Chromium dissolved	0.000503
Chromium total	0.000576
Cobalt dissolved	0.00167

Analyte/Parameter	Specification - Based on Receiving water stream 80th %ile (mg/L)
Cobalt total	0.00199
Conductivity	34.2
Copper dissolved	0.0005
Copper total	0.0005
Cyanide	Not Included
Dissolved Oxygen	Not Included
Electrical Conductivity	Not Included
Fluoride	0.15
Free Active Phosphorus	0.004
Hardness	3
Hydrogen Sulfide	Not Included
Hydroxide Alkalinity	3
Iron dissolved	0.99
Iron total	1.878
Lead dissolved	0.000583
Lead total	0.000981
Lithium dissolved	0.00058
Lithium total	0.0004995
Magnesium dissolved	0.56
Magnesium total	0.5
Manganese dissolved	0.066385
Manganese total	0.07575
Mercury	0.000025
Meta- & para-Xylene	Not Included
Molybdenum dissolved	0.000529
Molybdenum total	0.000969
Naphthalene	Not Included
Nickel dissolved	0.00099
Nickel total	0.00085
Nitrite and Nitrate	Not Included
NOx N	0.25
Ortho-Xylene	Not Included
рН	5.9
Phosphorus dissolved	0.02
Phosphorus total	0.02
Potassium dissolved	0.3
Potassium total	0.5
Reactive Phosphorous	Not Included
Selenium dissolved	0.002

Analyte/Parameter	Specification - Based on Receiving water stream 80th %ile (mg/L)
Selenium total	0.001
Silicon dissolved	2.81823
Silicon total	3.21257
Silver dissolved	0.00005
Silver total	0.00005
Sodium dissolved	4.3
Sodium total	4.6
Strontium dissolved	0.0047
Strontium total	0.0047
Sulfate	2.5
Sulfur total	0.68314
Thallium dissolved	0.290637
Thallium total	0.00192
Tin dissolved	0.002418
Tin total	0.000798
Titanium dissolved	0.005
Titanium total	0.006168
Total Kjeldahl Nitrogen	0.7
Total Alkalinity	3
Total Dissolved Solids	27
Total Nitrogen	0.15
Total Phosphorus	0.023383
Total Suspended Solids	5
Turbidity	Not Included
Vanadium dissolved	0.00685
Vanadium total	0.001404
Zinc dissolved	0.0059
Zinc total	0.0055

Note: Several of the parameters above were not tested in the ASLP sample data currently available

2.1.4 Assumptions

Due to the limited existing water quality data reflecting the characteristics of run-off and leachate associated with the operational phase (i.e. future fill materials - VENM, ENM, or comparable material), the following assumptions were made for the design of the water treatment options:

- TSS is to be at an upper limit of 200 mg/L when entering the treatment process
- Dissolved Iron and Manganese are to be less than 0.1 mg/L
- Free Chlorine is less than 0.1 mg/L
- Total Organic Carbon less than 1 mg/L
- Chromium is in Cr (VI) form

Algae growth in the dam will not be an issue (if it is then additional pre-treatment or in-dam algae
management strategies will need to be further considered – data/observations on algae presence can be
gathered during operational phase prior to potential treatment plant operation and management strategies
developed). GHD is not aware of previous algae issues, which is supported by the existing water quality
monitoring data for the voids.

If these assumptions are not realised, the implications would likely be limited to additional pre-treatment stages and/or chemical dosing, which are cost implications rather than impacts affecting the ability to treat to the required water quality. The assumptions above will be verified through operational phase water quality monitoring (the contact water and leachate) prior to final design of the treatment plant, if treatment is found to be necessary.

2.1.5 Shortlisted Options

Based on the water quality data for feed and treated water the following options were considered for the management of water onsite:

- 1. Additional pond storage for evaporation
- This option includes the installation of additional pond storages or tank storage to provide additional
 evaporation area reducing the water volume and then dispose any residual salt or sludge within the emplaced
 material (draft Environmental Management Plan GHD, 2021)
- 2. Assisted evaporation systems
- This option includes the installation of assisted evaporation units to enhance evaporation rates over the water storages to further reduce the water volume and then dispose any residual salt or sludge within the emplaced material (draft Environmental Management Plan GHD, 2021)
- 3. Thermal Evaporation with distillate / water recovery
- This option includes the installation of a thermal evaporation system with distillate recovery, likely in the form of concentrator and crystalliser
- 4. Thermal Evaporation to atmosphere
- This option includes the installation of a thermal evaporation system with the evaporative steam released to the atmosphere
- 5. Humidification to atmosphere
- This option includes the installation of a humidification system with the evaporative steam released to the atmosphere
- 6. Ion-Exchange
- This option involves the installation of an ion exchange unit with resin recovery and regeneration
- 7. Reverse Osmosis (RO) with pre-treatment
- This option involves the installation of a reverse osmosis system with relevant pre-treatment for membrane protection

2.1.6 Pros and cons

To assess the various options outlined in Section 2.1.5 to determine a preferred option for this scenario, a pros and cons list was developed as outlined in Table 2.4.

Table 2.4 Pros and Cons assessment of the shortlisted treatment options

Option	Pros	Cons
1. Pond Storages	"Low tech" option Minimal operational requirements	Requires large amount of land and limited at the site

Option	Pros	Cons
2. Assisted Evaporation Systems	Lower cost than thermal evaporation Weather station controller available to limit operation of evaporation units to appropriate weather conditions	 Overspray (salt drift) from surface evaporators may cause damage to adjacent vegetation Wind conditions need to be appropriate to enable evaporator operation, reducing potential for assisted evaporation Concentrated residual remains in pond for subsequent removal
3. Thermal Evaporation with Water Recovery	Robust removal of a wide range of analytes	Likely long lead time for thermal treatment options (>18-24 months) Significantly more expensive in comparison to other options Very high energy requirements Potentially complex to operate Due to the treated water requirement will require a remineralisation step via calcite filter or chemical dosing
4. Thermal Evaporation to Atmosphere	No liquid recovery for disposal or management	 Likely long lead time for thermal treatment options Significantly more expensive in comparison to other options Potentially complex to operate although service agreements may be available to allow specialists to operate Very high energy requirements
5. Humidification to Atmosphere	No liquid recovery for disposal or management	 Likely long lead time for thermal treatment options Significantly more expensive in comparison to other options Potentially complex to operate High energy requirements
6. Ion- Exchange	Good removal of hardness and some metals (depending on form)	 Targets a limited number of analytes Ion Exchange resin can be difficult to maintain and requires disposal Additional cost of resin to replace Potentially complex to operate
7. Reverse Osmosis	 Robust removal of a wide range of analytes Proven and readily available technology with a large number of applications (enables easy sourcing of maintenance, spare parts and support including operational contracts) Brine stream to be managed onsite 	 Treatment via reverse osmosis removes the majority of dissolved substances from the raw water (i.e. both undesirable contaminants and salts are removed). Some salts (e.g. calcium carbonate) will need to be re-added to the treated water stream to ensure that the water is chemically compatible (i.e. does not excessively dissolve or scale contact materials) with downstream infrastructure and environment.

Based on the summary presented above, reverse osmosis has been selected as the preferred option to be investigated or implemented (if ever required). This is based on the robustness of the technology to treat a wider range of analytes and it being a proven technology used in a number of similar applications (e.g. mine water treatment, landfill leachate etc) with the following reference citing 55 case studies for such applications within Australia from one vendor (MAK Water, 2021). RO operation is typically less complex and has lower delivery times compared with the other technologies considered (with the exception of pond storage) and would achieve similar performance outcomes.

2.2 Preferred Option

2.2.1 Vendor Engagement

Based on the preferred option being RO and the size of the treatment process required being relatively small, two vendors who specialise in these areas were contacted:

- MAK Water
- Watercore.

Two independent vendors' assessments were sufficient to provide a confirmation of suitability of the required technology options and their relative merits.

2.2.2 General Treatment Process

The general treatment process for this system would involve:

- Pump system to remove water from the pond storage to the RO treatment process
- Ultrafiltration (UF) pre-treatment for the removal of suspended solids, algae and any other potential issues
 to the membrane
- Cartridge filtration (CF) used as a polishing step and as a failsafe to protect the RO membrane from any unexpected solids breakthroughs
- Antiscalant (AS) dosing for removal of scaling and fouling from the membranes
- RO membrane for removal of problematic analytes within the water. Both vendors estimated RO recovery
 would be approximately 70% (i.e. 70% of the feed water would report to the treated water stream and 30% of
 the feed water would report to waste, discussed further in section 2.2.7).
- Calcite filter or chemical dosing likely to be required for remineralisation of permeate
- Associated instrumentation for control and operation of the system

Figure 2.2 outlines the general treatment process for the system as supplied by MAK Water, with the media filter being an alternative to ultrafiltration.

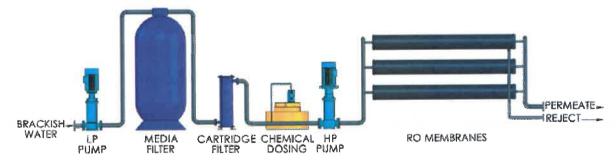


Figure 2.2 Example simplified process schematic (courtesy of MAK Water)

As part of the treatment process there will be a requirement to backwash the membranes and filters and apply antiscalant dosing to extend membrane life through prevention of scaling. This is addressed via the control system and will be an automatic process based on water quality produced to trigger these actions. In the event the unit is required to be stopped due to no or low level in the storage pond, it is recommended that the membranes are flushed and kept hydrated with RO permeate even if the system itself is not operational for a period of days, which the vendors have the capability to do. If the plant is not operational for a period of weeks, the RO membranes will need to be preserved in a sodium bisulphate solution or similar.

2.2.3 Estimated Treatment Performance

Based on the treated water quality requirements outlined in Table 2.3 within Section 2.1.3, there are some potential risks in meeting the target requirements. In particular analytes such as chloride, nitrate and total nitrogen

are too high in some of the feed samples (South Creek, Blacktown) to meet the nominated treated water requirements if treated by RO. Therefore, as additional contact water pond and leachate sampling occurs, further clarity will be achieved around likely feed water quality and resultant treated water quality.

Other analytes important for technology design include total suspended solids (TSS), dissolved iron and manganese, free chlorine and total organic carbon (TOC), which are not included within the existing sampling data. Realistic values have been assumed, as outlined in the assumptions, based on previous project experience. However, there is a risk that this will vary resulting in some variation from the values recommended within this study. Supplementary runoff water quality sampling will be required once the fill material is brought on site and more representative runoff samples are available.

The sample data provided does not indicate which form of chromium the sample is based on, with the type of chromium effecting the removal. In water quality analysis the common chromium of interest is Cr(VI), which is what has been assumed for this assessment. If it is found that it is in fact Cr(III) (which is relatively insoluble), or a mixture of the two forms of chromium, then the removal of the precipitated Cr(III) via pre-treatment filtration would result in higher overall removal within the entire treatment process.

In addition, once more sampling data is available, if the treated water quality objectives are not able to be met with single pass RO system, an additional RO pass (i.e. another RO in series) can be utilised to improve overall contaminant rejection rates. Although, this may decrease the overall recovery and consequently increase the volume of waste reintroduced into the emplaced material. These additional volumes could be balanced if needed by the application of cover to increase the shedding of rainfall and reduce infiltration during the operational phase.

There is potential to estimate treated water quality for those parameters not included in the existing sample analyses or to back-calculate from the treated water quality requirements to determine a feed water quality limit for the feed water. However, treatment performance is specific to individual analytes and their interaction, so generalisations or rules-of-thumbs for contaminant removals would be very approximate. Estimates would require further assumptions to be made including pre-treatment removal contribution and the effects of feed pond buffer storage.

This further supports the need for additional sampling during the operational phase for both contact water and leachate per the sampling schedule in the Revised Water Resources Assessment (GHD, 2021). This will provide a more informed water quality dataset for specifying the water treatment technology requirements and arrangement. Individual analytes varying from the assumptions may lead to lower recoveries (i.e. higher waste stream volumes) or multiple pass treatment systems (as outlined above) increasing complexity and costs. There is potential to offset this variation through introducing clean water to dilute the treatment plant feed however the benefit or requirement for this will need to be considered further when more data is available.

In the event that future contact water or leachate has higher contaminant concentrations (for example from different fill materials) than the RO system can treat to achieve the required limits, a number of contingencies are available, which will be employed if necessary:

- Clean water runoff from rehabilitated or natural catchments can be blended with the RO system feed water to assist in achieving the required discharge water quality
- If there is no immediate pressure to discharge from the contact water pond (i.e. there is still sufficient
 available storage capacity in the pond), treated water may be recycled back into the pond (or a tank to be
 blended with the pond water for treatment) to gradually improve pond water quality, to a point where the feed
 water quality can again be treated to meet the treated water quality

Therefore, it is expected that with the treatment system configuration contingencies available, the treated water quality requirements will be achievable (if the treatment plant is required).

2.2.4 Delivery and Commissioning Timeframe

Delivery and commissioning of the system based on the two vendor responses would be in approximately 10-20 weeks. This includes:

- Procurement and manufacturing
 - Design
 - Fabrication

- Factory Acceptance and Site Acceptance Testing
- Delivery to site via road freight
- Setup and commissioning onsite

The mechanisms to achieve this are described further in the Revised Water Resources Assessment (GHD, 2021).

2.2.5 Footprint

The footprint of the plant and equipment would be approximately one 40-foot shipping container excluding pipelines and feed pump arrangement from feed pond (eastern void storage), and associated tanks. This will comfortably fit within the existing site.

2.2.6 Electrical Requirements

Electrical requirements for the system are estimated to be approximately 30 kW (+/- 20%) installed power, AC 380~450 V, 3 Phase, 50/60 Hz. Given the current site does not have available power supply, it is expected that a generator would provide the necessary power to operate the treatment plant. Noise related impacts of the use of a generator are addressed in the Supplementary EIS Report (GHD, 2021).

2.2.7 Waste Management

A typical and important component of an RO process is the management of the salty waste streams produced (in this case very low brackish salinity i.e. 200-1,000 uS/cm conductivity based on the available feed water quality data), often through a brine management strategy. For this process the following waste streams would be produced:

- Pre-Treatment waste high in solids content
- RO waste (brine) higher concentration of analytes
- CIP stream and UF/RO shutdown maintenance chemical waste diluted and often neutralised chlorine, acid
 and alkali cleaning waste

These wastes will be consolidated and reintroduced into the lined emplacement for containment. In this way a closed circuit is maintained.

Details on the containment of the untreated contact water, liner, leachate and groundwater assessment are provided in the Revised Water Resources Assessment (GHD, 2021) and draft Environmental Management Plan (GHD, 2021).

3. Conclusion

Whilst it is deemed unlikely that there will be a requirement for water treatment onsite, this assessment has been conducted to demonstrate that there is a feasible water treatment solution available if onsite water management cannot be maintained to contain site runoff on site. The conditions under which the treatment plant would be required are detailed in the Revised Water Resources Assessment (GHD, 2021). A number of shortlisted options were considered with reverse osmosis being selected as the preferred technology.

This option involves the installation of a pump station and piping to deliver water from the onsite storage dam to a containerised treatment system which would include pre-treatment, chemical dosing, RO unit, process waste management and remineralisation of treated water. Waste would be returned to the lined emplacement for containment with treated water discharged to the downstream system.

Once the project commences, as more water quality data is obtained during the operational phase from the insitu runoff, contact water and leachate, and refinement of the water quality data occurs, further assessment will be undertaken to better inform subsequent design stages (if treatment is required).

Contingencies are available and achievable in the event that additional water quality data indicates contact water or leachate water has higher contaminant concentrations than the RO system can treat to achieve the required limits. These include blending of clean water runoff with RO system feed water (contact water or a combination of contact and leachate water) or blending of treated water with RO feed water to aid in achieving treated water discharge limits.

4. References

ADE Consulting Group. (2017). Soil and Water Sampling – Bell Quarry Rehabilitation Project, Blue Mountains NSW.

GHD. (2018). Bell Quarry Rehabilitation Project. Environmental Impact Statement Vol. 1-3.

GHD. (2021). Supplementary EIS.

GHD. (2021). Revised Water Resources Assessment.

MAK Water. (2021, November 3). Case Studies. Sydney, NSW, Australia.

Martens. (2021, November). Hydrological Study Proposed Rehabilitation of Bell Quarry.

Office of Environment and the Heritage. (2015). Clarence Colliery Discharge Investigation. Sydney.

Appendix A

Assessment Team

Appendix A – Assessment Team

I (Paul McFadyen) prepared this report with the assistance of GHD's Dr Matthew Brannock and Mr Brendan Dagg. My and the supporting team's qualifications and experience are summarised below.

Paul McFadyen

Qualifications:

BE: Chemical Engineering (Hons) UQ, 1998

Professional affiliations:

Registered Professional Engineer of Queensland (RPEQ #10778))

Position in GHD:

Technical Director - Water, Water Process and Systems Brisbane

Experience:

Paul McFadyen has 20 years' professional experience as an engineer in the management of mining, industrial and municipal water and waste and the design and commissioning of coal preparation plants. I have considered treatment of water and wastes from the CSG, mining, power generation, alumina refining, metal finishing, food and beverage, pulp and paper, and meat processing industries through investigations, jar trials, pilot plants, design, specification, tendering, installation, commissioning and operations.

Matthew Brannock

Qualifications:

BE: Chemical Engineering (Hons) UQ, 1998

PhD: Environmental Engineering UQ, 2003

Professional affiliations:

MIChemE - Member of Institution of Chemical Engineers

CEng - Chartered Engineer

CSci - Chartered Scientist

Registered Professional Engineer of Queensland (RPEQ #11618)

Member of Australian Water Association

Position in GHD:

Technical Director - Water and Brine, Water Process and Systems Brisbane

Experience:

Matthew Brannock has 20 years of experience in water and wastewater treatment plant design, process modelling and process chemistry. Particularly in the areas covering membrane technology, water treatment, industrial water, desalination, brine management & thermal technology.

Brendan Dagg

Qualifications:

BE: Chemical Engineering (Hons) UON, 2019

Professional affiliations:

Member of Australian Water Association, Regional Representative of NSW Young Water Professional Committee, Secretary of Newcastle Sub-Committee of the NSW Branch

Member of Engineers Australia, Secretary of Newcastle Chemical Branch Committee

Position in GHD:

Process Engineer - Water, Newcastle

Experience:

Brendan has experience in the upgrades of water and wastewater treatment plants including site assessments, capacity assessments, options development, concept and detailed designs. He has additional experience in industrial water including desalination, recycled water, stormwater harvesting, water balances and pipe network modelling. Brendan has worked for clients across Australia and the Pacific including water utilities, local councils and industrial clients in mining, coal loading and coal seam gas.

→ The Power of Commitment

Appendix F

Supplementary Ecological Information

Rehabilitation of the Former Bell Quarry - DA 294/19

Supplementary Ecological Information

HWL Ebsworth Lawyers

19 November 2021

Final

Report No. 20109RP2

The preparation of this report has been in accordance with the brief provided by the Client and has relied upon the data and results collected at or under the times and conditions specified in the report. All findings, conclusions or commendations contained within the report are based only on the aforementioned circumstances. The report has been prepared for use by the Client and no responsibility for its use by other parties is accepted by Cumberland Ecology.

Version	Date Issued	Amended by	Details
1	19 November 2021		Final issued for submission

Approved by:	Dr David Robertson
Position:	Director
Signed:	Dand Robertson
Date:	19 November, 2021

Table of Contents

Glos	ssary	V
1.	Introduction	1
	1.1. Purpose	1
	1.2. Project Background	1
2.	Methodology	5
	2.1. Document Review	5
	2.2. Database Analysis	6
	2.3. Aerial Photography Review	6
	2.4. Field Surveys	6
3.	Results	11
	3.1. Swamp Vegetation	11
	3.2. Swamp Extent	15
	3.3. Swamp Interaction with Surface Water and Groundwater	15
	3.4. Threatened Flora Species	16
	3.5. Threatened Fauna Species	16
4.	Discussion	17
	4.1. Assessment of Impacts to the Swamp	17
	4.2. Assessment of the Do Nothing Scenario on the Swamp	17
	4.3. Assessment of Impacts to the Blue Mountains National Park	19
	4.4. Rehabilitation Works	23
	4.5. Terrestrial Biodiversity	25
5.	References	27

Table of Tables

7 8
8
0
9
.13
.24
A.2
.13
.17

Table of Photographs

Photograph 1 Leptospermum-dominated swamp vegetation	11
Photograph 2 Sedge-dominated swamp vegetation	12

Table of Appendices

APPENDIX A: Flora Species List APPENDIX B: Fauna Species List

APPENDIX C: Planting List

Table of Figures

Figure 1 Location of the project Figure 2 Survey locations

Figure 3 Swamp vegetation

Figure 4 Historical aerial images and swamp extent

Glossary

Term / Abbreviation	Definition
BQRP	Bell Quarry Rehabilitation Project Pty Ltd
BQRP	Bell Quarry Rehabilitation Project Pty Ltd
Council	Lithgow City Council
DA	Development Application
DPE	NSW Department of Planning and Environment
EIS	Environmental Impact Statement
ENM	Excavated natural material
EP&A Act	NSW Environmental Planning and Assessment Act 1979
EPA	NSW Environment Protection Authority
EPL	Environment Protection Licence
GBMWHA	Greater Blue Mountains World Heritage Area
GDE	Groundwater dependent ecosystem
NSW	New South Wales
OEH	NSW Office of Environment and Heritage
the Project	The Bell Quarry Rehabilitation Project
RMP	Rehabilitation Management Plan
SEARs	Secretary's Environmental Assessment Requirements
Subject land	Lot 23 DP 751631
VENM	Virgin excavated natural material
WRPP	Western Regional Planning Panel

1. Introduction

Cumberland Ecology has been requested by HWL Ebsworth Lawyers on behalf of Bell Quarry Rehabilitation Project Pty Ltd (BQRP) to undertake a supplementary ecological investigation for the Bell Quarry Rehabilitation Project (the 'Project'). The Project sought designated and integrated development consent under Part 4 of the New South Wales (NSW) *Environmental Planning and Assessment Act 1979* (EP&A Act). The Development Application (DA) for the Project was refused by the Western Regional Planning Panel (WRPP) in April 2020. Additional ecological investigations were undertaken for the Project to address some of the reasons for refusal of the DA. These investigations were undertaken within the investigation area, which includes swamp vegetation and adjoining areas, as shown in **Figure 1**.

1.1. Purpose

The purpose of this document is to present the findings of additional ecological investigations for the Project. Specifically, this report will:

- Detail the desktop and field survey methods used;
- Present the findings of the additional ecological investigations, including revised mapping of swamp vegetation and targeted threatened species surveys;
- Provide further details regarding the implications of alterations to the hydrological regime, include surface
 water and groundwater flows and water quality, on the swamp and habitats/species occurring along the
 drainage line and swamp; and
- Assess the impacts to the Blue Mountains National Park in accordance with the Developments adjacent to National Parks and Wildlife Service lands: Guidelines for consent and planning authorities (NSW Government 2020b); and
- Summarise the proposed rehabilitation works proposed for the Project.

1.2. Project Background

1.2.1. Site Background

Bell Quarry is located on Sandham Road, Dargan, approximately 10 km east of Lithgow, New South Wales (NSW) (the 'subject land') (**Figure 1**). The quarry was in operation under existing use rights between 1967 and 1994, and subsequently operated under a DA approval from Lithgow City Council (Council) and an Environment Protection Licence (EPL) issued by the NSW Environment Protection Authority (EPA) (GHD 2018b). Active operations with the quarry ceased and the EPL was surrendered to the EPA on 24 October 2014 (GHD 2018b). BQRP acquired the quarry site and subsequently undertook future land use planning for the subject land.

The subject land covers a total area of approximately 13.7 hectares (ha) and is divided by the Main Western Railway. The subject land is zoned E3 Environmental Management under *Lithgow Environmental Plan 2014*. It is located adjacent to the Greater Blue Mountains World Heritage Area (GBMWHA), and within the upper reaches of the Wollangambe River Catchment, which forms part of the broader Hawksbury-Nepean catchment.

1.2.2. Project Overview

BQRP is seeking to rehabilitate the subject land, with the final rehabilitated landform to be achieved via importation of virgin excavated natural material (VENM), excavated natural material (ENM) or comparable material (that meets an exemption pursuant to clauses 91 and 92 of the *Protection of the Environmental Operations (Waste) Regulation 2014*), sourced from earthworks projects across Sydney and the local regional area.

The key features of the Project are identified by GHD (2021b) as follows:

- Importation of approximately 1.2 million cubic metres of VENM, ENM or comparable material (that meets
 an exemption pursuant to clauses 91 and 92 of the *Protection of the Environmental Operations (Waste)*Regulation 2014), sourced from earthworks projects across Sydney and the local regional area;
- Vehicle haulage at a rate of up to 140,000 tonnes per annum;
- Emplacement and compaction of soil material within the existing quarry voids;
- Shaping of fill to closely represent the pre-quarry landform and to allow surface water drainage across the final landform;
- Development of a water management system to control surface water discharges throughout the rehabilitation program and from the final landform including a lined contact water pond; and
- Revegetation of the site with locally endemic species to provide effective integration with the surrounding landscape.

1.2.3. Assessment History

1.2.3.1. Secretary's Environmental Assessment Requirements

Secretary's Environmental Assessment Requirements (SEARs) were issued for the Project on 18 November 2016 by the then NSW Department of Planning and Environment (DPE). The SEARs identified the following requirement in relation to biodiversity:

- accurate predictions of any vegetation clearing on site or for any road upgrades;
- a detailed assessment of the potential impacts on any threatened species, populations, endangered ecological communities or their habitats, groundwater dependent ecosystems and any potential for offset requirements; and
- a detailed description of the measures to avoid, minimise, mitigate and offset biodiversity impacts.

The SEARs were developed in consultation with other agencies, including WaterNSW, the Environment Protection Authority and the Department of Primary Industries. The detailed requirements recommended by WaterNSW included biodiversity requirements relating to groundwater dependent ecosystems (GDEs), watercourses, wetlands and riparian land, and stream rehabilitation. At the time the SEARs were issued, the Office of Environment and Heritage (OEH) were unable to provide input to the SEARs, and therefore DPE indicated a requirement for the proponent to consult directly with DPE. OEH subsequently issued requirements on 25 January 2017. These requirements included:

- assessment of cumulative impacts,
- biodiversity [either via the BioBanking Assessment Methodology (BBAM) or a detailed biodiversity assessment, and
- impacts to OEH estate.

1.2.3.2. Environmental Impact Statement

In 2018, BQRP submitted an Environmental Impact Statement (EIS) to support an application for designated and integrated development for the site under Part 4 of the EP&A Act. The EIS was prepared by GHD and included assessment of soil and water resources, biodiversity, traffic, air quality, noise and vibration, cultural heritage, and world heritage. The EIS included a number of supporting documents, including:

- Biodiversity Impact Assessment (GHD 2018a); and
- Water Resources Assessment (GHD 2018c).

1.2.3.3. Submissions and Responses

The DA and associated EIS were placed on public exhibition for 60 days between 19 January and 20 March 2020. Over 500 submissions were lodged, including submissions from NSW government agencies, local councils and the community. A Submissions Report was subsequently prepared by GHD (2019c) to respond to the issues raised in the submissions. The issues raised within the submissions related to the approval pathway, traffic, flora and fauna, water, contamination, social and economic, as well as general issues.

Following the lodgement of the Submissions Report further correspondences relating to environmental matters were issued by OEH (2019), EPA (2019a, c, b, 2020), Lithgow City Council, NSW Department of Planning, Industry and Environment (2019), National Parks and Wildlife Service (2019), and additional information provided by GHD (2019a, b).

1.2.3.4. Refusal

On 6 March 2020 Council issued an assessment report for the Project and recommended that Project be refused. A total of 12 reasons for refusal were provided in the assessment report. The Project was subsequently assessed by the WRPP. The WRPP made a determination to refuse the Project on 6 April 2020. A total of 11 reasons for the refusal were documented in the Determination and Statement of Reasons document issued by the WRPP.

The reasons for refusal primarily relate to environmental harm, including the following reason which is the subject of this review:

- 2. The Environment Protection Authority considers, based on its submissions to Council, that the proposal will have unacceptable environmental impacts on the Greater Blue Mountains World Heritage Area, arising from the following:
 - i. it is likely that some of the soil leachates will adversely alter the natural characteristics and ionic balance of water draining into the Greater Blue Mountains World Heritage Area and the Colo River, Greater Blue Mountains World Heritage Area (GBMWHA).

- ii. proposed discharges into a tributary of the Wollangambe River were identified that would impact on a swamp located on the tributary approximately 200m downstream of where the discharge is proposed. The tributary (and its connected swamp) is proposed to receive pumped out water from the quarry pits, any leachate from the material that is emplaced in the pits and overland flow once the area is rehabilitated. The tributary and swamp are in the GBMWHA.
- iii. The Biodiversity Impact Assessment identified the Prickly Tea-tree sedge wet heath swamp below the quarry discharge location as a Newnes Plateau Shrub Swamp (EEC under the TSC Act) and Temperate Highland Peat Swamps on Sandstone (EEC under the EPBC Act).
- iv. The existence of the swamp in the headwaters of the drainage line downstream of Bell Quarry strongly suggests that there is a groundwater source which helps support/maintain the swamp in this location.
- v. The Water Resources Assessment Section of the EIS has not clearly defined the downstream swamp as a Groundwater Dependent Ecosystem (GOE); it has not assessed the level of groundwater dependence for the swamp and the likely pathways (e.g. disruption of groundwater connections, reduction in groundwater quality) by which the project might impact on the swamp; and it does not consider issues surrounding water discharge rates or their effect on geomorphic stability for the swamp. It has therefore not appropriately assessed the risk the project will have on the THPS swamp.
- vi. The dewatering of the quarry voids is likely to present a significant potential to destabilise sediments in the downstream swamp. If an erosional nick-point is established in the swamp, it could lead to the loss of the swamp in its entirety through erosion and gullying.

cumberland 3

2. Methodology

2.1. Document Review

A review of key literature relevant to the Project was undertaken to provide an understanding of the Project and relevant biodiversity values. Key documents reviewed for this peer review include:

- DPE (2016): Waste Management Facility. Bell Quarry, Sandham Road, Newnes Junction (Part Lot 23 in DP 751631). Secretary's Environmental Assessment Requirements (SEAR) 1105;
- OEH (2017b): Bell Quarry Rehabilitation EAR 1105. Letter dated 25 January 2017;
- GHD (2018a): Bell Quarry Rehabilitation Project. Biodiversity Impact Assessment;
- GHD (2018c): Bell Quarry Rehabilitation Project. Water Resources Assessment;
- GHD (2018b): Bell Quarry Rehabilitation Project. Volume 1 Environmental Impact Statement;
- OEH (2019): Bell Quarry rehabilitation project DA 294/18. Letter dated 5 February 2019;
- EPA (2019a): Bell Quarry Rehabilitation DA294/18. Integrated Development Application Recommended Refusal. Letter dated 20 March 2019;
- GHD (2019c): Bell Quarry Rehabilitation Project. Submissions Report;
- EPA (2019c): Bell Quarry Rehabilitation Project DA294/18. Submissions Report EPA Comments. Letter dated 2 September 2019;
- DPIE (2019). Bell Quarry use of dam in Blue Mountains National Park. Letter dated 2 October 2019;
- GHD (2019a): Bell Quarry Rehabilitation Project. Additional response to submissions DA294/18. Letter dated 11 October 2019;
- NPWS (2019). Bell Quarry NPWS owners consent for making a development application. Letter dated 14
 October 2014.
- EPA (2019b). Bell Quarry Rehabilitation Project DA294/18. Response to Submissions Meeting 3 October 2016. Letter dated 15 October 2019;
- GHD (2019b): Bell Quarry Rehabilitation Project. Response to Additional EPA Comments DA294/18. Letter dated 1 November 2019;
- EPA (2020). Bell Quarry Rehabilitation Project DA294/18. Letter dated 13 January 2020;
- Lithgow City Council (2020): Council Assessment Report DA294/18; and
- Western Regional Planning Panel (2020). Determination and Statement of Reasons. 2018WES020 Lithgow
 DA294/18.
- GHD (2021a). Bell Quarry Appeal. Revised Water Resources Assessment.
- GHD (2021b). Bell Quarry Rehabilitation Project. Supplementary Environmental Impact Statement.

Martens and Associates (2021). Hydrological Study. Proposed Rehabilitation of Bell Quarry.

2.2. Database Analysis

A number of databases were utilised during the preparation of this report, including:

- Environment, Energy and Science (EES) BioNet Atlas;
- EES Threatened Biodiversity Data Collection;
- EES BioNet Vegetation Classification database;
- Commonwealth Department of Agriculture, Water and the Environment (DAWE) Species Profile and Threat
 Database; and
- DAWE Protected Matters Search Tool.

2.3. Aerial Photography Review

To examine the changes to the swamp extent pre, during and post operation of the quarry, a review of aerial photographs was undertaken. Aerial were obtained as follows:

- 1961 aerial: Provided by GHD;
- 1984, 1991, 1998, 1999 aerials: Downloaded from NSW Department Finance, Services and Innovation Spatial Services Historical Map Viewer; and
- 2021 aerial: Downloaded from NearMap.

2.4. Field Surveys

Field surveys were undertaken within the investigation area between 15 and 19 March 2021. Field surveys included vegetation mapping, plot-based floristic survey, targeted threatened flora survey, habitat assessment, targeted threatened fauna surveys, and incidental observations. Further details of field survey methods are provided below.

2.4.1. Vegetation Mapping

Previous vegetation mapping of the investigation by GHD (2018a) was reviewed prior to the survey, as well as vegetation mapping of nearby areas by DEC (2006). The swamp vegetation was ground-truthed by Cumberland Ecology. Where vegetation community boundaries were found to differ from the existing GHD (2018a) mapping, records were made of new boundaries using a hand-held Global Positioning System and mark-up of aerial photographs. The data collected was analysed and the resultant information was synthesised using a Geographic Information System to produce a revised map of the swamp vegetation with the investigation area.

2.4.2. Plot-based Floristic Survey

Plot-based floristic surveys were undertaken within the swamp vegetation. Surveys followed the Biodiversity Assessment Method (BAM) (NSW Government 2020a) and included establishment of a 20 m x 50 m plot (or equivalent 10 m x 100 m plot) within which the following data was collected:

- Composition for each growth form group by counting the number of native plant species recorded for
 each growth form group within a 20 m x 20 m plot;
- Structure of each growth form group as the sum of all the individual projected foliage cover estimates of all native plant species recorded within each growth form group within a 20 m x 20m plot;
- Cover of 'High Threat Exotic' weed species within a 20 m x 20m plot;
- Assessment of function attributes within a 20 m x 50 m plot, including:
 - Count of number of large trees;
 - Tree stem size classes, measured as 'diameter at breast height over bark' (DBH);
 - Regeneration based on the presence of living trees with stems <5 cm DBH;
 - The total length in metres of fallen logs over 10 cm in diameter;
- Assessment of litter cover within five 1 m x 1 m plots evenly spread within the 20 m x 50 m plot; and
- Number of trees with hollows that are visible from the ground within the 20 m x 50 m plot.

A total of two plots were surveyed within the swamp vegetation and their locations are shown on Figure 2.

All vascular plants recorded or collected were identified using keys provided in *PlantNET* (Botanic Gardens Trust 2021).

2.4.3. Threatened Flora Searches

Three threatened flora species were identified as potentially impacted by the project by GHD (2018a) as detailed in **Table 1**. Targeted threatened flora surveys were undertaken using parallel transects on 18 March 2021 within the swamp vegetation. The location of parallel transects undertaken within the swamp vegetation are shown on **Figure 2**.

Table 1 Potentially impacted threatened flora species and survey period

Scientific Name	Common Name	BC Act Status	EPBC Act Status	Recommended Survey Period	
Veronica blakelyi		V		Jan-Feb, Dec	Yes
Boronia deanei	Deane's Boronia	V	٧	Oct, Nov	Yes
Persoonia hindii		E		Jan-Dec	Yes

2.4.4. Habitat Assessment

A general fauna habitat assessment was undertaken within the investigation area during field surveys. This assessment included consideration of important indicators of habitat conditions and complexity as well as the occurrence of micro-habitats such as tree hollows, fallen logs and riparian areas. An assessment of the structural complexity of the vegetation, the age structure of the forest and the nature and extent of human disturbance was also undertaken. Notes were taken on specific habitat features that may be utilised by threatened fauna species known to occur in the locality.

2.4.5. Threatened Fauna Surveys

Five threatened fauna species were identified as potentially impacted by the project by GHD (2018a) as detailed in **Table 2**. Targeted threatened fauna surveys for three of the potentially impacts species were undertaken between 15 and 19 March 2021. Details of surveys methods and species targeted are provided below.

Table 2 Potentially impacted threatened fauna species and survey period

Scientific Name	Common Name	BC Act Status	EPBC Act Status	Recommended Survey Period	Surveys Undertaken?
Petalura gigantea	Giant Dragonfly	E	-	Jan, Dec	No
Heleioporus australiacus	Giant Burrowing Frog	V	V	Jan-May, Sep- Dec	Yes
Pseudophryne australis	Red-crowned Toadlet	V	-	Jan-Dec	Yes
Litoria littlejohni	Littlejohn's Tree Frog	V	٧	Jul-Nov	No
Eulamprus leuraensis	Blue Mountains Water Skink	E	E	Jan-Mar, Oct- Dec	Yes

2.4.5.1. Trapping Transects

Species Targeted: Blue Mountains Water Skink

Two trapping transects were established within the swamp vegetation and included:

- A line of five buckets, spaced approximately 5 m apart, with no drift fence; and
- A line of drift fence with two funnel traps placed at each end of the drift fence.

Trapping transects were check in the morning and early evening, and any fauna captured were identified and released. The location of trapping transects are shown on **Figure 2**.

2.4.5.2. Spotlighting and Call Playback

Species Targeted: Giant Burrowing Frog, Red-crowned Toadlet

Spotlight surveys were conducted using a hand-held spotlight while walking, Spotlighting was undertaken along the length of the swamp as well as approximately 100 m past either end, along the associated drainage

line. Spotlighting was undertaken for a period of one hour by two personnel each night, over a total of four nights.

In conjunction with spotlighting surveys, call playback for the Giant Burrowing Frog and Red-crowned Toadlet was also undertaken. Call playback was followed with quiet listening and spotlighting in the immediate vicinity. Call playback was undertaken at two locations within the drainage line associated with the swamp, as shown in **Figure 2**. Call playback was undertaken at each location for four nights.

2.4.5.3. Tadpole Searches

Species Targeted: Giant Burrowing Frog, Red-crowned Toadlet

Diurnal tadpole searches were undertaken within the approximately 100 m of drainage line at either end of the swamp. Two diurnal tadpole searches were undertaken using a dip net. Any tadpole captured were identified and released. The location of tadpole searches are shown on **Figure 2**.

2.4.6. Incidental Observations

Any incidental vertebrate fauna species that was observed, heard calling or otherwise detected on the basis of tracks or signs were recorded and listed in the total species list for the study area.

2.4.7. Weather Conditions

A summary of weather conditions in the wider locality of the investigation area (BOM Weather Station 063226 – Lithgow) during the field survey is provided in **Table 1**. Survey conditions were wet during the survey, with rainfall falling on all survey days.

Table 3 Weather conditions during surveys

Date	Temperature Minimum (°C)	Temperature Maximum (°C)	Rainfall (mm)	
15/03/2021 6.9		19.0	8.6	
16/03/2021 9.0		16.7	0*	
17/03/2021	1 1.5 14.8		3.2	
18/03/2021	1 12.4 17.9		6.6	
19/03/2021 13.5		17.2	22.4	

^{*} Rainfall observed on site, despite not being recorded at the local weather station

2.4.8. Limitations

2.4.8.1. Flora Surveys

With the exception of *Persoonia hindii* which can be surveyed all year round, the targeted flora surveys were not undertaken in the recommended survey period. For *Veronica blakelyi* the surveys in March 2021 were taken just outside the December to February survey period, and it is likely that any late flowering plants would have been detectable. As this species resprouts after fire, conditions after the 2019/2020 bushfires would have been suitable for detection of this species. For *Boronia deanei* the March 2021 surveys were well outside the

October to November recommended survey period, which coincides with late spring flowering. However, as this species is a small shrub with strongly aromatic foliage, it should be detectable when not in flower. Fire ecology for *Boronia deanei* is uncertain, but too intense or too frequent fires can hinder survival and recruitment. As such it is likely that the 2019/2020 bushfires could have impacted on the detectability of this species (if present) in the March 2021 surveys. However, this species was also not detected by GHD (2018a) prior to the 2019/2020 bushfires.

2.4.8.2. Fauna Surveys

Although surveys for the Giant Burrowing Frog were undertaken in the recommended survey period, surveys should also be undertaken within a week of heavy rainfall (i.e. >50 mm in 24 hours or > 100 mm over three days) as detailed in the *NSW Survey Guide for Threatened Frogs* (DPIE 2020b). The rainfall data in **Table 3** indicates that approximately 38 mm of rainfall fell over the five-day survey period. In the three days prior to the survey a further 23 mm of rainfall fell at the BOM Weather Station 063226 – Lithgow. Overall this was a relatively wet period with rain recorded daily (very heavy rainfall fell in the days preceding the survey). As such, while the rainfall detailed in the *NSW Survey Guide for Threatened Frogs* (DPIE 2020b) did not fall during or prior to the surveys, it was part of a wet period, suitable for the detection of frog species.

In contrast, for the Red Crown Toadlet, surveys should not be undertaken if three significant rainfall events > 50 mm in 24 hours) have occurred in the previous three months, or during periods of heavy rainfall (DPIE 2020). Review of rainfall records for BOM Weather Station 063226 — Lithgow indicates that no such rainfall events occurred in the three months prior to the surveys. Despite this, conditions on the final day of surveys when 22.4 mm fell would likely have been unsuitable for detection of this species.

The Survey guidelines for Australia's threatened reptiles (SEWPaC 2011) recommend that surveys for the Blue Mountains Water Skink be undertaken between December and January when the species are most likely to be active. However, the species is active on warm sunny days between September and April and as such conditions at the time of survey would have been suitable, with the exception of the relatively cool conditions on 17 March 2021. In addition to the recommended pitfall trapping, the surveys also included the use of funnel traps to supplement the pitfall trapping.

3. Results

3.1. Swamp Vegetation

3.1.1. Floristic Description

The swamp vegetation within the investigation area includes a *Leptospermum*-dominated southern extent and a sedge dominated northern extent. Due to the 2019/2020 bushfires, the margins of the swamp were readily identifiable on ground, with clear edges where the swamp vegetation transitioned to eucalypt forest. The *Leptospermum*-dominated portion of the swamp is shown in **Photograph 1** and the sedge-dominated portion of the swamp is shown in **Photograph 2**.

Emergent trees occur within the central and southern extent of the swamp, and predominantly are *Eucalyptus piperita* (Sydney Peppermint). Shrubs are very common in the southern extent of the swamp, occurring less frequently in the northern extent. Commonly recorded shrubs include *Acacia longifolia*, *Leptospermum polygalifolium* (Tantoon), *Leptospermum grandifolium* (Woolly Teatree), and *Baeckea linifolia* (Weeping Baeckea). A diversity of rushes, sedges and grasses occur throughout the swamp. This includes *Lepidosperma limicola*, *Eurychorda complanata*, *Empodisma minus*, *Entolasia stricta* (Wiry Panic), *Deyeuxia mckiei*, *Xyris gracilis*, *Baloskion australe*, and *Microlaena stipoides* (Weeping Grass). Commonly occurring forbs include *Hydrocotyle hirta* (Hairy Pennywort), *Gonocarpus micranthus* (Ivy-leaved Violet), *Viola hederacea*, *Opercularia varia* (Variable Stinkweed), *Geranium potentilloides* var. *abditum*, *Pseudognaphalium luteoalbum* (Jersey Cudweed) and *Wahlenbergia gracilis* (Sprawling Bluebell). Exotic species are rare within the swamp vegetation, and included *Hypochoeris radicata* (Catsear), *Conyza bilbaoana*, and *Conyza bonariensis* (Flaxleaf Fleabane).

3.1.2. Geomorphic Description

Martens and Associates (2021) have identified the following geomorphic conditions relevant to the swamp:

- The swamp has formed within a relatively narrow and evenly graded valley floor which accumulates a range
 of coarse sediments including bushfire charcoals;
- No defined channel is present within the swamp, although there is evidence of historic intermittent erosion and subsequent deposition events during periods of channelisation. These likely occurred drying heavy rainfall when vegetation cover was diminished or distressed (for example after a bushfire or during extended dry periods);
- Water inflow at the upstream end of the swamp arrives via a narrow channel approximately 0.5-1.0 m wide and up to 0.5 -1.0 m deep. However, the channel form diminishes to nothing at the entry point to the swamp where surface flows are infiltrated into the sandy sediment; and
- Water outflows, including shallow groundwater seepage and overland flows, are reconcentrated at the downstream end of the swamp, where a small approximately 1.0 m wide and 0.5 m deep channel reemerges.

3.1.3. Plant Community Type

Identification of the swamp vegetation PCT was guided by the results of the surveys undertaken by Cumberland Ecology. The data collected during surveys of the swamp was analysed in conjunction with a review of the PCTs held within the BioNet Vegetation Classification database. In selecting PCTs, consideration was given to the following:

- Occurrence within the Wollemi IBRA subregion;
- · Frequently recorded species;
- · Vegetation formation;
- Alignment with TECs;
- Landscape position; and
- Association with nearby vegetation map units by DEC (2006).

Table 2 details the process of PCT selection for swamp vegetation. The swamp vegetation has been assessed as conforming to PCT 1078 Prickly Tea-tree - sedge wet heath on sandstone plateaux, central and southern Sydney Basin Bioregion.

Table 4 Process of PCT selection for swamp vegetation

PC	T Filtering Criteria Used	PCTs Considered	Selected PCT	Associated Species
1.	Within the Wollemi IBRA subregion, and the presence of at least two of: Lepidosperma limicola, Acacia longifolia, Leptospermum polygalifolium, Eurychorda complanata, Empodisma minus	657, 788, 1078, 1828	1078 Prickly Tea-tree - sedge wet heath on sandstone plateaux, central and southern Sydney Basin Bioregion	Mid Stratum Species: Baeckea linifolia Banksia ericifolia Ground Stratum Species:
2.	Formation: Freshwater Wetlands	657, 788, 1078,		Drosera binata
3.	Associated with the Newnes Plateau Shrub Swamp in the Sydney Basin Bioregion TEC (see Section 3.1.3)	657, 1078		Empodisma minus Lepidosperma limicola
4.	Landscape position: Gently sloping headwaters on sandstone	657, 1078		
5.	Associated with MU50 and MU51 of The Vegetation of the Western Blue Mountains (DEC (NSW) 2006)	1078		

3.1.4. Threatened Ecological Community

i. NSW

Within the BioNet Vegetation Classification database, PCT 1078 is associated with the following TECs:

- Blue Mountains Swamps in the Sydney Basin Bioregion;
- Coastal Upland Swamp in the Sydney Basin Bioregion;
- Montane Peatlands and Swamps of the New England Tableland, NSW North Coast, Sydney Basin, South East Corner, South Eastern Highlands and Australian Alps bioregions; and
- Newnes Plateau Shrub Swamp in the Sydney Basin Bioregion.

Based on distributional information and floristic composition, the swamp vegetation was considered to potentially conform to the Blue Mountains Swamp TEC or the Newnes Plateau Shrub Swamp TEC. These two TECs are closely related and include shared species and some environmental variables. The two TECs are known to transition near Bell and Clarence at approximately 850-950m above sea level (NSW Scientific Committee 2011b, a). The Blue Mountains Swamp TEC spans an altitudinal range of approximately 500-950 m above sea level (NSW Scientific Committee 2011a), and the Newnes Plateau Shrub Swamp TEC occurs at approximately 900-1,200 m above sea level (NSW Scientific Committee 2011b). Due to the significant overlap in floristic and environmental attributes, the determination of the TEC within the investigation area is based on the altitudinal range of the communities. As the swamp vegetation within the investigation area is located between 1,000 and 1,030 m above sea level, it has been associated with the Newnes Plateau Shrub Swamp TEC.

Attributes which align the swamp vegetation with the Newnes Plateau Shrub Swamp TEC include:

- Vegetation dominated by shrubs and sedges;
- Located in an area with impeded drainage in a low slope headwater valley;
- Forms a narrow, elongated swamp in a low slope headwater valley;
- Includes numerous characteristic species, including Baeckea linifolia, Baloskion australe, Blechnum nudum,
 Daviesia latifolia, Drosera spatulata, Empodisma minus, Epacris paludosa, Gahnia sieberiana, Gonocarpus
 micranthus, Goodenia bellidifolia, Juncus continuus, Lepidosperma limicola, Leptospermum continentale,
 Leptospermum grandifolium, Lepyrodia scariosa, Lomandra longifolia, Xanthosia dissecta, and Xyris gracilis;
- Located between 1,000 and 1,030 m above sea level; and
- Occurs on deep sandy sediments that are permanently or periodically waterlogged.

Newnes Plateau Shrub Swamp TEC is listed as an endangered ecological community under the BC Act.

ii. Commonwealth

The Newnes Plateau Shrub Swamp TEC listed under the BC Act is included in the EPBC Act listed endangered ecological community Temperate Highland Peat Swamps on Sandstone (DEWHA 2005). The EPBC Act listing

specifically applies to swamps with peaty soils. Temperate Highland Peat Swamps on Sandstone are associated with black to grey coloured acid, peaty soils, have moderate to high organic matter content and generally a sandy or loamy texture, and are poorly drained and hence permanently or periodically/intermittently waterlogged. In the Newnes Plateau and Blue Mountains, the soils have been described as peat, peaty loam, loam, clay loam, humic loam, humic peat, silty clay, peaty sand, sandy peat and organic sand. The deep sandy sediments that are permanently waterlogged that the support swamp vegetation in the investigation area are consistent with peaty soils, and therefore the EPBC Act listed community. The swamp vegetation includes numerous characteristic species, including *Blechnum* sp., *Microtis* sp., *Eleocharis* sp., *Empodisma minus*, *Isolepis* sp., *Juncus* sp., *Lepidosperma limicola*, *Lepyrodia scariosa*, *Schoenus apogon*, *Hemarthria uncinata*, *Epacris microphylla*, *Epacris paludosa*, *Epacris* sp., *Baeckea linifolia*, *Banksia spinulosa*, *Hakea* sp., and *Leptospermum* sp.

3.2. Swamp Extent

3.2.1. Current Extent

The current extent of the swamp vegetation is shown in Figure 3 and covers a total of 0.87 ha.

3.2.2. Historical Extent

Figure 4 shows historical (1961, 1984, 1991, 1998 and 1999) and current (2021) aerial imagery of the investigation area. In 1961 the swamp vegetation is difficult to detect due to image quality, however shadowing on the image suggest the swamp vegetation is largely in the same location as the current, with a second narrow swamp located upstream. This second swamp was cleared prior to 1984. In the 1984, 1991 and 1999, the extent of swamp vegetation appears to be slightly to the north west of the current distribution, however this is likely due to imagery alignment and shadowing. In the 1998 arial imagery swamp vegetation is similar to the current extent. Post bushfire in 2021 the swamp vegetation is clearly visible on aerial imagery due to removal of surrounding dense vegetation through fire. Overall there is little identifiable change in the extent of swamp vegetation in historical aerial imagery since 1961, including after the establishment of the quarry.

3.3. Swamp Interaction with Surface Water and Groundwater

Martens and Associates (2021) have undertaken studies within the swamp to ascertain the swamp's reliance on surface and groundwater flows, and document existing swamp geomorphic conditions to provide supplementary detailed data on existing site and downstream hydrological conditions. Martens and Associates (2021) provides the following observations regarding surface water and groundwater interaction at the swamp:

- Groundwater within the swamp develops in response to direct rainfall and surface inflows arriving from the catchment which are developed both within the subject land but also within adjoining valley areas;
- As surface water inflows enter the swamp, these spread out and typically flow in an unchannelised manner over the swamp surface where due to the high sand content of swamp soils, there is a high degree of infiltration;
- Infiltrated surface water causes a perched water table to develop which sits over the underlying sandstone bedrock. This water table is ephemeral and has the capacity to recharge the underlying permanent water table;

- Perched water within the swamp exits at the downstream portion of the swamp into a narrow formed channel; and
- The swamp surface does not appear to have been the subject of any current significant erosion, although there is evidence that historical erosive events have occurred.

The surface water quality monitoring undertaken by Martens and Associates (2021) found the following:

- Surface waters are fresh and slightly acidic;
- Nutrient are generally low, although elevated levels were found in the quarry ponds;
- Heavy metals and hydrocarbon concentrations were low or below the detection limit; and
- The area downstream of the subject land is classified as a disturbed ecosystem due to historical catchment
 urban and quarrying activities, and construction of roads and clearing within the catchment. Surface water
 chemistry is generally within ANZG criteria for slightly to moderately disturbed freshwater ecosystems.

Martens and Associates (2021) describe the flow regime associated with the swamp as follows:

- Flows to the hanging swamp appear to be directly related to incidence of local rainfall (i.e. flows rely on surface flows from rainfall as opposed to base flows from groundwater); and
- Local catchments have a relative rapid response with flows commencing not long after commencement of
 precipitation. Hydrographs are correspondingly short with relatively short rising limb to the peak and then
 a somewhat longer falling limb of the hydrograph denoting that flows continue for some time afterwards
 (Figure 14). This response is characteristic of the relatively shallow sandy catchment soils and frequent
 bedrock outcropping within the catchment.

3.4. Threatened Flora Species

No threatened flora species were detected in the surveys by GHD (2018a) or Cumberland Ecology. The full list of flora species detected is listed in **Appendix A**. While some species could only be identified to the genus level, there are no locally occurring threatened species from within those genera.

3.5. Threatened Fauna Species

No threatened fauna species were detected in the surveys by GHD (2018a) or Cumberland Ecology, with the exception of a possible (unconfirmed) ANABAT call detection for the Large Bent-winged Bat (*Miniopterus orianae oceanensis*) by GHD (2018a). The Large Bent-winged Bat is listed as vulnerable under the BC Act. The full list of fauna species detected is listed in **Appendix B**.

ecology

4. Discussion

4.1. Assessment of Impacts to the Swamp

The Project does not directly impact the swamp located downslope of the subject land. The Project does however have the potential to indirectly impact the swamp through an altered hydrological regime. Martens and Associates (2021) identified the following potential implications to the swamp as a result of the findings on the groundwater interaction at the swamp (see **Section 3.3**):

- Groundwater flows from the filled quarry voids is not likely to contribute to groundwater flows within the swamp because these are controlled by surface water inflows and direct rainfall;
- Perched groundwater that occurs within the swamp will at times recharge deeper groundwater; and
- Surface flows discharged from the subject land during filling operations and following completion of the final landform will likely enter the swamp area and contribute to the hydrology and water chemistry of the perched water table.

As investigations indicate that the swamp is not hydraulically connected to groundwater emanating from the subject land, it has been conservatively assumed that groundwater discharges to the creek line directly down gradient of the swamp and that the nearest ecological receptor is located at this point (GHD 2021a). Groundwater discharge is expected to be further downgradient than this location (GHD 2021a).

During the upper void dewatering stage, groundwater heads below the swamp will be reduced by around 0.5 m compared to existing conditions, effectively returning the head pressures to pre-quarry conditions (Martens and Associates 2021). This is not considered to affect groundwater conditions in the swamp because the groundwater will continue to be controlled by surface inflows and direct recharge (Martens and Associates 2021).

Martens and Associates (2021) indicate that following completion of the final design surface, including retaining the lower void, modelling indicates that there will be no material changes to the existing hydrological regime at the swamp, with some return of flows towards those experienced under pre-quarrying conditions for mid-range flows.

The findings of both GHD (2021a) and Martens and Associates (2021) suggest that indirect impacts through an altered hydrological regime and minimal. Notwithstanding this, it is recommended that ongoing monitoring is undertaken so that, if required, corrective actions can be implemented. Monitoring includes both hydrological regime monitoring, and monitoring of floristic variables within the swamp vegetation.

4.2. Assessment of the Do Nothing Scenario on the Swamp

There is no evidence that the quarrying upstream of the swamp has had major detrimental impacts on the swamp composition or ecology. The swamp appears to have been relatively stable since the cessation of quarrying. Under current conditions the major threat to the viability and integrity of the swamp is via climate change as explained below.

The final determination for the Newnes Plateau Shrub Swamp (NSW Scientific Committee 2011b) identifies the following threats as being relevant to the TEC:

- Small-scale clearing, fragmentation, erosion and sedimentation associated with roadworks, quarrying and periodic timber harvesting from adjacent plantations;
- Changes to drainage and moisture conditions caused by damming of swamp watercourses; roading across
 the swamps; sedimentation and erosion associated with roadways, quarries, mines and plantation
 harvesting within swamp catchments; and disposal of waste water from underground coal mines; and
- Subsidence of the land surface, and associated fracturing of bedrock between the coal seam and the surface, occurs after longwall mining, and this may change the hydrology of catchments and swamps they contain.

Invasion of exotic species, including species of *Pinus*, and changes to fire regimes may also pose a threat to the TEC if any of the aforementioned processes result in physical displacement of vegetation, increased influx of sediments and/or nutrients or significant drying of the swamps (NSW Scientific Committee 2011b).

In the do nothing scenario, no detrimental land use activities are likely to occur without approval and consideration of impacts and implementation of mitigation measures. Therefore, the do nothing scenario would comprise the persistence of current threats to the TEC. These current threats include:

- Alteration of the natural flow regime of the associated waterway, resulting from the previous land uses upstream;
- Weed invasion resulting from public access within the Blue Mountains National Park; and
- · Human caused climate change.

As noted in **Section 3.2**, based upon examination of aerial photography there has been little identifiable change in the extent of the swamp since 1961. This is despite the establishment of the quarry and historic alteration of natural flow regimes. Groundwater within the swamp has been found to develop in response to direct rainfall and surface inflows arriving from the catchment which are developed both within the subject land but also within adjoining valley areas (Martens and Associates 2021). Therefore the swamp has continued to be sustained by direct rainfall and surface inflows during, and post, use of the quarry.

The historic altered flow regime may have impacted the species composition within the swamp and could continue to do so within the do nothing scenario, though no long term monitoring data is available to substantiate this. Species composition can change in response changing flow volume and frequency, and water chemistry. Flow volume and frequency can affect the characteristics of the swamp. These impacts could be positive (e.g. increased availability of water and potential expansion of the swamp area) or negative (e.g. transfer of swamp soils downstream). Changes to water chemistry have the potential to alter both flora and fauna species composition, as certain conditions are favoured by other species and detrimental to others. In the do nothing scenario, water chemistry is not anticipated to change from current conditions.

Weed invasion may occur within the swamp due to the nearby access track intersecting the drainage line that flows into the swamp, as well as propagules entering the drainage system. Weeds can compete with and displace native species altering the floristic composition of the swamp. In the do nothing scenario, the threat

of weed invasion is not anticipated to change from current conditions. However, there is no evidence of this at present.

Human induced climate change can involve both changes in average temperature conditions and changes to the frequency of occurrence of extreme events (OEH 2017a). Changes to temperature conditions and frequency of fire events can readily impact swamp vegetation and habitat. The swamp was recently impacted by the 2019/2020 bushfires. Observable impacts to the swamp include the burning of the *Leptospermum*-dominated southern extent of the swamp. The bushfire may have impacted local surface flow regimes upslope of and within the swamp, by reducing surface cover and changes to infiltration characteristics of local soils (Martens and Associates 2021). Changes in temperature conditions, and subsequent changes to hydrological regimes, can also lead to a contraction of swamp extent and alteration of the floristic composition. In the absence of any other observable harmful changes, human induced climate change is the greatest long term threat to swamp vegetation. In the do nothing scenario, the threat of human induced climate change is not anticipated to change from current conditions.

4.3. Assessment of Impacts to the Blue Mountains National Park

The subject land is connected directly to Blue Mountains National Park to the east and north to the south and east (see **Figure 1**). An assessment of impacts to the Blue Mountains National Park has been undertaken in accordance with the *Developments adjacent to National Parks and Wildlife Service lands: Guidelines for consent and planning authorities* (NSW Government 2020b). These guidelines identified the following issues as requiring consideration:

- Erosion and sediment control;
- Stormwater runoff;
- Wastewater;
- Pests, weeds and edge effects;
- Fire and the location of asset protection zones;
- Boundary encroachments and access through NPWS land;
- Visual, odour, noise, vibration, air quality and amenity impacts;
- Threats to ecological connectivity and GDEs;
- Cultural heritage; and
- Access to parks.

Each of these issues is discussed below.

4.3.1. Erosion and Sediment Control

Erosion and sedimentation can result in deposition of sediments on vegetation and in creeks, rivers, wetlands and other aquatic habitats, including changes to the hydrology of streams (NSW Government 2020b)..

Erosion and sedimentation impacts are most likely to occur in proximity to roads, tracks, infrastructure and adjacent to the subject land.

The Project has the potential to alter hydrological flows within the investigation area. The waterways within the investigation area flow into a tributary of the Wollangambe River through the swamp located on the tributary approximately 200m downstream of where the discharge is proposed.

The aim of erosion and sediment control on NPWS estate is to prevent erosion and the movement of sediment onto NPWS land, and ensure no detrimental change to hydrological regimes (NSW Government 2020b). The potential impacts will be minimised by erosion and sediment controls implemented as part of a surface water management plan for the Project. Any discharges into waterways within the investigation area will be undertaken in accordance with approved guidelines. NPWS estate is not considered to be significantly impacted by erosion and sedimentation as a result of the Project.

4.3.2. Stormwater Runoff

The aim of stormwater runoff management on NPWS estate is for nutrient levels to be minimised, and for stormwater flow regimes and patterns to mimic natural levels before it reaches the NPWS estate (NSW Government 2020b).. The potential impacts will be minimised through the implementation of a surface water management plan for the Project. Any discharges into waterways within the investigation area will be undertaken in accordance with the relevant stormwater guidelines. The Project would modify surface flows within the drainage line exiting the subject land and potentially affect water quality in this area of the Blue Mountains National Park (GHD 2018a). These changes would be relatively minor and temporary. Following the completion of rehabilitation the NPWS estate will not be significantly impacted by stormwater runoff as a result of the Project.

4.3.3. Wastewater

The aim of wastewater management on NPWS estate is to ensure there are no adverse impacts due to wastewater (NSW Government 2020b). The potential impacts will be minimised through the implementation of a water management plan for the Project that will address discharges of water within the investigation area. Discharges into waterways within the investigation area will be undertaken in accordance with approved guidelines. NPWS estate is not considered to be significantly impacted by wastewater as a result of the Project.

4.3.4. Pests, Weeds and Edge Effects

The aims for management of pests, weeds and edge effects on NPWS estate are to ensure an adjoining project does not (NSW Government 2020b):

Lead to increased impacts from invasive species (weeds and pests), domestic pets and stock;

- Facilitate unmanaged visitation, including informal tracks, resulting in negative impacts on cultural or natural heritage values;
- Lead to impacts associated with changes to the nature of the vegetation surrounding the reserve; and
- Impede NPWS access for management purposes, including inappropriate fencing.

The investigation area and adjoining National Parks are currently impacted by a suite of feral species including foxes (*Vulpes vulpes*), dogs (*Canis lupus*), pigs (*Sus scrofa*) and goats (*Capra hircus*). The Project has the potential to result in the exacerbation of the impacts of weeds and feral animals. Weed and feral animal management will also be incorporated into management of land within the investigation area during construction and operation of the Project . The Project is not considered to result in increased impacts from invasive species to NPWS estate.

The subject land is located in close proximity to the boundary of the adjoining Blue Mountains National Park.

Access to the Blue Mountains National Park from the investigation area is currently limited. No formal access tracks enter these areas. Sandham Road, which currently provides access to the quarry forms the boundary to the Blue Mountains National Park, and this is not anticipated to change. As such, the Project is not expected to impede the existing access to the Blue Mountains National Park. Should any fencing be required at the boundary of the quarry, it will be undertaken in accordance with the *Boundary Fencing Policy* (DPIE 2020a).

4.3.5. Fire and the Location of Asset Protection Zones

The aim of fire and asset protection zones management on NPWS estate is to ensure all asset protection measures are undertaken within the development area and there is no expectation for NPWS to alter its fire management regime (NSW Government 2020b). The Project does not include the provision of asset protection zones. Bushfire hazards within the investigation area will be assessed and managed in accordance with the relevant legislative requirements. As such, it is not considered that the NPWS fire management regime for the adjoining National Parks will be required to change.

4.3.6. Boundary Encroachments and Access through NPWS Land

The aim of boundary encroachment and access management on NPWS estate is to ensure no pre-construction, construction or post-construction activity occurs on NPWS estate and that access to the estate must be legally authorised and comply with park management objectives.

No additional clearing is proposed in close proximity to the boundaries of adjoining National Parks. No access to the Blue Mountains National Park is proposed.

4.3.7. Visual, Odour, Noise, Vibration Air Quality and Amenity Impacts

The aim of visual, odour, noise, vibration, air quality and amenity impact management on NPWS estate is to ensure there is no reduction of amenity on NPWS estate due to adjoining developments (NSW Government 2020b). The visual disturbance associated with the Project will be located in the vicinity of rehabilitation of the existing quarry. Visibility of the quarry is largely restricted to the perimeter fence. Rehabilitation of the site will involve emplacement of clean fill within the existing footprint to enable the site to be returned to a condition

closely representing the original landform and be visually integrated with the adjoining Blue Mountains National Park (GHD 2018b). The final landform would be progressively revegetated with locally endemic species to provide effective control or erosion and integration with the surrounding landscape. As rehabilitation progresses and vegetation grows, visual impacts of the quarry will be reduced. The visual disturbance generated by the Project is not considered to reduce the amenity of the Blue Mountains National Park.

The Project has potential to generate dust through the rehabilitation activities and vehicle haulage along Sandham Road which adjoins the Blue Mountains National Park. The site is located in a rural environment and periodically experiences high level of background dust generated from surrounding landuse including nearby mining and quarry operations and vehicles travelling on unsealed roads (GHD 2018b). The Project is anticipated to have a small incremental impact on dust emissions in the immediate vicinity of the quarry. All impacts will fall within the relevant EPA air quality criteria and is not anticipated to significantly impact upon any sensitive receivers within the Blue Mountains National Park (GHD 2018b). Dust will also be generated by haulage vehicles travelling along unsealed sections of Sandham Road which is used for access to the site. Detailed air quality modelling demonstrates that adoption water spraying along Sandham Road in dry and windy conditions will limit the potential for dust impacts within the Blue Mountains National Park and comply with EPA criteria (GHD 2018b).

Vibration impacts may result from works associated with the Project, such as heavy vehicle movement and construction and operational activities (GHD 2018a). Historically vibration would have been substantially higher during quarrying activities, however since quarrying ceased, vibration levels within the subject land are low. Typical vibration levels from activities such as use of a vibratory roller are generally negligible at distances greater than 100 metres, including within the adjacent Blue Mountains National Park (GHD 2018a).

All noise generating works associated with the Project are predicted comply with the project noise trigger levels at surrounding residential receivers (GHD 2018b) The maximum noise emission levels from the site are not greater than Laeq 50 dBA (NPI's recommended amenity noise level for passive recreational area) when calculated to either 200 metres south, north-east or north of the site boundary. The National Park areas will likely receive noise levels from the quarry site below Laeq 50 dBA (GHD 2018b).

4.3.8. Threats to Ecological Connectivity and Groundwater Dependent Ecosystems

The aims of ecological connectivity and GDE management on NPWS estate are to ensure (DECCW 2010):

- Native vegetation and other flora and fauna habitats that provide a linkage, buffer, home range or refuge
 role on land that is adjacent to reserves are maintained and enhanced, where possible; and
- GDEs in NPWS estate are protected.

The Project will not remove additional habitat (beyond that previously cleared for the operation of the quarry) for native flora and fauna adjacent to National Parks. The land previously cleared has connectivity to the adjacent Blue Mountains National Park and is effectively an 'island' of cleared land surrounded by intact native vegetation on all sides. As the quarry is progressively rehabilitated the growth of vegetation will improve connectivity with the adjacent National Park and other native vegetation outside the National Park.

Observations of groundwater interaction at the swamp in the National Park by Martens and Associates (2021) have indicated that groundwater develops in response to direct rainfall and surface inflows arriving from the catchment which are developed both within the subject land but also within adjoining valley areas. Therefore altered groundwater flows resulting from the Project is not likely to contribute to groundwater flows within the swamp.

4.3.9. Cultural Heritage

All rehabilitation activities will be undertaken with the existing quarry footprint and haulage will utilise the existing public road network. There is considered minimal potential to disturb natural ground surface of culturally modified trees. The site has been disturbed during the previous extraction activities and there is no evidence that the site was previously used intensively by Aboriginal people (GHD 2018b).

The target resource for the original quarry was a weathered sandstone and no sandstone outcrops suitable for Aboriginal occupations have been identified in the area. The landform was previously steep and lacked permanent water making it unsuitable for a large camp site. GHD 2018b). As such, it is considered highly unlikely that rehabilitation would impact on cultural heritage within the adjacent Blue Mountains National Park.

4.3.10. Access to Parks

No additional access is proposed to the Blue Mountains National Park and no additional access will be created. Vehicle haulage for rehabilitation will be along Sandham Road which forms the boundary of the Blue Mountains National Park. However this road will remain accessible to the public.

4.4. Rehabilitation Works

A key objective of the Project is to rehabilitate the project area to a condition closely representing the original landform and that of the adjoining Blue Mountains National Park (GHD 2018b). A Rehabilitation Management Plan (RMP) will be prepared for the Project and will include details on:

- Objectives of rehabilitation works;
- Staging of rehabilitation works;
- Rehabilitation phases; and
- Species composition for PCTs being rehabilitated; and
- · Monitoring requirements.

Indicative details of these aforementioned parameters are provided below. Detailed completion criteria will be contained within the RMP. The rehabilitation works will be undertaken both within the Project area and portions of Lot 7031 and 7032 DP 1066257.

4.4.1. Objectives

The objectives of the rehabilitation works within the Project area are to:

Undertake staged rehabilitation across the Project area;

- Reprofile the land within the Project area to create a stable landform that integrates with the surrounding landscape;
- Establish a soil profile suitable for revegetation works;
- Revegetate the land within the Project Area with native plant species that are representative of the native PCT adjoining the Project area, and using local provenance plants; and
- Conduct monitoring and maintenance of the rehabilitation works.

4.4.2. Staging

The Project will be undertaken during four key stages. Within the four key stages, rehabilitation is proposed to occur progressively, as per **Table 5**. The staging plans are provided within the Supplementary Environmental Impact Statement (GHD 2021b).

In addition to these stages, rehabilitation works will cover the office/ amenities area to the south of the contact water pond and the temporary stockpile area in the north-east corner of the project area.

Table 5 Extent of rehabilitation works by project stage

Stage	Total (ha)	Cumulative Total (ha)
1A	-	-
1B	0.40	0.40
2	1.19	1.59
3A	-	1.59
3B	1.17	2.76
3C	0.82	3.57
3D	1.01	4.59
4	2.22	6.81

4.4.3. Phases

Rehabilitation works will be undertaken across the following key phases:

- Landform reshaping. This will include the filling of voids to final landform levels;
- Soil replacement. This will include the capping of areas as they reach final surface levels;
- Revegetation. This will include the seeding and planting of native plant species that are representative of the native PCT adjoining the Project area, and using local provenance sources of seeds and plants.
- Maintenance. This will include ongoing maintenance and follow up activities within rehabilitated areas.
- Monitoring. This will include annual monitoring of rehabilitation works until completion criteria are met.
 Where required, corrective actions, such as plant replacement, weeding, erosion control will be undertaken.

4.4.4. Species Composition

All revegetation works within the rehabilitated land will focus on the creation of PCT 1248: Sydney Peppermint - Silvertop Ash heathy open forest. This PCT is located both within the Project area and in surrounding land. Approximately 6.81 ha of PCT 1248 will be revegetated within the Project area (see **Table 5**). A list of species suitable for use in rehabilitation works is provided in **Appendix C**.

4.4.5. Monitoring Requirements

A monitoring program will be implemented to assess the progression of rehabilitation works against performance criteria, and to identify corrective actions required to address non-conformances. Monitoring will include both annual monitoring and long-term monitoring.

The monitoring will include, but not be limited to:

- Assessment of revegetation success rates;
- Assessment of weed invasion;
- Assessment of landform (erosion);
- Plot-based vegetation monitoring; and
- · Assessment of performance criteria.

Should performance criteria not be met, a range of correction actions may need to be undertaken. This may include:

- Supplementary seeding/planting;
- Increase weed management activities or implementation of alternative techniques; and
- Remediation of erosion.

A Trigger Action Response Plan will be developed as part of the RMP.

4.5. Terrestrial Biodiversity

Under the *Lithgow Local Environmental Plan 2014*, the northern and western extents of the project area are included on the 'Terrestrial Biodiversity' map. The objective of this clause is to maintain terrestrial biodiversity by:

- a. protecting native fauna and flora, and
- b. protecting the ecological processes necessary for their continued existence, and
- encouraging the conservation and recovery of native fauna and flora and their habitats.

The portions of the project area that are included on the 'Terrestrial Biodiversity' layer includes land that has been disturbed by previous quarrying activities. These areas currently comprise either the existing void or regrowth vegetation. Key elements of the Project include:

- Shaping of fill to closely represent the pre-quarry landform and to allow surface water drainage across the final landform;
- Development of a water management system to control surface water discharges throughout the rehabilitation program and from the final landform including a lined contact water pond; and
- Revegetation of the site with locally endemic species to provide effective integration with the surrounding landscape.

Therefore the Project is seeking to improve the current condition of the biodiversity values within the project area. These works will be facilitated by the implementation of a number of environmental management measures that will minimise indirect impacts to adjoining areas of biodiversity value.

References

Botanic Gardens Trust. 2021. PlantNET. National Herbarium of NSW, Royal Botanic Gardens, Sydney.

DEC (NSW). 2006. The Vegetation of the Western Blue Mountains. Department of Environment and Conservation, Hurstville.

DECCW. 2010. Guidelines for developments adjoining land and water managed by the Department of Environment, Climate Change and Water Department of Environment, Climate Change and Water, Sydney.

DEWHA. 2005. Approved Conservation Advice for Temperate Highland Peat Swamps on Sandstone. Department of the Environment, Water, Heritage and the Arts, Canberra.

DPE. 2016. Waste Management Facility. Bell Quarry, Sandham Road, Newnes Junction (Part Lot 23 in DP 751631). Secretary's Environmental Assessment Requirements (SEAR) 1105, Department of Planning and Environment, Sydney,

DPIE. 2019. Bell Quarry - use of dam in Blue Mountains National Park. Letter dated 2 October 2019. Department of Planning, Industry and Environment, Dubbo.

DPIE. 2020a. Boundary Fencing Policy. Department of Planning, Industry and Environment.

DPIE. 2020b. NSW Survey Guide for Treatened Frogs: A guide for the survey of threatened frogs and their habitats for the Biodiversity Assessment Method.

EPA. 2019a. Bell Quarry Rehabilitation DA294/18. Integrated Development Application – Recommended Refusal. Letter dated 20 March 2019. NSW Environment Protection Authority, Bathurst.

EPA. 2019b. Bell Quarry Rehabilitation Project DA294/18. Response to Submissions Meeting 3 October 2016. Letter dated 15 October 2019. NSW Environmental Protection Authority, Bathurst.

EPA. 2019c. Bell Quarry Rehabilitation Project DA294/18. Submissions Report – EPA Comments. Letter dated 2 September 2019. NSW Environment Protection Authority, Bathurst.

EPA. 2020. Bell Quarry Rehabilitation Project DA294/18. Letter dated 13 January 2020. NSW Environmental Protection Authority, Bathurst.

GHD. 2018a. Bell Quarry Rehabilitation Project. Biodiversity Impact Assessment. GHD Pty Ltd, Sydney.

GHD. 2018b. Bell Quarry Rehabilitation Project. Volume 1 - Environmental Impact Statement, GHD Pty Ltd, Sydney,

GHD. 2018c. Bell Quarry Rehabilitation Project. Water Resources Assessment. GHD Pty Ltd, Sydney.

GHD. 2019a. Bell Quarry Rehabilitation Project. Additional response to submissions - DA294/18. Letter dated 11 October 2019. GHD Pty Ptd, Sydney.

GHD. 2019b. Bell Quarry Rehabilitation Project. Response to Additional EPA Comments - DA294/18. Letter dated 1 November 2019. GHD Pty Ltd, Sydney.

GHD. 2019c. Bell Quarry Rehabilitation Project. Submissions Report. GHD Pty Ltd, Sydney.

GHD. 2021a. Bell Quarry Appeal. Revised Water Resources Assessment. GHD Pty Ltd, Sydney.

GHD. 2021b. Bell Quarry Rehabilitation Project. Supplementary Environmental Impact Statement. GHD Pty Ltd. Sydney.

Lithgow City Council. 2020. Council Assessment Report DA294/18. Lithgow City Council, Lithgow.

Martens and Associates. 2021. Hydrological Study: Proposed Rehabilitation of Bell Quarry. Martens & Associates Pty Ltd, Hornsby.

NPWS. 2019. Bell Quarry - NPWS owners consent for making a development application. Letter dated 14 October 2014. National Parks and Wildlife Service, North Katoomba.

NSW Government. 2020a. Biodiversity Assessment Method. Environment, Energy and Science, Parramatta NSW.

NSW Government. 2020b. Developments adjacent to National Parks and Wildlife Service lands: Guidelines for consent and planning authorities. Environment, Energy and Science. Department of Planning, Industry and Environment, Parrmatta.

NSW Scientific Committee, 2011a, Blue Mountains Swamps in the Sydney Basin Bioregion - Determination to make a minor amendment to Part 2 of Schedule 2 of the Threatened Species Conservation Act. Office of Environment and Heritage, Hurstville,

NSW Scientific Committee. 2011b. Newnes Plateau Shrub Swamp in the Sydney Basin Bioregion - Determination to make a minor amendment to Part 3 of Schedule 1 of the Threatened Species Conservation Act Office of Environment and Heritage, Hurstville. OEH. 2017a. Anthropogenic Climate Change - profile. Office of Environment and Heritage, Hurstville.

OEH. 2017b. Bell Quarry Rehabilitation – EAR 1105. Letter dated 25 January 2017. Office of Environment and Heritage, Dubbo.

OEH. 2019. Bell Quarry rehabilitation project - DA 294/18. Letter dated 5 February 2019. Office of Environment and Heritage, Dubbo.

SEWPaC. 2011. Survey guidelines for Australia's threatened reptiles. Commonwealth Department of Sustainability, Environment, Water, Population and Communities, Canberra.

Western Regional Planning Panel. 2020. Determination and Statement of Reasons. 2018WES020 - Lithgow - DA294/18. NSW Planning Panels.

APPENDIX A: Flora Species List

list
species
Flora
Table 6

Acanthaceae Apiaceae Apiaceae				Dr Hel	בו הר טון			Cumperland ecology	Cology
Acanthaceae Apiaceae Apiaceae		STATE OF THE PARTY		Status	Status		Plot 1	Plot 2	Incidental
Apiaceae Apiaceae	Brunoniella australis	stralis	Blue Trumpet			×	A COLUMN TO SERVICE AND A SERV		
Apiaceae	Daucus glochidiatus	iatus	Native Carrot			×			
	Hydrocotyle hirta	ta	Hairy Pennywort	ī	ı		×	×	×
Apiaceae	Hydrocotyle laxiflora	iflora	Stinking Pennywort						×
Apiaceae	Platysace linearifolia	rifolia		1		×			×
Apiaceae	Xanthosia atkinsoniana	ısoniana			,		×	×	×
Apiaceae	Xanthosia dissecta	cta	Cut-leaved Xanthosia	1			×		×
Apiaceae	Xanthosia pilosa	a	Woolly Xanthosia	1	1	×			
Araliaceae	Polyscias sambucifolia	ucifolia	Elderberry Panax	,		×			×
Asteraceae	Arrhenechthites mixta	s mixta	Purple Fireweed			×			
Asteraceae	Cassinia aculeata	ıta	Dolly Bush	ı		×			
Asteraceae	Cassinia aculea	Cassinia aculeata subsp. aculeata		1	1				×
Asteraceae	Chrysocephalum apiculatum	n apiculatum	Common Everlasting	ŧ	ı				×
Asteraceae	Coronidium scorpioides	rpioides	Button Everlasting	t	ı	×		×	×
Asteraceae	Euchiton sphaericus	ricus	Star Cudweed	ı	ı	×			×
Asteraceae	Ozothamnus diosmifolius	osmifolius	White Dogwood	1		×			×
Asteraceae	Pseudognaphal.	Pseudognaphalium luteoalbum	Jersey Cudweed	ı			×	×	×
Asteraceae	Solenogyne gunnii	inii	Solengyne	1			×	×	
Asteraceae	* Conyza bilbaoana	na		1				×	
Asteraceae	* Conyza bonariensis	nsis	Flaxleaf Fleabane	1			×		×

Asteraceae * Asteraceae * Asteraceae *		Common Name	BC Act	EFEC ACL	בובה בובה		66	
			Status	Status		Plot 1	Plot 2	Incidental
	Conyza sumatrensis	Tall fleabane	ı	ı			×	
		Catsear			×	×	×	×
		Fireweed	1	ı				×
Blechnaceae	Blechnum nudum	Fishbone Water Fern	1	•				×
Campanulaceae	Lobelia dentata							×
Campanulaceae	Wahlenbergia communis	Tufted Bluebell	ı					×
Campanulaceae	Wahlenbergia gracilis	Sprawling Bluebell	1		×	×	×	×
Campanulaceae	Wahlenbergia sp.	Bluebell	ı		×			
Casuarinaceae	Allocasuarina nana	Dwarf She-oak		ι	×			
Colchicaceae	Burchardia umbellata	Milkmaids	1	ı	×			
Cyatheaceae	Cyathea australis	Rough Treefern	ı	1				×
Cyperaceae	Baumea acuta		1	1		×	×	×
Cyperaceae	Baumea rubiginosa		1			×	×	×
Cyperaceae	Caustis flexuosa	Curly Wig					×	×
Cyperaceae	Eleocharis gracilis			,		×	×	
Cyperaceae	Fimbristylis dichotoma	Common Fringe-sedge	1	ı		×	×	×
Cyperaceae	Gahnia microstachya			1	×			×
Cyperaceae	Gahnia sieberiana	Red-fruit Saw-sedge			×		×	×
Cyperaceae	Gahnia sp.		ι					×
Cyperaceae	Isolepis inundata	Club-rush	,				×	×
Cyperaceae	Lepidosperma laterale	Variable Sword-sedge	ı	1	×			×

eae Lepidosperma limicola eae Schoenus apogon Bluke Bogrush	Family	* Scientific Name	Common Name	BC Act	EPBC Act	GHD	Cilla	harland	, and on
Lepidosperma limicola Fluke Bogrush - - X X Schoemus sp. Schoemus sp. - - - X Schoemus sp. - - - X Terraria capillaris - - - X * Cyperus eragnostis Umbnella Sedge - - - X Perridtum esculentum Bracken - - - X X Orosera binata Forked Sundew - - - X X Orosera petrata Forked Sundew - - - X X Orosera petrata Coral Heath - - - X X Drosera petrata Swamp Heath - - - X X Epacris putchella Wallum Heath - - - X X Leucopogon lanceolatus - - - - - X Leucopogon lanceolatus - <th></th> <th></th> <th></th> <th>Status</th> <th>Status</th> <th></th> <th>Plot 1</th> <th>Plot 2</th> <th>Incidental</th>				Status	Status		Plot 1	Plot 2	Incidental
Schoenus apogon Fluke Bogrush - - X Schoenus sp. - - - X Schoenus villosus - - - X * Schoenus villosus - - - X * Cyperus eragistis Umbrella Sedge - - - X Preridium esculentum Bracken - - - X X Drosera binata Forked Sundew - - - X X Drosera peltata Forked Sundew - - - X X Drosera peltata Coral Heath - - - X X Epacris pulchella Wallum Heath - - - X X Epacris pulchella Wallum Heath - - - - X Leucopogon lanceolatus - - - - - X Leucopogon lanceolatus - - -	Cyperaceae	Lepidosperma limicola	design constants of the state o		2	×	×	×	×
Schoenus sp. Schoenus villosus Tetraria capillaris * Cyperus eragrostis Prezidium esculentum Bracken Drosera peltata Drosera peltata Drosera spatulata Epacris microphylla Epacris paludosa Epacris pulchella Mallum Heath Leucopogon sp. Monotoca scoparia Amperea xiphoclada Draviesia (attfolia Bitter-pea * Cytisus scoparius Bracken Br	Cyperaceae	Schoenus apogon	Fluke Bogrush	1	1			×	×
Schoenus villosus - - X * Cyperus eragrostis Umbrella Sedge - - X Pteridium esculentum Bracken - - X Drosera binata Forked Sundew - - X Drosera peltrata Forked Sundew - - X Brosera peltrata - - X X Epacris peltrata Coral Heath - - X X Epacris pulchella Wallum Heath - - X X Leucopogon lanceolatus Wallum Heath - - X X Leucopogon lanceolatus - - X X X Monotoca scoparia - - - X X Amperea xiphoclada - - - - X X Amperea xiphoclada Bitter-pea - - - X X Amperea xiphoclada Bitter-pea - - - X X Podolobium scandens Netted Shaggy Pea	Cyperaceae	Schoenus sp.		1	1	×			
* Cyperus eragrostis Umbrella Sedge X Pteridium esculentum Baraken Drosera binata Drosera binata Drosera spatulata Drosera della spa	Cyperaceae	Schoenus villosus					×		×
* Cyperus eragrostis Umbrella Sedge X Pteridium esculentum Bracken	Cyperaceae	Tetraria capillaris		1	ι			×	×
Pleatidium esculentum Bracken - - X Drosera binata Forked Sundew - - X Drosera peltata - - - X Drosera peltata - - - X Epacris microphylla Coral Heath - - X Epacris pulchella Wallum Heath - - X Leucopogon lanceolatus Wallum Heath - - X Leucopogon lanceolatus - - X X Leucopogon sp. - - - X Amperea xiphoclada - - - X Amperea xiphoclada var. xiphoclada - - - X Amperea xiphoclada var. xiphoclada - - - - X Daviesia latifolia Bitter-pea - - - X X Podolobium scandens Netted Shaggy Pea - - - X -	Cyperaceae		Umbrella Sedge		ı				×
Drosera binata Forked Sundew - - X Drosera pettata - - - X Drosera spatulata - - - X Epacris microphylla Coral Heath - - X Epacris pulchella Wallum Heath - - X Leucopogon lanceolatus - - X X Leucopogon lanceolatus - - X X Monotoca scoparia - - X X Amperea xiphoclada - - - X X Amperea xiphoclada - - - X X Daviesia latifolia Bitter-pea - - - X X Podolobium scandens Netted Shaggy Pea - - - X X * Cytisus scoparius English Broom - - - X -	Dennstaedtiaceae	Pteridium esculentum	Bracken	1	r	×			×
Drosera peltata - - X Drosera spatulata - - - X Epacris microphylla Coral Heath - - X Epacris paludosa Swamp Heath - - X Leucopogon lanceolatus - - - X Leucopogon lanceolatus - - - X Monotoca scoparia - - - X Amperea xiphoclada - - - X Amperea xiphoclada var. xiphoclada - - - X Daviesia latifolia Bitter-pea - - - X Podolobium scandens Netted Shaggy Pea - - - X * Cytisus scoparius subsp. scoparius English Broom - - - X	Droseraceae	Drosera binata	Forked Sundew	,			×		×
Drosera spatulata Coral Heath - - X Epacris microphylla Swamp Heath - - X Epacris pulchella Wallum Heath - - X Leucopogon lanceolatus - - X X Leucopogon sp. - - X X Monotoca scoparia - - X X Amperea xiphoclada - - X X Amperea xiphoclada var. xiphoclada - - X X Daviesia latifolia Bitter-pea - - X X Podolobium scandens Netted Shaggy Pea - - X * Cytisus scoparius subsp. scoparius English Broom - - X	Droseraceae	Drosera peltata		1		×			×
Epacris microphyllaCoral HeathXEpacris paludosaSwamp HeathXLeucopogon lanceolatusXLeucopogon spXMonotoca scopariaXAmperea xiphoclada var. xiphocladaXDaviesia latifoliaBitter-peaXPodolobium scandensNetted Shaggy PeaX* Cytisus scopariusEnglish BroomX	Droseraceae	Drosera spatulata		r	ı			×	
Epacris paludosa Swamp Heath - - X Leucopogon lanceolatus - - X Leucopogon sp. - - X Monotoca scoparia - - X Amperea xiphoclada - - X X Amperea xiphoclada var. xiphoclada - - X X Daviesia latifolia Bitter-pea - - X X Podolobium scandens Netted Shaggy Pea - - X X * Cytisus scoparius subsp. scoparius English Broom - - X X	Ericaceae	Epacris microphylla	Coral Heath	r		×			
Epacris pulchellaWallum HeathXLeucopogon lanceolatusXLeucopogon spXMonotoca scopariaXAmperea xiphocladaXAmperea xiphoclada var. xiphocladaXDaviesia latifoliaBitter-peaXPodolobium scandensNetted Shaggy PeaX* Cytisus scoparius subsp. scopariusEnglish BroomX	Ericaceae	Epacris paludosa	Swamp Heath		1		×		
Leucopogon lanceolatus - - X Leucopogon sp. - - X Monotoca scoparia - - X Amperea xiphoclada - - X X Amperea xiphoclada var. xiphoclada - - X X Daviesia latifolia Bitter-pea - - X Podolobium scandens Netted Shaggy Pea - - X * Cytisus scoparius subsp. scoparius English Broom - - X	Ericaceae	Epacris pulchella	Wallum Heath	ı	1			×	×
Leucopogon sp. Monotoca scoparia Amperea xiphoclada Amperea xiphoclada var. xiphoclada Daviesia latifolia Podolobium scandens * Cytisus scoparius subsp. scoparius Leucopogon sp. -	Ericaceae	Leucopogon lanceolatus			1	×			
Monotoca scoparia - - X Amperea xiphoclada - - X X Amperea xiphoclada - - X X Daviesia latifolia Bitter-pea - - X Podolobium scandens Netted Shaggy Pea - - X * Cytisus scoparius subsp. scoparius English Broom - - X	Ericaceae	Leucopogon sp.		,		×			
Amperea xiphoclada Amperea xiphoclada var. xiphoclada Daviesia latifolia Podolobium scandens * Cytisus scoparius subsp. scoparius Amperea xiphoclada Bitter-pea -	Ericaceae	Monotoca scoparia		1		×			×
Amperea xiphoclada var. xiphoclada Daviesia latifolia Podolobium scandens * Cytisus scoparius subsp. scoparius Amperea xiphoclada Bitter-pea - X X X Aprilea Shaggy Pea - X English Broom - X	Euphorbiaceae	Amperea xiphoclada		1		×	×	×	×
Daviesia latifolia Bitter-pea - X Podolobium scandens Netted Shaggy Pea - - X * Cytisus scoparius subsp. scoparius English Broom - - X	Euphorbiaceae	Amperea xiphoclada var. xiphoclad	a	ı	1				×
* Cytisus scoparius subsp. scoparius English Broom X	Fabaceae (Faboideae)	Daviesia latifolia	Bitter-pea	ı		×			×
* Cytisus scoparius subsp. scoparius English Broom -	Fabaceae (Faboideae)	Podolobium scandens	Netted Shaggy Pea	ı	1	×			
	Fabaceae (Faboideae)	* Cytisus scoparius subsp. scoparius	English Broom	ı	1	×			where a

Fabaceae (Faboideae) *	* Scientific Name	Common Name	BC Act	EPBC Act	GHD	Camp	Cumperland Ecology	cology
			Status	Status		Plot 1	Plot 2	Incidental
Fabaceae (Mimosoideae)	Trifolium subterraneum	Subterranean Clover	ı	1	×			
Constitution of the consti	Acacia baileyana	Cootamundra Wattle		1	×			
Fabaceae (Mimosoideae)	Acacia longifolia		1	1	×	×	×	×
Fabaceae (Mimosoideae)	Acacia sp.	Wattle	ı	1	×			
Fabaceae (Mimosoideae)	Acacia terminalis	Sunshine Wattle		1	×		×	×
Fabaceae (Mimosoideae)	Acacia ulicifolia	Prickly Moses	1	1	×	×	×	×
Gentianaceae *	Centaurium erythraea	Common Centaury	1	ı	×			×
Geraniaceae	Geranium potentilloides var. abditum			1		×	×	×
Geraniaceae *		Common Crowfoot	l	1				×
Gleicheniaceae	Gleichenia dicarpa	Pouched Coral Fern	1	,	×			
Goodeniaceae	Dampiera stricta		ı	•	×	×	×	×
Goodeniaceae	Goodenia bellidifolia subsp. bellidifolia			1			×	×
Goodeniaceae	Goodenia heterophylla subsp. heterophylla		1					×
Goodeniaceae	Goodenia paniculata		1	1	×			
Haemodoraceae	Haemodorum planifolium		1	ı	×	×		×
Haloragaceae	Gonocarpus micranthus		1			×	×	×
Haloragaceae	Gonocarpus tetragynus	Poverty Raspwort	1	1	×			×
Iridaceae	Patersonia sericea	Silky Purple-Flag			×			×
Juncaceae	Juncus continuus		1	ı		×		×
Juncaceae	Juncus planifolius		1	1		×	×	×

Family	* Scientific Name	Common Name	BC Act	EPBC Act	GHD	Cumberland Ecology
The state of the s	The state of the s		Status	Status		Plot 1 Plot 2 Incidental
Juncaceae	Juncus sp.				×	
Juncaceae	Juncus usitatus				×	×
Lindsaeaceae	Lindsaea linearis	Screw Fern		1		×
Loganiaceae	Mitrasacme polymorpha		1			×
Lomandraceae	Lomandra filiformis subsp. filiformis		ı		×	
Lomandraceae	Lomandra glauca	Pale Mat-rush	1			×
Lomandraceae	Lomandra longifolia	Spiny-headed Mat-rush	,	r	×	×
Lomandraceae	Lomandra multiflora subsp. multiflora	Many-flowered Mat-rush	ſ	1	×	
Malvaceae	* Modiola caroliniana	Red-flowered Mallow	ı	ı		×
Malvaceae	* Sida rhombifolia	Paddy's Lucerne	ı	1		×
Myrtaceae	Baeckea linifolia	Weeping Baeckea	1	ı	×	× ×
Myrtaceae	Eucalyptus blaxlandii	Blaxland's Stringybark	ı	1		×
Myrtaceae	Eucalyptus globoidea	White Stringybark	ı	1	×	
Myrtaceae	Eucalyptus oreades	Blue Mountains Ash	,	1	×	
Myrtaceae	Eucalyptus piperita	Sydney Peppermint	1	ı	×	×
Myrtaceae	Eucalyptus racemosa	Narrow-leaved Scribbly Gum	1	ı		×
Myrtaceae	Eucalyptus radiata	Narrow-leaved Peppermint	1	ı		×
Myrtaceae	Eucalyptus sclerophylla	Hard-leaved Scribbly Gum	ı	ī	×	

Myrtaceae Eucalyptus sieberi Myrtaceae Leptospermum continentale Myrtaceae Leptospermum grandifolium Myrtaceae Leptospermum macrocarpum Myrtaceae Leptospermum polygalifolium Myrtaceae Leptospermum rotundifolium Myrtaceae Leptospermum trinervium Orchidaceae Dipodium variegatum Orchidaceae Eriochilus cucullatus Orchidaceae Microtis sp. Orchidaceae Prasophyllum sp. Orchidaceae Prasophyllum sp. Orchidaceae Presophyllum sp. Orchidaceae Dianella revoluta Phormiaceae Dianella revoluta	Silvertop Ash sntale Prickly Teatree folium Woolly Teatree	Status	Status		Plot 1	4	
ae ae ae ae ceae						Plot 2	Incidental
ceae ceae			ı	×			
an an an		1		×	×		×
en en en		1	1	×	×	×	×
a a g	carpura	ı	1	×	×		
o e e	<i>lifolium</i> Tantoon	τ	1	×	×	×	×
en en en	ifolium	ι	ı	×			
o e	ium Slender Tea-tree	1	ı	×		×	
o e		1	1			1	×
g e	Parson's Bands	1			×		×
a e		1	1	×			
e e	Bird's-mouth Orchid	•	1				×
a a		ı	•	×			
a a	Greenhood	1					×
		1	1	×			
	Blueberry Lily	ı					×
	revoluta		1	×			
	Thyme Spurge	1	1	×			
Phyllanthaceae Phyllanthus virgatus	Wiry Spurge	ı	ı				×
Phyllanthaceae Poranthera microphylla	la Small Poranthera	1	r	×	×	×	×
Pittosporaceae Billardiera scandens	Hairy Apple Berry		1	×	×	×	×
Plantaginaceae * Plantago lanceolata	Lamb's Tongues		,	×			×

Family	* Scientific Name	Common Name	BC Act	EPBC Act	GHD	Cum	Cumberland Ecology	cology
The state of the s			Status	Status		Plot 1	Plot 2	Incidental
Poaceae	Austrostipa rudis		ı	,				×
Poaceae	Austrostipa rudis subsp. nervosa		F	r	×	×		
Poaceae	Deyeuxia mckiei		ı	1		×	×	×
Poaceae	Elymus scaber	Common Wheatgrass	1		×			
Poaceae	Entolasia stricta	Wiry Panic	ı	,	×	×	×	×
Poaceae	Hemarthria uncinata	Matgrass	1	1		×		×
Poaceae	Microlaena stipoides	Weeping Grass	1		×		×	×
Poaceae	Poa sieberiana	Snowgrass	1	1	×			×
Poaceae	Rytidosperma pallidum	Redanther Wallaby Grass	ı			×		
Poaceae	Rytidosperma sp.		ı		×			
Poaceae	Rytidosperma tenuius		ī		×			×
Poaceae	* Cortaderia selloana	Pampas Grass	ı		×			
Poaceae	* Eragrostis curvula	African Lovegrass	1	ı	×			
Polygalaceae	Comesperma ericinum	Pyramid Flower			×			
Proteaceae	Banksia ericifolia var. ericifolia			1				×
Proteaceae	Banksia serrata	Old-man Banksia	1	1	×			
Proteaceae	Banksia spinulosa	Hairpin Banksia	ı	1	×	×		×
Proteaceae	Grevillea laurifolia	Laurel-leaf Grevillea	1		×		×	×
Proteaceae	Grevillea rosmarinifolia subsp. rosmarinifolia	Rosmary Grevillea	f	ı				×
Proteaceae	Hakea dactyloides	Finger Hakea		1	×			×
Proteaceae	Накед птопіпаца					:		

Rehabilitation of the Former Bell Quarry - DA 294/19 Cumberland Ecology ©

Family *	* Scientific Name	Common Name	BC Act	EPBC Act	GHD	Cumberland Ecology	cology
THE REAL PROPERTY.			Status	Status		Plot 1 Plot 2	Incidental
Proteaceae	Hakea sericea	Needlebush	1	1	×		
Proteaceae	Isopogon anemonifolius	Broad-leaf Drumsticks	l	1	×		
Proteaceae	Lomatia silaifolia	Crinkle Bush	ı	ι	×	×	×
Proteaceae	Persoonia chamaepitys	Mountain Geebung	ı	ı			×
Proteaceae	Persoonia lanceolata	Lance Leaf Geebung	ı	a	×		
Proteaceae	Persoonia levis	Broad-leaved Geebung	•	1	×		×
Proteaceae	Persoonia linearis	Narrow-leaved Geebung	ı		×		
Proteaceae	Petrophile canescens	Conesticks	1	ı			×
Proteaceae	Petrophile pulchella	Conesticks	1	1	×		×
Proteaceae	Telopea speciosissima	Waratah	ı	1	×		×
Proteaceae *	Hakea laurina		ι	1	×		
Pteridaceae	Pellaea falcata	Sickle Fern	ı	1			×
Restionaceae	Baloskion australe		ı	1	×	×	×
Restionaceae	Baloskion gracile		1		×		
Restionaceae	Empodisma minus		ı	1	×	×	×
Restionaceae	Eurychorda complanata		ı	ŀ	×	×	×
Restionaceae	Lepyrodia cryptica			1		×	×
Restionaceae	Lepyrodia scariosa		ı		×	×	×
Restionaceae	Unknown sp.		ı			×	
Rhamnaceae	Pomaderris andromedifolia af. 'andromedifolia'	2	1	1	×		

Family	* Scientific Name	Common Name	BC Act	EPBC Act	GHD	Cum	Cumberland Ecology	cology
K. March St. Work of w	かいたがあるからいでは、大き		Status	Status		Plot 1	Plot 2	Incidental
Rhamnaceae	Pomaderris andromedifolia subsp. andromedifolia							×
Rubiaceae	Opercularia hispida	Hairy Stinkweed	1	1		×		
Rubiaceae	Opercularia varia	Variable Stinkweed	ı		×	×	×	×
Rubiaceae	Pomax umbellata	Pomax	ı	1	×			×
Rutaceae	Boronia microphylla.	Small-leaved Boronia	1	1	×			×
Solanaceae	* Solanum sp.		ı		×			×
Stackhousiaceae	Stackhousia viminea	Slender Stackhousia	1	1	×			×
Thymelaeaceae	Pimelea linifolia subsp. collina		1	ı				×
Violaceae	Hybanthus monopetalus	Slender Violet-bush	1					×
Violaceae	Hybanthus vernonii		ı		×			×
Violaceae	Viola caleyana	Swamp Violet	1	ı				×
Violaceae	Viola hederacea	lvy-leaved Violet	ı			×	×	×
Xyridaceae	Xyris gracilis					×	×	×
Xyridaceae	Xyris gracilis subsp. gracilis			1				×
Xyridaceae	Xyris ustulata	Yellow Flag	ı	1	×			

[Page intentionally left blank]

APPENDIX B:

Fauna Species List

Table 7 Fauna species list

Family	Scientific Name	Common Name	GHD	Cumberland Ecology
Amphibians		Parameter Control of the Control of		
Hylidae	Litoria peronii	Peron's Tree Frog	Χ	
Hylidae	Litoria tyleri	Tyler's Tree Frog	X	
Hylidae	Litoria verreauxii	Verreaux's Frog	Χ	
Limnodynastidae	Limnodynastes dumerilii	Eastern Banjo Frog	Χ	Χ
Myobatrachidae	Crinia signifera	Common Eastern Froglet	X	Χ
Myobatrachidae	Uperoleia laevigata	Smooth Toadlet	Χ	
Birds				
Acanthizidae	Acanthiza lineata	Striated Thornbill	X	
Acanthizidae	Acanthiza pusilla	Brown Thornbill	Χ	Χ
Acanthizidae	Gerygone mouki	Brown Gerygone	Χ	
Acanthizidae	Sericornis frontalis	White-browed Scrubwren	Χ	Χ
Accipitridae	Aquila audax	Wedge-tailed Eagle	Χ	
Alcedinidae	Dacelo novaeguineae	Laughing Kookaburra	Х	X
Anatidae	Anas superciliosa	Pacific Black Duck	Χ	
Anatidae	Chenonetta jubata	Australian Wood Duck	Χ	
Artamidae	Cracticus torquatus	Grey Butcherbird		X
Artamidae	Gymnorhina tibicen	Australian Magpie	Х	Χ
Cacatuidae	Alisterus scapularis	Australian King-Parrot		Χ
Cacatuidae	Zanda funereus	Yellow-tailed Black- cockatoo	X	Χ
Charadriidae	Vanellus miles	Masked Lapwing	Х	
Climacteridae	Cormobates leucophaea	White-throated Treecreeper	Х	Х
Corvidae	Corvus mellori	Little Raven	Х	
Hirundinidae	Hirundo neoxena	Welcome Swallow	Х	Х
Hirundinidae	Petrochelidon nigricans	Tree Martin	Х	
Maluridae	Malurus cyaneus	Superb Fairy-wren	Х	Х
Meliphagidae	Acanthorhynchus tenuirostris	Eastern Spinebill	Х	
Meliphagidae	Anthochaera carunculata	Red Wattlebird	Х	Х
Meliphagidae	Lichenostomus chrysops	Yellow-faced Honeyeater	Χ	X

Family	Scientific Name	Common Name	GHD	Cumberland Ecology
Meliphagidae	Phylidonyris novaehollandiae	New Holland Honeyeater	Х	Х
Menuridae	Menura novaehollandiae	Superb Lyrebird	Χ	
Pachycephalidae	Colluricincla harmonica	Grey Shrike-thrush	Χ	
Pachycephalidae	Pachycephala rufiventris	Rufous Whistler	Χ	Χ
Pardalotidae	Pardalotus punctatus	Spotted Pardalote	Χ	X
Phalacrocoracidae	Phalacrocorax sulcirostris	Little Black Cormorant	Х	
Podicipedidae	Tachybaptus novaehollandiae	Australasian Grebe	Χ	Х
Psittacidae	Platycercus elegans	Crimson Rosella	Х	X
Rhipiduridae	Rhipidura albiscapa	Grey Fantail	Х	Х
Dragonflies and Damselflies				
Coenagrionidae	Xanthagrion erythroneurum	Red and Blue Damsel	Х	-
Corduliidae	Hemicordulia tau	Tau Emerald	Х	
Lestidae	Austrolestes analis	Slender Ringtail	Χ	
Lestidae	Austrolestes leda	Wandering Ringtail	Х	
Libellulidae	Nannophya dalei	Eastern Pygmyfly	Х	
Libellulidae	Orthetrum caledonicum	Blue Skimmer	Χ	
Mammals				
Macropodidae	Macropus giganteus	Eastern Grey Kangaroo	Χ	
Macropodidae	Macropus rufogriseus	Red-necked Wallaby	Χ	
Macropodidae	Wallabia bicolor	Swamp Wallaby	X	
Miniopteridae	Miniopterus orianae oceanensis	Large Bent-winged Bat	Χ^	
Molossidae	Austronomus australis	White-striped Freetail-Bat	Х	
Vespertilionidae	Chalinolobus gouldii	Gould's Wattled Bat	Х	
Vespertilionidae	Vespadelus darlingtoni	Large Forest Bat	Х	
Vespertilionidae	Vespadelus regulus	Southern Forest Bat	Χ^	
Vombatidae	Vombatus ursinus	Common Wombat	Х	
Reptiles				
Agamidae	Amphibolurus muricatus	Jacky Lizard	Х	
Agamidae	Intellagama lesueurii	Eastern Water Dragon	Х	

Family	Scientific Name	Common Name	GHD	Cumberland Ecology
Elapidae	Hemiaspis signata	Black-bellied Swamp Snake	Χ	
Scincidae	Eulamprus heatwolei	Yellow-bellied Water-skink	Χ	
Scincidae	Lampropholis delicata	Dark-flecked Garden Sunskink	Х	
Scincidae	Lampropholis guichenoti	Pale-flecked Garden Sunskink	Х	
Scincidae	Lampropholis sp.	Unidentified grass skink	Χ	
Scincidae	Niveoscincus coventryi	Southern Forest Cool-skink	Χ	

[^] Possible call recording only

APPENDIX C:

Planting List

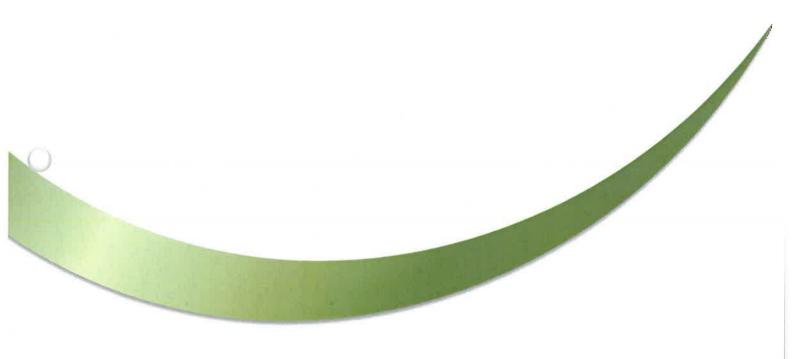


Table 8 Planting list for rehabilitation works

×

Coral Heath

Epacris microphylla

Ericaceae

Shrub (SG)

Growth Form Group	Family	Scientific Name	Common Name	Recorded in Surrounding Vegetation	BioNet Vegetation Classification
Tree (TG)	Cunoniaceae	Ceratopetalum gummiferum	Christmas Bush	×	
Tree (TG)	Myrtaceae	Eucalyptus blaxlandii	Blaxland's Stringybark	×	
Tree (TG)	Myrtaceae	Eucalyptus globoidea	White Stringybark	×	
Tree (TG)	Myrtaceae	Eucalyptus oreades	Blue Mountains Ash	×	
Tree (TG)	Myrtaceae	Eucalyptus piperita	Sydney Peppermint	×	×
Tree (TG)	Myrtaceae	Eucalyptus radiata subsp. radiata			×
Tree (TG)	Myrtaceae	Eucalyptus sclerophylla	Hard-leaved Scribbly Gum	×	×
Tree (TG)	Myrtaceae	Eucalyptus sieberi	Silvertop Ash	×	×
Tree (TG)	Myrtaceae	Eucalyptus sparsifolia	Narrow-leaved Stringybark		×
Tree (TG)	Proteaceae	Banksia serrata	Old-man Banksia	×	×
Shrub (SG)	Apiaceae	Platysace lanceolata	Shrubby Platysace	×	
Shrub (SG)	Apiaceae	Platysace linearifolia		×	×
Shrub (SG)	Araliaceae	Polyscias sambucifolia	Elderberry Panax	×	
Shrub (SG)	Asteraceae	Cassinia aculeata	Dolly Bush	×	
Shrub (SG)	Asteraceae	Cassinia aculeata subsp. aculeata		×	
Shrub (SG)	Asteraceae	Ozothamnus diosmifolius	White Dogwood	×	
Shrub (SG)	Casuarinaceae	Allocasuarina nana	Dwarf She-oak	×	
Shrub (SG)	Dilleniaceae	Hibbertia obtusifolia	Hoary Guinea Flower	×	
Shrub (SG)	Ericaceae	Brachyloma daphnoides	Daphne Heath	×	

Growth Form Group	Family	Scientific Name	Common Name	Recorded in	BioNet
		一年 一年 一年 一日 一日 一日 一日 一日 一日 一日 一日 一日 一日 一日 一日 一日		Surrounding Vegetation	Vegetation Classification
Shrub (SG)	Ericaceae	Epacris pulchella	Wallum Heath	×	
Shrub (SG)	Ericaceae	Leucopogon lanceolatus		×	
Shrub (SG)	Ericaceae	Leucopogon spp.		×	
Shrub (SG)	Ericaceae	Monotoca scoparia		×	×
Shrub (SG)	Euphorbiaceae	Amperea xiphoclada		×	
Shrub (SG)	Fabaceae (Faboideae)	Bossiaea heterophylla	Variable Bossiaea		×
Shrub (SG)	Fabaceae (Faboideae)	Daviesia latifolia	Bitter-pea	×	
Shrub (SG)	Fabaceae (Faboideae)	Daviesia ulicifolia	Gorse Bitter Pea		×
Shrub (SG)	Fabaceae (Faboideae)	Podolobium scandens	Netted Shaggy Pea	×	
Shrub (SG)	Fabaceae (Mimosoideae)	Acacia baileyana	Cootamundra Wattle	×	
Shrub (SG)	Fabaceae (Mimosoideae)	Acacia brownii	Heath Wattle	×	
Shrub (SG)	Fabaceae (Mimosoideae)	Acacia longifolia		×	
Shrub (SG)	Fabaceae (Mimosoideae)	Acacia longifolia var. longifolia	Sydney Golden Wattle	×	
Shrub (SG)	Fabaceae (Mimosoideae)	Acacia spp.	Wattle	×	
Shrub (SG)	Fabaceae (Mimosoideae)	Acacia terminalis	Sunshine Wattle	×	
Shrub (SG)	Fabaceae (Mimosoideae)	Acacia ulicifolia	Prickly Moses	×	

		The state of the s	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWIND TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN	The second second second	
Growth Form Group	Family	Scientific Name	Common Name	Recorded in Surrounding Vegetation	BioNet Vegetation Classification
Shrub (SG)	Myrtaceae	Baeckea linifolia	Weeping Baeckea	×	
Shrub (SG)	Myrtaceae	Leptospermum continentale	Prickly Teatree	×	
Shrub (SG)	Myrtaceae	Leptospermum grandifolium	Woolly Teatree	×	
Shrub (SG)	Myrtaceae	Leptospermum macrocarpum		×	
Shrub (SG)	Myrtaceae	Leptospermum polygalifolium	Tantoon	×	
Shrub (SG)	Myrtaceae	Leptospermum rotundifolium		×	
Shrub (SG)	Myrtaceae	Leptospermum trinervium	Slender Tea-tree	×	×
Shrub (SG)	Phyllanthaceae	Phyllanthus hirtellus	Thyme Spurge	×	
Shrub (SG)	Polygalaceae	Comesperma ericinum	Pyramid Flower	×	
Shrub (SG)	Proteaceae	Banksia ericifolia var. ericifolia		×	
Shrub (SG)	Proteaceae	Banksia marginata	Silver Banksia	×	
Shrub (SG)	Proteaceae	Banksia spinulosa	Hairpin Banksia	×	×
Shrub (SG)	Proteaceae	Grevillea laurifolia	Laurel-leaf Grevillea	×	
Shrub (SG)	Proteaceae	Grevillea rosmarinifolia subsp. rosmarinifolia	Rosmary Grevillea	×	
Shrub (SG)	Proteaceae	Hakea dactyloides	Finger Hakea	×	×
Shrub (SG)	Proteaceae	Hakea propinqua		×	
Shrub (SG)	Proteaceae	Hakea sericea	Needlebush	×	
Shrub (SG)	Proteaceae	Isopogon anemonifolius	Broad-leaf Drumsticks	×	×
Shrub (SG)	Proteaceae	Lambertia formosa	Mountain Devil		×
Shrub (SG)	Proteaceae	Lomatia silaifolia	Crinkle Bush	×	×
Shrub (SG)	Proteaceae	Persoonia chamaepitys	Mountain Geebung	×	

Growth Form Group	Family	Scientific Name	Common Name	Recorded in Surrounding Vegetation	BioNet Vegetation Classification
Grass & grasslike (GG)	Lomandraceae	Lomandra filiformis subsp. filiformis		×	
Grass & grasslike (GG)	Lomandraceae	Lomandra glauca	Pale Mat-rush	×	×
Grass & grasslike (GG)	Lomandraceae	Lomandra longifolia	Spiny-headed Mat-rush	×	
Grass & grasslike (GG)	Lomandraceae	Lomandra longifolia var. longifolia	Spiny-headed Mat-rush	×	
Grass & grasslike (GG)	Lomandraceae	Lomandra multiflora subsp. multiflora	Many-flowered Mat-rush	×	
Grass & grasslike (GG)	Lomandraceae	Lomandra obliqua			×
Grass & grasslike (GG)	Poaceae	Aristida ramosa	Purple Wiregrass	×	
Grass & grasslike (GG)	Poaceae	Austrostipa puberula		×	
Grass & grasslike (GG)	Poaceae	Austrostipa rudis		×	
Grass & grasslike (GG)	Poaceae	Austrostipa rudis subsp. nervosa		×	
Grass & grasslike (GG)	Poaceae	Cynodon dactylon	Common Couch	×	
Grass & grasslike (GG)	Poaceae	Echinopogon caespitosus	Bushy Hedgehog-grass	×	
Grass & grasslike (GG)	Poaceae	Elymus scaber	Wheatgrass	×	
Grass & grasslike (GG)	Poaceae	Entolasia stricta	Wiry Panic	×	×
Grass & grasslike (GG)	Poaceae	Microlaena stipoides	Weeping Grass	×	
Grass & grasslike (GG)	Poaceae	Poa sieberiana	Snowgrass	×	
Grass & grasslike (GG)	Poaceae	Rytidosperma pallidum	Redanther Wallaby Grass	×	
Grass & grasslike (GG)	Poaceae	Rytidosperma spp.		×	
Grass & grasslike (GG)	Poaceae	Rytidosperma tenuius		×	
Grass & grasslike (GG)	Restionaceae	Baloskion australe		×	
Grass & grasslike (GG)	Restionaceae	Baloskion gracile		×	
Grass & grasslike (GG)	Restionaceae	Empodisma minus		×	

Growth Form Group	Family	Scientific Name	Common Name	Recorded in	BioNet
				Surrounding Vegetation	Vegetation Classification
Grass & grasslike (GG)	Restionaceae	Eurychorda complanata		×	
Grass & grasslike (GG)	Restionaceae	Lepyrodia scariosa		×	
Grass & grasslike (GG)	Xyridaceae	Xyris ustulata	Yellow Flag	×	
Fern (EG)	Gleicheniaceae	Gleichenia dicarpa	Pouched Coral Fern	×	
Forb (FG)	Acanthaceae	Brunoniella australis	Blue Trumpet	×	
Forb (FG)	Apiaceae	Daucus glochidiatus	Native Carrot	×	
Forb (FG)	Apiaceae	Hydrocotyle tripartita	Pennywort	×	
Forb (FG)	Apiaceae	Xanthosia pilosa	Woolly Xanthosia	×	×
Forb (FG)	Asteraceae	Arrhenechthites mixta	Purple Fireweed	×	
Forb (FG)	Asteraceae	Coronidium scorpioides	Button Everlasting	×	
Forb (FG)	Asteraceae	Craspedia variabilis	Common Billy-buttons	×	
Forb (FG)	Asteraceae	Euchiton sphaericus	Star Cudweed	×	
Forb (FG)	Campanulaceae	Wahlenbergia communis	Tufted Bluebell	×	
Forb (FG)	Campanulaceae	Wahlenbergia gracilis	Sprawling Bluebell	×	
Forb (FG)	Campanulaceae	Wahlenbergia spp.	Bluebell	×	
Forb (FG)	Colchicaceae	Burchardia umbellata	Milkmaids	×	
Forb (FG)	Droseraceae	Drosera peltata		×	
Forb (FG)	Goodeniaceae	Dampiera stricta		×	×
Forb (FG)	Goodeniaceae	Goodenia bellidifolia subsp. bellidifolia	L	×	
Forb (FG)	Goodeniaceae	Goodenia hederacea	lvy Goodenia	×	
Forb (FG)	Goodeniaceae	Goodenia paniculata		×	
Forb (FG)	Haemodoraceae	Haemodorum planifolium		×	

Forb (FG)				Surrounding Vegetation	Diologi Vegetation Classification
Eo.th (EG)	Haloragaceae	Gonocarpus micranthus		×	
(51) 0101	Haloragaceae	Gonocarpus tetragynus	Poverty Raspwort	×	
Forb (FG)	Iridaceae	Patersonia glabrata	Leafy Purple-flag	×	
Forb (FG)	Iridaceae	Patersonia sericea	Silky Purple-Flag	×	×
Forb (FG)	Linaceae	Linum marginale	Native Flax	×	
Forb (FG)	Orchidaceae	Diuris pardina	Leopard Orchid	×	
Forb (FG)	Orchidaceae	Microtis spp.		×	
Forb (FG)	Orchidaceae	Prasophyllum spp.		×	
Forb (FG)	Orchidaceae	Thelymitra ixioides	Dotted Sun Orchid	×	
Forb (FG)	Orchidaceae	Thelymitra spp.		×	
Forb (FG)	Phormiaceae	Dianella revoluta	Blueberry Lily	×	
Forb (FG)	Phormiaceae	Dianella revoluta var. revoluta		×	
Forb (FG)	Phyllanthaceae	Poranthera microphylla	Small Poranthera	×	
Forb (FG)	Rubiaceae	Opercularia hispida	Hairy Stinkweed	×	
Forb (FG)	Rubiaceae	Opercularia varia	Variable Stinkweed	×	
Forb (FG)	Rubiaceae	Pomax umbellata	Pomax	×	
Forb (FG)	Stackhousiaceae	Stackhousia viminea	Slender Stackhousia	×	
Forb (FG)	Violaceae	Hybanthus monopetalus	Slender Violet-bush	×	
Forb (FG)	Violaceae	Hybanthus vernonii		×	
Forb (FG)	Violaceae	Viola silicestris		×	
Fern (EG)	Dennstaedtiaceae	Pteridium esculentum	Bracken	×	×

FIGURES

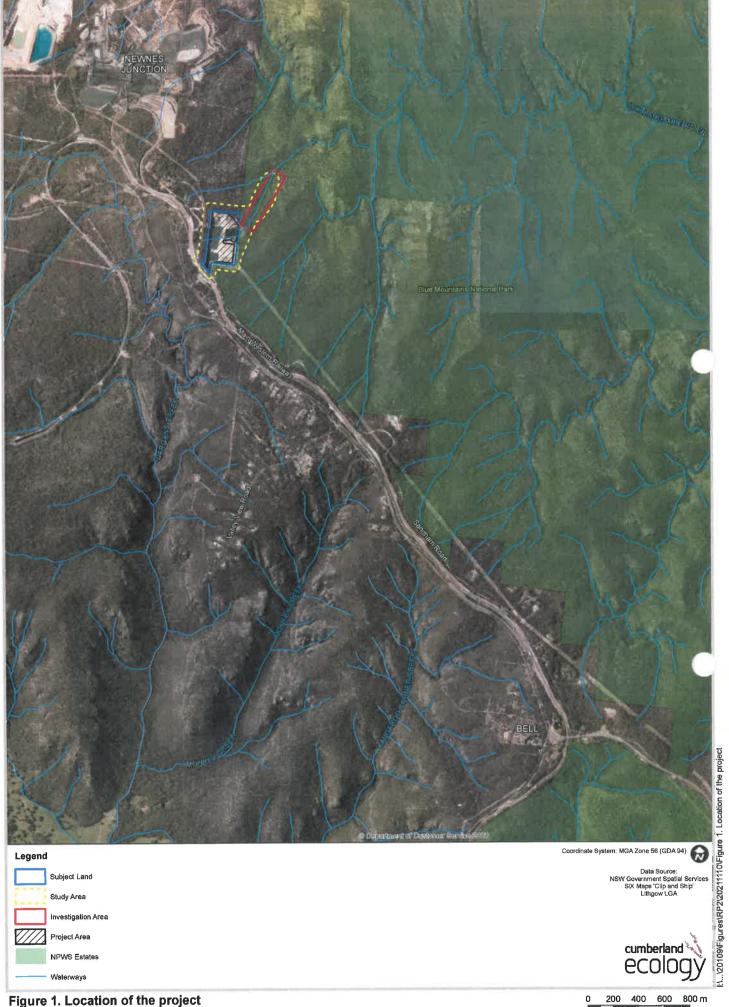
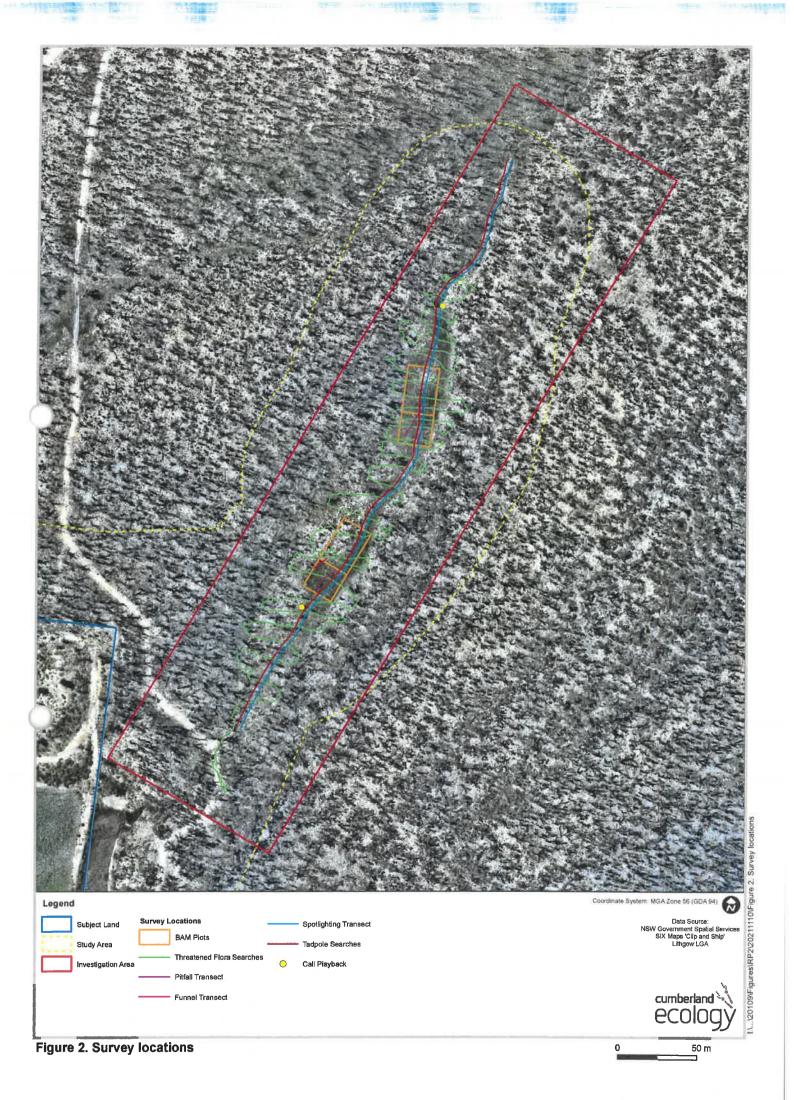
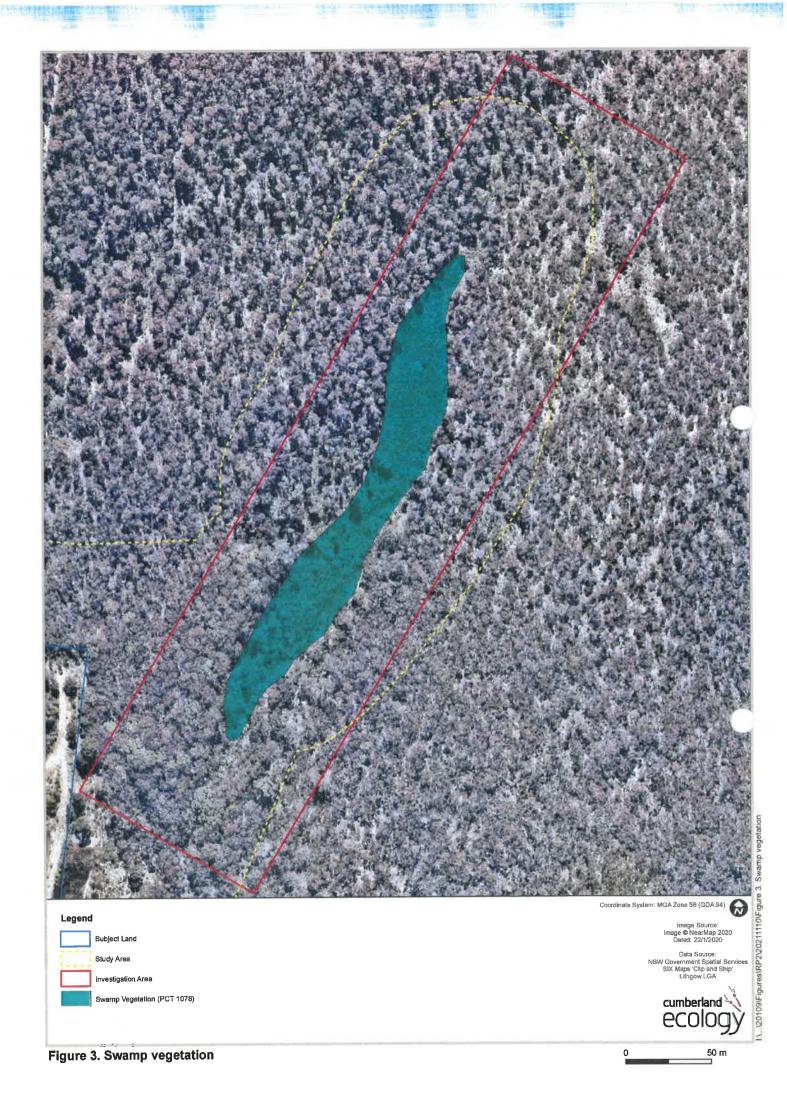
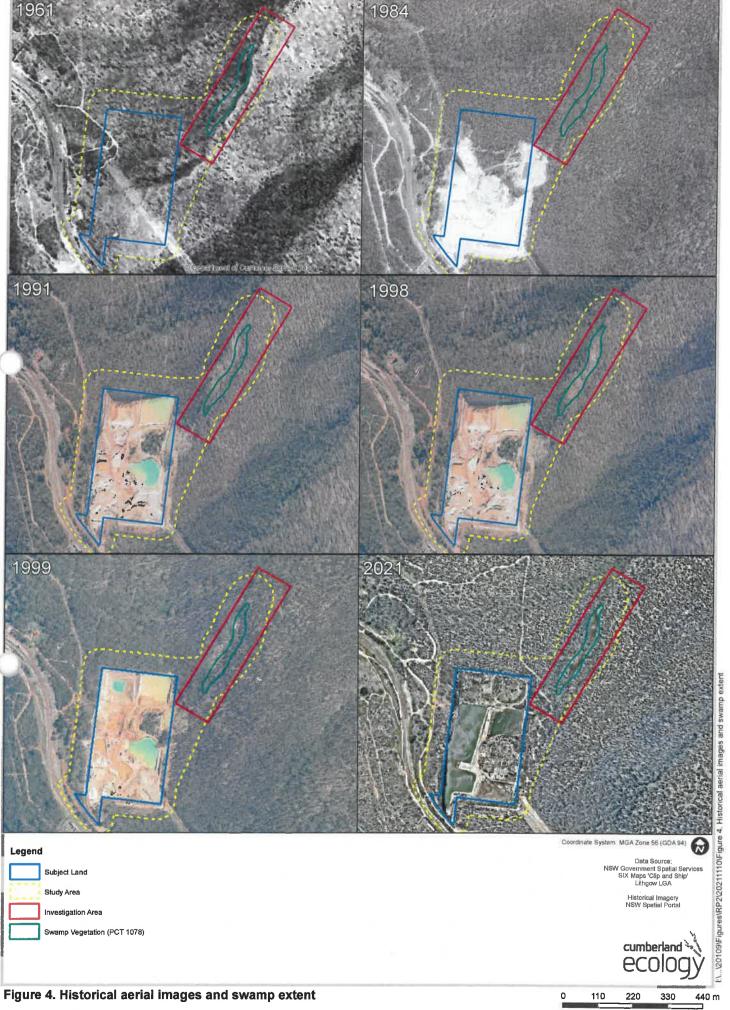





Figure 1. Location of the project

Appendix G

Traffic Considerations

LETTER

Transport Engineering

now

REF: 864008

DATE: 15 November 2021

HWL Ebsworth Lawyers Level 14, Australia Square 264-278 George Street SYDNEY NSW 2000

Attention: Kara Mezinec (Senior Associate)

Dear Kara

RE: BELL QUARRY PREFERRED PROJECT - TRAFFIC STATEMENT

The following traffic statement has been prepared in response to the preferred project report and Lithgow City Council's contentions and particulars as relevant to traffic and transport (LEC case number 2021/00091361):

Contention 10

The proposed development will have unacceptable environmental and amenity impacts arising from the activity associated with the importation of fill to the former quarry site, contrary to s4.15(1)(b) of the EP&A Act.

- a) There are a number of residences located on Sandham Road, between Bells Line of Road and the subject site, and others proximate to Sandham Road/Chifley Road that will be impacted by the following amenity concerns:
 - ii. public safety issues for school buses, cyclists and residents using Sandham Road given the existing condition and character of the road;
- b) Adverse traffic impacts on residents located on Bells Line of Road and Great Western Highway east of Mt Victoria from increase in heavy truck movements associated with the Project.

To address this contention, the Applicant proposes to make a contribution, through a Voluntary Planning Agreement to fund certain road works as described in this letter.

Various locations along the currently sealed section of Sandham Road near Old Bells Line of Road can be widened by around 2 metres to allow for an effective sealed road width of 7 metres. This would allow for a vehicle to pull to one side of the road in the event that there is a vehicle approaching in the opposing direction. The effective sealed width of 7 metres is considered adequate to allow two heavy vehicles (or school buses, cyclists and residents in cars) to pass. An indicative scope of works for these upgrades has been prepared and included in Attachment 1.

Sandham Road has previously supported quarrying activities and the proposed measures will meet contemporary brownfields expectations, without unduly impacting the existing landform, trees/ vegetation and/or property boundaries and access driveways. Appropriate vehicle/ driver management measures, including a driver code of conduct for the rehabilitation project operational phases, can be implemented to further improve heavy vehicle interaction.

The Bell Quarry TIA also indicates peak activity will result in up to 74 movements per day (38 trucks per day) based on a rate two times higher than the average traffic generation, however this peak activity will be offset by periods with less activity to maintain the capacity of the site to 140,000 tpa.

It seems that there may be a minor inconsistency (or rounding error) with these estimates and the traffic generation estimates for the project should instead be:

• Average haulage: 19 trucks per day (38 truck movements per day)

Peak haulage: 38 trucks per day (76 truck movements per day).

The above-mentioned corrections are minor and do not impact the conclusions of the Bell Quarry TIA. The assessment assumes the traffic generation during the peak hour would equate to around 10 per cent of the total daily traffic, which is considered appropriate considering the proposed operational hours will equate to 11 hours between 7am and 6pm. In addition to the above, the Bell Quarry TIA assumes two light vehicles associated with staff would travel in and out from the site during peak periods (also consistent with the previous Quarry approval and SEE) for that former use.

These vehicle volumes are low and equate to a maximum frequency of one heavy vehicle every eight minutes. Detailed SIDRA modelling was completed as part of the Bell Quarry TIA, which indicated minimal difference between scenarios with and without the proposed development.

Bells Line of Road and the Great Western Highway are State Roads controlled by TfNSW. The function of State Roads is (inter alia) to accommodate the movement of goods and services and generally higher traffic volumes. The proposal is expected to result in an increase on current traffic (i.e. not considering former quarry use) of four vehicles per hour (eight movements per hour) on average, and up to six vehicles per hour (12 movements per hour) during peak activity. This increase is minor and could not be expected to impact the safety and/or function of the surrounding road network.

Contention 11 (Points 7-11)

The notification of the Designated Development application attracted submissions from relevant Government agencies, local government, special interest groups and individuals. A total of 470 submissions of objection, excluding duplicates, were received by Council including 321 individual submissions and 149 form letters, expressing concerns in relation to:-

 Traffic impacts on Bells Line of Road and Great Western Highway, in particular in Mt Victoria from additional heavy truck movements;

As stated above, Bells Line of Road and the Great Western Highway are State Roads controlled by TfNSW. The function of State Roads is (inter alia) to accommodate the movement of goods and services and generally higher traffic volumes. The use of the state road network by the project is appropriate in this regard and residents are unlikely to notice any such minor traffic impacts.

Further to this, it is anticipated that 45 per cent of traffic will approach from/ depart to the south via Mt Victoria. As such, the increase in Mt Victoria is expected to be up to 2-3 vehicles per hour (4-6 movements per hour) which is considered within existing daily fluctuations limits along these roads through Mt Victoria.

It is also understood that facilities on Clarence Colliery Road to the west of the site also use the Darling Causeway and Great Western Highway route through Mount Victoria without issue.

 Existing condition and width of Sandham Road unable to safely accommodate heavy truck movements, particularly in respect to the school bus, pedestrians, cyclists and local resident movements and needs to be upgraded if the proposal is approved;

As stated above, it is proposed to provide a contribution to facilitate various locations along the currently sealed section of Sandham Road near Old Bells Line of Road to be widened by around 2 metres to allow for an effective sealed road width of 7 metres which is suitable to allow for two heavy vehicles (or school buses, cyclists and residents in cars) to pass.

Intersection of Sandham Road and Bells Line of Road has poor sight lines and needs to be improved;

Tube counts were completed on Bells Line of Road, which indicates an 85th percentile speed of 74km/h for westbound vehicles and 72km/h for eastbound vehicles, despite there being a posted speed limit of 60km/h. In assessing the minimum sight distance requirements of the intersection, reference has been made to the Austroads Guide to Road Design (AGRD) Part 3: Geometric Design and Part 4A: Unsignalised and Signalised Intersections, as well as the TfNSW Supplement to Austroads Guide to Road Design Part 3.

The Bell Quarry TIA references stopping sight distance (SSD) requirements for trucks, which are generally less than the requirements for cars. It is noted that SSD requirements are not considered to be overly relevant in this case, with Safe Intersection Sight Distance (SISD) considered more appropriate as it relates to the available sight distance available for drivers on the major road to see and respond to a potential conflict at an intersection with a minor road.

The TfNSW Supplement states that industry practice in NSW is to use a driver reaction time of 1.5 seconds for calculating sight distance requirements for roads with design speeds less than or equal to 90km/h. Based on an 85th percentile speed of 72km/h, this results in a SISD requirement of 147 metres. Application of this SISD requirement to eastbound vehicles is shown in Figure 1.

Figure 1: SISD requirements

Base image source: Nearmap

Site observations indicate that required SISD can generally be achieved subject to minor pruning of trees along the northern side of Bells Line of Road as shown in Figure 2 and Figure 3. It is noted that there is a TfNSW road sign related to the heavy vehicle safety station located immediately after Sandham Road within the SISD. However, site observations indicate drivers are generally able to see around this sign, while also noting that vehicles are able to move forward from the hold line to the edge of the travel lane to further improve the available sight distance. This is typical driver behaviour at intersections where left turn deceleration lanes are provided (noting in this instance, the area forms the start of the exit lane for the heavy vehicle safety station. Alternatively, this TfNSW road sign could potentially be relocated outside of the SISD (possibly to the western side of the bridge) to further improve the available sight lines at Sandham Road.

Site observations indicate that there is adequate sight distance available to the east of Sandham Road, as shown in Figure 4.

Figure 3: Driver's point of view from the SISD (147m) to the west of Sandham Road

Figure 4: Available sight lines from Sandham Road to the east

There is currently a truck crossing/ entering warning sign (Sign No. W2-22 shown in Figure 5) to the west of the bridge near the SISD to the west of Sandham Road. This could be supported with a new side road intersection warning sign for additional driver awareness (Sign No. W2-4_L shown in Figure 6), however not essential. The Applicant would liaise with TfNSW to agree any signage improvements that are considered beneficial for the existing intersection.

Figure 5: Truck crossing/ entering warning sign (Sign No. W2-22)

 Potential for queuing of trucks in Sandham Road and Bells Line of Road prior to 7.00am opening of facility; and

This is an operational matter and can be addressed through management measures such that vehicles are not queued on surrounding roads prior to the site opening. These are typical requirements/ expectations for construction sites around Sydney, and have been successfully addressed at various rehabilitation projects and waste management centres via consent condition and management plan(s). Accordingly, this would be addressed in an operational Plan of Management. Notwithstanding, any queuing at the entry to the quarry is unlikely to impact the surrounding area as there is approximately two kilometres of Sandham Road between the site and the nearest property access. Further, there would be no reason for vehicles to queue on Bells Line of Road.

Amenity impacts on Sandham Road residences with dust, noise and public safety.

With respect to public safety, it is now proposed that various locations along the currently sealed section of Sandham Road near Old Bells Line of Road funded to facilitate widening by around 2 metres to allow for an effective sealed road width of 7 metres which is suitable to allow for two heavy vehicles to pass. The anticipated vehicle volumes generated by the project are low and equate to one heavy vehicle every 17 minutes on average or a maximum frequency of one heavy vehicle movement every eight minutes for peak haulage.

Contention 12:

The key matters to be addressed by conditions would include the following:

c) Traffic and Transport: The development involves significant heavy vehicle movements over an extended period of time. This will impact on the required maintenance of the road and the safety of other road users. If the development were to be approved, significant measures would be required to mitigate these impacts. The recommendations of Council's Engineer for the widening and sealing of Sandham Road would address local concerns as to dust and public safety in the event of the approval of the development embodying the Council Engineer recommendations.

As outlined in response to Contention 10, the proposal does not involve significant heavy vehicle movements. The proposal vehicle volumes are considered low, are consistent with the former quarry operations and equate to a maximum frequency of one heavy vehicle every eight minutes. The widening of various locations along the currently sealed section of Sandham Road near Old Bells Line of Road, by around 2 metres to allow for an effective sealed road width of 7 metres, is suitable to allow for two heavy vehicles to pass. The works required for safety and amenity are not significant as contentioned, rather the identified road widening on the sealed section is an acceptable response to the proposed frequency of heavy vehicle movements, without undue impact on the existing local road environment.

Given the low traffic volumes anticipated from the development, the proposal does not warrant full road widening upgrades to Sandham Road and is it not considered appropriate to put the onus solely on the Applicant. Maintenance of the road is the responsibility of Lithgow City Council and Blue Mountains City Council in the respective local government areas, noting it is reasonable for the proponent to be expected to contribute towards accelerated maintenance requirements resulting from haulage operations. The Applicant has offered a suitable developer contribution via planning agreement for Sandham Road works as described in this letter.

Given the limited property accesses and existing condition of Sandham Road within the Lithgow LGA, the majority of future traffic movements in this section would be associated with the former quarry. As such, the unsealed road could be more appropriately maintained as an unsealed haul road, with regular maintenance carried out by the proponent in order to maintain appropriate conditions, in conjunction with periodic Council maintenance works.

I trust the above provides the necessary information. Should you have any questions or require any further information, please do not hesitate to contact me on (02) 8448 1800.

Yours sincerely

GTA, NOW STANTEC

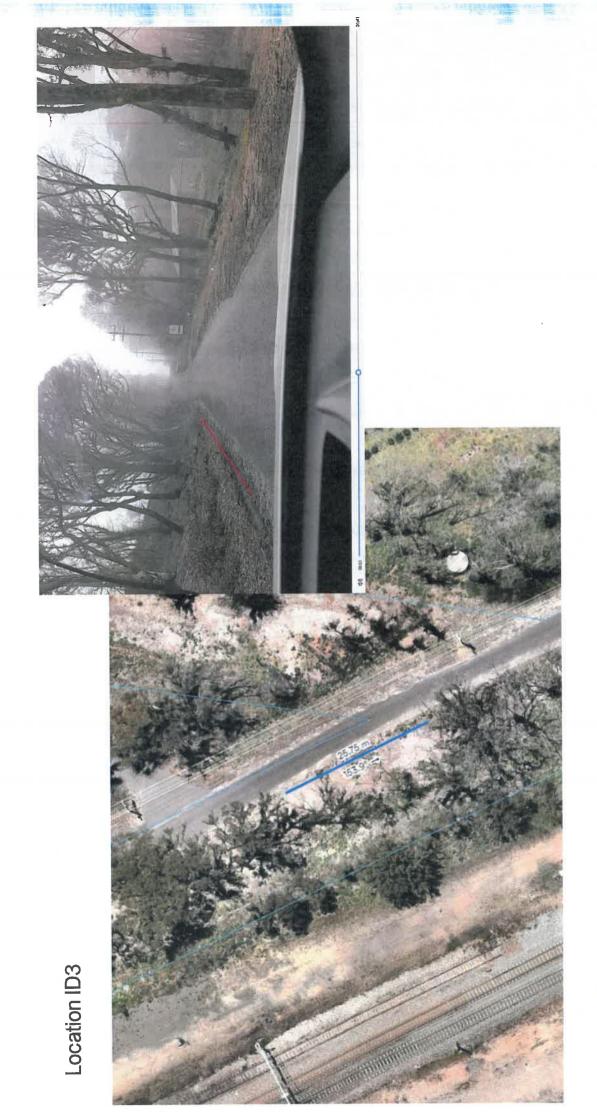
/Mayned.

Brett Maynard Director



ATTACHMENT 1

Sandham Road Upgrade - Indicative Scope of Works



SUMMARY OF WIDENING

ID1 = 20m

ID2 = 20m

1D3 = 25m

ID5 = 50m

ID6 = 50m ID6 = 15m

ID7 = 30m

Total length = 210m

Total area = 210m length x 2m widening = 420m²

ghd.com

→ The Power of Commitment